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Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

August 1973 

In an earlier note (1), we examined the manner in which a set of 

geometrical constraints can be used to give closed cosmological solu-

tions to Einstein's field equations. These constraints are expressed 

as a set of quantities or physical variables which are defined uniquely 

in terms of universal constants (1, 2, 3) and are termed quantized vari-

abies (1). 

We also presented a set of canonically conjugate relations of these 

variables (4). It was demonstrated that the quantized variables have 

operator representations (5), and a generalized Schrodinger equation 

was developed. 

Also introduced in ref. (5), is a multidimensional space called the 

Descartes space, in terms of which we can formulate a set of geomet-

rical constraints. The dimensions of this multidimensional geometry 

was given in terms of invariant unit dimensions, called the quantal 

units (1). The metric for the multidimensional Descartes space is 

termed the generalized Minkowski metric (6). 

In this note, we demonstrate the manner in which the quantized 

variable geometrical constraints act in the 11 domain" of quantum 

mechanics and in that of relativity, and the relationship of these two 

formalisms. What is meant by 11 quanta" is also discussed. 



-2-

Some comments and references are made about relativistic quantum 

field theories, such as the Dirac theory, and the second quantization 

formulation of our theory. Also some of the recent "quantum gravita-

tional" theories are discussed in the context of our formalism. The quantal 

units relevant here are: Planck's length (2) or the Wheeler "wormhole" 

length (3), 1. = (Gii/c
3

)
1

/
2

; time, t = (Gii/c
5

)
1

/
2

; momentum, p = (c
3
1i/G)

1
/

2
; 

and energy, E = (c
5
1i/G)

1
/

2
• In these equations, 1i,G and c denote 

Planck's constant, the universal gravitational constant, and the velocity 

of light, respectively. Other quantal units are given in Table I of 

ref. (6). 

These quantities can represent dynamical quantities or variables as 

well as quantal unit" measuring rods," and in the form of variables, are 

termed quantized variables. That is, each quantal unit has an associated 

quantized variable (4, 5). 

In relation to our terminology, quantal units or quantized variables 

we define two distinct quantization procedures, primary in terms of the 

quantized variables and secondary, or the usual quantization proce<;lure 

(4). The essential distinguishing characteristic between these two pro-

cedures is "scale" (7, 8); but in both procedures there exists a set of 

canonically conjugate variables, termed the generalized Heisenberg 

relations. It can be shown that, in fact, these two procedures give 

equivalent results {4). In refs. (4 and 8) quantized variables are used 

to develop new Heisenberg relations. 

It is also possible to form a set of pair relations as relativistic in-

variant "four -vectors" (6). We will develop the relationship between 

the canonically conjugate formalism of the quantized variables and the 

set of inv.ariant relations that make up the generalized Minkowski metric. . . 
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The set of canonically conjugate relations, are shown in fig. 1. We 

have the two usual relations, (x, p} 2:: 1i and (E, t) 2:: 1'1, and four new re-

lations (9 ). We shall denote possible pair representations as the gen-

eralized pair (p. , v. ), where the index i runs i to 3 for vector variables 
IE IE 

and i = i for scalar variables. In fig. i, we consider only one component 

of each vectors; for example, x =xi = x 2 = x 3 . 

In this notation, for the pair (p E-' v E), if E = i, have the pair 

(x, p) 2:: 1'1; and for E = 2, we have the pair (t, E) > 1'1. The four new rela-

tions (4) are forE :::: 3, (x, E):::::: c1i; E = 4, (p, t)?: 1i/c; E = 5, (x, t) ::=::1'1/F; 

and E = 6, (p, E) >1iF, where F is the quantal force, F = c 4 /G. 

-
Extensive literature exists which discusses the interpretation of the 

scalar Heisenberg relation, (E, t) > 1'1. Time operators have been pre-

sented by several authors (5, iO, ii). J. H. Eberly and L. P. S. Singh (7) 

develop an unambiguous and non-singular statement of the energy-time 

uncertainty relation. We c:levelop a time operator (as well as a space 

operator), in conjunction with the development of the generalized 

Schrodinger equation (5}, which V. S. Olkhousky and E. Recami also 

discuss (i2). Eberly a,nd Singh use the density matrix formalism to 

develop time operators and their uncertainty principle with Hamiltonian 

operator~. 

We can form an invariant 11 line element, 11 in terms of a universal 

constant or combinations of universal constants, between any two vari-

ables, f.L· and 1']. , where again the index i runs i to 3 for vector vari-
lK lK 

ables and i = i for scalar variables and the index K runs i to n ( n is 

defined as the dimensionality of the Descartes space). Considering one 

component of vector quantities, for example x =xi and p =pi, we can 
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define a Descartes four-space as {x } = { x, t, p, E }. For example, we 
K 

have the usual invariant relation 

2 2 2 2 
Si = X - C t (i) 

for one component of x; for an isotropic subspace x = xi = x 2 = x 3 (1) 

and for metrical signature (+, +, +, -). There are six invariant 11 line-

elements 11 for a Descartes four-space (6). 

We will define a generalized four-vector invariant. The usual defini-

tion of a four-vector, for invariance relations, is in terms of a spatial 

vector quantity and a temporal scalar quantity which form an invariant 

variable pair relation in terms of the invariance of the universal constant, 

c. The usual cases are eq. (i) and, 

2 2 i E2 . s2=p --2- (2) 
c 

Again we consider one-component of the momentum vector only: 

p =pi = p 2 = p 3 . We show the six invariant relations for a Descartes 

four-space in table I. We have the usual relations for o = i and o = 2 

and for o = 3 we have one of the new relations in terms of the invariance 

ofF, 

(3) 

The quanta! force is uniquely expressed in terms ofthe universal con­

stants c and G as F = c 
4
/G (i); thus the invariance of the expression 

in eq. (3) is dependent on the invariance of the universal constants c 

and G. 

For o = 5 in table I, we have a six- subspace for the (x, p) variable 

pair and for o = 6, we have a two-subspace for the (t, E) variable pair. 

Using the one component forms, as in eq. (i) and (2), each subspace is 

then a two space. 
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The generalized invariant four-vector (or six-or two-vector) can 

be formed in terms of any two variables in terms of the invariance of 

any ·of the universal constants, c, G and 1i or combinations of them. 

Using one-component of vector quantities then the set of generalized 

invariant relations are generalized two-sub-spaces. 

A generalized invariant expression for a multidimensional Descartes 

space is given in ref. (6), both for the four-space and for a ten-space 

in terms of one-component vector and scalar coordinates, 

{x }=- {x,t,p,E,m,F,c,a,P,L}, where m is mass, a is acceleration, 
K . 

P is power and L is angular momentum, other quantities are defined 

previously. In ref. (8) a higher order Descartes space, of as many 

as thirty dimensions is pre sen ted which includes electromagnetic 

and thermodynamic coordinates (13, 14). 

The generalized form of an invariant-variable pair is 

2 2 
=IJ.. +m, 11· 

lK 1\.K lK 
(4) 

for any two variables f.!.. and 11· , where X. and K run from 1 to n 
lK lK 

(the dimensionality of the Des cartes space being considered) and the 

index o runs 1 to I (I is the number of invariant relations for a Descartes 

space of n dimensions). As before i runs 1 to 3 for vectors and 

i = 1 for scalars. The invariance relation between any two variables 

is expressed in terms of the metrical elements mAK which are ex­

pressed in terms of universal constants or combinations of universal 

constants. The constant elements from a non-diagonal matrix termed 

the generalized Minkowski metric, M (6). 

A generalized invariant, for all n dimensions of the space, can 

be expressed in terms of the diagonal form of the Minkowski metric. 

The diagonal form of M is an analytic expression but is not a simple, 

easily usable form (15 ). • I 
In forming the invariants· for 1 a particular Descartes 
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space, of dimensionality n , the maximum number of invariants 

that can be formed is given by the following Lemma: 

Given a Descartes spac~ of dimensionality n, the number of in-

variants that can be formed fo.r that space is equal to the number of in-

variants of the Descartes space of one less dimensionality ( n - 1), plus 

the number of dimensions of the n - 1 dimensional space. 

Let In be the maximum number of invariants for a Descartes space 

of n dimensions and let ~· be the maximum number of invariants for 

a Descartes space of n' = n- 1 dimensions, the 

In =In' + n' . (5) 

A rigorous proof of this new Lemma is given in ref. (8). 

In developing the generalized Heisenberg relations and generalized 

invariance in a multidimensional geometry in which each dimensioned 

physical variable is considered on an equal footing, we see that physical 

variables can be paired in uncertainty relations, such as those in fig. 1. 

Also paired variables can form invariant relations in terms of universal 

' constants, as in table I. The relationship between these two pair re-

lationships, as given in more detail in refs. (4) and (6), is presented in 

table II. For example the index E= 1 to denote the Heisenberg pair (x, p); 

the index 6 = 5, denotes the same pair (x, p) in an invariant relation. 

In the notation in table II, E = 6 = 3 and E = 6 = 4 both denote the same 

variable pair related in a Heisenberg relation and as a relativistic in-
.... 

variant. In this manner and with the assumption of "equal footing" of 

physical variables, we see a way in which quantum mechanics and 

relativitistic invariance can be tied together by a geometrical model 

of the manifold. 
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Note that all invariant expressions in this note are special relativistic 

invariants. General relativistic invariants are discus sed in ref. (6) as 

are some light cone relations for the generalized special relativistic in-

variants. In ref. (1), the quantized variable geometrical constraints 

are applied in general relativity and clos-ed cosmological solutions are 

found for Einstein's field equations. Experimental evidence for closed 

cosmologies a~e sited in refs. (.1 and 8}. 

Unifying quantum mechanics and general relativity is one thing, it 

is quite another to demonstrate the 11 common roots" of the formalism. 

A relativistic quantum field theory, or a 11 quantized" gravitational theory, 

may relate to an aspect of a unifying theory; but it cannot by itself be con-

sidered a fundamental unifying theory. However, quantized gravitional theories 

may shed some light on the path toward a fundamental relation between 

quantum and relativistic physics. For example, the problems of rec-

onciling non-linearities in general relativistic fields and the super-

position principle in quantum mechanics are well pointed out by some of 

the workers in quantized gravitational theories. For example 

B.S. De Witt (17 ,18} in an extensive treatise, discuss some of the dif-

ficulties in 11 synthesizing" nonlinearities of the metric tensor and the 

quantum superposition principle. Attempts have been made to develop 

a linear theory of the massless, spin 2 field (19). Also, some of the 

tie-iri to the 11 roots" of the canonical formalism is fundamental to a 

unifying of quantum mechanics and relativity (8). 

Since both quantum mechanics (primarily relating to micro-pheno-

mona) and relativity (relatirtg to macro-phenomena) are so successful 

in elegantly de scribing physical phenomena, a unifying aspects for 
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these fields of physics must necessarily involve the interrelation of 

diverse aspects of reality. 

It also seems apparent that since every aspect of reality depends 

on every other aspect, as expressed clearly by H. Stapp (20): 11 Every 

part of the universe depends on every other par.t," the bootstrap model 

of elementary particles developed by G. Chew (21) is another statement 

of this proposition, in elementary particle physics. 

A unified theory of reality which would intimately bring together 

quantum and relativistic phenomena must necessarily be complete. The 

concept of completeness in quantum theory is discussed in the 11 classical" 

paper by A. Einstein, B. Podolski and N. Rosen (22) and subsequent 

papers inspired by this work. 

The quantal units as dimensions, which are expres sable uniquely 

in terms of universal constants, are manifest in quantum mechanics and 

special relativistic invariants and general relativity, as well as thermo­

dynamics (8), and electromagnetic theory _(8, 14). According to 

B. N. Taylor, W. H. Parker, and D. W. Langenberg (23), the "uni­

versal constants are an important link in the chain of physical theory 

which binds all the diverse branches of physics together. 11 

In 1921, Einstein discussed a fundamental aspect of reality: "It 

was formerly believed that if all material things dis appeared out of the 

universe, time and space would be left, according to the relativity theory, 

however, time and space disappear together with the things" (24). " 

In a Descartes space, should any one-dimensional physics vari-

able (space or time or matter or energy or velocity) disappear, then 

all the rest would also disappear. 
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1
/
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Variable pair f.l.k' 

f.l.1 = x, 1')1 = t 

f.l.2 = P· 'Y'J2 = E 

f.l.3 = x, 'Y'J 3 = E 

f.l.4 = p, 1')4 = t 

f.l.s = x, 'Y'Js =p 

f.l.6 = t, 'Y'J
6 

= E 

Component of the 
Minkowski metric 

2 
c 

c 

1 
2 

Table I. Pair-variable relations as invariants in terms of the elements 
of the generalized Minkowski metric. Six such invariant pair relations 
can be formed for a four-dimensional Descartes space. 
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Generalized Heisenberg Pairs Generalized invariant pair variables 

E = 1, (x, p) 0 = 1, so (x, t) = 1 

E = 2, (t, E) 0 = 2, so = 2 (p, E) 

E = 3 (x, E) 0 = 3, so = 3 (x, E) 

E = 4, (p, t) ·o = 4, so = 4 (p. t) 

E = 5, (x, t) 0 = 5, so 5 (x, p) 
= 

E = 6, (p, E) 0 = 6, so = 6 
(t, E) 

Table II. We can represent the relation between a pair of physical 
variables in two different formalisms. We have the uncertainty relation 
between two variables (p , v ) where the index E denotes a particular 
variable pair. We can afso ?epresent an invariant relation between two 
variables as (f.L , 11 ) and the index o denotes a particular invariant re­
lation. For E ~ 1 Kand 2 we have the usual quantum mechanical relation 
and for 6 = 1 and 2 we have the usual invariant four-vector relations. 
Table II depicts the manner in which these two representations of paired 
variables relate to each other. 
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E­
----~- p] > 1i 

II 

\lJ 

-------~~:~=>as- E] > ii. 
e=2 

XBL738-3842 

Fig. 1. Pair variable relations represented schematically 

as the generalized Heisenberg Relations, where E denotes a 

particular variable pair; for example, E = 4 denotes the pair 

(p E = 4' VE = 4) = (p, t);::11/c . 
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