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Abstract 

We introduce a new limiting system of equations to describe combustion 

processes at low Mach number in either confined of unbounded regions ~d 

numerically solve these equations for the case of a fiame propagating in a 

closed vessel. This system allows for large heat release, substantial tempera­

ture and density variations, and substantial interaction with the hydro­

dynamic ftow field, including the effects of turbulence. However, this limiting 

system is much simpler than the complete system of equation~ of compressi­

ble reacting gas fiow since the detailed effects of acoustic waves have been 

removed. Using a combination of random vortex techniques and ftame propa­

gation algorithms specially designed for turbulent combustion, we describe a 

numerical method to solve these zero Mach number equations. We use this 

method to analyze the competing effects of viscosity. exothermicity. boundary 

conditions and pressure on the rate of combustion for a dame propagating in a 

swirling fiow inside a square. 



INTRODUCTION 

We introduce a new limiting system of equations to describe combustion 

processes at low Mach number in either confined or unbounded regions, and 

numerically solve these equations for the case of a fiame propagating in a 

closed vessel. This limiting system allows for large heat release, substantial 

temperature and density variation, and substantial interaction with the hydro­

dynamic fiow field, including the effects of turbulence. Since the detailed 

effects of acoustic waves have been removed, this zero Mach number limiting 

system is significantly simpler than the complete system of equations of 

compressible combustion; furthermore, our formulation of these equations 

constitutes a well-posed initial value problem (rigorous proofs are available, 

[5]). Under additional assumptions guaranteeing infinitely thin ftame front 

structure, this new system of combustion equations in multi-dimensions has a 

formal asymptotic limit which reduces to the system introduced recently in 

[7] for combustion in open channels through qualitative considerations. That 

system was solved numerically through a combination of random vortex ele­

ment techniques and flame propagation algorithms specifically designed for 

problems in turbulent combustion [7],[17]. In this paper, our new system, 

which applies to turbulent combustion in both open and closed vessels, is 

solved numerically by means of an extension of the above techniques. The new 

method, which requires only an additional fractional step involving a scalar 

nonlinear ordinary differential equation for the mean pressure, is used to 

analyze the competing effects of viscosity, exothermicity, boundary conditions 

and pressure on the rate of combustion for a fiame propagating in a swirling 

dow inside a square. 

This new limiting system of equations describing zero Mach numoer 

combustion to be described in this paper is a valid set of equations describing 

the physical process under the following three assumptions: 

1 
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(a) The nondimensional Mach number M, the ratio of typical fluid 

velocities to typical sound speeds, is small. 

(b) The initial pressure p 
o is spatially uniform within terms of 

(1. 1) 
order 2 !-1 • 

(c) The initial temperature T, mass fraction Z, and velocity v 

are in'chemical-fluid balance within terms of order M. 

The requirement in (l.l)(c) will be explained in detail below, but we 

would like to emphasize here that this condition is not particularly restrictive. 

If we use the well-known unique orthogonal decomposition (see [2]) of an arbi-

trary fluid velocity vector field v into a rotational field wand a potential 

v = w + 'VljJ 

(l.2) div w = 0, w·n I an = 0, ~ljJ I = 0 , 
on an 

then given initial values of T,Z, there is a unique initial value of the 

gradient of the potential 'VljJ, guaranteeing exact chemical-fluid balance; 

however, the rotational piece of the initial velocity w can be completely 

arbitrary, as long as it is consistent with the assumption in (l.l)(a). We 

emphasize here that the assmption of the approximate chemical-fluid balance 

for the initial data is quite essential for the validity of the equations to 

be described here. In fact, even if the initial Mach number is small and the 

initial pressure is nearly spatially uniform, when the conditions of chemical-

fluid bal ance are violated, the effects of the acoustic waves can be substantial. 

In fact, one only has to realize that there exist many combustion systems with 

.. 
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initial data satisfying (l.l)(a),(b) alone which exhibit transition to detonation. 

Furthermore, a rigorous proof of the validity of the zero Mach number limit 

equations (described in (1.3) below) under the three assumptions in (1.1) can be 

given by extending and modifying the analysis in [7]--this will be published 

e 1 se\o[here. 

Next we describe these equations in the simplest reacting fluid system. 

We assume two reacting species--unburnt gas, with mass fraction Z, undergoes 

one-step irreversible chemical conversion to burnt gas with the same y-gas law. 

In this situation, the equations for zero Mach number combustion in a confined 

region n (to be derived in Section 2 under the assumptions in (1.1)) are the 

following system of equations for the variables, pressure P, fluid velocity 

v = w + ~~, temperature T, and mass fraction Z, supplemented by the ideal 

gas formula p = PIT, with p the density: 

(1. 3) (a) Nonlinear D.D.E. for the Mean Pressure P (t) 

K J -A/T yqo € pZ e 
dP (t) = __ .,..,.n-:--=-__ 

dt Vol n 

(b) Elliptic Equations for the Velocity Potential 

A", (YP) -1 (_ dP + K -AiT AT) 
Ll\f" = dt yqo £" pZ e + EYu a~1 = 0 an an 

(c) Incompressible Nonhomogeneous Navier-Stokes Equation for the 

Rotational Piece of Velocity w 

Dw . _00 D 
P Dt - e: Pr b.w + ~p = -p Dt (~~) div w = 0 

w x n1an = - ~~ x n1an 



" 

(d) Heat Conduction Equation for T 

p nT 
Dt 

y ~ k ~n 
= ~/ at + e: t:. T + q 0 E pZ e 

aTI an 
= 0 • 

an 

(e) Reacting Species Equation for Z 

DZ 
p-= Dt 

-1 I 
.(Le) e: div (pVZ) _ K pZ e-A T 

£ 

£!/ = 0 an an . 

4 

where the above equations are written in suitable nondimensional form with 

Pr, Le, the Prandtl and Lewis numbers, 

(1.4) 

D and - = Dt 

the parameter e: the flame - thickness factor characterizes the 

width of the thermal flame struc re to a typical linear dimension 

for n. 

+ v·v The condition of chemical-fluid balance for the initiaZ 

data mentioned in (1.1) (c) is precisely the condition that the elliptic equation 

in (1.3) (b) be satisfied at time zero~ i.e.~ there should exist a constant Ho, 

so that 

K -AIT yqo £" pZ e + £ I::::,T) 

~/ an an 
= 0 

Given arbitrary Z,T, a choice of Ho guaranteeing a unique Vw satisfying 

the above equations is always possible by classical potential theory. 

.. 



In Section 3. following the discussion of Sivashinsky [19]. we take the for­

mal limit of the system of equations in (1.3) as the parameter f: described in 

(1.4) tends to zero--the limit of infinitely thin flame structure. In unconfined 

chambers. we describe the fashion in which the system in (1.3) reduces to the 

model described in [7]. In Section 4 we briefly describe the numerical method 

used in [17] for solving these equations for open channel combustion using 

random vortex element techniques and flame propagation algorithms. and 

describe the modification and extension of this algorithm to confined volume 

calculations using our new zero Mach number equations. This numerical 

method is used to analyze the effects of viscosity. exothermicity. pressure and 

boundary conditions on a flame propagating in a swirling fluid inside a closed 

square. Results detail the interaction of turbulent eddies with the flame. 

corner effects. and the persistence of pockets of unburnt fuel within a tur­

bulent combustion regime. Finally. in the Appendix. we give the zero Mach 

number combustion equations for a general chemically reacting fluid. 

The new formulation presented here uses some of the earlier work of 

Sivashinsky [19]. However. our derivation and point of view are completely 

different. In the formulation in [19]. the two equations 

*+PdiVV = 0 (1.5) 

pT = pet) (1.6) 

are used together with the equations in (1.3c. 1.3d and 1.3e) instead of the two 

equations in (1.3a. 1.3b). For the purposes of numerical modelling. the formu­

lation from [19] has two disadvantages when compared with the one in (1.3): 

1) A straightforward discretization of the conservation of mass equation and 

the temperature equation from (1.3d) introduces spatial discretization errors 

5 



in the density and temperature so it is quite difficult to design numerical 

schemes which enforce the constraint pT = pet) and 2) the evolution of the 

pressure pet) is only implicitly defined in [19]. so it is difficult to calculate a 

dynamic update for pet) as needed for calculations in closed vessels. One 

theoretical advantage of our formulation (which. to our knowledge. has been 

discussed nowhere else in the literature) is that the correct initial conditions 

of chemical fluid balance described above and needed for self-consistency with 

the zero Mach number asymptotics arise naturally. The zero Mach number 

equations developed here can be regarded as a model existing between the full 

compressible Navier-Stokes equations and constant density models [6].[13] 

where the fluid dynamics essentially decouples from the combustion process. 

Further details and additional comments regarding zero Mach number 

combustion in a single space variable can be found in [12]. 

6 
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2. Derivation of the zero Mach Number Combustion Equations 

Here we present a derivation of the equations of zero r·lach number combustion 

under the simplest ideal assumptions for the chemical reactions. We concentrate 

on the case of a bounded region IT. We assume that there are only two species 

present, unburnt gas and burnt gas, and we let Z denote the mass fraction of 

unburnt gas. With y = cp/cv ' the ratio of specific heats, we assume that both 

the unburnt and burnt gases are governed by the same y-gas law and have the 

same molecular weights. We also assume that unburnt gas is converted to burnt 

gas by a one-step irreversible Arrhenius kinetics mechanism. With these simpli-

fications and with suitable nondimensionalization to be explained below, the 

equations describing compressible combustion are the system 

Pressure Equation 

(2. I) QE Dt + Y P div v 

Momentum Equations 

(2.2) iOijdiVV) 

for i = 1,2,3. 
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Temperature Equation 

DT 1 D 2( dV. av. 2 2 2) qo -A/T 
(2.3) p Dt = y~ fit + Pr E(y-l)M .I; .(ax; + ax~) -3(div v) +£KpZ e +E6 T 

I,J 

Species Equation 

(2.4) p DZ = _ .!.KPZ e- A/T + (Le)-l £ div(pV'Z) 
Dt £ 

together with the ideal gas equation of state, 

(2.5) p = pT . 

Here p is the pressure, p is the density, T is the temperature, v. is the 
1 

i-th component of the fluid velocity, and ~ = -aa_t + v • V'. The other parameters 

in the equations are defined via the following: 

(2.6) ~ondimensionalization: 

(1) The pressure p is expressed in the units of the essentially constant 

initial pressure Po' 

(2) The temperature T is expressed in units of the largest adiabatic 

flame temperature for the burnt gas Tb consistent with the initial 

data, i.e., 

where q > 0 is the difference in energy of formation of the burnt o 

and unburnt gases. (With our simplifying assumptions, this does not 

depend on T.) 

(3) qo = qo/CpTb is the nondimensional heat release. 
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(4) The density is given'in units of with 

(5) The unit length scale is a characteristic linear dimension for the 
regi on Q , denoted by di am Q • 

(6) The units for velocity are determined by IVbl where IVbl is the 

free-space burning velocity associated with and 

(7) The unit time scale is determined by (5) and (6), i.e. unit time in 
(2.1) - (2.5) is measured by diam Q/lvbl • 

(8) Pr = vc /K is the Prandtl number 
p 

Le = K/Pbcpd is the Lewis number 

-q . o 

where v is the viscosity, d is the species diffusion coefficient, 

and K is the coefficient of heat conduction. 

(9) The parameter £ the flame-thickness factor is defined by 

£ = Q,T/diarn rl 

where Q,T is the length scale associated with the internal thermal 

structure of flames 

(10) The quantity K is the prefactor for the reaction rate 

with Ko the frequency factor and A is the nondimensional activation 

energy in units of TbRo' with Ro the universal gas constant. 

(11) The quantity M is the Mach number 
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For simplicity in exposition, we have assumed that all diffusion coefficients 

and the frequency factor are constants. Also, £ is typically a small para-

meter, but we will not exploit this fact in this section. 

Inviscid Reacting Gases 

First we treat the case when the reacting gas is inviscid, i.e .• Pr = O. 

Then the system of equations in (2.1)-(2.5) is supplemented by the boundayy 

aonditions 

(a) von = 0 on an 
(2.7) 

(b) on an. 

The adiabatic boundary conditions in (2.7)(b) have been assumed to avoid 

additional complications with thermal boundary layers, etc. With the hypo-

thesis of small Mach number. we assume the asymptotic expansions in terms of 

Mach number given by 

P = Po(x,t) + MP I 
2 + yM P

2 
+ 0(,1.43) 

v = vo(x,t) + Mvl(x,t) + O(M 2) 

(2.8) 

T = To(x,t) +MTl(x,t) + OG~ 2) 

Z = Zo(x,t) + MZ I (x,t) + 0 (j,1 2) 

Before beginning the derivation, we recall two well-known facts (see [4] .[20]): 

Fact # 1. For a bounded domain n, the boundary value problem 

in n 
(2.9) 

alil

/ .:..:t.. = g 
an an 



has a solution with uniquely determined if and only if 

and 

f F = 
n 

11 

f g 
an 

Fact #2. Every vector field v has the unique oith6gonal decompositon 

(2.10) v = w + 'Vet> where 

div hi = 0, 

and 

t.¢ = div v, 

We set QV = wand observe that Q(V'¢) = O. We substitute (2.8) into 

(2.1)-(2.4) and equate powers of M. 

First, we concentrate on the momentum equation in (2.2). The terms of 

order -2 1 M ,M-, respectively, imply 

(2.11) 

V'Pl(x,t) = o. 

For the terms of order zero in the momentum equation, we first apply Q and 

use the fact from (2.10) that Q(V'p) = 0, then 

(2.12) Q(~ Ovo) = ° 
To Ot ' 

with From the equations in (2.11) and (2.12), we conclude 

that 

(a) Po - PoCt) 

(2.13) and 

ex> Po OVo ex> 
(b) there is a scalar pressure p , with 

~Dt 
= -V' p 
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The equations of order zero for the temperature and mass fraction from (2.3), 

(2.4) are straightforward and given by 

(2.14) 

(a) Po DTo - y-l dPo + S,.Q.. K Z e-A/ To + e:t.T 
'f; Dt - Y dt e: Po 0 0 

(b) ~ OZo __ ! ~ Z e -AlTo + (Le) -1 e: diV(TPOo 'ij Zo) 
To Ot - e: To 0 

The only subtle part of the derivation occurs in our discussion of the 

pressure equation--in fact, our use of the pressure equation from (2.1) rather 

than the conservation of mass is a significant difference in our formulation 

when compared with the one in [19]. Conservation of mass is a consequence of 

the two separate equations to be derived below. Using (2.13)(a) in (2.1), we 

compute that the order zero terms in the pressure equation are given by 

(2.15) 

The self-consistency of the perturbation expansion in (2.8) requires that the 

order zero equation in (2.15) is satisfied. The left-hand side of (2.15) is 

a scalar function of time alone, while the right-hand side of (2.15) involves 

functions of both space and time. Therefore, there must exist a scalar function 

X(t) of time alone, so that simultaneously 

(a) dPo CIt = ;X(t) 

(2.16) 

(b) ~('( t) 
-A/To = - Y P di v v + y q Kp Z e + ye: t. T o 0 ~ 00 o· 

£ 

. How should ;;C(t) be chosen? We use the orthogonal decomposition from Fact # 2 

to decompose Vo as 
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(2.17) Vo = w + 'iJI/J , o 0 

so that from the boundary condition in (2.7)(a) we rewrite (2.l6)(b) as an 

equation for I/Jo' namely, 

(2.18) (l~I/J ) o 
-1 Y -A/To = (yPo) (- JC(t) + - q Kp Z e + y£ ~ T ) 

£ 000 0 

a~o I = 0 . 
on an 

Now, from Fact # 1 in (2.9), the elliptic equation in (2.18) has a solution 

with 'iJI/J uniquely determined if and only if the integral of the right-hand o 

side of (2.18) over n vanishes. This requirement uniquely determines J«t) 

by the equation 

- JC( t) f dx + .!. f y q Kp Z e - A IT 0 + £ f y ~ T = 0 , 
n En 0 00 n 0 

i. e. , 

(2.19) J((t) = 
Vol (n) 

Here we have used the boundary condition in (2.7)(b) to integrate to zero the 

contribution from heat conduction. This choice of ~(t) allows us to satisfy 

C2.l6)(b) with a unique choice of 'iJI/J
0 

and simultaneously to obtain an evolution 

equation for the mean pressure poet). With JC(t) from (2.19), the equations 

from (2.l3)(b), (2.14), and (2.16) yield the 

Equations for Zero Mach Number Inviscid Combustion 

(2.20) (a) Nonlinear C.D.E. for Mean Pressure 

1 -A/To 
dPo E In yqoKPoZo e 
CG: = Volcn) 
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(b) Elliptic Equation 

a1jJo I = 0 
Tn an . 

(c) Nonhomogeneous Incompressible Fluid Equation 

div Wo = 0 , 

(d) Reaction-Diffusion Equations 

(1) 

(2) PC P ,T ) DZo !PZ e-A/ To + (Le)-l d" ( IlZ ) o 0 Dt = - £ 0 £ lV P 0 

aTo dzo an= an= 0 on an 

where the formulae 

= Po 
To 

and 

v = \V' + Il;/' o 0 '1'0' div Wo = 0, 

complete the description of this system. Since each of the steps associated 

with (2.20)(a)-(d) is a well-posed equation, it is intuit~vely clear that the 

system in (2.20) defines a well-posed system of equations--in fact, a rigorous 
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proof of this fact will appear in [5] . . The requirement of approximate chemica!-

fluid balance for the initial data is an immediate consequence of (2.11) which 

requires initially 

and the fact that the elliptic equation in (2.20)(b) must be satisfied at 

time t = o. For arbitrary initial data Z (x), T (x), the equation in o 0 

(2.20)(b) imposes a constraint upon the initial velocity only as regards 

the fluid dynamic potential ~~o' and wo can be completely arbitrary 

initially at t = O. 

Equations for Zero Mach Number Viscous Combustion 

When Pr ~ 0, the system of equations in (2.1)-(2.5) should_satisfy 

the boundary conditions 

(a) v I = 0 
an 

(no slip) 

(2.21) 

(b) aT az o . an = an = 

The no-slip boundary conditions together with the nonzero viscosity coefficient 

in the momentum equation changes the boundary conditions and nature of the 

limiting equation in (2.20)(c). However, since ~h& viscous stress contributions 

to the pressure and temperature equations are O(M2) , th'e equations for (2.20)(a), 

(b), and (d) are unchanged in the viscous case. By repeating the derivation 

given above in the inviscid case, we compute that ihe Equations fo~ Zero Mach 

Number Viscous Combustion are given by 
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Nonlinear O.D.E. (2.20)(a) 

(2.22) (a) Elliptic Equation (2.20)(b) 

Reaction-Diffusion Equations (2.20)(d) 

and the Nonhomogeneous Incompressible Navier-Stokes Equation 

_00 00 4 
(actually, we have defined a reduced pressure p = p 3"e: Pr t.ttJo to simplify 

the equations in (2.22)(b) even further) with the boundary conditions 

(2.22)(c) div Wo = 0, w onl = 0, 
o an w x n I = - 'Vy x n I . 

o an 0 an 

The linearized equations obtained from (2.22)(b)-(c) are nonhomogeneous Stokes 

equations and yield a well-posed problem (see (20))--in fact, a rigorous proof 

of the nonlinear well posedness for the system in (2.22) will appear in [5]. 

We remark here that in this case the requirement of approximate chemical 

fluid balance also imposes the condition 

w x n I = - 'VI/J x n I 
o an 0 an 

initially at time t = O. 

Zero Bach Number Combustion in Unbounded Domains 

The derivation which we have presented applies just as well to combustion 

in unbounded domains. We use the same nondimensional form of the equations in 

(2.1)-(2.5) with the change that diam n is replaced by some typical large 

mean length scale which in Section 3 is assumed to be much bigger than the 

length scale ~T' The crucial difference in the derivation rests on the 

following fact: 

• 
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For unbounded domains such as channels or all of space, the 

elliptic equation 

l:IlJ! = F 

~ = 0 
n an 

has a unique solution for any F which is square integrable. 

In repeating the derivation given above, this fact has the important consequence 

that U(t) from (2.16) can be chosen so that 

(2.23) (a) X(t) - 0 . 

Thus, the pressure remains constant independent of time, while (2.16)(b) becomes 

the elliptic equation 

(2.23) (b) 

a~o I = 0 . 
on an 

The remaining equations for zero Mach number combustion from either (2.20) 

or (2.22) are unchanged. 

We remark that the eqUations in either (2.20) or (2.22) conserve mass , 

i.e., with 

p = 
Po (t) 

To(x,t) , 
v = 1/,1, + W 

o '+'0 0 ~~ + p div v 0 = o . 

The reader can check this by direct calculation with (2.22) or he can use our 

observation that the compressible system in (2.1)-(2.5) conserves mass and the 

equations in (2.20) or (2.22) are the limit of equations that conserve mass, 

therefore these systems conserve mass too. 
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3. Zero Hach Number Combustion with Infinitely Thin Flame Structure 

Here we discuss the further simplification of the general multi-dimensional 

zero !·fach number combustion equations derived in the last section, under the 

following additional assumption: 

The parameter £ which characterizes the ratio of the length of the 

internal flame structure to the typical external length scale (which 

in the case of a bounded domain is the diameter of the region) is an 

extremely small number and the activation energy A is large. 

(See [19].) 

These assumptions are satisfied for many typical combustion processes when 

the diam n is the order of one meter. (We drop all subscript zeros for 

the equations in (2.22), (2.31) in this section.) 

Here we also study special initial data in chemical fluid balance with 

the form for mass-fraction and temperature given by 

Z(x,O) = 

(3. 1) 

T(x,OJ = 

! 1 , 

o , 

<P (x) < 0 o 

This initial data including the fluid velocity has a jump discontinuity across 

the surface So = {x E nl<Po(x) = O} and is a stochiometric mixture composed 

of unburnt gas for those points x E n with <Po(x) < 0 and burnt gas for 



those points x E Q with ~o(x) > 0. After we have finished the discussion 

in this section, the reader can easily verify that all equations derived 

below remain valid with obvious modifications for general piecewise smooth 

initial data (T(x),Z(x)) that jump across a surface So' provided that the 

non-dimensional adiabatic equation expressing conservation enthalpy across So' 

(3.2) for xES 
. ,0 

is valid at all points of So. 

As described in [19] and following the well-known ideas of Landau [llJ, 

under the above assumption and with the special initial data for (2.22) given 

in (3.1), it follows that as £ ~ 0, formally 

(3.3) i K Ze-A/To ~ m(x,t)oS(t) , x E Set) 

19 

where Set) is a surface described by Set) = {xl~(x,t) = o} with ~(x,O) = cj> (x) o 

and 0SCt) is the surface Dirac measure concentrated on Set) (see [6]). 

Here the function -m(x,t) is the mass flux across Set) and is determined 

by 

(3.4) p (v -n - V) 
b b 

for x E Set), 

where n is the outward spatial normal to Set). The equation in (3.4) 

expresses the conservation of mass across the surface Set) which is valid 

for solutions of (2.22) in the limit as £ ~ o. As £ ~ 0, from (3.3), the 

reaction-diffusion equations in (2.22)(a) reduce to 



y qo J m(x,t)dA 

(a) 
dP Set) 
dt = Vol en) 

(3.5) (b) 
DT _ y-1 dP 

P Dt - Y dt ' for <P(x,t) > 0 and <P(x,t) < 0 

(c) DZ o , for <P(x,t) > 0 and <P(x,t) < 0 -= Dt 

where (b) and (c) are supplemented by the jump conditions across Set) 

appropriate for data of the form in (3.1) given by 

(3.6) 

Z (x,t) = 1 u 

for x E Set) 

for x t= Set) , 

while the elliptic equation from (2.22)(a) becomes 

-1 dP 
t.ijJ = (yP) (- dt + y qomoS(t)) 

(3.7) 

al/JI - 0 
an an - . 

The nonhomogeneous Navier-Stokes equations from (2.22)(b) become 

Dv 00 
P Dt - (£ Pr)t.w - \7p = 0 for <P(x,t) > 0 and <P(x,t) < 0 

(3.8) 

20 

with v = w + \7\jJ, div w = 0, wenlan = O. The equations in (3.8) are supple­

mented by the jump conditions from (3.4) across Set) and the density is 

given in the two regions by 

(3.9) p :: 

~ PCt)!T Cx,t) 

I P(tl/T:(X.tl . 

<PCx,t) < 0 

<P(x,t) > 0 . 

(Alternatively, we could use the conservation form of the momentum equation 

in (3.8) acros~ <p = 0.) 

'T 
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We have retained the viscosity term (£ Pr)~w in (3.8) for emphasis because 

the no slip boundary conditions vl an = 0 create boundary layers since 

£ Pr f 0 even though this term can be neglected in the interior. Thus, the 

main consequence of the assumption made at the beginning of this section is 

that the flame front is idealized as infinitely thin and represented by the 

surface Set). With the initial data in (3.1), it is very easy to solve the 

equations in (3.S)(c) to obtain 

(3.10) 
__ { 1 , 

Z(x,t) 

o , 

¢ < 0 

¢ > 0 . 

At this stage of the derivation, we have four equations for the four 

unknowns PCt), v , however, an equation for the unknown flame front Set) 

remains to be determined. Following [1], [10], we get this equation by 

postulating that the mass flux m(x,t) for x E Set) is a prescribed 

function of the local quantities Tu(x,t), P, i.e., 

(3.11) m(x,t) = meT ,P) u 
= m (p ,P) . 

u 

Landau postulated that mCp ,P) 
u 

should be determined by the local laminar 

flame velocity (see [11]) and others ([1], [10]) have required that m might 

have a functional form determined empirically from experimental data--either 

turbulent or laminar. A typical form for m is the power law 

(3.12) 

where a, Q > 0 arc constant and l>a>.!. 
- 2 (see [10], a 1 

= 2" corresponds 

to the laminar case). Now, the equation in (3.11) and the conservation of 
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mass from (3.4) determine an equation for the surface Set) described by 

~(x,t) = 0, given by 

- m(p (t),P(t)) 
u 

or equivalently, 

(3.13) 

~ 

Thus, from (3.13) the points ret) on Set) are described by the equation 

(3.14) 

~ ~ 

where nCr) is the outward normal to SCt). With the assumption in (3.11), 

the equation in (3.5)(a) becomes 

(3.15) 

with A(t) 

dP qo y m(pu(t),P(t))A(t) 

dt = VolC~) 

the area of Set). Next indicate how to determine p (t) 
u 

from 

PCt) (similar considerations apply to Pb(t)). From the equations, for 

~(x,t) < 0, 

it follows that in the unburnt gas, generally, 

(3.16) DDt log(P~ /P) = ° 
and therefore, for the special initial data in (3.9), 



.. 
(3.17) p (t) 

u 
pl/y (t) p (0) 

u 

In the burnt gas region, the temperature is generally nonuniform when 0 

is a bounded domain. Once the above equations.have been solved, Til (x ,t) is 

determined in 1J > 0 by solving the linear boundary problem for the first order 

equation 

(3.18) 

It should be apparent to the reader that the more general initial data dis­

cussed above (3.2) are handled by straightforward modification. 
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4. Numerical Solution of the Equations for Zero Mach Number Combustion 

In this section we describe a numerical method to solve our model for 

zero Mach number combustion. For initial data of the form in (3.1) and with 

the main additional assumption at the beginning of Section 3 and postulate 

(3.i1). we have derived the equations for zero Mach number combustion with 

infinitely thin ftame structure described in (3.7). (3. B), (3.14) and (3.15) as a 

limiting case of the equation from (2.22). Here. we summarize these equations 

for Zero Mach Number Combustio.,.. with mjinitely thtn flame stru.ctu:re for the 

unknowns P. Set) and 11. 

(a) Non-linear O.D.E. for the Mean Pressure 

dP qO'Ym,(pu(t).p(t)}A(t) 
'dt= Vol(D) 

(b) Eikonal Equation for the Flame Front Set} 

(c) Elliptic Equation 

A = ( P)-l(_ d.P + qc-ym.{Pu{t),P{t»6.) 
tp l' tit Vol{O) 

!lL= 0 
8n 

(4.1) 

(4-.2) 

(4.3) 

Cd) Nonhomogeneous Incompressible Navier-Stokes Equation (4.4) 

P Dw _ t Pr 6w -Vp''' = _p DVre 
Dt Of 

divw= 0 



'W'n leo = 0 'Wxn 1,,0 = -Vrpxn I"a 

with the orthogonal decomposition v=Vrp+w. Here. we again note that qo is the 

non-dimensional heat release. A(t) is the area of the tlame front at time t. 

Vol (0) is the volume of the vessel under consideration • .,.{t) is a point on the 

ftame front at time t. Vv (;t) is the velocity at the point r as taken as a limit 

from the unburnt side. 1t(;t) is the normal to the front at;t. and 6F is the sur-

face Dirac measure concentrated on the flame front. In the special case when 

the domain is unbounded and is a channel of the form discussed in [7]. the 

fact above (2.23) is valid and the constant pressure approximation : == 0 

applies for the system in (2.22b) and therefore in our equations. In this situa­

tion. the equations (4.1-4.4) reduce to those introduced by Ghoniem, Chorin 

and Oppenheim in [7] and studied extensively in [17]. We now describe the 

numerical algorithm for approximating the system of equations (4.1-4.4). 

Given that tv is divergence-free and that Vrp is irrotational (VxVrp=O). we 

define t to be the vorticity (t = Vxw) and take the curl of (4.4) to produce the 

vorticity transport equation 

(4.5) 

where R is the Reynolds number. Here. the term (Vx VP) which corresponds 
p 

to vorticity production across the tlame front has been ignored. We hope to 

address this more complex numerical issue in later work. The boundary con-

ditions are that w = 0 on 80. 

The form for the mass tlux given in (3.12) is 

(4.6) 
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where again, Q is the local laminar flame velocity and a is a constant. Equa­

tion (3.17) provides, under the assumption of a ')I-gas law. the unburnt fluid 

density as a function of the pressure through the relation 

p,,{t) = (p(t»lh Pu(O) (4.7) 

where 6, is the surface Dirac measure. We shall now describe the technique 

for approximating the combustion model (4.1-4.3,4.5-4.7). 

The Numerical Algorithm 

Typically, one might attempt to approximate the solution to the above 

equations through the application of finite difference schemes. Some of the 

problems inherent in these techniques are 1) the necessity of a fine grid in the 

boundary layer region near walls where sharp gradients exist 2) the introduc-

tion of numerical diffusion; the error term associated with the approximation 

equation looks like a diffusion term, and 3) the intrinsic smoothing of flnite 

difference schemes which damps out physical instabilities. The random vortex 

element, introduced in [3], is specifically designed to deal with these prob-

lems. The equations of motion are written in vorticity form, and the motion of 

vorticity is followed by means of a collection of vorticity approximation ele­

ments. By avoiding the averaging and smoothing associated with flnite 

difference formulations, this technique can follow the development of large­

scale coherent, turbulent structures within the tlow. In [17], vortex methods 

and a flame propagation algorithm based on Huyghen's principle were applied 

to problems in turbulent combustion in open vessels. We brietly describe this 

algorithm below. For details, see [17]. 

The vorticity t in (4.1) is approximated by a set of vortex "blobs", whose 

positions and strengths at any time yield the associated velocity field 'W. The 
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distribution of vorticity is updated in two stages. First, the vortex elements 

are moved under the ftow field w, corresponding to the advection of vorticity 

by the velocity field it induces. Second, viscous diffusion is simulated by a ran­

dom walk imposed on the vortex motion. The normal boundary condition on 'W 

is met through the addition of a potential ftow solution, and the tangential 

boundary tlno-slip" condition is satisfied by a vorticity creation algorithm (vor­

tex sheets). 

To model the motion of the flame as given in (4.2), one is tempted to 

place marker particles along the boundary between the burnt and unburnt 

fiuid and update their position and hence the location of the ftame front in 

time. Because of the difficulty involved in determining the normal direction to 

the front (the direction in which the fiame burns) from such an approxima­

tion, the ftame front usually becomes unstable and develops wild oscillations 

(see [15]). This problem is avoided through introducing a grid on the domain 

and assigning each cell a number (a "volume fraction", see [14],corresponding 

to the amount of burnt ftuid in that cell at any given time. Each cell on the 

boundary of the burnt gas ignites all its neighbors at the prescribed rate k; 

this is an approximation based on Huyghen's principle, which states that the 

envelope of all disks centered on the front corresponds to the front displaced 

in a direction normal to itself, (see [2]). The motion of the ftame is broken up 

into two stages: first, burning is modelled by allowing the flame to propagate 

in a direction normal to itself at the prescribed speed and second, the burned 

fluid is advected by the yet to be determined velocity field v. By updating 

these volume fractions according to the advection and burning processes, one 

may track the motion of the ftame. 
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To determine the velocity field u, one must solve for the exothermic velo­

city field Vrp produced by volume expansion along the fiame front. The position 

of the flame as determined by the Huyghen's principle construction described 

earlier determines the right-hand side of Equation (4.3); a fast Poisson solver 

is used to solve the Neumann problem for rp. Straightforward finite differences 

on the fast solver grid provide Vrp and hence u. Again. the tangential boundary 

"no-slip" condition is satisfied by the creation of vortex sheets. The vortex ele­

ments are then advected under the field Vrp. and the flame is advected by the 

velocity field 'U = W +Vrp to produce the new positions for the vortex blobs and 

tlame. 

In the extension of the above algorithm to combustion within a confined 

chamber. one must also consider the rise in pressure associated with exoth­

ermic effects (Equation 4.1) in computing Vrp. To advance from one time step 

to the next. the position of the flame is used to calculate ':: using (4.1). As in 

the above description. a fast Poisson solver is again used to find rp. An addi­

tional fractional step is required to update the pressure in time; this is accom­

plished by numerically integrating the non-linear ordinary differential equa· 

tion (4.1). Finally, Equation (4. 7) is used to update the density of the unburnt 

gas used in the mass flux calculation in (4.6). 

In previous work [17.18 J. numerical investigations were undertaken to 

analyze the relative effects of viscosity, exothermicity and boundary condi­

tions on flame propagation in turbulent flow using the numerical method 

described in [17] applied to open vessel configurations. It was shown that 

viscosity wrinkles the tlame front, increasing the surface area of the flame and 
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thus accelerating the combustion process, and that the slower the flame 

speed, the greater the effect of viscosity on the rate of combustion. When 

these investigations were continued into closed vessel experiments, exoth­

ermic effects were ignored, hence in confined vessels there was no feedback 

mechanism by which the flame motion could influence the hydrodynamics. 

Using this new model for zero Mach number combustion in closed vessels, in 

which exothermicity along the flame front plays a significant role in determin­

ing the hydrodynamics, a series of experiments to analyze the competing 

effects of exothermicity, pressure, boundary conditions and viscosity were 

performed. Similar calculations using this model are reported in [16]. 

In the first experiment, a motionless, inviscid fluid was ignited at the 

center of a closed square. A non-dimensional local laminar flame velocity of 

Q =.2 was chosen, with a =.5 (Equation 4.6). The initial conditions P(O) = 1. 

and Pu(O} = 1. were taken. and it was assumed that a fluid particle increased 

its volume by a factor of five upon burning; this corresponded to qo=1.333 

(see [18] for details on these choices of values for qo and Q). In Figure 1. the 

results of this experiment are shown. The black region corresponds to burnt 

tluid. and the velocity fleld is displayed on a 30x30 grid placed in the flow, 

where the magnit.ude of the vector at each point denotes the relative speed of 

the ftow there. The fluid motion results entirely from expansion along the 

t1ame front. One can clearly see the mechanism by which the boundary shapes 

the front; although the front starts off circular. it soon becomes square-like in 

response to the boundary conditions on the exothermic velocity field Vrp, and 

thus burns into the corners. The final value (t = 1.55) of the pressure in the 

vessel is 2.93 and the final value for k the propagation speed was .24 ( com­

pared with k =.2 at t =O). 
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Figure 1: Inviscid. Motionless Fluid Ignited in Center. q 0 = 1.333 

In the second set of experiments (Figure 2), the relative effects of viscos­

ity and exothermicity on the rate at which combustion takes place in the 

vessel were investigated. In these experiments, fl.uid motion was generated by 

a vortex placed in the center of a square of sufficient strength so that the 

velocity tangential to each wall at its midpoint was 1. With Q = .14, four 

different experiments were performed. The top row corresponds to inviscid 

flow with qo=O (no exothermicity allowed) • the next row is inviscid flow with 

qo=1.333 (factor of five expansion) ,the next row is viscous flow with Reynolds 

number R = 1000 and the bottom row corresponds to viscous flow, R=1000., 

qo= 1.33. In the two viscous runs, the flow was started two seconds before igni-

tion so that recirculation zones would have time to develop. 
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A. Inviscid Flow IConstant Density 

B. Inviscid FlowlVolume Expansion 

C. Viscous Flow I Constant Density 

D. Viscous Flow IVolume Expansion 

Time = .45 Time = .B1 Time = 1.36 Time = 1.52 

Figure 2: SWirling Fluid 



The results may be summarized as follows. In the inviscid, constant den-

sity case, the tlame wraps smoothly around the center, since the flow is 

smooth and there is no feedback mechanism from the flame to the hydro-

dynamics; When volume expansion effects are added, the resulting velocity 

field carries the flame around the center at a faster rate, in addition to the 

slightly higher propagation speed. In the viscous, constant density case, the 

flame motion is strongly influenced by the counterrotating eddies that grow in 

the corners as a result of vorticity production along solid walls; the flame is 

carried around each large eddy and then dragged backwards into the corner. 

These eddies are of prime importance in bringing the flame into contact with 

unburnt parts of the vessel. The front becomes jagged and wrinkled. increas-

ing the surface area of the flame available for burning. In the viscous case with 

volume expansion, the flame is both wrinkled due to the turbulence of the flow 

and carried by the volume expansion velocity field, greatly decreasing the 

time required for complete conversion of reactants to products. This interplay 

between viscosity and exothermicity on the speed and shape of the burning 

front is the same as that obtained in [17] for open channel calculations. In 

Figure 3, these comments are illustrated by plotting the percentage of the 

volume burnt as a function of time elapsed since ignition. 
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APPENDIX 

Equations of Zero Mach Number Combustion in a General Reacting Fluid 

The basic equations for a general reacting fluid with m-species in terms 

of the variables p, T, v, Z., 
1 

i = 1, ...• m, where Z. 
1 

is the mass fraction 

of the i-th species, are given in nondimensional form (see' [21]) by 

Pressure Equation 

(A. 1) _1_ QE. + di v v = L o· 
2 Dt TPcp . pC
f 

1 m i -1 
'lv + - 1: CPr Re Le) 'lZ.· 'lh. 

Tcp i=l 1 1 
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+ 1 ~T + 
(Pr Re pTcp) 

m a~. . -1 
1: (T) (Pr Re Le1

) div(p'lZ.) 
i=l p T,Z 1 

m a~. h. 
+ 1: [(_1) __ 1 J <P 

i=l ap T,Z PTCp i 

Momentum Equations 

(A.2) 
Dv 2 -1 P -- + CM)- 'lp = (Re) div 0 . Dt 

Temperature Equation 

(A.3) 

2 2 
M2 cf 1 cf 

DT c
f
2 P div v = Re (1 + -)0: 'lv + -- (1 + -)~T pcp Dt + Tcp RePr Tcp 

2 
m. 1 c f 

+ 1: (Le 1 Pr Re) - (1 + -T) p'l Z.· 'lh. 
i=1 Cp 1 1 

m i -1 2 a~. 
+ 1: (Le RePr) cf p( a;) div(p'lZ) 

i=l T,Z 

m 2 a~\ c2 
+ 1: [c

f 
p(-,,) - (1 + ~)] <P. 

i = 1 op T, Z cpT 1 



(A.4) 

Reacting Species Equations 

DZ. . -1 
P _1 = (Pr Re Le1

) Dt i = I, ... ,m . 

In (A.l)-(A.4), we have assumed that the i-th species is an ideal gas so that 

with yi(T) = C~(T)/C~(T) and Wi the molecular weight of the i-th species, 

(A.5) 

(1) hiCT) is the enthalpy of the i-th species 

(2) 

h. (T) 
1 

R T yi(s) 
= (w:- f y. (5)-1 ds) + hi,f ' 

1 Tf 1 

m R Z. 
P = pT ~ 1 

i=l Wi 

is the frozen sound speed, 

C
f
2 = (q) 

Clp S,Z 

m 

i = 1, ... ,m 

(4) With h = ~ hi Zi' the enthalpy, cp is given by 
i=l 

= (Clh) 
cp ClT p,Z 
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(5) U·(p,T,Z) is the chemical potential of the i-th species, i=l, ... ,m 
1 

(6) ¢i(p,T,Z) is the chemical source term for the i-th species 

(7) a = (0 .. ), 0 .. 
1J 1J 

Clv. 
1 = -- + Clx. 
J 

Clv. 2 
_J _ d' .r " -3 1V v u .. ox. 1J 

1 

whi Ie the important nondimensional parameter M is the ~lach number 



(A.6) 

With the assumption that the Mach number is small, we make the Ansatz 

v = v 0 + OeM) 

T = To + OeM) 

Z = Zo + OeM) 

and repeat the analysis of Section 2 to derive the following: 

CA.7) 

(A.8) 

CA.9) 

Equations for Zero Mach Number Combustion in· a Reacting Fluid in a 

Confined Chamber . 

Nonlinear D.D.E. for Mean Pressure 

Elliptic Equation 

~ = XCt) dt 

~I = o. an an 

Incompressible Nonhomogeneous Navier-Stokes Equation 

Ow _00 -1 0 
P Ot + 'Vp + (Re) /J.w = - p Ot 'V\jJ 

div w = 0 , 

v = w +'V\jJ • 
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Tempepatupe Equation 

(A.IO) 
DT 1 m i -1 m 

pCp Dt = JC(t) +(Re Pr)- div(VT) + 1: (Le PrRe) p VZ.oVh. - 1: h.¢. 
i=I 1 1 i=l 1 1 

Reaating Speaies Equations 

(A.11) 
DZ. . 1 11- . 

P Dt = (Le PrRe) div(p VZi ) + 4>i i = I •...• m • 

with ~TI = ~ZI = O. Here the source term g and the scalar JC(t) are 
an an an an 

given by 

(A.12) 

and 

(A.13) 
1 11 m i -1 g = (Pr Re) - -- + 1: (Le PrRe) VZ.oVh. 

PTcp Tcp i=I 1 1 

m a~. . 1 m a~. h. 
+ 1: (~) (Le1 PrRe)- div(pVZ.) + 1: [(_1) __ l-J4> 

i=I ap T,Z 1 i=I ap T,Z pTcp i 
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