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Abstract 

LBL-17273 

Dissipative Resistance Against Changes in the Mass Asymmetry 

Degree of Freedom in Macroscopic Nuclear Dynamics: 

The Completed Wall-and-Window Formula 
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January 1984 

The wall-and-window formula, describing the macroscopic energy dissipation 

for two nuclei in relative motion, is generalized to include the dissipation 

associated with a time rate of change of the mass asymmetry degree of 

freedom. The additional term is crucial for the possibility of understanding 

the existence of deep-inelastic nuclear reactions. 
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1. Introduction 

When an atomic nucleus is idealized as a system of weakly interacting 

nucleons in a time-dependent mean-field potential well, the nature of the 

macroscopic dynamics describing the time evolution of the nuclear shape is 

believed to be intimately related to the nature of the nucleonic motions 

inside the nucleus: whether ordered or chaotic. A particularly simple 

limiting form of the macroscopic dynamics -- the Chaotic Regime Dynamics 

results from the assumption of chaotic nucleonic motions (refs. 1-5). This 

dynamics is characterized by the presence of strong "one-body" dissipative 

forces associated with an irreversible flow of energy from the collective to 

the particle degrees of freedom. Simple formulae for the rate of this energy 

dissipation (considered as a function of the rate of change of the nuclear 

configuration) can then be derived either when the nuclear shape is everywhere 

convex (the mononuclear regime) or, in the opposite limit, when there is a 

pronounced constriction in the shape, dividing the configuration into weakly 

communicating pieces (e.g. the dinuclear regime). In the former case the rate 

of collective energy dissipation, -dE/dt, is described by the "wall formula", 

in the latter case by the "wall-and-window formula". (See, for example, ref. 

6). In the present paper we describe a generalization of the conventional 

wall-and-window formula that takes into account the mass transfer between the 

two parts of a dinuclear system. 
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2. The wall and the wall-and-window formulae 

The wall formula is the following integral extended over the surface 

specifying the nuclear shape: 

- ~i = p v f do (~ - 0) 2 (1) 

Here p is the mass density of the nucleus, v is the mean speed of the nucleons . 
in the nucleus and n is the normal velocity of an element do of the nuclear 

-+ 
surface. The quantity 0 (a function of position r on the surface and a 

functional of the velocity field n) is the normal component of a drift 

velocity impressed on the nucleons about to strike do by the presence of 

collective translational and rotational components in the velocity field n. 
• -+ 

[In refs. 1, 2 the drift O[n,r] is estimated by assuming a physically 

plausible two-parameter functional form for its space dependence, and 

determining the two (vector) parameters by the requirements of conservation of 

linear and angular momenta.] 

The wall-and-window formula for collective energy dissipation in' a system 

consisting of two pieces, 1 and 2, which are in relative motion and which 

communicate through a small window of area ~, may be written as 

The first two terms (analogous to eq. 1) represent the wall-formula 

dissipation for the two pieces, each with its own impressed drift 01 or 

(2) 
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02' These drifts are determined from the requirement that, apart from the 

forces acting through the window, the linear and angular momenta of each piece 

should be conserved (i.e., the requirement that the self-force induced on each 

piece by the wall-formula dissipation should not contribute to changes of 

linear and angular momenta). The last term in eq. 2 is the window formula for 

the energy dissipation associated with the relative motion of the pieces, the 

motion having velocity components i and ~ along and at right angles to the 

normal through the window ~. 

In the past several years equations 1 and 2 have been used in a number of 

applications in the context of nuclear fission and nucleus-nucleus collisions 

(refs. 1-10), but it is clear on reflection that eq. 2 is incomplete in an 

important respect: it does not address itself to the degree of freedom 

describing the relative sizes of the two pieces, j.e., to the mass or volume 

asymmetry degree of freedom. As we shall show, this incompleteness is readily 

remedied, and the "completed wall-and-window formula" then reads as follows: 

dE 2 + ~ Pa v v'2
1 - dt = eq. ~ (3) 

. 
where V1 is the rate of change of the volume of piece 1, say. 

3. The mobility and dissipation coefficients 

In order to derive the dissipation coefficient 16pv/9a in eq.3 we proceed 

analogously to the derivation of eq. 2. We idealize the nucleus as a gas of 

nearly independent particles in a container consisting of two pieces with 
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volumes VI and V2 containing Al and A2 particles, respectively, and 

communicating through a small window of area~. The total volume is assumed 

to be approximately constant (in accordance with the approximate 

incompressibility of nuclei) but the part VI is imagined to be changing at a 
. . 

rate VI so that there is a net current of particles, say AI' through the 
. 

window. (AI is equal to VI times the nearly constant particle-number 

density vI.) We assume that, associated with a given configuration and 

state of motion of the system, there is a macroscopic energy E consisting of 

potential and kinetic parts. If the kinetic part can be considered as 

negligible, i.e. if the motion is overdamped (the validity of this assumption 

will be discussed in section 5) the energy E is just the potential energy 

(consisting, for example, of a constant volume energy and shape-dependent 

surface and electrostatic energies). The (negative) rate of change of E will 

then be equal to the rate of dissipation of energy from collective to particle 

degrees of freedom. If the expression for this rate of change can be brought 

to a form where vi or Ai is a factor (see eq.3) then the remaining 

cofactor will define the desired dissipation coefficient. With this in mind 

we consider the following identity: 

dE 
- dt = ( 

~) dAI 
- dAI dt ' 

which displays the quantity (-dE/dAI ), the (generalized) force associated 

with the mass asymmetry degree of freedom. Now, under fairly general 

(4) 

conditions, which would include ordinary viscous hydrodynamics as well as the 

flow of electric current through a resistor, the current of particles between 

two systems induced by some driving force is expected to be proportional to 

.. 

• 



5 

this driving force. As a result we anticipate a proportionality relation of 

the form 

, (5 ) 

where c is a constant. 
dA1 (In the analogy with Ohm's law, ~ would be the cur-

rent, - ~~ the potential and c the conductivity*). Substituting in eq. 4 we 
1 

have 

dE 1 (dA1) 2 
-(ff=c ~ , (6) 

so that the sought-for dissipation coefficient (with respect to mass 

asymmetry) is the inverse of the proportionality coefficient between particle 

current and driving force the mobility coefficient of ref. 11. 

4. Estimates of the dissipation coefficient 

An estimate of the mobility coefficient has already been given in ref. 11 

in connection with a transport treatment of dinuclear reactions. We shall go 

over this derivation in the present context, provide alternative estimates and 

discuss some consequences. 

*Th;s analogy was pointed out to us by S. Bj¢rnholm and was also noted by H. 
Feldmeier in ref. 14. 
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4.1 The simple Fermi-gas model. 

Let the nuclei on the two sides of the window be idealized as two 

potential wells filled with Fermi gases up to energy levels -S1 and -S2 as 

measured with respect to the potential at infinity (which is taken as the zero 

of the energy scale). Thus Sl is the separation energy for removing to 

infinity a particle from system 1 (in the presence of system 2). Similarly 

for the separation energy S2. The difference between the separation 

energies, S1-S2' is also the difference between the chemical potentials on 

the two sides of the window and is thus the driving force for the transfer of 

particles from system 2 to system 1: 

(7) 

Let the particle densities, mean particle speeds (equal to 3/4 of the Fermi 

velocities), Fermi kinetic energies and potential depths for the Fermi gases 

adjacent to the two sides of the window be denoted by VI' VI' T1, U1 

and v2' v2' T2, U2, respectively. Then the number of particles 

entering the window per unit time in the direction from 2 to 1 is { v2v2a 

and in the direction from 1 to 2 is { vlvla (ref. 11). If there is no 

discontinuity in the potential at the window (i.e., if VI = U2),so that all 

particles entering the window also get through, the net current of particles 

into system 1 is 

(8) 
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Using eqs. 5, 7 it follows that the mobility coefficient c may be written as 

If the difference in the properties of the Fermi gases on the two sides of 

the window can be regarded as small, we may write, approximately 

1 d("v) 
c = - 4" a as 

",",1 a d("v) 
,..., '4 aT • 

(Eq. 11 follows from eq. 10 if the potential depths are assumed to be 

velocity-independent, so that T2-T1 = $1-$2.) 

(9) 

(10 ) 

(11 ) 

The derivative of "v with respect to T is readily evaluated by recalling 

that for a Fermi gas the mean particle speed is proportional to ,,1/3 and the 

Fermi kinetic energy to }13. Hence 

d( "v) "v d( ln "v).. "v d(ln ,,4/
3

) 2"v 
aT = r- a(ln T) = -r d(ln ,,2/3) = -r- . 

, i 

In the above, T,,,,vm~y~e considered as referring to the mean values of 

the properties of the Fermi gases on the two sides of the window. It 

f 011 ows th a t 

C a"v 
=~ 

an;d eq. 6 bee orne s 

(12) 

( 13) 



dE 2T. 2 
----A dt - a"v 1 
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Changing the variable Al to the volume variable VI' viz. 

where m is the nucleon mass, and using 

T = i m (Fermi velocity)2 = i m(j v)2 

we find 

(14) 

(15) 

We should stress that the above dissipation term, eq. 15, is "new" in the 

context of dynamical descriptions of nuclear reactions employing the one-body 

wall-and-window formula. The physical content of this term is, however, 

present in ref. 11, which deals with the mass transport in nuclear 

collisions. It was shown in that reference that the overdamped motion of the 

mass asymmetry may be written as 

where FA' equal to 51 - 52' is the appropriate driving force and N' is 

the mobility coefficient. In the Fermi-gas model, underlying both ref. 11 and 

f.t 
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the present estimates, N' is the derivative, with respect to the Fermi energy, 

of the one-sided particle current through the window (N = i avv). Thus 

d 2 avv 
N' = aT N = T N = 2T 

Since the friction coefficient is the inverse of the mobility coefficient, the 

above expression for N', based on ref. 11, reproduces exactly the present eq. 

14. It follows that in all calculations based on ref. 11 the strong hindrance 

in the mass flow associated with eq. 15 is present. 

4.2 Fermi gas in a velocity-dependent potential. 

As stressed by Weisskopf in ref. 12, nuclear saturation requires that the 

potential felt by a particle in a Fermi-gas model of a nucleus should be a 

(decreasing) function of the particle's kinetic energy. It follows that for 

the two Fermi gases on the two sides of the window the potential depths U1 

and U2 felt by the particles at the top of the Fermi sea must be somewhat 

different, and that Sl-S2 ~ T2-T1. In this case the net current of 

particles into nucleus 1 is 

(16) 

where the factor dT/dS is related to the effective mass of the nucleons at the 
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Fermi surface and is not, in general, equal to unity. Thus, if the dependence 

of the potential depth on kinetic energy t is written as U(t) = Uo - kt, 

then a particle with the Fermi energy experiences a potential Uo - kT, and 

the separation energy is given by 

S = (Uo - kT) - T (17) 

from which it follows that (-dS/dT) = 1 + k. On the other hand, the total 

energy (kinetic plus potential) of a nucleon with momentum p and mass m is 

2 
t - U(t) = -U + (1 + k)t = -U + (1 + k) ~ o 0 ~ 

where m* is the effective mass, given by 

It follows that in place of eq. 15 we would have 

dE 16 pv m v· 2 
-(ff=9am* 1 

(18) 

(19) 

(20) 

.' 
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4~3 COOlpressible Fluid Model 

It is instructive to go through an explicit calculation of the mobility 

coefficientc in eq. 11 using the model of a slightly compressible fluid, 

according to which the energy of a fictitious uncharged nucleus with A 

particles and radius R is assumed to be given by a sum of a volume energy 

(including a compressibility correction) and~ surface energy, i.~. 

1 . (R -. ~o) 2 2 
E = -cIA + 2 AK . Ro + 4~r y • 

Here c1 is the volume energy coefficient, K is the compressibility 

(21) 

coefficient (of the order of 200 MeV), y is the specific surface energy and 

Ro' equal to roAl/3, is the radius that the nucleus would have at 

standard nuclear matter density. The actual equilibrium radius of the 

compressible nucleus is obtained by setting dE/dR equal to zero, which leads to 

R 2c2 -1/3 
- = 1 - --K-- A (22) 
Ro 

where c2 stands for 4~roy. Substituting in eq. 21, th~ optimized binding 

energy is 

so that the sepa~ation energy is 

(23) 
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The flux factor vV, if assumed to scale, a~ before, according to the 

Fermi-gas model (with the inverse fourth power of the radius) would be 

proportional to 

( 
2c2 -1/3 ).-4 

1 - K A = 

Bc 
1 + 2 A-1/3 + 

K 

(24) 

(25) 

Consider now two such slightly compressible nuclei, with mass numbers A1 

and A2, brought into contact. The difference in their separation energies 

(chemical potentials) is 

and the difference in the flux factors is 

where vV is some average between v1n1 and v2v2' Substituting in eq. 9 

we find 

avv 
C =m . 

(26) 

(27) 

(28) 

This is similar to eq. 13, but with the Fermi energy T replaced by K/6. Eq. 

15 would then be replaced by 



dE 16 pV (K/6) V2 -crr=9a I 1 

13 

(29) 

Eq. 15 is recovered if the compressibility of a Fermi gas is assigned the 

value 6T. It may be verified that this is indeed the value which describes 

the response of the energy of a Fermi gas of fixed volume to small deviations 

from a uniform density. 

In practice, the factor m/m* in eq. 20, as well as the factor K/6T in eq. 

29, are not very different from unity, so that the unrefined eq. 15 may 

continue to be used for rough estimates. 

5. Is the Mass Asymmetry Mode Overdamped? 

In this section we shall argue that one is indeed justified in 

disregarding the kinetic energy associated with the rate of change of the mass 

asymmetry because any kinetic energy originally present would be dissipated 

away in a very short time. 

Let us estimate the kinetic energy associated with the mass asymmetry 

degree of freedom by considering the flow of matter through a window of radius 

r. Let us write the kinetic energy associated with the flow as 

KE = i (mass of moving matter) u2 

122 = "2 (p'lfr d)u (30) 
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where u is the average flow velocity across the window and d an effective 

length specifying the amount of fluid affected by the flow. For example, in 

the case of an irrotational, incompressible flow through a circular aperture, 

Rayleigh found d = r (ref. 13). Using this result for the purpose of an order 
• of magnitude estimate, and making the substitution V1 = ua, we find 

KE '""" 1 pr V· 2 
"""2"T 1 

Combining this with eq. 15 we find for the e-folding time for the dissipation 

of the kinetic energy the value 

KE 9 (2r) 
-d(KE)/dt = 64 V- (31) 

Thus, in the presence of a dissipation in the form of eq. 15, the kinetic 

energy would become small after a time of the order of about one seventh of 

the time taken by an average nucleon to traverse the diameter of the window. 

For small windows, to which the present discussion is directed, this is, 

indeed, a very short time. 

We should stress that the above macroscopic estimate most certainly does 

not do justice to the intricate processes taking place in the small and 

rapidly opening window region, whose size is comparable both to the spacing 

between the nucleons and to their quantal wavelengths. The estimate is meant 

to be relevant to idealizations that are committed from the beginning to a 

macroscopic treatment and in which the problem arises as to the relative 

importance of dissipative and inertial forces. The question to what extent 

\" 
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the dominance by dissipation of the mass transfer process survives in a 

microscopic, quantal treatment is not answered by these estimates. 

6. Summary 

We have completed the wall-and-window macroscopic energy dissipation 

formula by including the dissipation associated with the relative volume 

changes of the two interacting nuclei in a dinuclear configuration. The 

relevant dissipation coefficient is made up of the same physical quantities as 

the rest of the Wall-and-Window formula (i.e., the flux factor pv and the 

window area ~). The fact that the new dissipation term is inversely 

proportional to a means that it dominates for small window areas and may be 

expected to effectively freeze out the asymmetry degree of freedom in 

dinuclear reactions, a condition essential for the ability of a model of 

nucleus-nucleus collisions to account for the existence of strongly damped 

(deep-inelastic) scattering. It has been verified (ref. 15) that without the 

new term this type of scattering is altogether absent in dynamical model 

calculations of the type of refs. 7-10, the mass flow between the nuclei being 

far too rapid. Inclusion of the new term reduces the mass drift drastically 

and we are in the process of ascertaining the degree of agreement with 

experiments that may be obtained when the completed wall-and-window formula is 

used. 
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