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ELECTRONIC DEGREES OF FREEDOM 

IN 

CLASSICAL MECHANICS 

Domenic Paul Ali 

ABSTRACT 

Electronic degrees of freedom are generally considered purely a 

quantum mechanical phenomenon not treatable within the framework of 

classical mechanics. In this dissertation, we show the above statement 

not to be true. In the first part of the dissertation, a classical analog 

for electronic degrees of freedom developed by Miller [JCP 11, 2272(1980)] 

is shoWn to correctly describe Stlike1berg oscillations and e1ectronic

vibrational and rotational resonance phenomenon, strictly quantum mechanical 

processes, within a classical Hamiltonian framework. In the second part 

of the dissertation, a semiclassical model for electronic transitions 

developed by Miller and George [JCP ~, 5637(1972)] is coupled with both 

a Langevin model and a Generalized Langevin model and shown to correctly 

describe electronic dynamics in iodine recombination in a solvent. The 

results obtained are in good agreement with experiment. 
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You enumerate Its laws and in my thirst for knowledge I 

. 
admit that they are true. You take apart its mechanism 

and my hope increases. At the final stage you teach me 

that this wondrous and multi-colored universe can be 

reduced to the atom and that the atom itself can be 

reduced to the electron. All this is good and I wait 

for you to continue. But you tell me of an invisible 

planetary system in which electrons gravitate around a 

nucleus. You explain this world to me with an image, 

I realize then that you have been reduced to poetry: I 

shall never know. Have I the time to become indignant? 

Albert Camus 
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Introduction 

Twenty-five years ago, Ford and Wheeler showed that elastic 

atom-atom scattering could be described semiclassically. Since 

then, a whole field has developed to describe the collisions of 

atoms and molecules using classical and semiclassical mechanics. 

During the first twenty years, all effort went into describing 

heavy particle motion, i.e., translations, rotations and vibrations, 

with these techniques and discovering their limitations with respect 

to quantum mechanics. It was believed during this period that 

electron motion could never be described classically, and, so 

electronic states could never be described classically, i.e., 

electronic transitions. Some attempts were made to surmount this 

18 
problem in the early '70's (such as the Tully-Preston surface 

hopping model), but the models presented were not completely 

satisfactory. Today, I believe the situation to be different. It 

is not only possible to describe electronic transitions classically, 

but one can describe purely quantUm mechanical resonance phenomenon 

using only classical Hamiltonian mechanics. The first part of this 

h · 1 h' " h dId 1 d b M'll 21-25 t eS1S exp ores t 1S quest10n W1t a mo e eve ope y 1 er. 

The second part of the thesis moves away from the gas phase 

into solution chemistry and shows that one can successfully combine 

a Langevin model, a purely classical model, with the Miller~George 

theory of electronic transitions, a semiclassical model, to describe 

the dynamics of a recombination reaction involving ten electronic 

surfaces. I hope to convince the reader that electronic transitions 



can be described within a classical framework and, particularly in 

the recombination process, give results that are theoretically 

unobtainable by any other fashion. 

2 
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PART A: ELECTRONIC TRANSITIONS IN REACTIONS OCCURING IN THE GAS PHASE 



I. The Ehrenfest Model. 

Gas phase collision theory has seen a great surge of interest in 

the application of classical and semiclassical mechanics to molecular 

reactions in the last twenty-five years. These methods have been 

applied to a wide variety of problems involving translational, rotation-

aI, and vibrational degrees of freedom with much success. Excellent 

reviews of semiclassica1l ,2 and c1assica13 ,4 techniques as applied to 

molecular collisions are now available. 

As collisions on one Born-Oppenheimer surface using non-quantum 

techniques are becoming better understood (i.e., collisions involving 

only heavy particle degrees of freedom), attention has been turning 

to non-adiabatic collisions. These types of reactions are observed 

5-15 
in a great number of fundamental molecular processes such as 

electronic energy transfer, charge transfer, quenching of electronic 

excitation and chemical reactions. In the spirit of non-quantum 

approaches to molecular collisions, semiclassical theories have been 

developed which treat the electronic degrees of freedom quantum 

mechanically and the heavy particle degrees of freedom classically. 

The many variants of the Landau-Zener mode1
20 

are in this general 

17 
category, such as the Miller-George theory and the Tully-Preston 

surface hopping model.
lS 

It has been pointed out,19 however, that 

such models may miss important dynamical features since part of the 

system is being treated classically and part quantum mechanically. 

This problem is particularly pronounced in electronic-vibrational 

and electronic-rotational resonance energy transfer. The obvious 

solution to this is to treat the whole problem on the same dynamical 

footing. Since treating the system quantum mechanically is 

4 



computationally unfeasible for many-body problems, we are left 

with a complete classical description of the collision system as the 

only alternative. 

. 21-30 Several attempts of this type have been recently tr1ed. 

In the opinion of this author, Meyer and Miller's Ehrenfest mode1
25 

has shown the most promise. We will therefore concentrate on the 

Ehrenfest model in the hope of determining what the limitations of 

this model are and how well the results from this model compare with 

quantum mechanical calculations. 

We begin by considering a collision system having F electronic 

states, for which the quantum mechanical Hamiltonian operator is 

F 

(1) 

kk' 

where x denotes the coordinates of all the heavy particle degrees 

of freedom and p their conjugate momenta. v (x) are the diabatic 
kk' -

matrix elements of the interaction potential. To solve this problem 

classically, we must find a classical analog for H
Q

, specifically 

we must find a classical analog for the potential matrix Vex). 

In the Ehrenfest model, we begin by looking at the expectation 

value of the potential function 

( 2) 

where I~(t» is the electronic wavefunction of our system. If we 

expand the wavefunction into the electronic basis set Ik>, 

5 



11Ji(t» (3) 

then we have 

(4) 

kk' 

with V
kk

, (~) being the same matrix elements defined in Eq. (1). Ck (t) 

satisfy the ~sual first-order time dependent equation 

-i L Vkk'(~) Ck,(t). 

k' 

If we now define new real variables ~, qk such that 

and substitute this into Eq. (4), we obtain 

Thus our classical analog to the quantum Hamiltonian of Eq. (1) is 

(5) 

(6) 

For example, with two electronic states and the fact that nO + 

n
1 

1 (conservation of probability), our classical analog reduces to 

6 



+ 2 /n(l-n) VOl (~) cosq (7) 

118 
~here ~e have assumed that VOl (~) is real. If ~e momentarily ignore 

the last term in Eq. (7), we see that the potential the system feels 

is an average of the diabatic curves weighted by the probability of 

being on electronic surface 10> or 11>. This is the initial common 

sense guess ~e might make if trying to construct this model ad hoc. 

The last term in Eq. (7) takes into account the coupling VOl(~)' 

Note that if the coupling V01(~) were zero, then HeL would be q

independent and therefore n becomes a conserved quantity. We therefore 

see that our classical model satisfies all the qualitative require-

ments we expect of it. 

. 31 
This model is intimately connected with Ehrenfest theorem' 

which states that 

d 
dt <p> 

i = h <[H,p]> 

d 
dt (X) 

i h <[H,x]> = <~(t) I 3H I~(t» 
3p 

It is easily sho~25 that Eq. (7) and Eq. (8) are equivalent if we 

( 8) 

determine H(t) from H(x(t)) in Eq. (8). The classical analog model 

is therefore similar to the semiclassical models
32 

where a classical 

trajectory is chosen, x(t), and then the evolution of the electronic 

state I~(t», is determined by solving Eq. (5) with the predetermined 

7 



heavy particle trajectory. The Ehrenfest model allows the trajectory 

to be determined from the evolution of the electronic state. One 

would therefore imagine that this model should give a more accurate 

representation of the dynamics than those models where we pre-determine 

x(t). Since this model is basically a semiclassical approach to 

electronic transitions we expect that it should have all the advantages 

33 
and disadvantages inherent in the semiclassical approach. 

It is important to note that the Ehrenfest model does not try to 

follow the trajectory of the electrons, something which classical 

mechanics clearly cannot do. Rather, it follows the motion of the 

pattern of electron motion, a motion much slower than electron motion 

and therefore amiable to treatment with classical mechanics. This 

point should be kept in mind for otherwise the reader may form the 

incorrect opinion that classical mechanics correctly describes electron 

motion. 

Two additional analog models, the spin matrix method (SMM)23 and 

the classical pseudopotential (Cpp)24 have been developed by Miller, 

et al. In the SMM, the potential matrix H is expanded in a spin basis 

set, S , S ,S and the spin matrices are equated with the classical 
~x ~y ~z 

components of the spin vector. In the CPP model a complete Hamiltonian 

for the collision system is constructed, nuclei plus electrons. The 

electronic degrees of freedom that do not change during the collision 

are then averaged over and the remaining electronic degrees of freedom 

are equated to the electronic potential functions. All three methods 

give the same classical Hamiltonian for two electronic surfaces but 

differ for three or more. I have chosen the Ehrenfest model over the 

others for two reasons. First, only the Ehrenfest model allows us to 

8 



make a, connection with the quantum equations of motion for the 

evolution of C(t), Eq. (5). While this is not absolutely necessary, 

it is aesthetically pleasing to be able to do so. Second, and more 

important, a unitary transformation of ~ quantum mechanically corresponds 

to a canonical transformation of the (n,q) variables classically. 

The Ehrenfest model is the only one of the three which exhibits this 

property of basis set independence. I therefore feel that the Ehrenfest 

model is the more appropriate one of the three to use in actual calcula

tions. This will be borne out in our FH2 calculations below. 

9 



rIo Stackelberg~Oscillation Model Problem. 

We begin our investigation of the Ehrenfest model with an 

application to a collinear collision between two structureless 

particles with two electronic surfaces. Such a system will give 

rise to Stlickelbergoscillations
34 

in the S-matrix elements. As 

mentioned above, the motivation for devising the Ehrenfest model 

was to treat all the degrees of freedom on the same dynamical 

footing and correctly model the energy exchange between these modes. 

In such a system as we have chosen, the predominant dynamical motion 

is a translational-electronic resonance energy exchange. Such a 

system will therefore prove useful in answering the question of 

whether it is possible to describe quantum resonance effects with 

purely classical mechanics. To enhance the Stukelberg oscillations, 

we have chosen near-degenerate electronic curves without any 

additional heavy particle degrees of freedom. He choose as our model 

the fo Howing : 

6 = 1.0eV 

VOO(r) A 
- ~r 

A 83.9 eV e 

VII (r) 
6 - ocr 

A(l--)e +6 k 1.0 eV 
-' (~-r ) 2/20 2 

VOl(r) 
0 

0.2 eV = y e y = 

0 0.4 (9) 

and rO chosen at the crossing point of VOO and VII' VOl was localized 

as a Gaussian to assure the presence ofStUckelberg oscillations. 

Figure 1 shows the potential curves for the case of a=2. The larger 

a is, the more degenerate the curves are in the coupling region. 

The quantum mechanical Hamiltonian for the system is 

10 
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H = 
-1 
2)J 

(10) 

The quantum calculations are carried out using a standard couple channel 

-matrix code obtained from NRCC. 35 We refer the reader to this 

reference for further details if interested. 

The classical Hamiltonian for the system is 

2 
H(p,r,n,q) = ~)J + VCL(r,n,q) (ll) 

where VCL(r,n,q) for the two state case is as given in Eq. (7). We 

37 
carry out the standard quasiclassical procedure to determine the 

S-matrix elements for the Hamiltonian. Briefly, we choose initial 

conditions 

p 

r 

n 

q 

-Iz)J E 
tr 

large 

o 

where S is a random number between 0 and 1. These conditions put the 

particles on the VOO curve out inasymptopia approaching each other 

with total energy E . We let the system propagate by way of tr 

Hamilton's equations of motion 

p 

r 

oH 
or 
oR 
op 

n 

q 

oH -a-q 
oH 
on 

11 



until the particles once again are in the asymptotic region. We 

then "box" the final n values as 

1 
~ < 1 transition 

2 
n

f 2 no 

1 < 
3 

transition < n
f 2 - 2 

The final transition probability for a given energy is then given by 

1 
2rr 

2rr 

~ dq h(nf(E,q) - i) 
o 

where hex) is the heavyside step function. The above is evaluated 

. 39 
using the Monte Carlo techn~que. It was found that 50 trajectories 

were sufficient to stabilize the results to within 10%. Microscopic 

reversibility (starting with initial value of n=l and reversing the 

boxing procedure) was found accurate to within statistical error. 

Results 

Figures 2-4, present the results for three different values of 

a (three different degrees of degeneracy). Figure 2, the most 

degenerate case, shows excellent agreement between the quasi-classical 

and quantum results. As the curves become less degenerate, we see 

that in Figures 3 and 4 the classical calculations reproduce the 

oscillations with less accuracy. We see that the quasiclassical 

results average out the quantum oscillations for these latter cases. 

We can understand this behavior if we take a closer look at the 

assumptions of the classical model. As we said earlier, the classical 

analog model is the usual semiclassical model in which we take the 

12 
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heavy particle trajectory to be that determined by the Ehrenfest Theorem 

and is therefore subject to the general restrictions which apply to 

semiclassical models. 
33 

Delos, Thorson, and Knudson have found that, 

among other restrictions, the semiclassical model for electronic 

transitions requires that the potential surface difference ~V be small 

compared to the total energy of collision so that the trajectories on 

different surfaces don't differ drastically. The extreme case is that 

of two degenerate potential curves where the trajectories are identical. 

. 36 
In such a case, the semiclassical model obtains the correct result. 

As a becomes smaller, the curves become less and less degenerate and 

our frequency oscillations in Figure 2 is a Stukelberg oscillation 

which the classical model correctly predicts. 1ve can therefore say 

that the classical analog correctly determines quantum interference 

effects if the potential curves do not differ greatly. In situations 

where the potential curves do differ substantially, the classical 

model only determines the average behavior of the S-matrix elements. 

This model is therefore still very useful for these situations 

since in general, we always average over some degrees of freedom, such 

as rotations or vibrations, which average out the quantum interference 

effects. For example, the model can probably be successfully applied 

in determining the probability of charge transfer in molecules where 

there is usually a large difference between electronic surfaces if 

the vibrational and rotational degrees of freedom are averaged over, 

On the other hand, the model would not be appropriate in determining 

the probability of charge transfer between atoms where there are no 

internal degrees of freedom to average over. 



* III. Collinear Br + H2~ 

We continue our investigation of the Ehrenfest model with an 

40-43 
application to the well-known electronic~vibrational energy 

transfer reaction 

-+ 

This reaction is thought to be
40 

a _ mechanism which efficiently 

quenches spin-orbit excited Br because the vibrational quantum of 

-1 
H2 approximately matches the 3685 cm excitation energy of Br. 

This fact is borne out by the quantum mechanical results for the 

44 
collinear version of this reaction by Lee, ~ al. This reaction 

* is of interest to us for two main reasons. First, the Br quenching 

involves a resonant energy transfer between electronic and vibrational 

coordinates. This example will thus allow us to see how the 

Ehrenfest model does when we include internal degrees of freedom. 

Second, the coupling between the two electronic states is exponential 

compared to our first example where it was Gaussian. While in the 

first case it would have been possible to use a Landau-Zener model 

to determine the transition probability, this second case spreads the 

coupling region over a broader region making the transition "more 

quantum mechanical". It is clearly important to see hOyl our classical 

model does in such a case. 

\ole will compare our results to those of Lee et al.
40 

amd thus 

follow their formulation of the problem. He treat the H2-Br system 

collinearly with H2 as a simple harmonic oscillator with no rotations 

14 
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allowed. We treat the potential interaction in two parts, The first 

part is anon-diagonal spin-orbit interaction matrix while the second 

is an exponential diagonal matrix representing the electronic inter-

action 
45 

(Secrest-Johnson type) 

In this representation, transitions between the two states are due 

solely to the spin-orbit interaction. Here V is the vibrational 

coordinate, R is the translational coordina~e, and ~ is the spin-

(12) 

orbit splitting. AO' AI' p, and ~ are parameters chosen to resemble 

the Br-HZ system. The values for these constants are reported 

46 elsewhere. 

While this form of Y is correct, one notes that in the asymptotic 

region (R~), we still have finite off-diagonal elements, so that we 

will still have transitions in the asymptotic region for this choice 

of adiabatic states. This situation is easily alleviated by 

performing a unitary tr~nsfotm on X such that we diagonalize the 

spin-orbit interaction. This is easily done and we find 

(13) 

with 

15 
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2 I 
AOO = 3" AO + "3 Al 

All 
2 
"3 Al 

I 
+"3 AO 

AOI A
IO 

12 
"3 (AI-AO) 

, 
With this set of diabatic states, we see that V is diagonal as 

, 
R-+oo. We now replace the interaction matrix, V , with our classical 

model for electronic degrees of freedom, Eq. (7) 

, 
VCL(R,r,n,q) 

-cx(R - t r - p ) 
e 0 [n All + (l-n) AOO] + nA + 

• 2.j n(l-n) cosq AOI (14) 

with n,q being the action-angle variables representing the electronic 

states described previously. Letting R-+oo, we find 

, 
VCL(R-+oo,r,n,q) nA 

which is independent of q so that n is a conserved quantity in the 

asymptotic region. (This was our motivation for the unitary transfor-

mation). Since n=O,1 represents the ground and excited spin-orbit 

state respectively, we see that asymptotically we remain in a given 

spin orbit state. 

Given this functional form for the interaction matrix, we can 

easily write down the Hamiltonian 



JC(p,R,v,q ,n,q) 
v 

where P is the translation momentum, w is the H2 frequency, and v 

is the action variable for the oscillator. To complete this 

description, we must refine the vibrational coordinate r in terms 

of the action angle variable v,q2' This is easily done and known 

to be
47 

r = r + JZv+I o row cos qv 

with rO the equilibrium position of the vibrator and m the reduced 

mass of the oscillator. The values used for r O' m and 1-1 are given 

elsewhere. 
46 

(15) 

With the Hamiltonian defined, we need only implement Hamilton's 

equations of motion and define the initial conditions, Beginning 

with HZ in its ground vibrational state and Br in its spin orbit 

excited state we have 

P = JZ1-1 E tr 

R = large 

v = 0 
0 < ~ < Zrr - -

qv q 

n = 1 

q = ~ 

where E is the translational energy and ~ is a random number between 
tr 

o and 2rr as usual. 

17 



To extract the final quantum probabilities from the classical 

trajectories, we will use two different methods. The first is 

the histogram method
37 

described in the first example where we box 

the final values of v and n as shown in Figure 5. Another procedure 

48 49 
used less frequently is the moment method ' in which one determines 

the first and higher moment of <6V> and <6N> as well as the correla-

tion moments <6V 6N> using quantum probabilities. One can then invert 

these equations to solve for the probabilities in terms of the 

moments. To determine the quantum transitions, we then calculate 

39 
these moments classically via a Monte Carlo procedure. 

dq 
v 

(16) 

In determining the equations for the moments, one must determine how 

many vibrational states one wishes to include since including 

different numbers of vibrational states will give different results. 

It would seem that the states to be included should be those which 

are classically populated and indeed this was found to give the best 

agreement with the quantum mechanical results. With the given initial 

conditions, it was found that v ~ 0,1,2 were populated along with 

n=O,l. Including these six states in the inversion formula, we find 

for example that the reSOnant probability is 

p 
v=1,n=O 

<6n 6v (6v-2» 

+-v=O,n=l 
2n 2n 

f dq f dq (n -n.)(v -v.)(v -v.-2) 
v f ~ f ~ f ~ 

(17) 

0 0 

18 



with similar equations for the other transition probabilities. 

Results 

44 
So as to compare to the results of Lee, ~ al., we did 

calculations with v=l, n=O as the initial state. Figures 6 and 7 

are plots of the resonant quenching probability as a function of 

the artificially varied spin-orbit splitting using both the moment 

method and the histogram method. Exact resonance occurs at A = 0.02 

a.u. We see that the histogram method gives qualitatively correct 

results with the resonance peak produced in the proper place. The 

moment method on the other hand gives excellent quantitative agree-

ment with the quantum results to within 5%. 

The remaining plots have been done with v=O and n=l for the 

initial conditions since this is the physically interesting direction. 

* the quenching of Br. Figures 8 and 9 include both the resonant and 

non-resonant quenching probability for two additional energies using 

the moment method. While we do not have quantum results to compare 

to here, we note that the resonant probability has a single peak which 

becomes sharper with lower translational energy and that the non~ 

resonant probability is large when the energy miss match. between the 

vibrational energy spacing and the spin-orbit splitting is large (for 

small A) dropping to zero at resonance, These are the results one 

would expect and in lieu of the agreement for Figures 6 and 7 with 

the quantum results, we have an equal amount of confidence in these 

plots as well. 

19 



The most interesting of these graphs is Figures 9 which is in 

the thermal energy region at ~ 0.6 kcal/mole. We see here that the 

resonant peak is very sharp, so sharp that if one looks at the physical 

value of A = 0.0167 a.u., we see that the resonant effect is 

negligible. Thus from the collinear results, one would conclude that 

the resonant effect is only predominant at energies higher than 

thermal. Figure 10 is a conventional plot of probability vs. energy 

for the physical value of A. Here we see that the resonant curve 

peaks peaks at 0.04 a.u., well above thermal energies, while the non

resonant curve is basically zero (except for some numerical 

fluctuations). We will have more to say about this in the next 

section. 

20 
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IV. * * Classical Analog Model for F , Br + H2 in 3D. 

In the examples studied so far, the Ehrenfest model has proven 

to be of sufficient accuracy to merit an application to a three-

dimensional system. We will therefore apply our model to electronic 

h ' f F* and Br* b H quenc 1ng 0 y 2 . The quenching of Br* will thus be 

extended to include H2 rotation, and orbital and total angular 

momentum. Before looking at the full BrH2 system, it will prove 

useful to examine the rotational-electronic resonance reaction 

This reaction is one of the few which has been simple enough to 

, 50..,..52 
determine the three-dimensional quantum cross sect10n so that 

we may compare our results to. More importantly is that this reaction 

has also been studied classically by Meyer and Miller23 using the 

SMM discussed above. As we said earlier, the three different analog 

models, the CPP, the SMM, and the Ehrenfest model do not give the 

same form for the classical potential for more than two electronic 

states. 23 
Since the FH2 system involves three electronic states, we 

should therefore be able to determine which of the two models, SMM or 

the Ehrenfest, is the more correct to use. We will then examine the 

BrH2 system and compare our three-dimension results to the collinear 

results above. 

To begin our derivation of the FH2 Hamiltonian, we take as our 

starting point the classical Hamiltonian derived by Neyer and Hiller 

23 
for the SMM model. 

21 



2 t 2 2 2 
JC = L + -- + B N + B. + VeL (R, y , IlL , <l,.., ) 

2~ 2mR2 rot J L '~ 
(18) 

where the first two terms are the translational kinetic energy, the 

third and forth terms are the rotational and spin-orbit energy, 

respectively, and the last term is the SMM classical function for 

the electronic matrix. The electronic matrix V is the Lester

Rebentrost surfaces SO rotated from their original cartesian basis 

. 23 
set to a polar basls set (t=l, m.=-l,O,l) 

1 

H i H -6 Ii yz 

V -( i 
H H -A Hyz ) - .f'i yz zz 

-6 2:.H H 12 yz 

(19) 

It is this matrix which is modeled by the SMM classical f Ulction. It 

should be pointed out that the above Hamiltonian is assuming a rigid 

rotator for H
2

. The reader is referred to the Meyer~Miller paper for 

further details.
23 

In deriving Eq. (18), the electronic matrix was 

put into the It,~> basis set because this appeared to be the most 

logical choice. On the other hand, the spin orbit interaction term 

is in the Ij ,m.> basis. vfuile there is nothing that strictly forbids 
J 

us doing this for a classical Hamiltonian, it would be preferred that 

these two terms have the same basis set for reasons soon to be seen. 

There are several ways to do this, but we have chosen the 

following: make a unitary transformation of V from It,m
L

> to the 

22 



Ij,m.> basis. Rewrite the spin-orbit term back into matrix notation. 
J 

The advantage of doing this is that we may now add these two matrices 

and obtain the complete electronic-spin orbit matrix. We then model 

this full matrix with the Ehrenfest model. 

To do this, we first note that we can no longer work with the 

3 x 3 matrix of Eq. (19), but must expand it to a 6 x 6 to include 

both projections of electron spin for the F atom. We must do this 

for otherwise-we would have an incomplete basis set for a unitary 

transformation to the Ij,m.> basis. Our V matrix is therefore 
J . 

V 

H 

i 
-=H 
/2 yz 

o 

o 

i H 
/2 yz 

H 
zz 

o 

o 

i --H 12 yz 

H 

o 

o 

o 

o 

o 

o 

H 

i 
- - H 12 yz 

-6 

o 

o 

o 

i H 
Ii yz 

H 
:&.z 

o 

o 

o 

-6 

i 
- - H v-'I yz 

-
H 

(20) 

with the order of the basis set being Im~,mj> = 1-1,-1/2>, 10,-1/2>, 

11,-1/2>, 1-1,1/2>, 10,1/2>, 11,1/2>. The 3 x 3 blocks in this 

matrix are Eq. (19). We now perform a unitary transformation to the 

coupled representation 

I j , m > 
j u 

23 
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where U in the usual transformation matrix derived from the C1ebsch-
-

Gorden coefficients.
53 

Our new matrix is 

H 
-e£ 

where H n is in the ij,m.> basis. The results of this algebra are 
~eN J 

presented in Appendix A. 

its matrix representation. 

diagonal with the elements 

We next write the spin-orbit term in 

In the ij,m.> basis, the matrix is 
J 

SO 
H. ." Jm. ,J m. 

J J 

B j(j+l) 0 .. , 0 m' 
JJ mj j 

where B is the spin-orbit constant. 

(21) 

(22) 

We finally add the electronic and spin-orbit matrices to get the 

composite electronic-spin orbit Hamiltonian HT 
:::: 

One then need only apply Eq. (6) to our matrix liT 

T 
H (n,q,R,y) 

-1 
+ (n5+n6)~ + (nl +n2+n3+n4)3B 

+ 216. [/nl n6 cosq6 - InSn4 coS(QS-Q4)] 

24 
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(23) 

where (n,q) are the action-angle variables representing the six 

quantum states. All other variables are defined in Appendix A. Due 

to conservation of probability, we can always eliminate one of the 

nls in favor of the other five so that HT is only a function of five 

pairs of action-angle variables. It is H
T

, for example, that gets 

diagonalized to find the electronic surfaces for FH2 with the spin-

orbit term included. It is because the reactiori is occuring on these 

surfaces, rather than just the electronic ones that we believe it is 

better to treat the spin~orbit term as part of the matrix to be modeled 

classically. We could also have left He~ in its original basis set 

d f d h · f' HSO f b· an per orme t e un1tary trans orrnat10n on 0 course, ut S1nce 

the asymptotically interesting states are the Ij,m.> one, we have chosen 
J 

the latter. The reader is reminded that one of the virtues of the 

Ehrenfest model is that different basis sets for the matrix correspond 

to different canonical variables so that one obtains the same results 

with this Hamiltonian, independent of basis set. This is not true of 

the SMM where one must decide the more "physically meaninsful" basis 

set to use. This is the major appeal of the Ehrenfest model. 

To complete the description of the Hamiltonian, we must still 

represent the orbital angular momentum, ~, in the centrifugal term 

25 



in terms of the other independent angular momentu. This has been 

21 
previously done, but we quickly outline the derivation. There are 

four angular momenta, J, the total, £, the orbital, N, the rotational 

and j the coupled angular momentum. Due to convervation,we know 

J = £ + j + N (24) 

so that 

(25) 

by a few simple algebraic manipulations, we can get this in the form 

- 2J-N (26) 

As usual, we can express J vector in its action angle variables (J,qJ)' 

47 
(mJ,q ) m

J 

J m
J z 

J = J,;2_m2 sinq 
y J m

J 

J Ji_m2 
cosq (27) 

x J m
J 

with similar expressions for N. The point of this exercise is that 

we cannot do the same for j since it is no longer represented as an 

T . 
action-angle pair, but as part 6f the H matrlX. We must therefore 
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write the matrix expressions for j and its components and then 

apply the Ehrenf es t model to these as well. For example, in the 

Ij ,m.> basis 
J 

3 

1 

-1 

-3 

1 

.,..1 

is the matrix representation for j . Applying the Ehrenfest model 
z 

to this we get 

where we have eliminated n
l 

in favor of the other variables in 

conservation. This expression gives the average, Ij >, given the 
z 

distribution among the electronic states. Similar expressions for 

the other components along with j,j2 are presented in Appendix B. 

Together with Eq. (29), we now have an expression for £2 in terms 

(28) 

(29) 

of the independent variables of our total Hamiltonian. For the sake 

of completeness, it is presented here. 

H(R,P,N,2,n,q,y) = 

2 2 
L + _,Q.,_ + B N2 + HT( R) 2 2 n,q, ,Y 
~ 2~R rot 

(30) 
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with t given by (A.8) in Appendix Band HT given by Eq. (23). 

Given Eq. (30), we carried out our calculations within the 

framework of the standard quasiclassica1 trajectory model. 

Langer modification
38 

was made to all action variables 

N-+N+l 
2 

The 

The cross section for (j1,N
1

) -+ (j2,N
2

) transition was summed over 

~ ,m. and averaged over ~ ,m. and is given by23 
2 J 2 1 J l 

IT L (2J+l) 

where (11 1) 

(31) 

and E. N 
J, 1 

is the translational energy with respect to the IjlN
l

> state. 

We have calculated p. N . N in three ways. The first is the 
J 2 2+J 1 1 

standard histogram procedure similar to that used for the collinear 

BrH
2 

computation where we have boxed our final results as in Figure 

11. The second method 
. 23 

is that of skewed h1stogram method used by 

Meyer and Miller in which we skew the boxes so that they lie in the 

direction of the resonance line also shown in Figure 11. It was found 

that this skewing gave more reasonable results for the resonant and 

nonresonant channels. The third method used to determine p. N . N 
J 2 2,]1 1 

was the moment method in which we include j = 1/2,3/2 and up to 

N=O,2,4 (recall that H2 is homonuclear and only the even rotational 

28 



.' 

states are populated). All integrals involved were evaluated by the 

37 39 
usual Monte Carlo method. ' 

FH2Results 

29 

We will be predominantly interested in the (1/2,0) + (3/2,2) resonant 

transition which has an energy defect of 6.2 meV. As found by Meyer and 

Miller the skewed histogram procedure gave larger resonant cross sections 

and sections and smaller non-resonant cross sections [(1/2,0) + (3/2,0)] 

than the histogram proceedure. The moment method gave similar results 

to the skewed histogram proceedure for the resonant cross section, but 

gave non-resonant cross sections comparable to the resonant cross sections. 

52 
Lester and Rebentrost determine the non-resonant cross section to be 

an order of magnitude smaller than the resonant. This is in contrast to 

the collinear H
2

Br calculation where we found the moment method to give 

the best results. 

As with the SMM calculations, microscopic reversibility for the 

resonant cross section is poorly obeyed. We thus follow Meyer and Miller 

and define an average cross section23 

~here 0 is the cross section calculated from the intial state (1/2,0) 

and S the cross section calculated from the intial state (3/2,2) and then 

corrected for the degeneracy effect. In lieu of the above discussion, we 

have only presented a for the skewed histogram proceedure in figure 12. 
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We see that while the SMM results give the correct order of magnitude, 

they do not reproduce the resonant peak at 20 meV. The Ehrenfest results, 

on the other hand, predict a resonance peak at 40 meV. The opacity function, 

plotted in figure 13, for ET = 60 meV shows that while both the SMM and 

Ehrenfest results are too small compared to the quantum, the Ehrenfest 

calculation predicts a resonance peak,whereas, the SMM calculation shows 

no resonance structure in PCb). Figures 12 and 13 allow us to conclude, 

therefore, the Ehrenfest model can correctly predict the resonance structure 

in both the cross section and opacity function though it does under-

estimate them by a factor of two. We also see that it is essential 

to have the Hamiltonian basis-set consistent to reproduce the resonant 

energy exchange. 

Our second three-dimensional reaction is the e1ectronic-

vibrational resonance of spin orbit excited Bromine with H2 in its 

ground vibrational state. The spin orbit splitting in Bromine is 

-1 
3685 cm and sois more closely akin to the vibrational level space 

of H2 which is 4161 cm- l , almost an order of magnitude greater 

than the FH2 defect. We would therefore expect this resonance 

to occur, if at all, at higher energies than that of FH2 and 

expect it to be much broader. 

-. 



Our main concern here is generating potential surfaces which are 

more reliable than the model ones used for the collinear case. We 

have chosen to use the DIM approach for its simplicity and ease. We 

have followed a procedure completely analogous to that of Tu1lY's54,55 

used to generate the FH2 surface where we have simply replaced the FH 

[1,3 and rr l ,3 states by those of BrH. The Z curves were obtained from 

Porter and Raft 56 while the rrl)3 curves were calculated via a SCF 

1 1 . 57 ca cu at~on. Even though SCF is not of great accuracy, we feel that 

for our purposes it will suffice. We found the transition state for 

this surface to lie 24,9 kca1/mole above the Br + H2 channel which 

compares relatively well with the experimentally measured value of 

19.7.
58 

Since the resonance energy exchange will take place completely 

in the entrance channel, the saddle point discrepancy is not a serious 

problem. 

In solving the DIM matrix, we must diagonalize a 24 x 24 matrix 

(which blocks out into smaller parts) to obtain the adiabatic curves. 

Unfortunately, we cannot use these curves in our classical Hamiltonian 

as written since we are assuming diabatic states which contain the 

coupling within the potential matrix. The adiabatic representation 

contains the coupling within the kinetic energy terms, i.e., it is 

no longer diagonal. While we could do the calculation this way, we 

would need to calculate the kinetic energy coupling terms along with 

the adiabatic surfaces along with writing a different program than 

that used for FH2' There is an approximate though much easier I.ay 

around this. We can perform a partial diagonalization of the DIN 

matrix to diagonalize out the spin, but leave the spacial components 

of the basis set unaltered. This leaves us with an approximate 
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diabatic matrix in the cartesian basis set. Since this was the original 

basis set we used for the FH2 calculation, we can simply replace the 

potential functions. The derivatives for these potentials needed for 

Hamilton's equations are determined by finite differences. We now use 

the Hamiltonian of Eq. (23) with one final modification. This is an 

electronic-vibrational energy transfer, so we can no longer treat H2 

as a rigid rotor. We must add a kinetic energy term for the H2 

vibration and the diabatic states will also depend on r, the H2 

inter-nuclear distance, B is no longer constant but 
rot 

1 
B -+ -=-~ 
rot 2 

2lJ r 

where lJ is the reduced mass of H2' With these additions, our Hamiltonian 

now becomes 

Je(p , R, P , r , Q, , N , n, q , Y) 

2 02 2 2 
n ~ p N T 
L- + + - + -~~2 + H (~,~,~,~,y) 
2m 2lJ R2 2 2lJ r"-' 

We now follow the standard quasiclassical trajectory model as we did 

with FH2 except that we are interested in the vibrational transition 

instead of the rotational. The procedure and equations are the same 

as FH2 so they will not be repeated. 

BrH
2 

Results 

Before going on to discuss the results, there are some practical 

points of the calculation that need mention. The BrH
2 

calculations 



take an exceeding long time to carry out for several reasons. First, 

since H2 is vibrating, the integration steps in our integrator must 

be made very small so as to be comparable with the H2 vibrational 

period. Second, unlike FH
2

, we no longer have analytic expressions 

for the potential surfaces. We must diagonalize a 2 by 2 and partial 

diagonalize a 4 by 4 each time we take a step with our integrator. 

Third, we must determine the three gradients of the potential surfaces 

by finite differences. The combination of these lead to very long 

CPU times, especially for the low translational energies so that we 

are severely limited to the number of cross sections we can evaluate. 

Because of this, we have not done a geometrical average to correct for 

the microscopic irreversibility as we did for FH2 . Rather, we have 

calculated the cross sections using the skewed histogram procedure 

alone since this method of extracting the final quantum numbers gave 

the best results in the FH2 case. Judging from FH
2

, we can say that 

the BrH2 results as calculated will probably be qualitatively similar 

to what we would have calculated if we had done a geometric average 

of the cross sections. Figure 14 has a plot of the cross sections 

for the resonant (v=O, j=1/2 ~ v=l, j=3/2) and nonresonant (v=O, j=1/2 

~ v=O, j=3/2) channels as a function of translational energy. We have 

chosen the ground rotational and vibrational state of H2 and the spin

orbit excited state of Br as the initial state. We did not thermally 

average over the initial rotational state since it was found that 

different initial rotational states gave the same cross sections within 

statistical error. From Figure 14, we see that the resonant cross 

section has an upward trend toward smaller translational energies. 

It does not appear that this cross section has a single peak as did 
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the"FH
2 

case. One can not be too definitive about this since the 

uncertainties are so large. Unfortunately, we could not run more 

than 1000 trajectories to reduce the uncertainties since the CPU time 

needed would have been unreasonable. The non-resonant cross section 

is seen to be much smaller than the resonant cross section as we would 

have expected. 

While we have no direct experimental evidence to compare to, we 

- 59 
note that Leone ~ al. have recently determined the rate constant 

for resonant energy transfer for this reaction and found the thermally 

°2 
averaged cross section at room temperature to be 0.3 A Figure 14 

qualitatively agrees with these experimental results and does show 

the resonant cross section to be an order of magnitude greater than 

the non-resonant. Due to numerical difficulties, we cannot say 

anything more quantitative than this. 

Comparing our results to the H
2
Br collinear calculation discussed 

above, we see they are vastly different. The collinear results show 

a definite resonance at 0.04 hartrees while the three~dimensional 

calculations show the cross section exponentially decreasing as 

a function of energy, This discrepancy implies that the 

probability that comes from impact parameters other than b=O play 

a substantial role in determining the cross section for this 

system. As always, one must view collinear calculations with great 

suspicion when comparing to experimental situations. 
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V. Ehrenfest Hodel Conclusions 

We have shown that it is possible to model electronic states, 

a purely quantum mechanical phenomenon, with classical mechanics 

and obtain results which are in good agreement with quantum mechanical 

calculations. In particular we have shown that the Ehrenfest model 

can correctly describe the major energy transfer reactions; 

electronic-vibrational, electronic-rotational, and electronic

translational. Of the two models, the SMM and the Ehrenfest model, 

the latter has been shown to give better agreement with quantum 

mechanics for three or more states. 

In conclusion, the Ehrenfest model has been shown to give 

semi-accurate results if the electronic states do not differ much 

and the general semiclassical conditions are observed. 
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Appendix 

A. We start with Eq. (20) 

H i H a yz 
-t:. 

V= i 
H i H - -.;;;= H 

'11. yz zz 72 yz 

-t:. i H 
7Z yz H 

H i H a yz -t:. 

i H H i H - 72 yz zz n yz 
iH -

72 yz H 

(A.I) 

We must now perform a unitary transformation from the uncoupled to 

coupled representation 

Ij m.> 
J 

J 

(A.2) 

The transformation matrix is the usual Clebsh-Gorden coefficients
23 

and is easily calculated as 

0 0 0 I 0 

0 a 0 0 g 

0 0 a 0 0 
U (A.3) 
::::: I 0 0 0 0 

0 -g 0 0 a 

0 0 g 0 0 
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with g = IfT3 and a = 1fT2. 

We find He~ uvu+ to be 

." H H -6 0 -H 
-1 6-1 

_yz _yz 

-H H 0 -6 H ~H 
_yz 2 yz 

-6 0 H -H i 
-H - -H 

-yz 2 yz 
H = 
e~ - ~:Jl 0 -6 H H "Ll _yz -

-1 J-tt -1 -1 H H -6 H 0 yz 2 yz 

-1 i H -1 -1 6 -H -H 0 H - 72 yz -yz 

(A.4) 

where 

2 +lH -1 - i H H = - H H 3 zz 3 -yz - 76 yz 

-1 2 1 -1 I~ H =-H+-H 6 3 3 zz 3 

H - i H H 12 -= - (H-H ) _yz - 73 yz 3 zz 

6 
i 

= T3 6 

We need only add the spin orbit interaction matrix (Eq. 22) 



5 

5 

5 

5 

1 

1 

lB 
4 

to Het to obtain HT. Substitution of HT into Eq. (6) gives us the 

Ehrenfest model expression of HT, Eq. (23). 

38 

(A.5) 

B. To determine our expressions for j and its projections, we begin 

with the matrix form of these operators 

0 13 0 0 lIS 

/2 0 2 0 lIT 

1 0 2 0 13 1 
ill 

jx = - j 
2 

0 0 II 0 
2 lIS 

0 1 /3 

1 0 II 

0 ,g- O 0 15 

II 0 -2 0 15 

0 2 0 II .2 1 
15 

jy 
i (A.6) 
2 J 7; 

0 0 II 0 15 

0 -1 3 

1 0 3 

'. 



We then use the Ehrenfest expression for the matrices and find the 

functional forms to be 

Using these expressions and Eq. (26) and Eq. (29), we find our 

expression for ~2, the orbital angular momentum to be 

+ 2. ( IN
2 -ro... 2 s inq ) 

JY N ~ 

cosq ) 
~ 

54 c. Following Tully's procedure for the construction of the DIM 

(A.7) 

(A.8) 

matrix, we have a 6 x 6 block matrix out of the full 24 x 24 matrix 

which is relevant to the three lowest adiabatic states 
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Hll H12 H13 H14 

H22 H23 H24 

H33 H34 

~IM 

H44 

HSS HS6 

H66 

which further block diagonalizes to a 2 x 2 and a 4 x 4. The basis 

set for this matrix is 

where the spacial part of the basis set is in the cartesian 

representation while the spin part represents the total coupled 

spin of all the atoms and its projection. The two by two block 

is composed of only the x-spatial component so that in diagonalizing 

it, we end up with two adiabatic surfaces of solely x character. 

The lower of these two surfaces corresponds to H of Eq. (19). 
xx 

The 4 x 4 block has both y and z spacial components so that if 

we diagonalize this block we will mix the y and z components. We 

would like to keep the spacial components unmixed so that we will 

have a cartesian diabatic basis set, but one would like to diagonalize 

out the spin component. An approximate way to do this would be to 

diagonalize the 4 x 4 block as follows 

40 

, . 



41 

c -s HIl H12 Hl3 H14 C S 

S C H22 H23 H24 -s C 

I I I I 
C -s ~3 H34 C S 

~ I I I I 
S C H44 -s C 

Hil 0 Hi3 Hi4 
I 

0 H22 HZ3 H24 c = cosy c = cose 
I 

H33 0 s = siny s = sine 

0 H44 

where we have diagonalized the yy block and the zz block. Ideally, 

we would like the yz blocks to also be diagonal after the unitary 

transformation. Though this is not rigorously true, we have found 

that the yz block were approximately diagonal. Taking the smaller 

of the diagonal elements from each block we have a 2 x 2 diabatic 

matrix in the yz basis set. We have found that for a H2 -Br distance 
o 

greater than 1.S A, the partial diagonalization technique yields 

potential surfaces that are within a kcal/mole of the full diagonaliza-
o 

tion (the usual method). For H2Br distances less than 1.S A the 

discrepancy increases to 4 kcal/mole. This is well into the saddle 

point region though and our trajectories do not sample this region 

at all; all resonant energy exchange takes place in the entrance 

channel. We therefore feel that this partial diagonalization is 

an adequate approximation. 
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PART B: ELECTRONIC TRANSITIONS IN REACTIONS OCCURING IN LIQUIDS 



VI. Iodine Recombination: Introduction. 

In the first part of this thesis, we showed that is was possible 

to describe electronic transitions in gas phase collisions using only 

classical mechanics. We next turn our attention to the description 

of the electronic dynamics of reactions occuring in liquids. Unlike 

the gas phase, we cannot follow all the relevant heavy particle 

degrees of freedom exactly (there being of the order of 10
23

) so 

that we must do a statistical approach to this part of the problem. 

For example, the method we have chosen to follow is a Langevin approach 

where we follow the exact dynamics of the reacting atoms and treat the 

solvent atoms as a heat bath. The reacting atoms are allowed to 

exchange energy with the bath thru a systematic and random force. 

This greatly simplifies the number of heavy particle degrees of 

freedom which we must follow. 

Since the inclusion of electronic degrees of freedom for reactions 

occuring in liquids is still in its infancy, it is best to focus on 

the simplest possible reaction where electronic states are known to 

playa significant role in the dynamics. Iodine recombination in 

liquids is such a reaction. Since the first experimental results on 

60 
this system were obtained in 1961 by Noyes, and extensive interest 

has developed in the study of this as well as other recombination 

reactions. Iodine recombination has been studied in a variety of 

. 61-65 73 . 66-68 
solvents 'and there have also been a number of experlmental 

and 
. 68-70 

theoretlcal studies of the process in the gas phase. Of 

. 1 . h· d . 61-65,73 h· h partlcu ar lmportance are t e plcosecon experlments w lC 

allow one to study the short time scale inherent in this reaction. 

Since recombination is perhaps the simplest "chemical reaction" 
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that one can study in liquids, it has attracted considerable theoretical 

attention. d ' h 'I d d I I d ' 'I' 61~63 Stu ~es ave ~nc u e mo ecu ar ynam~cs s~u at~ons 

d h ' , 64-65 L' h an stoc ast~c trajectory, or angev~n approac es. While 

molecular dynamics is relatively c·onunon nowadays, the computational 

effort involved is considerable in following the specific dynamics of 

each individual particle in the system. The Langevin approach is 

much easier to employ and can describe longer time behavior, but it 

incorporates many more approximations whose validity is difficult to 

ascertain. There are thus many fundamental theoretical questions 

about the dynamics of recombination in liquids that merit further 

investigation. 

The present work follows closely the Langevin stochastic 

trajectory model of Hynes, Kapral, and Torrie,64 where the focus is 

on secondary recombination
66 

of the iodine atoms; i.e., one considers 

the iodine atoms that, after photo-excitation of 12 , have separated 
o 

to a distance of ~ 4-6 A, from which they either recombine (on a 

time scale of ~ 10-30 picoseconds) or dissociate permanently. 

(Primary recombination of the atoms immediately after the excitation 

takes place within a picosecond and is typically obscured by the 

exciting laser pulse.) In their Langevin simulation Hynes, ~ al., 

considered motion of iodine atoms only on the ground electronic 

potential curve of 1
2

, although they noted that the other electronic 

states which dissociate to ground state iondine atoms should also be 

taken into account. Figure 15 shows the ten diatomic potential curves 

f I h 'f 2p ' d' 6 7 d h o 2 t at ar~se rom two 3/2 ~o ~ne atoms, an one sees t at 
o 

at ~ 4-6 A they are all within kT of each other, suggesting that 

electronic transition between them should be facile in this region. 

.1'-"" 



Previous work dealing with the question of electronic transitions 

in iodine recombination includes that of Bunker,68 who discussed it 

only on statistical grounds, and that of Martire and Gilbert,75 who 

used a Folker-Planck equation which included rate constants for 

transitions between the various electronic states of I 2 . In their 

actual calculations Martire and Gilbert assumed only one electronically 

excited state, and the rate of transitions between it and the ground 
. 

state was varied in order to obtain agreement with experiment. While 

this was a good start of dealing with the effects of electronic 

transitions, one would like to have a less phenomenological approach 

that is also tractible enough to allow practical calculations. 

We have decided to follow the Langevin stochastic trajectory 

approach of Hynes, ~ al., but generalize it to incorporate the 

effects of electronic transitions between the various potential curves 

(i.e., electronic states) of 12 , Specifically, we utilize the Tully-

. 78 
Preston surface-hopp~ng model to allow for localized "hops", from 

one potential curve to another, with the electronic transition 

probability determined by the generalized Stuckelberg model of Miller 

and George. Since the surface-hopping model is formulated in a 

probabilis tic framework--i. e., a "hop" from the 'current electronic 

state is made or not by comparing the electronic transition probability 

45 

to a random number--it is relatively easy to include it in the stochastic 

trajectory simulation. 



VII. The Surface Hopping Langevin Trajectory Hodel. 

83 
We begin by discussing the Langevin model and some basic 

aspects pertinent to iodine recombination. As mentioned above, 

the Langevin model only follows the dynamics of the primary atoms 

(i.e., iodine atom) in detail and treats the solvent atoms as a 

"bath". The equation of motion for each iodine atom is 

m. [dv. (t)/dt] = -~. viCt) + F.Ct) + R.(t) 
~ -~ ~ - -~ -~ 

U=1,2) 

Here m. is the iodine atomic mass, F. = - V. VCr) is the iodine 
~ -~ -~ 

potential interaction, ~. the frictional constant, R.(t) the 
~ -~ 

(32) 

gaussian-distributed random force, and v.(t) the iodine atom velocity 
-~ 

for atom i. The frictional term slows the iodine atoms down while 

they move through solvent while the random force represents the 

momentum tnansfer to and from the solvent. Rigorously, the partition-

ing of the solvent-solute interaction into systematic and random 

components is only a conceptual aid. This is seen by the fact that 

~. and R.Ct) are related by the second fluctuation-dissipation 
~ -~ 

theorem 
81 

2 ~.Ct) 0 .. = <R.(t).R.(O» 
~ ~J -~-J 

which insures that the primary atoms remain in thermal equilibrium 

with the bath. 

D h d 0 h · 80 h h h E (32) b d . d eutc an ppen e~m ave s own t at q.. can e er~ ve 

from the full solvent-solute system if the following two assumptions 
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are valid: 1) rapid solvent equilibration compared to solute 

velocity equilibration, and 2) neglect of intersolute dynamical 

correlations. The first condition is met if 12 is immersed in a 

light solvent (for example, liquid Ar). The second condition can 

be restated as: the off-diagonal elements of ~ matrix
88 

are small 

compared to the diagonal elements. While this is not rigorously 

64 h . bl f h true, Hynes, ~ al., ave given a reasona e argument or t e 

neglect of the off-diagonal elements. Under these restrictions, the 

results we obtain below should be only considered qualitatively 

correct. We can rearrange Eq. (32) to solve for the relative 

velocity and coordinate to obtain 

-~ vet) + F(t) + R(t) (33) 

1 1 
where ~ is the reduced mass, v = v 2 - v l' ~ = 2 ~l = 2 ~2' and 

Since ~ is diagonal in our approximation 
::::. 

and F(t) is only a function of r = r 2 - r l' we can follow the 

evolution of Eq. (33) independent of the center of mass equation. 

We take the friction constant to be
83 

~ = 

with DO following the temperature dependence 

82 
as given by Enskog theory. We take D

O
(300) 
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immediately above two equations and the fluctuation dissipation 

theorem completely define Eq. (33) except for the potential inter-

action F(t) which we now discuss. 

As noted above, the new aspect of the present work is that we 

allow the potential function VCr) (i.e., the electronic state) for 

two iodine atoms to change during the Langevin trajectory according 

to the surface hopping model.
78 

(Hynes, ~ al., also include in 

VCr) a "caging potential" which includes the average effect of the 

solvent on the I-I interaction since its effect is rather small and 

since our interest here is in investigating the effect of electronic 

transitions between different I-I potential curves, we ignore this 

term in the present work). We use the Miller-George semiclassical 

79 
theory to determine the probability of transition from state 

i to j. Briefly, this theory extends the Landau-Zener-Stuckelberg 

electronic transition theory34,38 for atom-atom collisions to include 

internal degrees of freedom. Electronic transitions from state 

i to j are found to be localized at the times when 6V .. (t) 
1J 

IV.(t)-V.(t) I passes through a local minimum as a function of t; if 
1 J 

to is such a time, then the probability of the i~j transition is given 

approximately by 

4 " 1/2 
~ exp[- -3 (6v . . /h) (26V . . /6V .. ) ] 

1J 1J 1J 
(34) 

where 
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!::J.V·; . 
IJ 

d
2 

= --2 6.V .. (to) 
dt 1J 

For the present application the potential curves {V.(r)} for the 
1 

various electronic states (see below for their specific form) are 

such that 

IV.Cr) - v.(r)1 
1 J 

is a monotonically decreasing function of r for all i and j; thus 

!::J.V .. Ct) = !::J.V.(r(t)) passes through a local minimum only when ret) 
1J J 

experiences an outer turning point, i.e., when 

o 

and 

49 

(35a) 

(35b) 

This happens whenever the trajectory experiences a sufficient "kick" 

from the random force that the separating I atoms are turned around 

and headed back towards each other. Furthermore, this means that 

a local minimum occurs in 6V .. Ct) simultaneously for all possible 
1J 

final electronic states j. 



The way the surface-hopping model works, therefore, is that one 

begins in electronic state i, say, and thus integrates the stochastic 

trajectory, Eq. (33), with VCr) = V.(r); when ret) experiences an 
~ 

outer turning point, i.e., Eq. (35) occurs, one calculates the 

probability (via Eq. (34), and see below) of "hopping" to other 

50 

electronic states j, and makes a "hop" by comparing these probabilities 

to random numbers; if a hop is made to electronic state j, then one 

continues integrating the stochastic trajectory with VCr) = V.(r), 
J 

until ret) experiences another outer turning point, at which point 

another "hop" is allowed, etc. (It should be noted that this model 

only allows for electronic transitions which arise from the I-I 

relative coordinate motion. Transitions induced by solvent 

collisions are not taken into account (except when they cause an 

outer turning point in the I-I motion). While these types of transi-

tions are neglected in this calculation, one would expect such 

transitions to be small for adose shell solvent, such as Ar.) 

There is one significant modification we need to make in the 

above discussion: the transition probability given by Eq. (34) 

applies to an isolated I-I collision and thus satisfies the 

relation 

P.~. 
~~J 

(36) 

The Langevin model, however, describes the I-I system in interaction 

with a thermal batb; we thus use Eq. (34) to calculate the probability 

of de-excitation transitions i+j, and then invoke detailed balance 

.. 



.. 

to obtain the probabilities of excitation transitions: 

p. i = (g./g.)P.~. J+ J ~ 1.~J 

-S(V .-V.) 
J ~ e (37) 

where V. < V. are the electronic energies at the time of transition, 
1. J 

and g. and g. are the degeneracies of states i and j. Detailed 
1. J 

balance has the effect that after many transitions a Boltzmann 

-
distribution over the states would result if the energies {V.} were 

1. 
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constant. Also, the "primitive" semiclassical transition probabilities 

given by Eqs. (34) and (37) are not normalized as they stand, i.e., 
~': . 

do not satisfy conservation of probability, so they are modified as 

follows, 

(P. .) l' d J+1. norma 1.ze 
(38) 

in order to do so. One particularly interesting limit of this 

model to consider is that in which transitions between electronic 

states are much faster than the relative I-I motion, for all values 

of r. If this were true, then the electronic states would maintain 

themselves in a Boltzmann distribution for all values of r, and the 

effective I-I potential VCr) in the Langevin equation, Eq. (33), 

would be simply the Boltzmann average of the potential functions 

V.(r), 1. 

VCr) 

i 

g.V.(r) 
1. 1. 

-SV. (r) 1. 
e 

.,.BV. (r) 
1. 

e 

We have thus carried out the Langevin stochastic trajectory 

(39) 
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calculation using this average I-I potential function in order to 

compare it to the resul-s of the surface-hopping model. It is clear 

that it is much simpler in practice to use one average potential 

function rather than to deal with the dynamics of transitions 

between several different potentials, so it is important to see 

how the results of using this thermally averaged potential compare 

with those of the more dynamically correct surface-hopping model. 

For the potential functions we have been using a standard Morse 

potential, 

-a,(r-r ) -2a,(r-r ) 
e 

De[e _ 2 e e J (40) 

with 

-2 
D = 5.7144 x 10 hartrees 

e 

0.98819 
-1 a, a

O 

r = 5.03962 a
O e 

for the ground electronic state, and'all the others are described 

as quadrupole-quadrupole interactions,77 

v. (r) 
1. 

5 = c. /r 
1. 

(41) 

i = 2, ... ,10; the constants C. are given in Table I, along with their 
1. 

symmetry labels and degeneracies. Since we only need to follow the 
o 

I-I dynamics for r > 4 A (see next section), this description of the 

. 

r. 
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excited state potential functions should be a reasonable approximation. 

Of the ten states, five are repulsive and five attractive. 

Finally, we note one simplifying modification we made in 

carrying out the surface hopping calculations. It was assumed 

above that 6V .. (r) = IV.(r)-V.(r) I is a monotonically decreasing 
1J 1 J 

function of r for all states i and j, so that 6V .. (t) has a local 
1J 

minimum--and thus electronic transitions occur--only at an outer 

turning point of the ret) motion. One sees in Figure 15, however, 

that this is not true if state i or j is the ground electronic 
o 0 

state and r > 6 A. Thus for r > 6 A there is the possibility of 

electronic transitions other than at an outer turning point, but we 

have ignored them in our calculations. While it would certainly 

have been possible to include them in the surface-hopping 

description, the results are essentially unchanged by their neglect. 

This is because electronic transitions are already very facile 
o 

for r > 6 A, generating a Boltzmann-like distribution over the 

electronic states (see next section), so that including even more 

electronic transitions in this region of r would not change the 

situation. 



Results and Discussion. 

The stochastic trajectories are begun at I-I internuclear 

+ 
distance r

O
' in electronic state i, with the momentum p selected at 

random from a Boltzmann distribution. We have used two different 

° 
initial distances rO = 5.5 A and 6.67 A, to assess this effect on 

the results, and in addition to T = 300 0 K have also carried out the 

calculations for T = 500° and 700°. There is only on a small 

-
effect (a few %) on the results of choosing different initial 

electronic states. 

Similar to Hynes ~ a1., we choose inner and outer cut-off points 

for the trajectory to determine when the iodine atoms have either 

recombined or permanently separated respectively; these values are 

° ° 4 A and 12 A, respectively. Recombination is said to have occurred, 

° 
therefore, if ret) reaches the value 4 A and the electronic state is 

the ground state; at this point the iodine atoms are drawn essentially 

monotonically inward, and the electronic energy gap to other states 

is sufficiently large that no further transitions occur. Trajectories 

are followed until ret) reaches one of these cut-off points, up to a 

total time of 150 psec; 99% of the trajectories have reached one of 

the cut-offs by this time timit. Specifics of the numerical 

integration procedure are discussed by Turq, Lante1me, and Friedman.
84 

Before discussing the major resu1ts,it is useful to note that 

within the present model there is a qualitative correspondence between 

the collision frequency of 12 in the liquid and the number of outer 

turning points that the relative I~I motion experiences (which is 

also the number of opportunities the I-I system has to make an 

electronic transition). Thus the collision frequency can be estimated 

54 



z ~ Z g(r) 
g 

where Z is the gas phase collision frequency and g(r) the radical 
g 

distribution function at contact. Typical values give a collision 
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frequency that varies from ~ 20 to 30 collisions per picosecond as T 

varies from 300 0 K to 700 o K, while the average number of outer classical 

turning points in our stochastic trajectory surface-hopping 

calculations varies from ~ 20 to 25 over this temperature range. 

Figure 16 shows the principal results of the paper, the 

probability pet) that the iodine atoms have not recombined by time t. 

All three curves result from a Langevin stochastic trajectory calcula~ 

tion, the one labeled G being the result of Hynes, ~ al., that used 

the ground state I-I potential curve, that labeled T the result of 

using the thermally average potential curve, Eq. (39}, and that 

labeled S the result of allowing VCr) to change to the various 

potentials {V.(r)} according to the semiclassical surface-hopping 
1 

model. The first qualitative obsevvation is that both curves T and 

S, which include the effects of electronically excited states, give 

less recombination, and this is easy to understand: recombination 

can only take place on the ground state potential, so any transitions 

out of the ground electronic state will lead to less recombination, 

i.e., more dissociation. 

One sees, however, that the surface-hopping model (curve S) 

produces a larger correction to the ground state results (curve G) 

than does use of the thermally averaged potential (curve T); i.e., 

the surface-hopping model yields even less recombination than does 
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the thermally averaged potential. This also has a simple explanation: 

at relatively large values of r, where the potential curves are 

close together, electronic transitions between the states are facile 

and do essentially produce a relative Boltzmann distribution among 

the states, but when r decreases the separation of the ground state 

potential from the others makes transitions into or out of the 

ground electronic state improbable; thus the approximate Boltzmann 

distribution over electronic states at large r is "frozen in" as r 

decreases, and this means that the surface hopping model produces 

less population in the ground electronic state at small r than that 

given by assuming a Boltzmann distribution at small r. With less 

population in the ground state at small r, the surface hopping 

model thus gives less recombination than the thermally averaged 

potential model. 

To see more clearly that this interpretation is correct, we show 

in Figure 17 the average relative population of the different electronic 

states that results from the surface-hopping calculation (points 

connected by solid line), compared to a Boltzmann distribution 
o 

(broken line). Figure l7a is for a region of large r (7~8 A), and 

one sees that here the surface-hopping model does indeed produce an 

essentially Boltzmann distribution over the electronic states; for 
o 

small r (4-5 A), however, Figure l7b shows that the surface-hopping 

model produces much less population in the ground electronic state 

(state #1) than that given by the Boltzmann distribution at small r. 

This lack of complete electronic relaxation during the relative I-I 

motion thus appears to be an important feature in the dynamics of 

recombination. 

~. 

, 
1 



. 
• 

The results shown in Figure 16 are for initial separation rO = 
o 

5.5 A and temperature T = 300 o K. Changing either of these does not 

change the qualitative natures of these curves nor their positions 

relative to each other, so that the above discussion concerning the 

effect of electronic transitions is unchanged. The asymptotic 

value of pet), ie .. , P(oo), the dissociation probability, does of 

course depend on rO and T. The temperature dependence of P(oo) is 

shown in Figure 18, and one sees that it is qualitatively the same 

for the three different cases. 

The dependence of P(oo) on rO is quite sensitive: increasing 
o 0 

rO from 5.5 A to 6.67 A increases p(oo) by about a factor of 2. This 

is understandable--i.e., starting the trajectories at larger r leads 

to larger dissociation probability--but it suggests that if the over-

all model is to be self~contained, one needs to extend it so that the 

appropriate initial value of r is determined by the dynamics itself 

and is not an ad hoc parameter. This limitation is resolved in the 

next section where we use a generalized Langevin eq~ation to determine 

the heavy-article motion. 

Finally, although comparison of the results of these model 

calculations with experimental recombination rates is clearly tenuous, 

it is nevertheless interesting. Hynes, ~ al., estimate a rate 

constant of ~ 4 x 1013 cm3/mole-sec from their calculations using 

74 86 only the ground state I-I potential curve, ' compared to the 
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experimental value of ~ 1-2 x 1013 cm3/mole-sec of Troe and co-workers.
87 

Hynes, et al., attribute this difference to curve~crossing effects 

in the 12 electronic levels. If we crudely relate the rate to the 

time it takes pet) to fall tc half its asymptotic value, then Figure 



2 indicates that the ra~e given by our surface-hopping model 

(curve S) would be ~ 4-5 times slower than that of Hynes, et al. 

(curve G) and thus roughly the same rate as the experimental value. 

This is interesting and encouraging, but one should of course not 

make too much of the actual numerical values. 

While there are undoubtedly many limitations of the present 

model for describing recombination dynamics in liquids, we believe 

it is realistic enough that the qualitative results of our calcula

tions are meaningful. The most significant of these are that 

electronically inelastic transitions substantially reduce the rate 

(and final probability) of recombination and that the character of 

the electronic dynamics changes during the recombination process. 

Thus at large r electronic transitions are strong and produce a 

Boltzmann-like distribution over the various electronic states, but 

as r decreases electronic relaxation ceases to be complete. There 

is thus an interesting interplay between the electronically inelastic 

dynamics and the relative motion of the iodine atoms in interaction 

with the solvent. 
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VIII. The Generalized Langevin Model. 

We saw in the last section that while the surface hopping 

Langevin model gave reasonable results, we needed to make several 

ad hoc assumptions such as the initial 12 relative coordinate and 

a thermalized velocity distribution. This situation does not 

correspond to the initial experimental conditions. 

. 61-63 
Exper1mentally, 12 is excited 

- 1 + state from the ground state X( [ ) with 
g 

o 

a laser tuned to 5300 A (see 

figure 19). The relative oscillator strength for these two trans i-

tions is 5.18:1.00. 89 
The molecules populating the B state undergo 

collisional predissociation to the lU state with a rate constant 

- -1 61 of K = 0.1 psec . 
o 

The iodine atoms then separate 5-10 A where 

h 11 . d . h h 1 90 I . h' ff t ey co 1 e W1t t e so vent cage. . t 1S t 1S cage e ect 

90 (known as the Frank-Rabinowitch cage phenomenon ) which prevents 

the 12 molecule from completely predissociating as in the gas phase. 

In the previous section, we began our trajectories with the assumption 

that the above events, comprising the first few picoseconds, had 

occur-red. A serious limitation to the Langevin equation is that 

it does not model the Frank-Rabinowitch cage phenomenon, and therefore 

cannot describe this initial phase of the recombination. 

In addition to the inability to describe the cage effect, the 

Langevin model does not adequately take into account the solvent 

in which the recombination occurs (except in the very crude manner 

of a diffusion coefficient). Iodine recombination has been studied 

. 61-65 73 101 
in a var1ety of solvents, , most recently by van den Bergh. 

The variation in the recombination rates observed in these studies 

cannot be explained by a difference in the diffusion coefficient 



alone. This clearly shows that the recombination process is 

substantially influenced by more than just the bulk properties of 

the solvent. 

A final limitation of the Langevin model as we use it is its 

independent treatment of each iodine atom as discussed in the last 

section. At large separation this approximation is adequate, but 

clearly fails when the iodine atoms are close, such as the initial 

phase of the recombination process. 

The limitations of the Langevin model are overcome by the 

Molecular Timescale Generalized Langevin Equation (hereafter called 

1 
91-100 

MTGLE) approach developed by Adelman, ~ ~ The MTGLE approach 

starts with the formally exact Generalized Langevin equationl02 and 

develops a hierarchy of dynamical equations which are mathematically 

equivalent to a set of coupled harmonic oscillators. These 

equations have been shown to properly reproduce the cage effect in 

liquids
98 

and vibrational relaxation of a molecule in a liquid. 99 

The parameters used in the t1TGLE model depend on molecular solvent 

. 97 98 
propertles ' in addition to bulk properties of the liquid, and 

properly take into account the non~independence of the solute atoms. 

While this approach has limitations, to be discussed below, it 

properly describes the effects which are of relevance to the initial 

moments of the recombination process. We next proceed to give a 

brief overview of the MTGLE approach. 
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MTGLE: A Brief Overview. 

Ad 1 h · . of 90~100. dd· i e man as wrltten a serles papers ln a lt on to two 

. 107 108 
reVlews ' of the MTGLE approach to liquids. I wish only to 

very briefly outline the aspects of the theory which are of relevance 

to this dissertation. The interested reader is referred to the 

above two reviews which are well written. He begin with the Langevin 

equation of the last section: 

where £ = (£o,E
l

) are the coordinates of the two iodine atoms, ~ 

the diagonal friction matrix, !(t) and I(t) the random and inter~ 

(33) 

atomic force, respectively. Equation (33) is a more specific form 

f h G 1 · d L . E . 103 o t e enera lze angevln quatl0n 

where 

t 

m;(t) = !(t) -1 ~(t ... ~).;(~)dt,; 
o 

+ ~(t) 

co 

~ = §(t)dt 

The integral in equation (42) depends on the past history of the 

107 
trajectory and is called the memory kernel. Equation (42) can 

80 
be shown to be equal to the full many.,.body Hamiltonian for the 

complete solvent-solute system and is, therefore. exact. While 

(42) 
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equation (42) looks simple, it is deceptive. To determine ~(t) 

requires the full solution of the many-body problem and is, thus, 

no simpler to solve. If we approximate 

then we obtain equation (33). Note ~(t) is not diagonal due to the 

correlation 'of the motion of the two iodine atoms. 

107 
Adelman has shown equation (42) can be written as a hierarchy 

of equations 

mEet) 

mr (t) 
-p 

f(t) 
2 2 

~e· ret) + ~e· E.l(t). 
o 1 

t 

-I 
o 

+ 4+1 (t) (43) 

Equation (43) needs several comments. Note first the integral term 

in equation (42) has been expanded into a hierarchy of frequency 

terms.(~l' ~2' ... , ~n) are fictitious coordinates which act like 

coupled harmonic oscillators. Adelman has shown these coordinates 
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, . 

correspond to solvent shell structure around the solute for the case 

f h . If' (2 22 ) o a armon1C so vent. The requenc1es ~e' ~e' ~e ,... are the 
o 2 

Einstein frequencies of vibration of the different shells while 

(~~ , ~~ , ~~ , ... ) are the coupling parameters between adjacent 
I 2 3 2 

shells. In particular, w is the Einstein frequency for the solute 
=eO 2 

atoms in the first shell, while w describes the coupling of first 
=c

I 
shell to the solute, i.e., energy transfer rate between the solvent 

- 2 
and solute. Finally, ~ is the adiabatic frequency with which the 

=p 

pth shell would vibrate while S (t) describes the frictional coupling 
=p 

of the last shell to the remaining heat bath. 

While formally equation (43) is no easier to solve than equation 

(42) since we must still evaluate S (t), we can approximate S (t) 
=p =p 

by 

§ (t) - S oCt) 
-p -p 

The advantage of equation (43) with the above approximation over 

equation (33) is the MTGLE equations include the shell structure of 

the solvent. One can include as many shells as necessary and only 

have the last shell in contact with a heat reservoir (thru the 

terms § and ~(t»). Adelman has shown the frequencies w __ 
e
2 

, 
-p 0 

~ , as well as S can be calculated from molecular dynamics 
=p =p 

97,98 
calculation of the solvent. 

2 
~e ' 

I 

An additional modification need be made to equation (43). First 

note the parameters in equation (43) are not dependent on solute 

configuration. Indeed, all the matrices in equation (43) are scalars 

for a single solute atom. For more than one solute atom, the 

matrices in equation (43) are non-diagonal and solute configuration~ 

63 



dependent. For 1
2

, all the matrices become R~dependent (1-1 

coordinate). While there is no exact way to determine the R-

2 2 
dependence of w (R), w (R), etc., Adelman has shown that one 

=e
O 

=c
l 

can obtain a good approximation to these quantities with the use of 

h 
104,105 

linear response t eory. 
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92 94 
The MTGLE formalism has been tested on several simple systems ' 

where analytic results have been available. In all these cases, 

-
MTGLE has done well though these have only been one atom solute 

systems. For two atom solute systems comparison to analytic results 

is not possible, however, the frequencies determined as a function 

97,98 
of R for several solvents show proper qualitative behavior. 

Adelman has also applied the MTGLE model to 12 recombination in 

CC2
4 

as a solvent.
99 ,100 While the treatment of the electronic 

surfaces in that study is very crude, many important features, such 

as the cage effect and vibrational relaxation of 1
2

, agree qualitatively 

. h h 1 b' d' . 61 d f h . 1 W1t t e resu ts 0 ta1ne 1n exper1ment an 0 ten t eoret1ca 

106 
treatment. 

In summary, we hope to have shown the reader how the MTGLE model 

differs from the Langevin model and that it does overcome the short-

comings of the Langevin model discussed in the beginning of this 

section. While it is clear that, computationally, equation (43) 

is much more difficult to imp~ement than equation (33) (not to 

mention the additional work needed to evaluate the frequency parameters 

for each solvent), it should be equally clear that equatiorl (43) 

contains many crucial dynamical effects which are absent in equation 

(33) . 



Electronic Surfaces and Electronic Transitions. 

We next describe the electronic surfaces used and the model 

we used for the electronic transitions. In the previous section, 
o 

we said recombination occured when the I-I separation < 4 A. 

Because of this condition, we were able to model the electronic 

surfaces using only quadrupole-quadrupole interaction. While we 

may still use the same potential functions for large r, we must also 
o 

characterize these surfaces for small r '(i.e., r ~ 2-3 A). 

In addition to the previous 10 electronic surfaces, we must 

also include the B state in our present calculation. We also have 

3 
two of previous ten states, A( TIl~) and 1(3 ') b . 11 A TI2~' are su stantla y 

-1 
bound, i.e., well depth> 1000 cm 

65 109 
(Several workers' have 

studied 12 recombination by exciting 12 to the A state instead of 

the B state). The radiative lifetime of A and AI state to the ground 

state is 250 ~s and 6.3 ms, respectively.110 We therefore expect, 

that on a picosecond timescale, some 12 molecules recombine on the 

A and AI states only to radiatively decay to the ground state much 

later. This is, in fact, what has been observed for 12 recombination 

110 
in solid matrices by Flynn. We thus have a total of four bound 

65 

states, X, AI, A, and B states. All these states are well~characterized 

and have been fitted to Morse potentials. The paramters are given 

. T bl II h 1 U (1 ) h b d 'd b TIl' h' 114 ln a e . T e TI state as een etermlne y e lng Ulsen 

to be of the form 

VCr) 

with 

9 C:/r 



4 
C = 7.339'10 a.~. 

3 3- 3 3+ 3 
The additional 6 states, rrO~' L (0+)' ~3~' L~(O-)' rr 2g , 

3rr are all repulsive,77 and have not been determined for small r. 
19 

The only available information for these states is the estimated 

vertical energy determined by Mulliken.
77 

We therefore arbitrarily 

fit these curves to the functional form: 

VCr) = C/r
9 

(44) 

determining C such that we reproduce the vertical energy. These 

parameters are listed in Table III. Though our characterization of 

these states for small r is quite arbitrary, they will not effect our 

results, as will be seen below. 

Having characterized all the states for small r,we now join 

them to the quadrupole-quadrupole term to form the complete potential 

functions 

r < X VCr) V «r) m 

X -r r-X 
VCr) Q m 

V
Q 

(r) X < r .$ XQ [X -X ]V«r) + [X -X ] m 
Q m Q m 

r > X 
Q 

VCr) VQ(r) 

where 
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o 

= 5 A 

o 

x = 4 A 
m 

9 
V«r) is either the Horse curve for the bound state or the C/r curve 

for the repulsive states. This form of the potential guarantees us 

that for large r, we have the correct quadrupole-quadrupole inter-

action while for small r we have the proper bound and repulsive 

curves. Note VCr) is defined such that it is continuous. 

Figure 19 shows all the curves discussed. Figure 20 shows the 
o 

curves for r > 4 A. Note the difference between this figure and 

figure 15, the potential curves used in the previous section. In 

figure ·20, we see two Van der Waals 3 
type wells for the ITO-~ and 

3 
TI lg states. 

o 

These two states do have Van der Waals- between 4-5 A 

as discussed by Mulliken,77 though our wells are merely an artifact 

of the potential form we have used. Figure 20 also shows many curve 

crossings. While the location of the curve crossings are clearly 

incorrect, the qualitative aspect of many crossings is probably 

correct in this region. What is important, from our point of view, 

is the curves pass very close to each other, as will be seen below. 

We, therefore, feel figure 20 represents the potential surfaces 

qualitatively accurately for the purposes at hand. 

We now turn to the electronic transitions. As in the previous 

section, we allow electronic transitions according to the Miller-

George theory, equation (34). Since our potential functions take on 

a more complicated form than previously, the minimum of 6V(t) no 

longer occurs solely at outer turning points. We, therefore, monitor 
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all the surfaces during the trajectories and allow transitions to 

occur whenever a minimum is detected in ~V(t). Whenever this 

involves only one other surface, we may use the calculated probability 

of equation (34) without any need for renormalization. In situations 

where two potential curves actually cross, the Miller-George theory 

predicts a transition probability of unity. While non-adiabatic 

coupling due to collisions probably prevents an actual crossing of 

curves, we would still expect the probability of transition to 

be large due to ~V « 1 concurrent with a large coupling. We will, 

therefore, follow the Miller-George theory and allow a definite 

transition at these crossing points. Since there are only 6 crossing 
o 0 

points due to the additional structure between 4 A and 5 A and many 

other transitions occur due to minima in ~V(t), these transitions 

actually make up a small percentage of the total allowed. 

The last electronic transition we need discuss is the B ~ lU 

transition involved in the collisional predissociation. Unlike the 

above situation the crossing of the lU (and the other repulsive 

states) and B state are the only possible transitions out of the B 

b f 1 S d ' b TIl' h' 115 Ch " 116 state so we must e care u. tu ~es y e ~ng u~sen, utJ~an, 

117 
and Lehmann, ~ al. have shown in the gas-phase the only symmetry-

allowed transition from the B state is to the lU and A states of which 

only the B ~ lU transition has a relatively shbrt lifetime of ~ 1 

~sec. Unfortunately, since we are in the liquid phase, collisions 

not only break the symmetry restrictions allowing transitions to any 

of the electronic states near the B state, but also increase the 

-1 61 
predissociation rate constant to ~ 0.1 psec Since it is 

important we reproduce the predissociation rate correctly, we 



treat this transition phenomenologically--we allow for a fixed 

probability of transition to the lU state only from the B state at 

the crossing point such that the proper rate constant is produced. 

102 
This is basically equivalent to the method used by Adelman for 

the predissociation step. While we could allow for some of the 

trajectories to dissociate to the other repulsive curves, this was 

deemed unnecessary since all the curves mix among each other at 
o 

r > 4 A and-would make little difference to the subsequent dynamics. 

This phenomenological approach to the predissociation transition does 

not effect our main question which is what effect electronic 

transitions occurring at large r have on the recombination process. 

We have chosen to look at 12 recombination in cct4 . This 

solvent choice was motivated by several reasons. First, Adelman 

has already calculated the relevant frequencies for this system 

and calculated the 12 recombination with a crude electronic transi

tion model. In the model used by Adelman, electronic transition 

from the B to lU state is similar to ours, but for the lU ~ X state, 

he uses a procedure similar to the predissociation transition. 

(He does not consider any other states). We on the other hand, have 
o 

transitions among 10 electronic states in the region of r > 4 A, 

and, so, can compare oure results to his to assess the effect of 

these transitions. Secondly, data for 12 recombination in cct4 is 

available so we may make some comparison to experiment. 

. 102 
Followlng Adelman, we consider recombination to occur if I2 

is on the ground state and its vibrational quantum number is less 
o 

than 94. We start the trajectories at r = 2.717 A, the inner turning 

point of the B state. We started 83% of the trajectories on the B 
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state, 17% on the lU state to simulate the 5.18:1.00 oscillator 

strength. Velocities for the iodine atoms where selected from 

a thermalized distribution subject to the constraint that the 

relative velocity was zero. The initial conditions for the MTGLE 

d 1 h d ' Ad 1 I ,,101 D mo e were c osen accor ~ng to e man s prescr~pt~on. ue to 

the complex nature of equation (43), we were only able to run 60 

trajectories for 20 psec of real time due to CPU limitations. 

Results and Discussion 

Figure 21 presents a bar graph of the I-I separation for 

trajectories that have already predissociated for one, two, and 

three picoseconds. We see in each of these graphs, the internuclear 
o 

distance quickly becomes spread over a region of ~ 4 A. This 

supports our earlier suspicion that the initial value of r chosen 

for the Langevin model in the last section should be selected from 

a range of values instead of just one. 

We have also found after 20 psec, approximately 12% of the 

trajectories are bound in the A and AI states. This result is in 

agreement with recent studies done by Beeker, ~ al.
110 

who found 

the A and AI states were populated in rare gas matrices. They 

suggest we should see a similar effect for large solvent molecules, 

as we do. Because trajectorie& are allowed to the A and AI states, 

less trajectories become available for recombination and reduce the 

recombination rate on a picosecond timescale. (These 12 molecules 

will eventually radiate down to the ground state as discussed 

above. ) 

The main result of this calculation is figure 22, the 

recombination rate as a function of time. We see that by 20 psec, 

70 



~ 20% of the 12 atoms have recombined. This is to be compared to the 

results obtained by Adelman also presented in figure 22. The 

difference in our results is similar to the difference we observed 

in the previous section between our results and those of Hynes, 

et al. The additional electronic surfaces "soften" the attractive 

ground state potential. In addition, we also have the recombination 

rate slowed down an additional 10% by the trajectories that become 

bound on the A and AI state and are no longer available to make 

transitions to the ground state. 

61 
It is interesting to note Eisenthal, ~ al. measured a rate 

of ~ 20% recombination in the first 20 psec. While this is in 

excellent comparison with our results, such close agreement is 

probably fortuitous though clearly this isboth encouraging and 

pleasing. 
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IX. Iodine Recombination: Conclusion. 

We have shown by using a semiclassical theory of electronic 

transition coupled with the Langevin model, we could correctly 

describe the influence of electronic surfaces on secondary 

recombination dynamics. We have also shown by coupling this 

same semiclassical theory with a Generalized Langevin model, we 

could describe the full iodine recombination process. In both 

cases the electronic surfaces were shown to slow down the 

recombination rate. These results show not only is it possible 

to describe electronic degrees of freedom within a classical 

framework, but one obtains meaningful results which are in 

qualitative agreement with experiment. 
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Table I. Potential Parameters
a 

Electronic State C b Degeneracy 
-J;--

1L:+ 0.00 1 
g 

3n 2 -28.99 2 

3
n 

19 
-16.58 2 

3n 
1~ 

- 8.35 2 

3 
nO-~ - 8.35 1 

3
n 

2 
4.17 2 

In 12.4'1 2 
~ 

36 3 12.41 2 

3 -L: 24.82 1 
g 

3L:+ 33.16 1 
~ 

a 
See Eq. ( 41 ) . 

bU . 
n~ts are 5 hartree'bohr . 



Table II. 
a 

Morse Parameters for Bound States 

D 
e 

B 

r 
e 

8.116.10-3 

1.125 

. 
5.593 

aA11 values in 

b See reference 

cSee reference 

d See reference 

C 

AI 

0.9498 

5.55 

atomic units. 

Ill. 

112. 

113. 

2.00047'10- 2 

0.9699 

5.7284 
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Table III. Potential Parameters
a 

State EVEb CC 

. 3 6.1.104 " rrO-).l 2.4 

3 -
Lg(O+) 3.9 1.8'105 

3[:. 
3"11 

4.7 2.4'105 

3 + 
L"I1(O-) 4.5 2.4'105 

3rr 2g 3.2 1.3'105 

3rr 
19 

3.4 1.4'105 

aSee equation (44). 

bEstimated vertical energy in eV's. 

Cln atomic units. 
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. Figure Captions 

1. Diabatic curves of equation (9) for a = 2.0. Energy is plotted 

in atomic units (a. ~.) and distance is plotted in angstroms. 

Insert shows plot of diabatic coupling element. 

2. 
2 

IS
12

(E) I vs. energy (eV) plot for a = 2.0. Solid line is the 

coupled-channel quantum results, circles are the classical 

analog model results. Error bars are ± 10%. 

3. Same as Figure 2 with a 1.0. 

4. Same as Figure 2 with a = 0.4. 

5. Histogram boxing for electronic-vibrational energy transfer 

for collinear H2Br. 

6. Transition probability as a function of spin-orbit splitting 

).. for initial translational energy ~ = 0.01 a.u. and V=l, 

n=O. Solid curve is exact quantum results (reference 44), 

dashed curve the result given by the classical model with the 

histogram approximation, and the dotted curve the results of 

the classical model with the moment method. 

7. Same as figure 6 with En = 0.035 a.u. 

8. Transition probability as a function of spin-orbit splitting 

)..(a. ~.) for initial translational energy ~ = 0.01 a.~. and 

v=O, n=l, as calculated by the moment method. Solid line is 

non-resonant probability (v=O,n=l+v=O,n=O), dotted line is 

resonant probability (v=O,n=l+v=l,n=O). 

9. Same as figure 8 with Eh = 0.001 a.u. (thermal energy range). 

10. Transition probability vs. energy (a.u.) for physical value 

of A as calculated by the moment method. Solid line is the 
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non-resonant probability, dotted line is the resonant probability. 

11. Conventional histogram boxes and skewed histogram boxes for 

FH2 calculations. See text for further details. 

12. Geometrical averaged cross-section (~2) vs. energy (meV) plot 

for FH2 resonant reaction channel (j = i, N=O ~ j = t, N=2). 

Solid curve is quantum results (reference 52), circles are SMM 

results (reference 24), crosses are the Ehrenfest model results. 

13. Plot of opacity function vs. impact parameter b(a.1-!.) for E
tot 

= 

60 meV for FH2 reaction. Solid curve: quantum results,. dashed 

curve: Ehrenfest results, dot.t.ed curve: SMM results. 

14. °2 
Cross section (A ) vs. energy (eV) for BrH

2 
reaction calculated 

using the Ehrenfest model. Crosses are the resonant channel 

re.sults, circles are the non-resonant channel results. 

15. Potential curves for the ten electronic states arising from two 

2 
ground state ( P

3
/

2
) iodine atoms. 

16. Probability that at time t the two iodine atoms have not 

recombined; T = 300
ok

, r 
o 

o 

= 5.5 A. All results are from the 

stochastic trajectory model; curve G (the results of reference 

74) utilizes the ground state I2 potential curve for VCr) in 

Eq. (33), curve T utilizes the thermally averaged potential 

of Eq. (39) for VCr), and curve S uses the semiclassical 

surface-hopping model to allow VCr) to change as the electronic 

state of the system changes. 

17. Average relative population of the 10 electronic states (state 

1 is the ground state) as obtained in the stochastic surface-

hopping trajectory calculation (points connected by solid 

lines) and as given by a Boltzmann distribution (broken curve). 
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o 

(A) is for a region of large r (7~8 A), and (B) for a region of 
o 

smaller r (4-5 A). 

18. Dissociation probability, Pea:: P(t~), with pet) as shown in 

Figure 16 for 300 o K. The labels G, T, and S have the same 

meaning as in Figure 16. 

19. 12 potential curves as determined by equations in the text. 

VCR) is in eV, R is in angstroms. 
o 

20. 12 potentials curves for r > 4 A and energy scale enlarged. 

VCR) is in eV, R is in angstroms. 

21. Bar graph of I-I internuclear separation of molecules which have 

already predissociated: a) after one picosecond, b) after two 

picosecond, c) after three picosecond. 

22. Probability of recombination for first twenty picoseconds; 

solid line, our results; dashed line, results from reference 

102. 
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