
. , ,
~ [t,

-, i .
, '~ I

~.
,

, ,...::~
t

LBL-17313

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNL~E:L~w~E~~/:D

BERKE v

IY).L\!~ (~U 1984

LIBRARY AND
DOCUMENTS SECTION

KINETIC ANALYSIS OF DYNAMIC PET DATA

B. Knittel
(M.S. Thesis)

--------- ------~-

TWO-WEEK LOAN COpy

"

i
I

December 1983
This is a Library Circulating Copy I'
which may be borrowed fo; two weeks. I
For a personal retention copy, call , l Tech. Info. Division, Ext. 6782. J

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

C'. a...

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Kinetic Analysis of Dynamic PET Data

Brian Knittel
Master's Report

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

230 Donner Laboratory
Lawrence Berkeley Laboratory

Berkeley, CA 94720

. ..

.. '.

Table of Contents

1. Introduction ... 1

2. Background 1

2.1. Compartmental Models ,................................... 1

2.2. Parameter Estimation ... 2

2.3. Paramete·r Covariance

3. The Minimization Method .. .

3.1. Gauss-Newton Method

3.2. Steepest Descent Method .. .

4

6

7

7

3.3. Marquardt Interpolation .. 7

3.4. Algorithm Outline ... 8

4. Program Pit - Numerical Methods 9

4.1. Input Function Model... 9

4.2. Impulse Response Computation .. 9

4.3. Convolution Method ... '" 11

4.4. Residue Function.. 11

4.5. Partial Derivatives ... 13

4.6. Covariance Matrix .. 13

5. Implementation ... :...................... 14

5.·1. Software Tools ... , ,.................... 14

5.2. Source of the Data ... 14

5.3. Program Design .. 15

6. Simulations 18

6.1. Simulation Program 18

6.2. Two-Compartment Model ... 18

6.3. Three-Compartment Model .. 19

7. Applications to Experimental Data :....................... 27

7.1. 0-15 Water ... 27

7.2. Fluorodeoxyglucose ... ~......................... 27

8. Summary................. 31

References 32

Appendix A. Pit Source Listing

Appendix B. Format of ROI and Blood Data Files

Appendix C. Software Tools Library

33

85

88

Appendix D. Documentation .. 90

i

......

...

Kinetic Analysis of Dynamic PET Data

Brian Knittel
Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley
and Lawrence Berkeley Laboratory

1. Introduction
Our goal is to quantify regional physiological processes such as blood flow

and metabolism by means of tracer kinetic modeling and positron emission
tomography (PET). Compartmental models are one way of characterizing the
behavior of tracers in physiological systems. This paper describes a general
method of estimating compartmental model rate constants from measurements
of the concentration of tracers in blood and tissue, taken at multiple time inter
vals. A computer program which applies the method is described, and examples
are shown for simulated and actual data acquired from the Donner 2BO-Crystal
Positron Tomograph.

2. Background

2.1. Compartmental Models
Compartmental models can account for the exchange of tracer between

physiological spaces such as blood and tissue, and between chemical states such
a metabolic substrate and its products.

For example, Figure 1 shows a model which might be used to represent the
exchange of a tracer between capillary blood and cells in an organ, where b (t) is
the concentration of tracer in the blood and q (t) the concentration of tracer in
the cells. The rate constants of exchange k 1 and k2 are the parameters which
describe the behavior of the tracer in the differential equation

:;(t) = kib(t) -k2q(t). (2.1)

The figure shows the concentration of tracer measured in the blood and in tis
sue after an ideal rapid bolus injection. The blood concentration b (t) is called
the input function. The cell concentration function resulting from an impulse
injection of a unit amount of tracer is called the impulse response, and is
denoted h (t). For the model in Figure 1,

(2.2)

The tissue measurement w (t) is called the residue function, and includes con
tributions from both the cell concentration q (t), and blood in the vasculature.

The shape of the input function in actual experiments depends on the dura
tion of the injection, the blood flow to the organ, and the behavior of the tracer
in the rest of the body. The response of the model to an arbitrary input function
is given by the convolution integral

q (t) = J h (j) b (t -7") d 7" = J b (7") h (t -7") d 7" (2.3)

and is denoted q(t) = b®h(t). h(t) = 0 for t < 0 and we assume that bet) = 0 for
t < 0, so

Blood Cell

~
kl

1 b(t) q(t)

k2

"- Blood A Tissue)
y y

b(t) w(t)

Time - t t

Figure 1. Two Compartment Model and Impulse Response.

t

q (t) = f h (1') b (t -1') d l' (2.4)
o

The tissue tracer concentration w (t) must account for the tissue volume
occupied by blood in the vasculature. If the fractional volume of blood in a
region of tissue is I v' then the residue function is

w(t) = Iv b(t) + (l-Iv)q(t)

= I v b (t) + (1 - I v) b®h (t)
(2.5)

This is the basic equation for all the models discussed here.

In tomographic experiments, the two measurable quantities are b (t) and
w (t); it is not possible to independently measure the compartments contribut
ing to w. The impulse response required for the computation of w (t) is that of
the combination of all nonvascular compartments. The determination of h (t) for
arbitrary compartmental models is discussed in section 4.2.

The blood activity is sometimes measured at a location somewhat distant to
the site which we are modeling. We assume that the input function is shifted in
time only. That is, we assume that all blood leaving the heart at a given moment
has the same concentration of tracer, but the time it takes to reach different
parts of the body varies. To determine the residue function from such a shifted
input function we need only shift the time of evaluation of the model function by
the same amount.

2.2. Parameter Estimation
After injecting a tracer, we collect measurements of the input function and

residue function which include errors due to the statistics of radioactive decay
and artifacts due to PET reconstruction. After selecting a physiologically
appropriate compartmental model, we wish to determine what values of the
model's parameters gave rise to the measurements. We will use the following
symbols for the quantities under discussion:

2

-.

,
-"

Notation:
R
E
Ei
B
Bij or [B]ij
E'l'
BT

italic letter: scalar function or variable
bold letter: column vector function or variable
i'th element of vector E
capital roman letter: matrix
element in i'th row, j'th column of matrix B.
row vector: transpose of E
transpose of matrix B

Measurements:
Nb number of blood measurements
N1J) number of tissue measurements
Bi i'th blood measurement, i = 1, 2, ... , Nb
Wi i'th tissue measurement, i = 1, 2, ... , N1J)
T~ time of i'th blood measurement
Tw~ time of i'th tissue measurement

Parameters:
fJ

uncertainty in i'th tissue measurement

an arbitrary set of k model parameters (a vector of dimen
sion k). These could be rate constants, vascular partial
volumes, time shifts, etc.
the true values of fJ in the region of interest.
our estimate of fJ-
uncertainty in determined ~j

Model Functions:
b (t) input function
W (fJ,t) residue function
Wi (fJ) residue function evaluated at Tw~

We assume that there are only random errors in the measurements Wj' That is,
Wj = Wj(fJ-) + E:j' where E:j are random with zero mean. Since there are errors in
the measurements, we cannot determine the exact rate constants fJ- which gen
erated the observed residue function. We must find some method of estimating
P- from imprecise measurements. Estimation theory is a branch of mathemati
cal statistics which deals with problems of this nature. For an introduction to
estimation theory with an emphasis on the type of modeling problem discussed
here, the reader is referred to a text such as Bard [1].

We hope to find a criterion for selecting a Ii which is as close to fJ- as possi
ble. Since the measurements have random variations and would vary in repeti
tions of the same experiment, we expect that our parameter estimates would
vary as well. Two desirable constraints on this variability are that

(1) the average of I!.. in re~etitions of the experiment should be fJ-, that is, the
expectations E(/3 i) = {3i' and

(2) the average squared errors (~ariances) in the estimated parameters are as
small as possible, that is. E({3 i - {3i.)2 = apt are the smallest obtainable for
any estimator of {3':, for every possible value of {3.t

This is called the "uniform minimum variance unbiased" (UMVU) criterion.
Proof that an estimation method is UMVU can only be obtained in certain cases.
For example, when the function W is linear in fJ (that is,

" w(fJ, t) = ~(3i.gi.(t) (2.6)
i=l

where gi are arbitrary functions of t), and the errors E:j are independent an£
distributed normally with mean 0 and variance ali' then the parameters fJ
minimizing

3

(2.7)

are a UMVU estimate of {J. [2].
However, in PET kinetic modeling, the errors are not exactly normally dis

tributed, and the function w is not linear in its parameters. Still, the least
squares estimate is probably the best available estimate. If the model function
is "locally" linear, that is, w varies more or less linearly when its parameters
are varied small amounts (as we often consider the surface of the Earth to be
locally fiat), and ~the measurement errors are approximately normally distri
buted, then the {J minimizing R in Equation 2.7 at least approximately meets
the UMVU criterion.

We now need an algorithm to find the values of the rate constants which
minimize R. The algorithm is to produce this P and is also to estimate up.

2.3. Parameter Covariance
The variance aj(of an estimate Pi. is the expected squared deviation of the

estimat~ from its true value P/' This is the variance we would expect to meas
ure in Pi if the experiment were repeated many times. If our assumptions
about the normal 'distribution of the errors in the residue function are true,
t~ere is ~ :::::I66.percent (1 standard deviation) chance that Pi is in the range
Pi -ap(:0::; Pi :0::; Pi. +apc .

Up;. is estimated as the amount Pi must be varied from Pi to increase R({J)
from the minimum by one (Fig. 2). The more Pi. can be varied without much
changing R, the greater its variance. When there is more than one parameter,
we must consider the amount that Pi can be varied to increase R by one when
the other parameters are allowed to vary as well. Figure 3 is a contour map of R
as a function of P1 and P2' We see tha~ apl and ap2 are the distances which
inctease R frl?m the minimum Rrrtin = R({J). by one, under the most unfavorable
circumstances (P1 and P2 increased together). When changing parameters
together produces little net change in R, we say that the parameters are highly
correlated. The covariance matrix C describes this relationship between param
eters. Its elements are defined by

C';.j = E(Pi. - Pt)(Pj - Pj} . (2.8)

Note that the diagonal elements Cii = E(Pi - pt)2 are the variances ap;. 2. The
correla.tion coefficient defined by

-.J aj(aji
(2.9)

conveniently describes the covariance between parameters Pj and Pj. It takes
values between -1 and + 1. r is zero for uncorrelated parameters and increases
in magnitude toward 1 as correlation becomes greater.

The covariance matrix or the correlation matrix is important in the con
sideration of the significance of fit parameters, for they describe the reliability
of the determination of the rate constants. One needs covariances to accurately
estimate the uncertainty of functions (e.g. sums or ratios) of the determined
parameters.

When comparing competing models for the explanation of tracer kinetics,
one can consider Lhe sum of squared errors R({J); the model which produces the
lowest R is considered better. R can always be lowered by increasing the
number of compartments; with more parameters to adjust. the data can be
better fit. However, as the number of parameters is increased, so are the
parameter variances. When the number of parameters is increased beyond that
required to adequately represent the data. the correlation between the fit
parameters increases dramatically. The covariance matrix thus indicates the
information content of the parameters.

4

' ..

R . +1 rrun

R . rrun

R

"" (3.
1

Figure 2. Parameter Variance.

R .
-+-=--+-------i. rrun

R . +1 rrun

Figure 3. Parameter Variance with Correlation.

(3.
1

5

3. The Minimization Method

The minimum of R({J) is found at the zero gradient point

aR«(!)
a(3i, = cr. i = 1. k

or in vector form

VR(P) = 0 .

The gradient of R as defined in (2.7) is

or in matrix notation

aR N1J) Wi - Wj ((J) aw - = -2 ~ --=----:.....-
a(3i, i=l al a(3i,

R{{J) = [W -W{{J)]T 'ii-I [W -W({J)]

V R{{J) = -2 T({J)! 'ii-leW - W{{J)]

(3.1)

(3.2)

(3.3)

where W is the observation vector. 'ii is the covariance matrix for the observa
tions. w({J) is the vector of model values generated from the parameters (J. and
T{{J) is the gra9.ient of w:

r W 1{{J) 1
w2{{J)

w{{J) = : .
WN1J)({J)

r WI 1
W2

W=

WN.
1J)

all
Cov{ WI' W2)

'ii=

Cov{WI.WN.)
1J)

and

r aWl aWl

a(31 a(32

aW2 aW2 --
T{{J) = a(31 a(32

awN.
1J)

awN.
1J) --

a(31 a(32

Cov{ WI' W2) Cov{WI.WN.)1
1J)

ala Cov{ W2• WN.)
1J)

Cov{ W2• WN.) aJ.N, 1U
1J)

aWl 1
a(3"
aW2 --
a(3"

= Vpw{{J) .

awN.
1J) --

a(3"

When we ssume that the meas rements are uncorrelated. the Cov terms in 'ii
are zero.

If W ({J.t) is a linear function of (J. R is quadratic and has a unique solution.
easily obtained from (3.1). When w({J.t) is not linear in {J. the solution to (3.1)
may not be unique - there may be many extrema of R. Furthermore. it may be
difficult to solve (3.1) for p. Nonline~ar least squares methods usually proceed by
choosing {Jo. an initial estimate of {J. examining R at {Jo. and iteratively moving
{Jo toward the minimum.

6

~.

....... '

3.1. Gauss-Newton Method
We can make a linear approximation to w with the first order Taylor expan

sion
Ie Bw (Po,t)

w{P,t) :!! w{Po,t) + j~l{Pj-POj) BPj (3.4)

or in matrix notation

(3.5)

if J!. is c~ose to Po. If we use this approximation in (3.3) and assume that
T{P) :!! T{P 0) then the minimum is found at

T{Po)T 'lr-1 (W - w{po) - T{Po)T (P - Po») = 0 . (3.6)

Defining A = T{Po)T'lr-1T{Ii) and G = T{Po)T'lr-l{W - w{Po», we can solve (3.6) for Ii:
G - A{P - PO) = 0

A (Ii - Po) = G

(3.7)

where 6t = A -lG is the Taylor series correction vector (iteration step).

When the measurements are uncorrelated, 'lr is diagonal, and the elements
of the matrix A and vector E are

N'U) Bw· Bw· 1
A =~ -'---'-

mn j=l BPm BPn Gj
N'U) Bw· w.. - w'{Po)

E,.",=.~ -'-' ,
, =1 BPm Gj

(3.8)

In the Gauss-Newton minimization method, one iter~tively solves (3.7) for steps
6 t . The magnitude of 6t must be reduced if it takes P to a higher value of R than
R(Po).

3.2. Steepest Descent Method
The gradient of R at an estimate Po is given by

V R(P) = -2 T(Po)T \{I-I (W - W{Po») == -2G (3.9)

Iterative steps 6g proportional to V R always lead to a lower value of R for a
sufficiently small proportion of 6g , but are slow to converge near the minimum.
Near the minimum, where R is relatively fiat, gradient steps tend to zig-zag
across the true direction of the minimum (as streams will meander across a
meadow). For this reason, strict steepest descent methods are seldom used in
practice.

3.3. Marquardt Interpolation
The Marquardt Algorithm [3] interpolates between the Taylor and gradient

steps 6 t and 6g with a step computed by

6 = (A + IX)-l G (3.10)

As X ... 0, 6 ... A -IG, the Taylor step, and as X ... 00, 6 ... GI X , the steepest descent
step. The algorithm attempts to use as small a value of X as possible. If the step
6 would increase R, and 6 is not near the gradient 6g , say more than 37° apart,
the step is recomputed with a larger X. X is typically increased or decreased by
a factor v = 10, changing X

When 6 increases R but 6 and 6g are close together, changing X won't help
as much as reducing the magnitude of 6, so the step is divided by two until R is
no longer increased.

The numerical aspects of the algorithm are improved if the matrix A has
one on the diagonal. To achieve this, the computation of 6 is performed with

7

scaled variables A· and G·. The true step 6 is computed by reversing the scaling
on 0·.

3.4. Algorithm. Outline

1. Initialize:
P '""" Po. I\. '""" . 1 .

2. Start an iteration. Try reducing 1\.. save initial conditions:
P' '""" p. R' +- R(P), I\. '""" 1\.1 v.

3. compute A, E by Equation (3.B).

4. Scale A and E so that A has 1 on the diagonal:

~j +- ~jl V ~i A;j.

Gt'""" Gil V ~i'
5. Compute (still scaled) step:

o· '""" (A· + 1\.1)-1 G·.

6. Unscaie ste~

60t '""" 6tl V ~i'
7. Compute (tentative) new value of p:

P '""" fI' + O.

B. Bad Step? - if so, alter the step:
if R(fI) ~ R'

if angle between £5 and 6g . < 37c
, reduce step size:

(i.e. if 6T·o IV 6T'6 6t6g~cos(37C»
1 repeat

I I 6i '""" 6i l 2
fI +- fI' + h 0

1 until R(fI) ~ R', then go to 9
otherwise. repeat step calculation with increased t..:

I\. '""" v 1\., then go to 5.

9. check convergence:

. f 16i 1 t 2 h' t t·
1 any 1 Pi 1 + T ~ t. go 0 for anot er 1 era lOn.

10. stop.

The convergence test parameters T and e are typically 10-6 and 10-4 respec
tively.

8

4. Program Pit - Numerical Methods
Computer program fit was written to implement the kinetic analysis

method described above. The Marquardt Algorithm requires w (t ,(3) and the
derivatives awl a{3i' This section describes the numerical methods used to
compute the required functions.

4.1. Input Function Model
The computer program has four selectable input function models:

2
1. b (t) = 2: A- e -Hi (t -tl)

j =1]

2
2. bet) =.2: A· (t-tJ) e-Mj(t-tl)

J =1]

2
3. bet) = j~1 Aj (t-tJ) e-Mj (t-tl)2

where A; units of blood activity
Mj rate constants, min-I
tJ input function starting time in seconds

(4.1)

(4.2)

(4.3)

The times and time shifts are in seconds and the rate constants in min-I;
the program inserts the required 1/60 conversion factors.

4. b (t) = linear interpolation or extrapolation of input measurements:

0, t < 0

= (4.4)

(clipped to 0 if ~he interpolated or extrapolated value is negative).

Model 4 requires no fitting to the input measurements and does not make
any assumptions about its form. However, as the input measurements are time
averages of the input function over the image collection intervals, some infor
mation is necessarily lost. In Figure 4, we show a fast-rising input function, the
averaged samples, and the resulting Model 4 function. The shaded areas show
the error in the approximation. The areas of over- and underestimation should
approximately cancel each other. If the input function is not fast-rising, these
errors are small.

Also, Model 4 introduces statistical errors into the model function, due to
the f v b (t) term in Equation (2.5), which we do not currently account for in the
fitting process. The uncertainty of the input measurements should be incor
porated into the weighting of the squared-error function R(P).

4.2. Impulse Response Computation
The program fits rate constants for the three-compartment model below

(Fig. 5), which we apply to several physiological systems. Compartments q I and
q 2 represent tracer in two spaces or chemical states in tissue. The differential
equations for this system are

9

Input Function

• Blood Measurement

Model 4

K Time- t

Sampling Interval

Figure 4. Actual Input Function and Model 4.

Blood Cell
~_-"A _--..

('\
~ _____ ~A~~ _____ ~

('\

,--_b_(_t)_--,~ :: 1L.._Q
_1 (_t)_~~:: 1L.._Q

_
2(_t)_-,1

Figure 5. Three Compartment Model

dq2 (t) =
dt

(4.5)

The impulse response may be derived by solving the differential equations for a
delta function input b (t) = o(t). or by solving for b (t) = 0 with initial conditions
Ql(O) = kl and Q2(O) = O. Impulse response is more easily calculated by signal
flow graph analysis. which yields the impulse response of an arbitrary network
of compartments with minimal effort. See Mason & Zimmermann[4] for a dis
cussion of the method.

The impulse response h (t) of the sum of compartments q 1 and q 2 is

h(t)=fle-o.lt+f2e-o.2t. (4.6)

where

10

.,

,-----
{3 I = k 2 + k s + k 4 {32 = V (3 r - 4k 2k 4

kl(k S + k4 - 0.1) k l (o.2 - k3 - k 4)

f I = ---{3-2 --- f 2 = (32 .

When ks = 0, the model is effectively reduced to two compartments, and the
impulse response is correctly evaluated using Equation (4.6); the function
reduces to

(4.7)

4.3. Convolution Method
The cell concentration q (t) is computed by the convolution integral in

Equation (2.3). Rather than explicitly solve the convolution integral for all input
function models. We use an approximate method. To compute the convolution
integral. we evaluate the impulse response and input function at the tissue and
blood measurement times TWj and TBi respectively. Function con computes the
convolution of the two linearly interpolated functions b '(t) and h ,(t) described
by these points. The error introduced by this piecewise-linearization is less
than one percent with the exponential and near-exponential functions encoun
tered in our studies; see section 6.3 for a discussion.

The integral of h '(7')b '(t -,) over the whole interval 0 ~ , ~ t is the sum of
the integrals over intervals bounded by the set of times
!o. T"'t. TWa' TN)U!t. t-Twl, t-Twa • t-TN1JJ~ (Fig. 6). The integrand over one
of these intervals. say r ~ ,5; S. is the product of the line segments
(r. br)~(s. bs) acd (r, hr)->(s. h s). where hr = h(r). hs = h(s). br = b(t-r). and
bs = b (t -s). The integ rul is

(4.8)

Let /)., = s - r. /).h = hs - hr' /).b = bs - br' and change the variable of integration
to TJ = , - r:

hr/).b br/)'h /).h/).b = /)., (hrbr + -2- + -2- + -3-)

= /).; (2hrbr + 2hs bs + hrbs + hsbr)

so the complete convolution is

q(t) = .~ I /).6' (2hrbr + 2hs bs + hrbs + hsbr) .
mterva.s\r.s)
spanning C.t

(4.9)

(4.10)

(4.11)

(4.12)

The code in function con steps through the set of times TPt'j and t -TB",. looks for
boundary points. and sums the interval integrals.

4.4. Residue Function
The residue functien is computed as in Equation (2.5), as the sum of the

vascular and cell components. There is an additional time shift parameter to
which accounts for a difference in the sampling time between the blood and tis
sue sites, as discussed in Section 2.1. The model function is

(4.13)

11

• h(O)

• h(TW)
1

o b(O)

o b(t-TB)
1

'r

Sampling Intervals

h'(-r)b'(t--r)

...... _- .. . - _- __ -.... ..

b'(t--r)

r r s

K

Figure 6. Convolution by Summation of Linear Intervals.

T

Interval
Integral

12

.'

.\~

4.5. Partial Derivatives

We compute the model residue function by the convolution method
described above, and its derivatives by the forward difference equation. For a
given parameter {it in the vector (i,

Bw.({i.) w.(R.+h) -w.({i.)
~(ii \.~ J 1-'\ h J \ ,h>O. (4.13)

The error in this estimate is a function of h, given by

E(h) = ~h IW"(17)1 , {it ~ 17 ~ {i;.+h (4.14)

for some 17 in the range {it ~ 17 ~ {ii +h. Reducing h to zero would reduce the
error to zero if it were not for the finite precision of digital computer floating
point representations. Due to the round-off or discretization error in the calcu
lation of w ({i;. +h)-w ({i;.), which we will call t., the error in the derivative esti
mate is

(4.15)

The minimum E is found at

r 2t. 1*
hopt = II w "(17) 1 j (4.16)

For single preclslOn (24 bit mantissa) on the PDP-ll, t. = 5x 10-7. We find
h = 1.00 1 {it 1 to work well in our application. The error in the derivative estimate
is around one percent with parameters in the range we encounter.

While other numerical derivative formulae offer lower errors, the forward
difference requires only one additional w evaluation for each required deriva
tive. This is a considerable saving in this application, for we must compute,
store, and convolve a complete set of impulse function samples for each deriva-
tive. .

4.6. Covariance Matrix

The covariance matrix C of a set of linear parameters P is the inverse of the
derivative matrix B (defined in Equation 3.9) evaluat~d at p-. The Marquardt
subroutine estimates C by inverting B eval~ated at p under the assumptions
that w (P) is linear in the peighborhood of p, that p is close to p-, and that B
evaluated at our estimate p is a good approximation to B evaluated at p •.

After each fit we print the parameter uncertainties (square root of their
variance, from the covariance matrix), and the correlation matrix:

(Jp" :!! V[B-1];'i
ot [B-1];.; (4.17)

r;.; -
(Jp" apt

13

5. Implementation

5.1. Software Tools
Program fit (listing in Appendix A, documentation in Appendix D) is written

largely in Ratfor for operation under the Software Tools (ST) Virtual Operating
System. Software Tools is portable program development environment which is
modeled after UNIX·, and whose design and philosophy are expounded in
Software Tools by Brian W. Kernighan and P.J. Plauger [5J. ST provides the same
programming and command languages, user interface, documentation, utilities,
and library subroutines for all operating systems and computers on which it is
supported. We use the RSX-llM V4.0t implementation of the Software Tools Vir
tual Operating System, obtained from the Computer Science and Applied
Mathematics group at Lawrence Berkeley Laboratory[6]. This ST system is
currently running on a PDP-ll/44 computer.

An invaluable feature of ST is the ability to conveniently specify at run time
whether the program's input and output are to be connected to the user's ter
minal, to disk files, or directly to other programs. This enables the same pro
gram to be used interactively, as a "batch" type program, or as part of a
metaprogram comprised of several tools. In the words of the authors,

Whenever possible we will build more complicated programs up from the simpler;
whenever possible we will avoid building at all, by finding new uses for existing
tools, singly or in combination. Our programs work together; their cumulative
effect is much greater than you could get from a similar collection of programs
that you couldn't easily connect [7].

For example, the simulation data presented in Section 6 were generated, fit,
plotted, and summarized by applying both newly-built and existing tools, with
almost no manual manipulation. The versatility of ST makes it useful in the
development and testing of scientific data analysis programs.

5.2. Source of the Data
Positron emission tomography (PET) noninvasively measures radioaCtivity

in tissue volumes as small as one cubic centimeter, without superposition of
activity from other regions.

The Donner 2S0-crystal positron tomograph[S] is capable of taking cross
sectional images as frequently as every second, and can synchronize data col
lection with the beating of the heart. The spatial resolution of S mm full width
at half-maximum (FWHM) is sufficient to quantify radioisotope concentration in
regions of tissue of 2 cm. dimension.

Images are typically taken every 2.5 to 5.0 seconds for the first one or two
minutes after a rapid intravenous injection of 5 - 10 seconds duration, and at
longer intervals thereafter.

The input function is measured tomographicaUy if the left ventricle or
aorta is visible in the field of view, otherwise "the input function is measured by
sampling arterial or arterialized blood from a catheter.

After imaging. regions of interest (ROIs) are drawn over a high statistics
image in which anatomical details are well-defined. A region of interest in the
middle of the left ventricle of the heart or the aorta may supply the input func
tion.

Sequential PET images are reconstructed[9] and the activity density in
each region is computed after appropriate corrections for radioactive decay,
attenuation, and detector efficiency. The units of activity for PET data are "PET
events per second per pixel." A pixel is a unit of volume. and is a function of the
reconstruction pixel size and the slice thickness.

The uncertainty in the number of events in a ROI is currently approximated
by a naive estimate which assumes a Poisson distribution for the number of
events in a entire region. The uncertainty of the per pixel quantity is taken as
the square root of the number of events in the region, divided by the number of

·UNIX is a trademark of Bell Laboratories.
tPDP and RSX are trademarks of Digital Equipment Corporation.

14

pixels and multiplied by the decay correction factor. This estimate is an order
of magnitude too small, and must be compensated for when the parameter
uncertainties are reported (see subroutine dotit in Appendix A, page 42). A new
uncertainty estimation algorithm has been developed correctly propagates
errors through the entire reconstruction process, and will yield accurate uncer
tainties[lO].

If taken, blood samples are counted on a gamma well counter with a mul
tichannel analyzer. The well counter data are corrected for radioactive decay,
weight of sample, counting duration, and background radiation. The units of
these data are "well-counter events per gram per minute." The blood data differ
from the PET data by three scale factors:

1)
2)

3)

counts per minute vs. counts per second (factor of 60),

activity/pixel vs. activity / gm (function of blood density and pixel-volume
correspondence), and

PET events vs. well counter events (function of the sensitivity of the two
devices).

The overall scale factor for converting blood activity data to the
corresponding PET activity has been determined empirically and is verified at
each experiment by counting and imaging a vial of a radioactive solution.

The program read two input data file formats: ... ROI"· files from the PET
image analysis program and" .JOB" files from the blood analysis program. The
format of these files is shown in Appendix C.

All data files for a given experimental subject, along with comments
describing the experimental protocol and a history of the data processing steps,
are combined into a single ASCII file in the Software Tools ar archive format.
This is called the patient study archive. The flow of data from the PET to graphs
and analysis results is shown in Figure 7.

5.3 .. Prograril Design
The program has three phases: initialization, data reading, and command

processing. Command processing includes parameter setting, data fitting, and
reporting.

In the initialization phase, subroutine init sets global variables to default
values: the number of blood and tissue data points is set to zero, their descrip
tive labels to "Undefined".

In the data reading phase, subroutine getdat examines the program's com
mand line arguments for data input instructions. The arguments may specify

1)
2)

3)

a file from which data are to be read,

a scale factor to apply to the next region-of-interest read, and

a region of interest from which to read the blood or tissue measurements.
These are specified by their cardinal order in the data file. At this point
times, activities, and uncertainties are read and scaled as necessary. Rou
tine geUun reads these data by calling format-dependent routines getroi or
get job. The blood measurements taken in time intervals (0, tbl), (tb

l
, tb2), ...

are the time averages over these intervals, and the measurement times
TB1 , TB2 are taken to be the middle of the intervals: TB~ = (tbi _l

+ tbi)1 2.
Likewise, the PET measurement times are taken to be the middle of the
image collection intervals.

The command processor subroutine getcmd reads commands from the
standard input, which is the user's terminal in interactive mode or a file in
batch mode. Parameter setting commands are handled by subroutine setvar,
lhe display of data and model values by subroutine dowrit. and fitting by subrou
line do tit. which in turn invokes the Marquardt algorithm routine subroutine
marq, and the parameter value and uncertainty display subroutines shopar and
shocov. Subroutine setvar allows the user to select the input and residue model
functions, to set model parameters, and to alter the Marquardt parameters 7". e,
v, etc.

15

+
OISK ------------l(ARCHIVE TAPE)

(IMAGES)r --- ReconsJuction. _______ .. ~ Regio!s of
- Attenuat ion & Effici ency Interest

corre,tion I
ROI Extract ion.

Oecay Correction 4 ____________ ~

Uncertainty estimation

other information:
patient history ----~

protocol

plotter • Kinetic Analysis B ---- Simu,attn programs

RATE CONSTANTS

Figure 7. Data Flow.

The input function and residue function models are evaluated by functions
funin and funup. Funup contains code to evaluate and convolve the impulse
response and input functions as necessary, and to compute the numerical
derivatives. Only the impulse response function fimpls needs to know the par
ticulars of the compartmental model in use; it can provide the impulse
responses of any models of interest. The version of timpls in Appendix A con
tains five impulse responses; the first is the function in Equation (4.6), and the
others will not be discussed here.

Globally accessible data are stored in three named common blocks: model
parameter names in Inamcoml (these are set by finit, which is easily changed
along with timpls), the current set of model parameters in Iparcoml and the
input and residue measurements and uncertainties in Idatcom/.

The general outline of the program is shown in Figure 8, with the smaller
utility and library routines omitted.

16

'.

In a typical fitting session. the operator invokes fit with a command line
specifying the source of the data. Model functions are selected and initial
parameters are set with commands of the form "parametername = value." The
parameters are fit with the "fit parameter. parameter command. A file con
taining the measurements and model values can be created with the "write"
command. to be fed to a suitable plotting program.

The program is also useful for simulation of compartment models. given a
source of blood and tissue measurement times (from existing data files). The
user may specify an input function and residue model. set rate constants. and
generate the expected response with the "write" command.,

fit
init

finit
getdat

getfun
getbld
getroi

tinit
datlin
penter
pget

getcmd
dowrit

funin
funup

funin
fimpls
con

setvar
whopar
finit

dofit
setmap

whopar
marq

mqchi
fun(in or up)

rnqder
fun (in or up)

mqmap
spdinv

dot
shopar

shocov

Figure 8. Outline of fitting program.

17

6. Simulations
A program was written to simulate PET data. Data were generated using a

biexponential input function with typical model parameters, and compared to
the results of the fitting program. The method of simulation is described below.

6.1. Simulation Program
For the biexponential input function (model 1),

2
b(t) = .~ AJ" e-Mjt

1 =1
(6.1)

the exact solution for the convolution of the input with the three compartment
impulse response (Eq. 4.6) is

q (t) = b®h (t)

=~ ~ A;f" re-Mjt_e~aktl
Ii: = 1 j = 1 a" - Mj l J

For PET images taken over intervals (1i-1. ~), the simulated measured activities
Bi. and Wi. are averages over the collection interval:

1 ~
Bi. = J b(,) d,

ti. - ti.-1 ~-1

1 ~
Wi. = J w(,) d,

ti. - t i - 1 t ';-1

(6.3)

These functions are:
2

~ = j~1 (ti.
(6.4)

The simulation program adds Gaussian errors with mean zero and standard
deviations 'lBi. and 'l Wi. to Bi. and Wi. respectively, 'l ~ O. Gaussian noise is gen
erated by projecting the computer's pseudorandom, uniform [0,1) numbers onto
a polynomial approximation to the inverse of the normal distribution function.
This distribution is not quite realistic, for the relative error'l should be a func
tion of the activity in a region.

6.2. Two-Compartment Model
Data were generated for a two-compartment system, with parameters typi

cal for injections of H2 I50 in the dog heart.

Input Function: Model Parameters:
Al 50. ki 2.35 min-I
M I 6.2 min- I k2 1.75 min-I
A2 13. ks O.
M2 0.12 min- 1 k4 O.

Number of Simulations
1 with no noise.

f v 0.15

10 each with 'l = .03, .06, .09, .12 .. 15, .18.

Collection Intervals:
24 x 5 sec
18 x 10 sec

When the correct model values were given to the fitting program, the rms
error in the model computation was 1.3 percent. The peak error was 1.5 percent
and the average error was 0.5 percent. The computed value was always greater
than the actual valu"e. This error in the model computation is due to the errors
in the piecewise linear approximation of the exponential impulse response and

18

input function, and to the fact that the interval-center value of the model will be
higher than the interval-average value. This is only a problem with the func- .
tions are rapidly changing, as with injections of HZ

I50. This systematic error will
result in slightly smaller fit values for k l'

Representative fits to two compartments (k s held at 0.) are shown in Figure
9, and fit rate constants are summarized in Figure lOa. The mean and standard
deviation of the fit values are shown, along with the standard error of the mean
(SEM), the bias (error in mean), and mean estimated uncertainty. The useful
comparisons are error in mean to SEM (accuracy of fit), and standard deviation
to mean estimated uncertainty (accuracy of uncertainty estimate). Figure lOb
shows relative uncertainty (standard deviation / true value) vs. noise.

The kl fits show that the estimated uncertainty in the rate constant deter
mination is roughly correct, approximately equal to the sample standard devia
tion. While there is a small systematic error in the model computation, the
error in the rate constant determination is of the same magnitude as the stan
dard error of the mean for these simulations. Tj1e program gives even better
estimates of the k z and f v values and uncertainties.

In Figure lOb we see that relative uncertainty increases roughly linearly
with noise, up to the 18 percent case. The sharp rise in uncertainty at 18 per
cent is due to the increasing frequency of poor fits observed when noise reaches
approximately 20 percent. Some manual coaxing could have improved the bad
fits.

When forced to fit three compartments to two compartment data, the pro
gram would not converge in the no-noise and several noise-added fits.. The fits
were discontinued after the 15 percent category. The partial results shown in
Figure 11.

The estimated uncertainties clearly indicate that the program detects the
lack of significance of the estimates, especially k 3 and k 4.

6.3. Three-Compartment Model
Data were generated for a three-compartment system, with parameters

typical for the dog heart in injections of F-18 fiuorodeoxyglucose.
Input Function: Model Parameters: Collection Intervals:

Al 6.0 kl 0.30 min- 1 24 x 5 sec.
f,{1 0.82 min-1 k z 0.50" 12 x 10 sec.
Az 4.8 ks 0.05'" 10 x 60 sec.
f,{z 0.03 min- 1 k4 0.006 " 5 x 60 sec

Number of Simulations:
1 with no noise

f v 0.15

10 each with "'t = .03, .06, .09, .12, .15, and .18.

Representative fits are shown in Figure 12, and the results are summarized in
Figures 13a and 13b.

In the three compartment case, estimation of k I, kz, and f v and their
uncertainties are good even with high noise. The evaluation of ks and k4 is poor
at high noise with the sampling intervals used, but the uncertainty estimate
grows large as well, so there is no false confidence in the poor estimates. The
sharp rise in uncertainty is again seen at 18 percent noise.

19

N
0

Two Compartment Simulations 1S T b% Noise (<lrr~lal 'on~;

kl .U6 '1

k1 = 2.35
fv = .15

k2 = 1. 75

o = blood x fit fv
• = tissue
-= fit model

Cor,tl.tlons;

.:!6
".- 9%

" '. -.lOS

"'. ..

'.1

"
'.'"

""DOD oooo"OOOOOno<lO 0 <I " " <) " 0 0 " " " " " '" " " " "

0·1 , , , , ,
o. I. ,. 1. o. ..

1I_llIIln}

k1 = 1. 763 ± .0985
k2 = 1.348 ± .0870

. fv = 0.145 ± .0180

'v -.))8 •. 4~9

1\).

~ •• 0

O""""OOO<><l"f}OOOOOO,,<> <I"""" 00"" <>0"'0 ,,<> 0"

o. t
o. I. ,. 1. o. ..

TI_Ialn}

k1 = 2.298
k2 = 1.718
fv = 0.150 .

:r·~.%
Cof'r.htlQfl,:

.:1. " " '. -.492'

10. . .

'.1'

. I 00

• • 00°00°00°""",,0,,0000<> 0" 00" 00 00 <I <I" <I"",,
O. 0 , iii

o. I. ,. 1. o. ..
TI..e 'aln)

k1 = 20862 ± .2667
k2 = 2.373 ± .2392
fv = 0.097 ± .0338

,,- 3% .
Corr.16tlons:

'1 .!l. '2
'. -.116 -.458

1\),

..
'.

00000000,00000000000" " 0 <I <I " <I <I <I " 0 " <> " <I <I <I ()

o.
o .. I. ,. 1. ·0. ..

TI_ (.Ift)

k1 = 2.296 ± .0465
k2 = 1. 742 ± .0396
fv = 0.128 ± .0073

:r~:%
[or,.,I.tlon,:

.:10 " " '. -.531

..

1"0 • "0

0

0""0
0
°"""0

0
000

0
,, <I <I <I <) " " <I " " v Q <I 0 " " <) " "

O. i i ' i i
o. I. ,. 1. o. ..

Tillie (mtnl

.k1 = 2.135 ± .2344
k2 = 1. 749 ± .2146
fv = 0.115 ± .0416

Figure 9. Representative Two Compartment Simulation Fits

"

,,- 6%·' Correlulons:

'2 .!ll '2 'f -.l46 -.449

10.

..
00000000000°0°°0000 <I " " " " " " 0 0 " " " " " <> <I " <I

o .
O. I. ,. 1. o. ..

fl. (IItn)

Ik1 = 2.277 ± .0949
k2 =1.673 ± .0793
fv :!: 0.169 ± .0159

"l~8~ .. Correlltlons:

" .:1, " '. -.475 -.511

10 •

10.

') • .1.0

0,," 00"""00,,°00"00000,, " " " " " " " " " " " " " "

o.
o.

k1 =
k2 =
fv =

L

, .

,. 1. o. ..
Time (,.In)

2.430 ± .3422
2.063 ± .3178
0.131 ± .0496

Figure lOa. Two-Compartment Fits to Two-Compartment Data

% Noise
o
:.3
6
9

12
15
18

% Noise
o
3
6
9

12
15
18

% Noise

o
3
6
9

12
15
18

Mean
Fit Value

2.298
2.303
2.268
2.078
2.223
2.151
2.292

Mean
Fit Value

1.718
1.723
1. 714
1.599
1. 719
1.668
1.786

Mean
Fit Value

.150

.152

.157

.144

.141

.168

.184

Parameter k 1 = 2.35

Error
in Mean

Standard Mean Estimated
SEM

.020

.059

.084

.060

.112

.192

-.052
-.047
-.082
-.272
-.127
-.199
-.058

Deviation

.063

.188

.266

.190

.355

.609

Parameter k2 = 1.75

SEM

.015

.046

.068

.046

.104

.141

Error
in Mean

-.032
-.027
-.036
-.151
-.031
-.082
.036

Standard
Deviation

.046

.146

.215

.145

.329

.445

Parameter f v = .15

SEM

.003

.005

.007

.009

.021

.030

Error
in Mean

o.
.002
.007

-.006
-.009
.018
.034

Standard
Deviation

.0lD

.015

.022

.027

.066

.094

Uncertainty

.048

.095

.124

.186

.229

.321

Mean Estimated
Uncertainty

.040

.081

.108

.162

.200

.280

Mean Estimated
Uncertainty

.008

.015

.021

.030

.039

.050

21

>. ... =
as
III
CJ

;5
III
>
as
~

Figure lOb. Relative Uncertainty vs. Noise
for Two-Compartment Simulations.

(Standard Deviation of fit parameter I true value)

x kl !J. k2 o fv

1. 9---,

0.8 .

0

0.6 . ~

0

0.4 .1-

22

Figure 11. Three-Compartment Fits to Two-Compartment Data

Parameter k 1 = 2.35

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertaintr

3 3.97 1.67 1.62 5.28 4.27
6 2.lD 0.19 -0.25 0.60 9.31
9 2.23 0.17 -0.12 0.55 7.35

12 3.12 0.73 0.77 2.30 1.90
15 1.98 0.15 -0.37 0.45 4.35

Parameter k2 = 1. 75

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertaintr

3 10.40 8.74 8.65 27.65 8.24
6 2.61 1.17 0.86 3.69 42.24
9 1.83 0.30 0.08 0.94 0.50

12 4.81 2.17 3.06 6.87 8.57
15 1.62 0.28 -.12 0.83 2.72

Parameter ka = O.

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertaintr

3 -0.44 1.23 -0.43 3.90 11.80
6 1.84 1.82 1.84 5.76 48.40
9 0.09 0.12 0.09 0.39 0.79

12 0.71 0.48 0.71 1.52 59.42
15 -0.26 0.42 -0.26 1.27 19.23

Parameter k4 (no definite value)

Mean Standard Mean Estimated
% Noise Fit Value SEM Deviation Uncertaintr

3 4.66 2.28 7.21 33.67
6 3.53 1. 71 5.40 256.
9 2.58 2.32 7.36 1106.

12 5.37 3.03 9.59 2172.
15 1.83 0.98 2.95 114.

Parameter f v = 0.15

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty

3 .094 .058 -.056 .184 .148
6 .170 .014 .020 .045 .196
9 .160 .0lD .0lD .032 .154

12 .107 .033 -.043 .104 .079
15 .129 .020 -.021 .060 .122

23

N
~

Three Compartment Simulations 'rO% Noise (o"fl.IIQ"~;

i 1 ~411 ~l " I,

k1 = .3
k3 = .05
fv = .15

k2 = .5
k4 = .006

o = blood x fit fv
• = tissue
-= fit model

'-9%" Corrt'.llo .. ~;

~l ~~14 kl
k) ... 44 .181 k, ,459 ,liS!
" _.618 -.5H

')

... ,
-.219

,.
'.

J.

I.

l' 9JI'

"":;;t •••

..
O. 10. 70. 10.

T1~ (.. ,,,)

k1 = 0.3038 ± 0.0206
k2 = 0.4600 ± 0.0590
k3 = 0.0313 ± 0.0121
k4 = -0.0055 ± 0.0175
fv = 0.1255 ± 0.0087

"
-.171

~) ,\49 ./h'l
'4 .'~' ,1:0" .9l1
'. ..I~~ -.611 -.144 -.ll9

• '0 , ' ...

o. 10. lO. 10. ...
TI.-, .. ,")

k1 = 0.3000
k2 = 0.5006
k3 = 0.0499
k4 = 0.0060
fv = 0.1499

12% Corn~lll 101<1\:

,I ~415 " 'J " '1
I) .s" .I!I~

" .159 .'iP ,All

" -.1'/1 - .~1I -.14' -.IM

,.

dt,
~~ .. oo"o"

o .
O. 10. 711. 10. 40.

Ilmto('IIln)

k1 = 0.3484 ± 0.0456
k2 = 0.7351 ± 0.1727
k3 = 0.0976 ± 0.0379
k4 = 0.0527 ± 0.0225
fv = 0.1195 ± 0,0128

•. - 3% (,)rrt' ~llon\:

~l ~~n kl kJ k.

k) .~1I0 .~n5
_, ,'liZ .Ii~? .CI~'i

'v -.699 ·.~~6 -.7(.4 -.n'
. ,.

,.

.
'1\

' ,
""""""0

o. 10. ,.. 10. 40.

II ... (1IIn)

k1 = 0.2751 ± 0.0075
k2 = 0.4411 ± 0.0242

. k3 = 0.0481 ± 0.0062
k4 = 0.0072 ± 0.0061
fv = 0.1534 ± 0.0032

: I 15% C"rr .. latlon\;

~41 ~ ", ", " " I) .0,0, .'11H
I, ,H" .(;1}

" _,lOS -.556 •. ;»~4 -.?11

~. . ,- .

~!'/:h:.:""
"'".,""

0· ... 1 ---...-----,,.-----,-------,

k1 =
k2 =

. k3 =
k4 =
fv =

10. 7O.
li,.,,,(,,,ln)

10.

. 0.2407 ± 0.0309
0.3730 ± 0.1062
0.0494 ± 0.0340
0.0083 ± 0.0318
0.1360 ± 0.0145

40.

Figure 12. Representative Three Compartment Simulation Fits.

"

•. - 6%

, .

'.

'*, l.l .. ~

Q''';'tI>I',;:"" oJ""""

(01n"l!lJllon\:

" ~ 419
'J .~11
I, .41?

'. -.105

", I) "
. '~R
."'10 .914

-.551 -.116 -.191

n·~I ________ ~ ______ ~ ________ ~ ______ -,
n.

k1 =
k2 =
k3 =
k4 =
fv =

:r .. 18%
. .'

2.

.. ,"'"
:111

.'

In. m. In.

TI~ (ntn)

0.3118 ± 0.0185
0.5689 ± 0.0599
0.0566 ± 0.0115
0.0060 ± 0.0097
0.1498 ± 0.0067

Carrel"tlons:

'I,. " 'J

" 'J .499 0 .129 -, .314 .54' ."'" " -.716 "'" -.118

ij 'O~

~ 0° ::0
0

" 0 0 0 0 0

.. .. 10. 20 • ".
TIIlIe(",!n)

k1 = 0.4181 ± 0.0794
k2 = 0.9064 ± 0.2663
k3 = 0.0771 ± 0.0366

"
-.172

k4 =0.0272 ± 0.0244'
fv = 0.1153 ± 0.0207

411.

, ..

Figure 13a. Three-Compartment Fits to Three-Compartment Data

Parameter kl = .3

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty

0 .300 o .
3 . 294 .003 -.006 .010 .008

·6 .303 .006 .003 .019 .017
9 .289 .011 -.011 .036 .025

12 .323 .017 .023 .055 .034
15 .311 .014 .011 .043 .045
18 .350 .061 .050 .193 .0'71

Parameter k2 = .5

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty:

0 . 501 o .
3 .483 .007 -.016 .022 .025
6 .516 .020 .016 .063 .054
9 .497 .025 -.003 .078 .080

12 .577 .055 .077 .175 .110
15 .554 .046 .055 .146 .149
18 .800 .274 .300 .866 .273

Parameter k3 = .05

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty

0 .0499· -.0001
3 .0490 .0016 -.0010 .0050 .0058
6 .0509 .0043 .0009 .0136 .0115
9 .0516 .0062 .0016 .0197 .0177

12 .0514 .0097 .0014 .0308 .0207
15 .0607 .0107 .0107 .0339 .0315
18 .0764 .0307 .0264 .0971 .0404

Parameter k4 = .006

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty

0 .00600 o.
3 .0059 .0020 -.0001 .0062 .0056
6 .0052 .0036 -.0008 .0114 .0108
9 .0014 .0061 -.0046 .0109 .0163

12 .0015 .0094 -.0045 .0296 .0216
15 .0049 .0115 -.0011 .0362 .0288
18 .0108 .0149 .0048 .0470 .0438

Parameter f v = .15

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty

0 .150 o.
3 .150 .002 o. .005 .003
6 .149 .002 -.001 .008 .007
9 .148 .005 -.002 .015 .010

12 .124 .005 -.026 .015 .012
15 .139 .006 -.011 .020 .016
18 .111 .008 -.039 .024 .018

25

Figure 13b. Relative Uncertainty vs. Noise
for Three-Compartment Simulations.

(Standard Deviation of fit parameter / true value)

x k1 !:J. k2 + k3 • k4 o fv

k1 2 • .---r 20. k4
k2
k3
fv

>. ...
c:
as ...
~
a)
()
c:

=>
a)

>
<G
c:I
~

1.5 • ~

1. .

0.5 l-

o.
o.

+

•
• 6.

0 ~

0.05

+

~ 15.

10.

•
+

x
+ .'
• l- S.

+
6.

6.

• x
6. IS 0
IS . 0

• "- o.
0.1 0.15 0.2

Relative Noise

26

7. Applications to Experimental Data
Below we show examples of fitting compartmental models to actual data

from animal experiments. These examples are intended only to demonstrate
the program's ability to provide useful data for the investigation of physiological
models.

7.1. 0-15 Water
0-15 water (H2150) is under consideration as an indicator of blood flow in

the brain and heart. We find that 0-15 water in the dog heart is well modeled by
two compartments, one for blood and one for tissue.

Blood
Water

b{t)
~.
I'

k

k

1: ,

2

Cell
Water

q(t)

Studies were carried out on mongrel dogs with 0-15 water generated in the
LBL BO-inch cyclotron. ECG-gated images were collected with the time intervals
noted in the 2-compartment simulations in section 6.2, before and after raising
myocardial blood flow by injection of Dipyridimole. Actual blood flow in the
heart was measured simultaneously by the microsphere reference organ tech
nique[ll]. Regions of interest were drawn in the middle of the left ventricle for
the input function, and in the left ventricular wall for the residue function. The
data and fits are shown in Figure 14, and the results are summarized below.

Actual Flow
kl
k2
Iv

Before
0.66
0.93 ± .14
1.01 ± .20
O.lB ± .04

6 min.
After Dipyridimole
1.47
1.6B ± .2B
1.6B ± .31
0.35 ± .05

cc/gm/min
min- l

min- l

The increase in blood flow was accompanied by a corresponding increase in
k I and k 2 and I v .

7.2. Fluorodeoxyglucose
[18F] 2-fl"tioro-2-deoxy-D-glucose (FDG) is a tracer for regional glucose meta

bolism in the brain and heart [12]. Cell in these organs treat FDG like glucose
through the first reaction in glycolysis,

hexokinase

glucose + ATP ~ .' glucose-6-phosphate + ADP
glucose -6-phosphatase

While glucose-6-phosphate is further metabolized, FDG-6-phosphate is not.. How
ever, the rates of transport and metabolic reactions of glucose and FDG are
similar. A model for FDG kinetics in the brain and heart is

27

2>.

".

Figure 14. Oxygen-15 Water in the Canine Hearl.

Myoca rd i um - _.

Left Ventr i c1

~efore Dipyr idimo 1e

_ _ Input · rv, O - .,p t .. l<e,

e.- ,

150-viater Illld ~e and
Reg ions of Interest

,.
.- : ..

After Di pyr i dimo1e

,.~~--~------~------+-----~------~
2. 1.

Till" (1IIn) Tillie haln)

Be for e -------------------------

kl
k2
fv

9 . 338 I E- OI • 1. 4215E- OI
1. 0079E+00 , 1.9 753E- OI
I.R3 56F.- OI , 1 . 7703F.- 02

C() rr ~la tion Matrix:
~ 1 k2

k2 0 . 949
foJ - 0 . 499 - 0 . 453

Af te r -- ------------- - ----------

kl
k2
fv

1. R086E+00 2 . R392F. - OI
1.6809E+00 3 . 06R 9E-OI
3 . 4732F.- OI 4 . 7471E- 0 2

Co rr e lation Matrix :
k l k2

k2 0 . 961
fv - 0 . 42R - 0 . 45 0

XBB 830-11016

28

Blood

FDG

bet) .

~

I'

k 1

k 2

Cell
FDG

q1 (t)

k

~

I'

k

3

4

Cell
FDG-6-P

q2(t)

where the first cell compartment represents free FDG and the second cell com
partment represents phosphorylated FDG. Rate constants kl and k2 account for
the kinetics of glucose transport between the blood and the cell, and rate con
stants ks and k4 account for the rate of the hexokinase and phosphatase reac
tions in the cell.

If we assume that the rate constants for glucose are proportional to the
rate constants determined for FDG, then the glucose metabolic rate GMR in a
region of interest is given by

[Glu]p klks
GMR = LC k2+ks '

where LC is the "lumped constant" which accounts for the difference between
glucose and FDG rate constants, and [Glu,k is the plasma glucose concentration
L13]. We can thus estimate GMR from Pl!;T determined rate constants, a blood
analysis for glucose, and Le.

F-18 has a 112 minute half life. Data are collected for 45 minutes after
injection, at the time intervals noted in the three compartment simulations in
section 6.3. Data were obtained from the right frontal and temporal cortex of
two human subjects, one healthy and one with diagnosed Alzheimer's Type
Dementia (ATD). Images of FDG distribution after 45 minutes are shown in Fig
ure 15, with the data and fits to the temporal cortex. The slices were obtained
at slightly different levels of the brain. The ventricles seen as dark regions in
the middle of the ATD brain are not observed in the normal brain; however, the
cortex regions are approximately equivalent. Notice the reduced uptake in the
temporal cortex of the ATD subject.

The determined rate constants are

Normal ATD
[Glu]p 102. 98.

Frontal Normal ATD
kl .121 ± .004 .104 ± .006
k2 .198 ± .018 .256 ±.031
ks .0875 ± .0084 .1148 ± .0108
k4 .0094 ± .0024 .0412 ± .0020
Iv .070 ±.004 .041 ±.005

GMR-LC 3.78 3.16

Temporal Normal ATD
kl .136 ± .005 .062 ± .004
k2 .204 ± .018 .196 ±.029
ks .0640 ± .0064 .0708 ±.0128
k4 .0012 ± .0028 .0339 ±. 0050
Iv .075 ± .006 .034 ±.004

GMR-LC 3.31 1.61

min
min-1

min-1

min-1

mg/ min/ l00g tissue

min
min-1

min-1

min-1

mg/ min/ l00g tissue

The ATD temporal cortex has substantially lower k 1 and GMR-LC values.
However, we cannot draw conclusions about GMR because we cannot know
whether I.C is altered with Alzheimer's dementia. The ATD cortex also seems to
have a lower vascular volume and a higher phosphatase (k 4) activity.

29

F igure 15. Fluorine-IB F luo r odeoxygl uc os e in th e H um a n Br ain .

Front al

R L

Temporal

Right Tempora l Cortex

Norma l Al zhei mer ' s Ty pe Deme nti a
• • I nput. F ... , o. uptake , _ - !!Ode t

3. 3.

, .S ' .S

' .

I.

' .s

\....~
.. ----.---........ ---..-----O~--_. o. f-----o~--_...--'---_r_-'--'___,~--_.

.~

o. 1'. ~fl.)0 . 40. so. o. 10. In.

Tilll!! (", in)

Normal - ----- --- --- - --------- - - -------- ATO - - -- - - -- - - - - - - - - -- - ---- - -- - --- - - - -

kl 1 . 3643E - Ol ! 5 .2825E -03 k1 6 . 2098E - 02 t 4. 01 43E - 03
k2 2 .0403E -01 t 1. 7846E-02 k2 1. 9607 E- 01 t 2 . 9215E - 02
k3 6 .4026E -02 t 6.4 200 E- 03 k3 7 . 0846 E- 02 t 1. 2809 E-02
k4 1.1498E- 03 t 2 .8383E - 03 k4 1 . 6094 E-02 t 5 . 0160E-03
fv 7 . 4523E- 0 2 t 5.5367E- 03 fv 3 . 38 76E- 02 t 4. 1648E -03
t o -1. 2071E+0 1 7 .5438 E-01 to - 6 .8431E+00 • 9. 7430 E-Ol

Co r reia!. ion Mat r ix: Correlat io n Matrix:
<1 k2 k3 k4 fv k1 k2 k3 k4 fv

k2 0 .944 k2 0 . 941
k3 O. fi lB 0 .828 k3 O. ~6 7 0 .867
k4 0 .492 0 . fi 80 0 .9 29 k4 0 .460 0 . 66 0 0 .911
fv - 0 .61 3 - 0 . 51 1 -0 . 218 - 0 . 221 f v - O. fi RS - 0 . '5 4 1 -0 . :>73 - 0 . 193
to - 0 . 294 - 0 . 245 -0 . 095 -0 . 105 o. '5)) to - 0 . 313 - 0 . 237 - 0 . 109 -0 . 081 o. '560

XBB 830-11017

30

8. Summary

Program fit provides good estimates of two- and three-compartment model
rate constants from input function and residue functions acquired by PET. It
also provides reasonable estimates of the uncertainty and covariance of the fit
rate constants.

Program features include

1. easy addition of new models,

2. interactive or batch use, and

3. easy interface with other programs.

Needed improvements in the program fall into four categories:

1. Speed. Computation of the uptake function and derivatives is currently
quite inefficient. In the case of models 1, 3, and 5, the impulse response
characteristic decay constants are computed at every invokation. Routines
mqchi, mqder, funup, and fimpls should be rewritten to compute values for
all Nw values at once. This rearrangement would also make possible the
use of an array processor for further speed increases.

2. Linear-Interpolation Approximations. The piecewise linear approximations
of the input and impulse response functions introduce errors in the compu
tation of the residue· function. These errors are small but unnecessary.
Punup could be rewritten to analytically convolve the piecewise linear
input function with a vector of n exponentials (n is generally the number of
non-vascular compartments in the model). This would likely increase
speed as well, as the method of conv is not terribly efficient.

3. Sampling. We currently ignore the fact that our measurements are aver
ages over known time intervals (Equation 6.3). We can more accurately
model our measurements by using the time-average of w(t) over these
intervals.

4. Data Statistics. We ignore the effect of input function noise and input
residue measurement correlation in our least-square function R. This can
be corrected when the new ROI uncertainty and correlation estimation
algorithm has been implemented in our data collection system. This will
require the addition of a new data field in the ROI file format, for covariance
with respect to a designated input function region.

31

References

[1] Bard, Y., Nonlinear Parameter Estimation, Academic Press, New York, New
York, 1974.

[2] Ibid, p. 59.

[3] Marquardt, D.W., "An Algorithm for Least-Squares Estimation of Nonlinear
Par:ameters," J. Soc. Jndust. Appl. Math. 11(2): 431, 1963.

[4] Mason, S.J., Zimmermann, H.J., Electronic Circuits, Signals, and Systems.
John Wiley & Sons, New York, New York, 1960.

[5] Kernighan, B.W. and Plauger, P.J., Software Tools. Addison-Wesley, Reading.

[6]

[7]

[8]

[9]

Mass., 1976.

Hall, D.E., Scherrer, D.D., and Sventek, J.S., "A Virtual Operating System,"
Communications of the ACM 23(9): 495, 1980.

Kernighan and Plauger, op. cit., p. 3.

Derenzo, S.E., Budinger, T.F., Huesman, RH., Cahoon, J.L., and Vuletich, T.,
"Imaging Properties of a Positron Tomograph with 280 BGO Crystals," IEEE
Trans. Nucl. Sci. 28(1), 1981. .

Budinger, T.F., Gullberg, G.T., Huesman, R.H., "Emission Computed Tomog
raphy" in Image Reconstruction from Projections. Implementation and
Application. G.T. Herman, ed., Springer-Verlag. 1979, pp 147-246.

[10] Huesman, RH., "A New Fast Algorithm for the Evaluation of Regions of
Interest and Statistical Uncertainty in Computed Tomography." Lawrence
Berkeley Laboratory Report LBL-16521, August 1983 (to be published in
Phys. Med. Biol.). . . ' .

[11] Domenech, M.D., Hoffman, J.l.E.. Noble. M.l.M., Saunders, K.B., Henson. J.R,
SUbijanto. S., "Total and Regional Coronary Blood Flow Measured by
Radioactive Microspheres in Conscious and Anesthetized Dogs." Circulation
Res. 25: 581, 1969.

[12] Gallagher, B.M., Fowler, J.S., Gutterson; N.l., MacGregor, RR, Wan, C., Wolf,
A.P., "Metabolic Trapping as a Principle of Radioph~8"maceutical Design:
Some Factors Responsible for the Biodistribution of [F] 2-fiuoro-2-deoxy
D-glucose," J. Nucl. Med. 19(10): 1154, 1978.

[13] Phelps. M.E., Huang, S.C .• Hoffman, E.J., Selin, C., Sokoloff, L., Kuhl, D.E.,
"Tomographic l~easurement of Local Cerebral Glucose Metabolic Rate in
Humans with [F] 2-fiuoro-Z-deoxy-D-glucose: Validation of Method," Annals
of Neurology 6(5): 388, 1979.

Acknowledgements

This work was supported by the Departmenl of Energy under contract number
DE-AC03-76SF00098.

I greatly appreciate the support and encouragement of my advisor, Dr. Thomas
Budinger.

I want to thank the entire staff of the Donner Research Medicine Group for their
friendship and supporting efforts, especially Dr. Ronald Huesman for the Mar
quardt code, his advice, and patience for my Unix proselytizing. I also extend
my appreCiation to the team responsible for the human and animal experiments
mentioned in Section 7: Katie Brennan. Thomas Budinger, Robert Friedland,
John Frisch, Marty Morimoto, Brian Moyer, Mohindar Singh, JUlie Twitchell
Mathis, Donald Uber. and Yukio Yano.

32

Appendix A. Fit SoUrce Listing

main.r

fit - fit compartmental models to ring data

DRIVER (fit)

end

include datcom
include namcom
include parcom

make S'Ure these commons are in root overlay

string usestr "Usage: fit [[-sscale] [file] -i[n]] [[-sscale] [file] -u[n]]"

call query(usestr)

call init
call getdat
call getcmd

DRETURN

H set defaults
read data files named on command line
process fit commands

main.r

FH 05 Aug 83 1 7:45: 13 Page 1 of maiTt:.r
33

fit.h

II fit.h - definitions Jor FIT

derme (VERSION. "FIT Vl.3")

define (MAXNAME,40)
define (MAXLABEL.30)
define (ARGMAX.80)
define (MAXINPAR.6)
define (MAXUPPAR.8)
define (MAXFIT.8)
define (MAXDATA.80)

derme (UNKNOWN.-l)
define (INPUTPAR.l)
derme (UPTAKEPAR.2)
define (MARQP AR.3)
define (INPUTFUNCTION,4)
derme (UPTAKEFUNCTION.5)
derme (NSTEPS.6)

fit.h

dimensions Jor
II ". character strings

II ... parameter arrays

II ". measurement arrays

II the types oj variables we set

II special definitions Jor .ROI file routines (tinit.penter.pget)

define (TABLE SIZE. 1 000)
define (T~IZE.l)
define (T -POINTER. 1)

Tue 05 Jul 83 16:26:00

II dynamic storage: 2K bytes
II size oj table entry
II string pointer offset in table inJo

Page 1 of fit.h
34

date om

datcom measured data common

real tblood(MAXDATA) # times oj blood measurements
real blood(MAXDATA) # blood activity meas.
real ub lood(MAXDATA) # uncertainty in blood meas.
integer nblood # number oj tisStl.e points
logical btrue # blood uncertainties correct

real ltissu(MAXDATA) # times oj tisStl.e measurements
real tissu(MAXDAT A) # tissue activity meas.
real utissu(MAXDATA) # uncertainty oj tisStl.e meas.
integer ntissu # number oj tisStl.e points
logical ttrue # tissue uncertainties correct

character bfile(MAXNAME) # name oj blood source file
real bscale # blood scale Jactor
integer breg # blood region number
character blabel(MAXLABEL) # label from blood region

character tfile(MAXNAME) # name oj tisStl.e source file
real tscale # tissue scale factor
integer treg # tissue region number
character tlabel(MAXLABEL) # label from tisStl.e region

common Idatcoml tblood,blood,ublood,nblood,btrue
ttissu, tissu, u tissu,ntissu, ttrue
bfile,bscale,breg,blabel,
lfile, tscale, treg,tlabel

dateom

Fri 05 Aug 83 . 17:46:05 Pa.ge 1 of da.tcom

nameom

namcom - names oj parameters

integer innam(MAXINPAR)
integer upnam(MAXUPPAR)

common Inamcoml innam, upnam

rue 05 Jul 83 16:38:03

stored two characters in one word,
input junction model param names
residue junction model param names

nameom

Page 1 of namcom
35

parcom

II parcom - model parameters

real inpar(MAXINPAR)
integer ninpar
integer infun
integer minfun

real uppar(MAXUPPAR)
integer nuppar
integer upfun
integer mupfun

integer idebug
integer nsteps

parcom

.11 input junction parameters
II number of input junctwn parameters
II input ju.nction selector
II maximum injun

II uptake model parameters
II number of uptake model parameters
II uptake ju.nction selector
II maximum uptake function

II fitting trace flag
II maximu.m number of iterations allowed

co mmon Iparcom/in par,ninpar,infun, uppar ,nuppar, upfun,minfun,mupfun,
idebug,nsteps

rue 05 Jul 83 16:37:54

table com

II tablecom - roi parameter table memory

pointer table
common Itable I table

Tue 05 Jul 83 16:38:51

II lake table declaration

Page 1 of parcom

tablecom

Page 1 of tablecom
36

catch.mac

;fffCATCH - catch terminal interrupt
.title CATCH
.ident 11 9 JAN /

catch.mac

CATCH attaches the specified lun with an AST looking for
for CHAR. When one is received. FLAG is set to fortran logical .TRUE.

Fortran calling sequence:

logical' flag
integer lun
byte char

call catch(flag. [lun]. [char])
call catch

! arm
! disarm

The default for lun=5. for char=-C. for reatch=.true.

After catching a CHAR. catch detaches the lun. Catch may
also be forced to detach (disarm itself) by calling with no arguments.

If the attach fails. catch attempts to print a message on LUN.

DEFAULT SETTINGS:
LUNIT = 5
BREAKC = 3

NARGS = 0
FLAG = 2
LUN = 4

. CHAR = 6.·

NOARG = -1
TRUE = -1
FALSE = 0

.mcall qi08s. astxSs
.. globl CATCH. note

pure code
.psect 8R.ROU.RO.CON.REL.LCL

default unit for read
default break char -C

offsets into arg block

address of null argument
fa rtran logical values

;---------------------------------- CATCH -----------------------------

CATCH: tstb NARGS(r5)
bie disarm

cmp FLAG(r5). #NOARG
beq disarm
mov FLAG(r5). flagp
mav #FALSE. @flagp

cmp NARGS(r5). #2
bit doqio
cmp LUN(r5). #NOARG
beq 28
mov @LUN(r5). luntt

2$: cmp NARGS(r5). #3
bit doqio
cmp CHAR(r5). #NOARG
beq doqio
movb @CHAR(r5). break

Thu 30/un 83 .17:01:30

if no arguments
disable thyself

flag wasn't passed
so this is a disable call
get pointer to flag
clear it

see if LUN was passed
no lun and no char - go qio
see if LUN was passed

save the unit number

see if char arg is there

store break character

Page 1 of catch. mac
37

catch.mac

doqio: cmp
beq
mov

jsr

QIOSS
bcs
cmp
beq

mov
mov
mov
jsr
lsl
tst

armed. #TRUE
done
#TRUE. armed

pc. ttydel

#IO.ATA.luntt ... #isb .. <#golch>
bad
ish. #IS.SUC
done

#badmsg. -(sp)
#1. -(sp)
sp. r5
pc. note
(sp)+
(sp)+

• catch.mac

see if we have to do this
if it's done. don't redo it

detach tty

attach keyboard

;---------------------------------- DISARM ----------------------------
; DISARM - undo calchc

disarm: cmp armed. #FALSE if not armed. just return
beq done

mov #FALSE. armed
QIOSS #IO.DET.luntt issue delach from lun
call ttyatt

done: rts pc

;---------------------------------- GOTCH -----------------------------
; gotch - ast routine called when a character comes in

GOTCH:

1$:

bicb
cmpb
bne
mov
jsr
lst
ASTXSS
hall

#200. (sp)
(sp). break
1$
#TRUE. @flagp
pc. disarm
(sp)+

clear parily
see if it's whal we wanl
discard if -not
yes - sel users flag
issue delach from lun
discard character
exit ast routine
should never happen

;---------------------------------- DATA ------------------------------
; impure dala

.psect Sr.rwd.D.RW.CON.REL.LCL

armed: .word FALSE
flagp: .word 0
luntt: .word LUNIT
isb: .blkw 2
break: .byle BREAKC

.even

; pure data
.psect Sr.rod.D.RO.CON.REL.LCL

badmsg: .asciz /[CATCH] Attach LUN
.even

.end

Thu 30Jun 83 17:01:30

failed/

flag indica ling pending read
address of user's flag
logical unit lo read
QIO success buffer
character we're looking for

Page 2 of catch.mac
38

con.r

con - convolution oj two sampled functions.

real function con (a, b, ta, tb, time, aO, bO, taO, tbO, na, nb)
integer na, nb
real a(na), b(nb), ta(na), tb(nb), time, aO, bO, taO, tbO
#.

PerJorm onvolution of functions a and b

Eualuates a fb (time) where a(s) = linear interpolation
of points (taO, a 0), (ta(i),a(i)) and b(s) = linear interpolation
of points (tbO,bO), (tb(i), b (i)). Any ta(i) less than taO or
tbO less than tbO are ignored a is the maximum index in a, to..
Nb is the maximum index in b, tb.

We integrate by summing a series oj trapezoidal panels, delimited
by the known time points (taO, to. (1), .,. ta(na)) and
(time-tbO, time-tb(O, ... time-tb(nb)
The time interval oj a panel is t = ts to te,
For function a the panel is (ts, as), (te,ae). For function
b the panel is (ts,bs), (te, be). The logical flags tell
whether we know the functions exactly at the start and end points.
IJ we don't know, we interpolate.

real tend, ts, te, as, ae, bs, be, sum
logical enda, endb
integer ia, ib

con.r

begin con --
tend = time - tbO # upper limit oj integration
sum = O. # initialize integral sum
ia = 1 # starting pointers to Junctions
ib = nb
ts = taO # starting time
as = aO # we know start of a

while «time-tb(ib)) < ts & ib > 1) # find where to start b
ib = ib - 1

if (ib < nb) # extrapolate from first point
ib = ib + 1 # beJore taO

bs = b(ib) + (b(ib-1)-b(ib)·(ts-(time-tb(ib)))/(tb(ib)-tb(ib-l))

While (ls < tend) [
while (ta(ia) <= ts & ia < na)

ia=ia+l
while «time - tb(ib» <= ts & ib >

ib = ib - 1

te = time - tb(ib)
if (ta(ia) < te I te <= ts)

te = ta(ia)
if (te <= ts)

te = tend

enda = te
endb = te

if (enda)
ae = a(ia)

ta(ia)
(time - tb(ib»

1)

INTEGRAL LOOP
find first time after current
time, in both. a and b series

take smallest of these
as paneL limit

but ma.lce sure we advance

find out which we Icnow

know it directly

else if (ia == 1) # interpolate from (to. 0,0. D)
ae = aO + (a(1)-aO)·(te-taO)/(ta(1)-taO)

else # interpolate between 2 points
ae = a(ia-l) + (a(ia)-a(ia-l»·(te-ta(ia-l»/(ta(ia)-la(ia-1»

Tue 05 Jul 83 16:27:27 Pa.ge 1 of con.r
39

con.T

end

]

if (endb) # know it directly
be = b(ib)

else if (te < (time - tb(l)) # interpolate between 2 points
be = b(ib+l) +_

(b(ib)-b(ib+l»·(te-(time-tb(ib+ 1») I (tb(ib+ 1)-tb(ib»
else if (te == tend) # i~s the endpoint

be = bO
else # interpolate from (tbO, bOy

be = b(1) + (bO-b(l»)·(te-(time-lb(l»)/(lb(l)-tbO)

integral of panel
panel=(te-ts)·(l.l3. ·(ae-as)·(be-bs) + 0.5 ·(bs·(ae-as)+_

as·(be-bs» + as·bs)

sum = sum + panel
as = ae
bs = be

add panel to rum

return(sum)

con.T

Tue 05 Jul 83 16:27:27 Page 2 of CDn.r

40

datlin.r

datlin - read ROI data line

integer function datlin (line. fdes. size)
character line (ARB)
filedes fdes
integer size(2)

datlin.r

reads a data line from archive file 'fdes'. Ignores blanic lines and comments.
and enters parameter-setting comment lines into the table.
Retu.rns EOF on end of file. This junction is just like getlin except
it will not return blanic or comment lines.

exLfunc integer length. agtlin
ext....subr skipbl, penter
character name(MA.."XNAME)
integer info (T..SIZE). i. j. last

while (agtlin(Iiue. fdes. size)!=EOF) [# try reading a line
? call fprint(STDERR. "[DATLIN] read: %s". line)

?

end

last = 0
for (j=l; line(j) != EOS; j=j+1) # find last nonwhite character

if (line(j)!=BLANK & line(j)!=NEWLINE & lineU)!=TAB)
last = j

line{last+l) = EOS

j = 1
call skipbl(line. j)
if (line(j) == EOS)

next
if {line(j) != 'I') [

call fprint(STDERR.
return(OK)

j = j + 1
call skipbl(line. j)
if (line(j) != '%')

next

i = 1

trim trailing whitespace

look at first nonblanic char
blanic line - ignore it

not a comment:
"[DATLIN] ·@n")

return triu.mphant.

look at next nonblanic char

this is just a comment

for (j=j+l; line(j) != '%'; j=j+l) [
if (line(j) == EOS I i == MAXNAME)

next 2 # no closing %. forget it
name(i) = line(j) # extract the parameter name
i = i + 1

]
name(i) = EOS

j = j + 1
call skip bl(line. j)
call penter(name. line(j»

]
return(EOF)

find beginning of definition
enter definition

Thu 30 fun 83 16:43:15 Page 1 of datlin.r
41

dofit.r

dojit - perform fit on parameters

subroutine dofit (line, j)
character line(ARB)
integer j

Line(j .. .) is a list oj parameters to /it. It is picked apart
by setmap. We print initial values, caLL marqu.ardt, print
resu.Lts.

extJunc rIledes open
extJunc integer isatty
character val(MAXNAME) .
integer map(MAXFIT), nparm, which, flags(MAXFIT)
real uncert(MAXFIT), eov(MAXFIT·MAXFIT)
filedes ttydes
external funin, funup
logical quit
logical true
common Iquit! quit

include da teorn
include pareom

set by typing control-C
true uncertainties Jor our fit?

call setmap(line(j), map, nparm. which)

if (nparm == 0) [

]

call fprint(STDERR,"No paramaters to fit@n")
return

call fprint(STDOUT, "#IIiitifil Conditions:@n@n")·
call shopar(STDOUT, NO, uncert, NO, flags)
eall fprint(STDOUT, "@n# Fit 70s", line(j))

chi = O.
chiO = O.
istep = 0
quit = .false.

dofit.r

if (isatty(STDIN) == YES)
ttydes = STDIN

lun for control-C is terminal

else
ttydes = open("TI:", READ)

call catch(quit, ttydes)

if (which == INPUTPAR)
call marq(funin,ninpar ,inpar, uncert,cov ,nparm,map,nblood,

tblood, blood, ubloo d,nsteps,e hiO,istep,chi,ierr ,flags ,ide bug)
else

call marq(funup,nuppar,uppar,uncert,cov,nparm,map,ntissu,
ttissu.tissu.utissu.nsteps.chiO,istep,chi,ierr,flags.idebug)

call catch
if (ttydes '= STDIN)

call close(ttydes)

call rtoe(chiO, val, 11. 4)
call fprint(STDOUT. lI@n# Results:@n# Initial chi square: 7os@n". val)
call rtoe(chi, val, 11, 4)
call fprint(STDOUT, "# Final chi square: 70s after 70d iterations@n@n",

val, istep)

if (ierr != 0) [

F'ri 05 Aug 83 17:53:32 Page 1 of dofit.r
42

dofit.r

end

call fprint(STDOUT. "# *** Marquardt error %d: ". ierr)
select (ierr) [

case -1:
call fprint(STDOUT. "Parameter setup@n")

case 1:
call fprint(STDOUT. "Too many iterations@n")

case 2:
call fprint(STDOUT. "Matrix invert while stepping@n")

case 3:
call fprint(STDOUT. "Matrix invert after convergence@h")

case 4:

dofit.r

call fprint(STDOUT. "Terminated by user before convergence@n")
default:

call fprint(STDOUT. "?@n")
]

]

if (which == INPUTPAR) [
npar = ninpar
ndat = nblood
true = btrue

]
else [

npar = nuppar
ndat = ntissu
true = ttrue

ndf = ndat - nparm # degrees 0/ freedom
call fprint(STDOUT. "# Number of degrees of freedom: %d". ndf)

if (!true) [
sc = sqrl(chi I float(ndf))
do i = 1. npar

uncert(i) = uncert(i) * sc
do i = 1. npar**2

cov(i) = cov(i) * sc

II have to· fudge uncerta.inties
pretend model fit: chi=ndJ
sca.le uncerl. cov

call fprint(STDOUT." -- Uncertainties fudged@n")
]
else

call putch(NEWLlNE. STDOUT)

call shopar(STDOUT. which. uncert. which. flags)
call shocov(cov. npar. which)

return

..

Pri 05 Aug 83 17:53:32 Page 2 0/ do/it.r
43

dot.f

C DOT - Compute Dot-Product of Vectors

FUNCTION DOT(A.B.N)
DIMENSION A(l).B(1)

D = O.
DO 10 I = 1.N

D = D + A(I) ·B(I)
10 CONTINUE

DOT = D

RETURN
END

Thu 30 Jun 83 16:43:18

dot.f

Page 1 of dot.f
44

dowrit.r

dowrit - write input or u.ptake data & model to file

subroutine doW'rit (line, j)
character line(ARB)
integer j

line(j .. .) is a write-data command. Format is:
[I.i\Pu.t] [.] [UPtake] [> file]

extJunc integer gettok, equal
extJunc filedes open
character va r(MAXNAME) , filnam(MAXNAME)
filedes fdes
integer which, mode, ndat
real time, meas, uncert, model, inp, par
external funin, funup

include parcom
include datcom

fdes = STDOUT
mode = WRITE

if (gettok(var, line, j) == EOF) [
100 call fprint(STDERR, " ••• Usage: write inlup [>1» file]@n")

return
1

if (var(l) == 'i' & var(2)
which = INPUTPAR
npar = ninpar

]

'n') [

else if (var(t) == 'u' & var(2)
which = UPTAKEPAR
npar = nuppar

]
else

gata 100

'p') [

dowrit.r

call gettok(var, line, j)
if (var(1) == '>') [# redirection

if (line(j) == '>') [
mode = APPEND
j = j + 1

]

filnam(l) = EOS
while (gettok(var, line, j) != EOF)

call concat(filnam, var, filnam)
remaining tokens are
tacked onto file name

if (length(filnam) <= 0)
gato 100

missing name

]

fdes = open(filnam, mode)
if (fdes == ERR) [

]

call fprint(STDERR, "Can't write to %s@n", filnam)
return

call rtoe(bscale, var, la, 3)
call fprint(fdes,"Input: %s - %s (reg. %d • %s Model %d@n",

bfile, blabel, breg, var, infun)

Thu 30 Jun 83 17:07:28 Page 1 of dourrit.T
45

dowriLr

"if (which == UPTAKE PAR) [
call rtoe(tscale, var, 10, 3)

]

call fprint(fdes,"Uptake: %s - %s (reg.
tfile, tlabel. treg, var, up fun)

else
call putch('@n', fdes)

for (i = 1; i <= npar; i=i+i) [
callgetnam(var, which, i)

]

call fprint(fdes, "%s = ", var)
if (which == INPUT PAR)

par = inpar(i)
else

par = uppar(i)
call rtoe(par, var, 11, 3)
call putlin(var, fdes)

if (mod{i,4) == 0)
call putch(,@n', fdes)

else
call putlin{" " fdes)

if (mod{i,4) != 1)
call putch{'@n', fdes)

if (which == INPUTPAR) [

dowrit.r

%d • %s) Model %d@n",

parameter name

and valu.e

call fprint{fdes,"@n time input uncert in.JIlodel@n")
ndat = nblood

]
else [

call fprint{fdes,
"@n time uptake uncert uPJIlodel inpul@n")

ndat = ntissu
]

do i = 1, ndat [
if (which == INPUTPAR)" [

time = tblood(i)
meas = blood(i)
uncert = ublood{i)
call funin(.false.,inpar,time.model)

]
else [

time = ttissu(i)
meas = tissu(i)
uncert = utissu{i)
call funup(.false.,uppar,time,model)

]
call funin(.false.,inpar,time-uppar(6),inp)

call rtof(time, var, 7, 1)
call putlin(var, fdes)

call rtoe(meas, var, 11, 3)
call putlin(var, fdes)

call rtoe(uncert, var, 11, 3)
call putlin(var, fdes)

call rtoe{model. var, 11, 3)
call putlin{var, fdes)

Thu 30.fun 83 17:07:28

time

measured value

uncertainty

model value

Page 2 of dowrit.r
46

,-

..

dowrit.r

]

if (which == UPTAKE PAR) [
call rtoe(inp, var, 11, 3)
call putlin(var, fdes)

]

call putch('@n', fdes)

if (fdes != STDOUT) [
call close(fdes)

dowrit.r

show. inpu.t function
if doing u.pta.ke

call fprint(STDOUT,"# Wrote data/fit list to file '%s'@n", filnam)

return
end

Thu 30 Jun 83 17:07:28 Pa.ge 3 of dowrit.r
47

fimpls.r

real function fimpls(par, t)
real par(ARB), t

lrnpuLse function Jor compartmentaL modeLs

t = time oJ evaLuation in terms oJ input function time, in sec.
This routine evaluates several diJferent modeL input ju.nctions:
upju.n = 1 three compartments in a row e.g. (FDG)

2 three exponentials (bastard function Jor 3, below)
3 four compartments
4 two compartments, k1 both ways
5 fou.r compartments, kb heLd equ.aL to ka

real ka6, k16, pO, pl, p2, al, a2, a3, fl, f2, f3, time
include parcom

define (Kl,par(l»
define (K2,par(2»
define (K3,par(3»
define (K4,par(4»

define (Fv,par(5»
define (KA.par(7»
define (KB,par(8»
define (Fe,par(9»

inLine functions Jor case 3: numerator poLynomials
anume(s) = ka6·(s·0t2 + (K2+K3+K4)·s + K2·K4) .
anum12(s) = ka6 ·Kl·(s + K3 + K4)

if (t < 0.)
return(O.)

time = -tl60.

return 0 Jor t < 0

fimpls.r

k16 = Kl·(1.-Fv)/60. # a frequ.ently needed number

select (upfun) [
case 1:

par(1) = k1 (bLood Jdg <=> tissu.e Jdg)
par(2) = k2
par(3) = k3 (tissu.e Jdg <=> phosphorylated)
par(4) = 1e4
par(5) = Pu (vascu.lar partial volume)

if (time == 0.)
return(k 16)

betal = K2 + K3 + K4
beta2 = beta 1"2 - 4.·K2 ·K4
if (beta2 <= 0.) [

call fprint(STDERR,"···Unable to solve roots@n")
return(O.)

]

beta2 = sqrt(beta2)
alpha 1 = (beta 1 - beta2)·.5
alpha2 = (beta 1 + beta2) ·.5
fl = k16 • (K3+K4-alphal)/beta2
f2 = k16 - fl

case 2:
par(1) = J1
par(2) = 1e1
par(3) = J2
par(4) = 1e2

coeJficient Jor first exponential
rate constant Jor first ezponentiaL
(second ezp)

Wed 03 Aug 83 18:23:58 Page 1 of fimpls.T
, 48

fimpls.r

end
]

par(?) = J3 (third e:cp)
par(8) :;:: 1e3
par(5) = Pu (vascular partial volume)

if (time == 0.)
return{{par(1)+par{3)+par{7»·(1. -Fv) 160.)

return{ (par(1)·exp{time·par(2))+_

case 3:
case 5:

par(3) ·exp(time·par(4»+_
par(7)·exp(time·par(8») ·(1.-Fv)1 60.)

par(1) = lel (extracellular space <=> tissue)
par(2) = 1e2
par(3) = 1e3 (tissu.e Jdg <=> phosphorylated)
par(4) = 1e4
parr?) = lea (blood <=> extracellular space)
par(8) = leb (always equal to lea in model 5)
par(5) = Pu: vascular partial volume
par(9) = Fe: extracellular partial volume

\
l old Ie's
/

fimpls.r

\
/ new Ie's

ta.1ce care oj time unit dependence oj Ka: convert l/min to l/sec
ka6 = KA 1 60.

if (time == 0.)
return(ka6·Fe)

time = -time
if (up fun == 5)

KB=KA

a's are already < a
model 5: lea and leb equal

p2 = KB+K1+K2+K3+K4 # coeJficients oj characteristic eqn
p1 = (K1+KB)·(K3+K4)+K2·(KB+K4)
pO = KB·K2·K4
call rt3(p2.p1.pO.a1.a2.a3.ierr)# find. its roots

if (ierr < 0) [
call remark("···Unable to solve roots in fimpls")
return(1.0e+ 1 0)

]
if (ierr > 0)

call remark("···Equal roots. hope that's ok")

ea1 = exp(time·a1)
ea2 = exp(time·a2)
ea3 = exp(time*a3) ,

Fc = 1. - Fv - Fe # cell volume
f1 = (Fe·anume{a 1)+Fc ·anum12(a 1» I«a 1-a2)·(a1-a3»
f2 = (Fe·anume(a2)+Fc·anum12(a2»/«a2-a1)·(a2-a3»
f3 = (Fe*anume(a3)+Fc·anum12(a3»/«a3-a1)·(a3-a2»
return(f1·ea1+f2·ea2+f3·ea3)

case 4:
if (time == 0.)

return(k16)
return(k 16 ·exp (time·K1»

default:

two compart. lel both directions

call error('···· in fimpls. can't happen")

Wed 03 Aug 83 18:23:58 Page 2 of fimpls.T
49

finit.r

/init - initialize parameter names and values

subroutine finit

this routine defines the names oJ the parameters and the maximum number
oJ parameters. Initialization must be done by assignment statements.
The routine is caLLed whenever the input or u.ptake fu.nction is changed.

%
%
%
%
%

include datcom
include parcom
include namcom

minfun = 4
mupfun = 5

ninpar = 5
innam(1) = 'a1 '
innam(2) = 'm1'
innam(3) = 'a2'
innam(4) = 'm2'
innam(5) = 'ti'
innam(6) = 0

% upnam(5) = 'tv'
% upnam(6) = 'to'

%
%
%
%

%
%
%
%
%
%

%
%
%
%
%
%
%

%
%
%
%

select (uplun) [
case 1:

nuppar
upnam(1)
upnam(2)
upnam(3)
upnam(4)

case 2:
nuppar

upnam(l)
upnam(2)
upnam(3)
upnam(4)
upnam(7)
upnam(8)

case 3:
case 5:

nuppar
upnam(l)
upnam(2)
upnam(3)
upnam(4)
upnam(7)
upnam(8)
upnam(9)

case 4:
nuppar

upnam(l)
upnam(2)
upnam(3)
upnam(4)

default:

= 6
= 'k1 '
= 'k2'
= 'k3'
= 'k4'

= 8
= 'f1'
= 'k1'
= 'f2'
= 'k2'
= 'f3'
= 'k3'

= 9
= 'k1'
= 'k2'
= 'k3'
= 'k4'
= 'ka'
= 'kb'
= 'fe'

= 6
= 'k1'
=
=
=

call error(,'··· in finit, can't happen")
]
return

end

finit.r

Wed 03 Aug 83 16: 14:05 Page 1 of finit.r
50

"

funin.r funin.r

junin - compute input junction (& maybe derivatives)

subroutine funin (tderiv. par.
logical tderiv. tder(ARB)

t. y. tder. dy)

real par(ARB). t. dy(ARB)

input Junction Jor fitting
choices are:

1 biezponential a1 ezp(-m1 T) + a2 ezp(-m2 T)
2 time ff>iezponentictL a1 T ezp (-m1 T) + a,2 T ezp (-m2 T)
3 gamma, va,ria,te a1 T ezp(-m2 TU 2) + a,2 T ezp(-m2 T**2)
4 Linear interpolation from input mea.su.rement

where T = (t-1'i) /60. This 1'i shift does not affect model 4.

units: a1. a2 - units oj the input mea.su.rements (cts /min/cc)
mI. m2 - 1/min
t. 1'i - seconds

include parcom
include datcom
real time. tk. eml. ern2
integer 10. hi. try

define (Al. 1)
define (M 1. 2)
define (A2. 3)
define (M2. 4)
define (Ti. 5)

if (infun == 4) [# Linea,r interpolation

]

if (t < 0.)
.y= 0.·

else [
10 = 1; hi = nblood # binary sea,rch for nea,rest time

]

while (10 < hi) [

]

try = (Io + hi) / 2
if (tblood(try) < t)

10 = try + 1
else

hi = try - 1

if (tblood{lo) > t)
10 = 10 - 1

if (10 <= 0)
10 = 1

else if (Io >= nblood)
10 = nblood - 1

we want to interpola,te
between (loy a,nd (lo+1) so
make su.re lo points where it
shouLd.

interpola,te
y = blood(lo) + (t-tblood{lo)) • (blood(10+1)-blood(lo))_

/ (tblood(lo+l)-tblood(lo))
if (y < 0.)

Y = O. # no nega,tive numbers

if (tderiv)
do i = 1. ninpar

if (tder(i))
dy(i) = O.

return

Thu 30.fun 83 16:43:33 Pa.ge 1 of funin.T
51

funin.r

other models:
time = (t-par(Ti» I 60.
il (lime < 0.) [

convert to minutes
a.nd handle t-ti < a

]

Y = O.
if (lderiv)

do i = 1, ninpar
if (lder(i»

dy(i) = O.
return

if (infun == 1 I infun == 2) [# ezp, t~xp
em1 = exp(-time·par(M1»
em2 = exp(-time·par(M2»
y = par(A1)·eml + par(A2)·em2
if (lderiv) [.

]

if (lder(A1» dy(Al) = em1
if (lder(A2» dy(A2) = em2
if (tder(M1» dy(M1) = -time·par(A1)·em1
if (tder(M2» dy(M2) = -time·par(A2)·em2
if (tder(Tl» dy(Ti) = (par(M1)·par(A1)·em1 +_

par(M2)·par{A2)·em2) I 60.

if (infun == 2) [
y = y • time
if (lderlv) [

do i = 1, ninpar
if (tder(i»

funin.r

dy(i) = dy(i) • time
if (lder(Ti)

dy(Ti) = dy(Ti)-(par(A1)·em1+par(A2)·em2) 160.

end

J
]

]
else [# infun == 3: t ezp -t p2

]

em1 = exp(-par(M 1) ·time"2)
em2 = exp(-par(M2) ·time"2)
y = par(Al)·time·em1 + par(A2)·time·em2
if (lderiv) [

]

if (lder(A1» dy(A1) = lime·eml
if (lder(A2» dy(A2) = lime·em2
if (tder(M1» dy(M1) =-par(Al)·time"3·em1
if (lder(M2» dy(M2) =-par(A2)·time·~·em2
if (tder(Tl» dy{Ti) = _

«2.·par(Ml)·time"2-1.)·par(A1)·ern1 + _
(2. ·par(M2)·time"2-1.)·par(A2)·em2) I 60.

return

1hu 30 Jun 83 16:43:33 Page 2 of funin.T
52

funup.r funup.r

ju.nup - compute uptake (residue) ju.nction (& maybe derivatives)

subroutine funup (tderiv, par,
logical tderiv, tder(ARB)

t, y, tder, dy)

real par(ARB), t, y, dy(ARB)

uptaJce ju.nction lor fitting. Returns tissue activity level
at time t according to parameters 'par' (and implicitly, the input
function and its parameters). IJ tderiv is true, Jor every true
tder(i) we return dy(i) = dy / dpar(i).

parameters:
par(1-4,7.8) = kl.k2,k3,k4 FDG rate constants
pa.r(5) =.tv fractional blood volume
par (6) = to time shijt between input and tissue blood

This routine uses a.ctual blood measurements and times jor
convolution when possible (inju.n==4).

extJunc real fimpls, con
real time (MAXDATA), f(MAXDATA,MAXl"IT),
integer k

b(MAXDATA), tlast

data tlast 11.0e+20 I

include parcom
include datcom

if (t < tlast) [
k = 0

]
call funin(.false., inpar, 0., bO)

k=k+1 .
time(k) = t
tlast = t

call funin(.false., inpar, t-par(6), bhere)
f(k, 1) = fimpls(par, t)

if (infun == 4)
Y = con(f(1.1),blood,time,tblood,t-par(6).

fimpls(par,O.),bO,O.,O.,k,nblood)
else [

call funin(.false.,inpar,t,~(k».
y = con(f(1,l),b, lIme, lIme, t-par(6),

fimpls(par,O.),bO,O.,O.,k,k)

y = y + par(5) ·bhere

if (tderlv) [
jder = 1
do i = 1, nuppar

if (tder(i» [
jder = jder + 1
opar = par(i)
if (i == 6) [

h = abs(.O 1 • parO» +1.0e-3
par(6) = par(6) + h

need to see inju.n
need to see blood

start new TUn-through

store current point
remember last seen

a.dd one more input
and impulse point

call funin(.false.,inpar,t-par(6),b 1 here)

if (infun == 4)
y1 = con(f(1.1),blood, time,tblood,t-par(6),
fimpls(par ,0.), bO ,0 .,0 .,k,nblood)

else

Wed 03 Aug 83 18:25:23 Page 1 of funup.r
53

funup.r

]
]
return

end

]

yl = con(f(l.l).b,time.time.t-par(6),
fimpls(par,O.).bO.O.,O .• k.k)

yl = yl + par(5)·blhere

else [

]

h = abs(.005 • par(i» + 1.0e-6
par(i) = par(i) + h
f(k. jder) = fimpls(par. t)

if (infun == 4)

else

yl = con(f(1.jder).blood.time.tblood.t-par(6).
fimpls(par,O.).bO ,0.,0 .,k.nblood)

yl = con(f(l.jder).b, time. time. t-par(6).
fimpls(par,O.).bO.O .• O.,k.k)

yl = yl + par(5) ·bhere

par(i) = opar
dy(i) = (yl-y)/h

funup.r

Wed 03 Aug 83 18:25:23 Page 2 of funup.r
54

. '.

getbld.r

getbld - get time-activity-uncertainty data from .JOB format file

subroutine getbld (file,ndat,time,value,uncert,scale,true)
character file(ARB)
integer ndat
real time (ARB) , value(ARB), uncert(ARB),scale
logical true

Reads activity vs. time from the (archived) blood file named 'file'
Sets number of values 'ndat' and fills arrays time (collection time
(in sec. after injection), vaLue (counts /min/gm), uncert.

function returns OK if successjul, ERR if file wa,s not found or
a read error wa,s encountered. The the filename can be of the form
name, archive1l.ame'fiLena.me, archive1l.ame'su barchive 'filename , etc.

Scale is a scale factor to appLy to the data and uncertainties.

extJunc integer aopen, agtlin, ctoi
extJunc real ctor
integer (d, size(2)
character line(ARGMAX)

define (HEADERLINES,8) # bLood file junlc

ndat = a
? call (print(STDERR, "[GETBLD] file = %s@n", file)

?

if (aopen(file, fd, size) == ERR)
call canl(file)

for (i- = 1; i <= HEADERLINES; i = i + 1) [,
if (agtlin(line, fd, size) == EOF)

skip header

goto 100
call remark(line)

while (agtlin(Iine, fd, size)
j = 1

]

i = ctoi(line, j)
t = ctor(line, j)
x = ctor(line, j)
x = ctor(line, j)
v = ctor(line, j)

if (ndat >= 1)
if (t < time(ndat»

break

ndat = ndat + 1
time(ndat) = t
value(ndat) = v·scale
uncert(ndat)= 1.

true = .false.
call close(fd)
return

!= EOF) [

sampLe number
time
#weig/tt
counts /min
corrected counts /min/gm

check for early junlc at end

a kludge for now

#- .• , uncertainties are bad

100 call sprint(line, "Error - bad format in blood file %s@n", file)
call putlin(line, STOOUT)
call error(line)

end

getbld.T

FH 05 Aug 83 17:48:53 Page 1 of getbld.r
55

getcmd.r

getcmd - read commands

subroutine getcmd

extJunc integer prompt. gettok. equal. setvar. index
character line(ARGMAX). var(MAXNAME)
real ctor
real val
string prstr ": "
include parcom

? call fprint(STDERR. "[GETCMD]@n")

?

end

while(prompt(prstr. line. STDIN) != EOF) [
call fold(line)

j = index (line. '#')
if (j > 1)

line(j) = EOS

get instruction
force Lower case

cLip comments

call fprint(STDERR."command = '%s'@n". line)

j = 1
if (gettok(var. line. j) == EOF)

next

call fprint(STDERR."var = '%s'@n", var)

call skip bl(line. j)
if (line(j) == '=') [

j = j + 1
val = ctor(line. j)

if (setvar(var. val) == ERR)
call fprint(STDERR."·Error -

]

else if (equal(var. "write") == YES)
call dowrit(line. j)

else if (equal{var. "fit") == YES)
call dofit(line. j)

else if (equal{var. "debug") == YES) [
idebug = STDERR
while (gettok(var. line. j) != EOF)

ignore empty Lines

it is an assignment
pick u.p vaLu.e to assign

set it
couldn't set %s@n". var)

if (equal(var. "verbose") == YES)

]
idebug = -STDERR

else if (equal(var. "nodebug") == YES)
idebug = 0

else call fprlnt{STDERR."·Error - illegal command: %s@n". var)

return

getcmd.r

Thu 30.!un 83 16:43:39 Page 1 of getcmd.r
56

getdat.r

getdat - read data as directed by command line arguments

subroutine getdat

exLfunc integer getarg. getepi. getbld. ctoi
extJunc real ctor
real scale
character arg(ARGMAX). file(MAXNAME)

include parco m
include datcom

scale = 1.
call strcpy{"No file specified". file)

for (i = 1; getarg(i. argo ARGMAX) != EOF; = + 1) [
call fold(arg)

if (arg(1) == '-')
select (arg(2» [

case '5':
j = 3
scale = ctor(arg. j)
if (scale <= 0.)

call error("Bad scale factor")

case ;i':
j = 3
breg = ctoi(arg. j)
bscale = sca Ie
call strcpy(file. bfile)

getdat.r

call get fun(bfile. breg.bscale.nblood. t blood. blood.

else

]
return

end

]

ublood.blabel.btrue) .
scale = 1.

call rtoe(bscale.arg, 1.4)
call fprint(STDOUT.
"# Input: %5 - %s (region %d) Scale =

bfile. blabel. breg. argo nblood)

case 'u':
j = 3
treg = ctoi(arg. j)
tscale = scale
call strcpy(file. tfile)
call getfun(trile. trego tscale.ntissu. ttissu. tissu.

utissu. tla bel. ttrue)
scale = 1.

call rtoe(tscale,arg.l.4)
call fprint(STDOUT,
"# Tissue: %s - %s (region %d) Scale =

tfile. tlabel. trego argo ntissu)

default:
call error("Unknown flag")

call strcpy(arg. file)

F'ri 05 Aug 83 1 7:47: 18

%s %d points@n".

%s %d points@n".

Page 1 of getdat.r
57

getfun.r

II getfun - read input or uptalce function from bLood file or epi file

subroutine getfun (file ,re~ion,scale,ndat ,time ,value, uncert,label, true)
character file (ARB) , label(ARB)
integer region, ndat
real scale, time(ARB), value (ARB) , uncert(ARB)
logical true II uncertainties true?

extJunc integer index
real t1(MAXDATA) II hoLds end times

if no ., append subfile
if (index(file, ~:) <= 0) II to archive name

if (region > 0)
call concat(file, "'roi", file)

else
call concat(file, '''blood'', file)

? call fprint(STDERR,"[GETFUN] file = %s@u", file)

if (region <= 0) [II read from blood file
call getbld(file,ndat, time, value, uncert,scale, true)
call strcpy("Blood draws", label)

]
else # read from roi file

call getroi(fiie, region,ndat, time, value,uncert,label,scale, true)

return
end

getfun.r

F'ri 05 Aug 83 1 7:48: 14 Page 1 of getfun.r
58

getnanLr getnanLr

getnam - get parameter name by type. inverse oj whopar.

subroutine getnam (var, kind, index)
character var(ARB)
integer kind, index

byte name(2)
integer ina me
integer in, up, ns
integer mqnam(NQPAR)
equivalence (iname, name)

include namcom
include parcom
common Imqnaml mqnam, in, up, ns

% iname = '??'

end

if (index >= 1)
select (kind) [

]

case INPUTPAR:
if (index <= ninpar)

iname = innam(index)
case UPT AKEPAR:

if (index <= nuppar)
iname = upnam{index)

case MARQPAR:
if (index <= NQPAR)

iname = mqnam(index)
case INPUTFUNCTION:

iname = in
case UPT AKEFUNCTlON:

iname = up
case NSTEPS:

iname = ns

var(1) = name(1)
var(2) = name(2)
var(3) = EOS

return

Thu 30.fun 83 16:43:45 Page 1 of getnam.r
59

getroLr

getroi - read time-activity-uncertainty data. from .ROI format file

subroutine getroi (file,region,ndat,time,value,uncert.label.scale.true)
character file(ARB). label(ARB)
integer region. ndat
real time (ARB), value(ARB). uncert(ARB). scale
logical true

Set ndat. time. value. and uncert. label. true. If the file or the specified
region does not exist we print an error message and ezit.

character line(134)
filedes fdes
real to. tl
extJunc integer da tlin. aopen. pget
int~ size(2)

call tinit
if (aopen(file. fdes. size) == ERR)

call cant(file)

if (datlin(line. fdes. size) == EOF)
call error("No data in ROI file")

if (pget{"NTIMES". 'd'. ndat) != YES)
call error("NTlMES not defined")

if (pget("NREGIONS". 'd'. nov I) != YES)
call error("NREGIONS not defined")

if (region < 1 I region > novI)
call error{"Region out of range")

initialize data table
attempt to open rei file

read up to first data line
there's nothing there?

get counts

getroLr

for (i = 1; i <= ndat; i = i + 1) [
j = 1

get tim.es. average start&stop
note that we have first line

]

to = ctor{line. j)
t1 = ctor{line. j)
time(i) = (to+t1) 12.
if (i < ndat)

call datlin(line. fdes. size)

start & stop times

take m.iddle as measurement time
get nezt line

for (i = 1; i < region; i = i + 1) # skip other regions
for (j = 1; j <= ndat; j = j + 1)

if (datlin(line. fdes. size) == EOF)
1 call error("Out of data in ROI file")

end

for (i = 1; i <= ndat; i = i + 1) [
if (datlin{line. fdes. size) == EOF)

]

goto 1
j = 1
vaIue(i) = ctor(line. j); uncert(i) =
if (scale != 1.) [

value(i) = value{i) ·scale
uncert(i) = uncert(i) ·scale

if (pget("LABEL". 's'. label) == NO)
call strcpy("(No LABEL)". label)

get requested regian.

ctor(line.j)
apply scaling factor

true = .false.
if (pget{"TRUE_UNCERT".

true = i == 1

true only if TRUE_UNCERT == 1
'd'. i) == YES)

call close(fdes) ..
return '

Man 08 Aug 83 11 :42:19 Page 1 of getroi.r
60

-:.

gettok.r

gettok - extract alpha.numeric or punc. token from string

.integer function gettok (tok,
character tok(ARB), str(ARB)
integer j

str, j)

eztracts a token from str starting at j. Skips blanks and
takes a string consisting of all alpha.numeric or one punctuation
character.
Returns EOF when there no StLch tokens to find, OK otherwise.

extJunc integer type # function returns LETTER
or DIGIT or char.

while (str(j) == ' , I str(j) == '@t' I str(j) == '@n')
j = j + 1

if (str(j) == EOS) [# detect no token
? call fprint(STDERR,"[GETTOK] EOF@n")

return (EO F)
]

iout = 2
lok(1) = str(j)
j = j + 1

if (type(tok(1)) != tok(1))
while (type(str(j)) != str(j)) [

tok(iout) = str(j)
iout = iout + 1
j = j + 1

]

tok(iout) = EOS
? call fprint(STDERR,"[GETTOK] '%s'@n", tok)

return(OK)
end

take first one anyhow

first is LETTERlDIGIT
while rest are,
copy them in

gettok.r

Thu 30 Jim 83 16:43:50 Page 1 of gettok.r
61

iniLT-

init - initialize data variables, parameters, etc.

subroutine init

end

integer now(9)
character dat(10), tim(9)
include datcom
include parcom

data inpar /1.0, 1.0, 1.0, .01, 0., 0.1
data uppar / .1, 0.1, 1.0, .001, .1, 0., 0., 0.1

infun = 1
upfun = 1
nsteps = 1000
call finit # initialize junction stu!!

call strcpy("No file specified", bfile)
call strcpy(bfile, tfile)
blabel(1) = EOS
tlabel(1) = EOS

nblood = 0
ntissu = 0
breg = 0
treg = 0
tscale = 1.
bscale = 1.

call errset(72,. true.,.false.) #ignore
call errset(73,.true.,.false.) #
call errset(74,.true.,.false.) #
call errset(75,.true.,.false.) #
call errsel(84,. true. ,.false.) #

call getnow(now)
call fmtdat(dat, tim, now, LETTER)

defaults

floating overflow
zero divide
underflow
float to integer ofl.
sqrt«O)

call fprint(STDOUT,"# %s %s %s@n", VERSION, dat, tim)

return

Thu 30.fun 83 16:43:52

iniLr

Page 1 of init.r
62

" -

marq.f

C MARQ - Marquart Least-Squares fit

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C ,...
~

c
c
c
c
C
c
c
C
c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE MARQ (l"UN,NPAR,PAR.DPAR,COV,NPARM,MAP,
1 NDAT,T,DAT,ERR,
2 NSTEP,CHIO,ISTEP,CHI,IERR,JERR,IDEBUG)

EXTERNAL FUN
INTEGER NPAR, NPARM, MAP(l), NDAT, NSTEP, ISTEP, IERR, JERR(l)
REAL PAR(1). DPAR(l), COV(l), T(1), DAT(1) , ERR(1), CHIO, CHI

Subroutine MARQ finds the set of parameters of function
FUN which minimizes chi-squared for the set of measurements
provided. In the arugument descriptions below, [I] means
that the argument is an input (used by the subprogram), [0] means
that the argument is an output (set by the subprogram), [10] means
that it is both used and set.

FUN

NPAR
PARO
DPARO
COVO

NPARM
MAPO

NDAT
T{)
DATO
ERRO,

NSTEP
CHIO
ISTEP
CHI

[I] - Function and derivative routine supplied by user
SUBROUTINE FUN (TDERN,PAR,TIME,Y,TDER,Dy)
LOGICAL TDERN,TDER(l)
REAL PAR(l),TIME,Y,DY(l)

TDERN [1]- If .true., compute derivatives. If

PARO
TIME
Y
TDERO

DYO

.false., do not return any derivatives in
[1]- Parameters of function
[1]- Value of independent variable
[0]- Value of the function at TIME
[1]- Logical array: if TDER(i) then compute

DY(i) = dFUN IdPAR(i)
[0]- Array of derivatives

[IJ - Length of parameter array PAR
[10]- Parameter array
[0] uncertainties of fit parameters (0 if not fit)
[0] - Covariance matrix:

COV«I-l)·NPARM + J) = cov(par(i),par(j))
if par{i) and par(j) were fit, 0 otherwise

[I] - Number of parameters in PAR to fit
[I] - List (indices) of which parameters in PAR to fit

[I] - Length of data array
[I] - Values of the independent variable
[IJ - Data array
[I] - Error array (uncertainties in DAT)

[I] - Maximum number of steps to take
[0] - Initial chi-squared
[0] - Number of steps taken
[0] - Final chi-squared

IERR [0] - Error flag:
-I, Error in parameter setup

I, Too many iterations
0, No errors detected
2, Failed to invert matrix while stepping
3, Failed to invert matrix after convergence
4, Fit interrupted by QUIT before convergence

JERR [0] - Parameter error flags:
-1, Parameter not fit

0, Normal parameter fit
1, Parameter insensitive
2, Parameter correlated

marq.f

DY

1hu 30.}un 83 16:43:58 Page 1 of marq.f

63

marq.f

C
C
C
C
C
C
C
c--
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

IDEBUG [I] - file descriptor for reporting debug information:
<0 large amount of info on unit iabs(idebug)
o no debugging information

>0 iterations reported on unit idebug

MARQ will exit prematurely with exit status 4 if the
logical flag QUIT in common 1 QUIT 1 is set true.

Variables internal to this routine:

A

D
G
GS
JFLAG

PARM
RTID

TAR
TDER

Second derivative matrix in various forms:
originally calculated in upper triangle,
normalized into lower triangle,
brought to upper triangle and inverted in place.

This is the matrix '8' in the Marquardt algorithm.
- Step
- Gradient. This is the vector 'E' in the Marquardt algorithm.
- Normalized gradient

Flags from SPDINV
JFLAG = 0, Normal
JFLAG = 1, Insensative parmeter
JFLAG = 2, CorreIa ted parameter

Mapped parameters
- Normalization factors (square-root of inverse

of diagonals of A)
- Temporary parameters
- Logical array indicating which derivatives

to return
DEBUG,VERSOS - logical debug printing flags
TEST - used in debug printout; true if just had a bad step

PARAMETER maxp = 10 ! .max # of paramters (See also MQDER)
PARAMETER rripsq = lOa! and squared

DIMENSION JFLAG(maxp),COM(3)
DIMENSION PARM(maxp),G(maxp),GS(maxp),RTID(maxp),TAR(maxp)
DIMENSION D(maxp),A(mpsq)
LOGICAL TDER(maxp), debug, verbos, quit, test
COMMON lMARQ/TCON,ECON,ZLAM,VLAM,COZ,VCONST,EPS
COMMON/LST ILS(maxp)
common 1 qui t 1 quit
common Imdebugl debug, verbos, ldebug
DATA EPSIl.E-61

C Convergence parameters

DATA TCON,ECON 1 l.E-5,1.E-41

C Diagonal increment, factor to change it by,
C limiting cosine of angle from the gradien t,
C factor to cut step size.

DATA ZLAM,VLAM,COZ,VCONST 10.1,10.,0.8,0.51

marq.f

C --
C SETUP
C --

C Check some input parameters.

IERR = -1
DEBUG = IDE BUG .NE. 0
VERBOS = IDEBUG .LT. 0
LDEBUG = IABS(IDEBUG)

Thu 30,}un 83 16:43:58

flags for switching debug info

Page 2 of marq./

64

.'

marq.f

IF (NPAR.LT.1 .OR. NPAR.GT.MAXP .OR.
1 NPARM.LT.1 .OR. NPARM.GT.NPAR) RETURN

DO 12 I = 1.NPARM
J = MAP(I)
IF (J.LT.1 .OR. J.GT.NPAR) RETURN
IF (I .GT. 1) THEN

II=I-1
DO 10 JJ = 1.I1

IF (J .EQ. MAP(JJ» RETURN
10 CONTINUE

ENDIF
12 CONTINUE

IERR = 0

C Setup virtual row ongms

out of range

out of range

duplicate

C (For a square matrix. because we will use both upper
C and lower triangles)

LS(l) = 0
DO 14 1 = 2.NPARM

14 LS(l) = LS(I-1) + NPARM

C Setup derivative flags for variable parameters.

DO 16 I = 1.NPAR
16 TDER(I) = .FALSE.

DO 18 1 = 1.NPARM
J = MAP(l)

18 TDER(J) = .TRUE.
C
C . ·Map parameters and calculate initial chi-squared.
C

CALL MQMAP (l.NPAR.PAR,NPARM.MAP.PARM)
CALL MQCHI (FUN.NPAR.PAR.NPARM.MAP.PARM.

1 NDAT.T.DAT.ERR.CHI)
CHIO = CHI

C..... DEBUG PRINTOUT

IF (DEBUG) THEN
CALL RTOE(CHI.A.11.3) ! use A as string scratch
CALL FPRINT(LDEBUG.'Entering MARQ. Chi = 7os@n'. A)

ENDIF

C Setup initial values for stepping.

XLAM = ZLAM !starting value of diagonal increment
ISTEP = 0 !initiaJize step number

marq.f

C --
C TOP OF STEPPING LOOP
C --
C
C Stay within step limit.

30 IF (ISTEP .GE. NSTEP) THEN
IERR = 1
RETURN

ENDIF
IF (QUIT) THEN

IERR = 4
GOTO 81

ENDIF

Thu 30 Jun 83 16:43:58 Page 3 of marq.f
65

marq.f

ISTEP = ISTEP + 1
CONST = 1. !keep track of step cut factor

C Get gradient (G) and second derivative matrix (A);
C second derivatives go to upper triangle.

CALL MQDER (FUN,NPAR.PAR.NPARM.MAP,PARM.
1 NDAT.T.DAT.ERR.TDER.G.A)

C Calculate normalization factors.

DO 32 I = l,NPARM
LI = LS(I)
RTID (I) = O.

32 IF (A(I+LI) .GT. 0.) RIID(r) = l.1SQRT(A(I+LI))

C Normalize gradient (G) and second derivative matrix (A);
C normalized gradient goes to GS. and
C normalized second derivatives go to lower triangle.

DO 34 J = l,NPARM
LJ = LS(J)
GS(J) = G(J) ·RTID(J)

DO 34 I = J,NPARM
LI = LS(I)

34 A(J +LI) = A(I +LJ) ·RTID(I) ·RTID(J)

C Cut XLAM if not too small already.

IF (XLAM .GT. EPS)XLAM = XLAM/VLAM

marq.f

C --
C
C
C
C
C
C

Put XLAM + 1. on the diagonal (same as adding XLAM; we've
normalized the diagonal to one. and bring the normalized matrix
to the upper triangle.

40 DO 42 J = l,NPARM

C

42

LJ = LS(J)
IF (RTID(J) .GT. 0.) THEN

A(J +LJ) = XLAM + 1.
ELSE

A(J +I.J) = XLAM
ENDIF

DO 42 I = J,NPARM
LI = LS(I)
A(I+LJ) = A(J+LI)

C Invert the matrix.

CALL SPDrNV (A.NPARM,IFLAG.JFLAG)
IF (IFLAG .NE. 0) THEN

[ERR = 2
RETURN

ENDIF

C Matrix multiply and unnormalize to get new parameters.

DO 50 I = 1,NPARM
LI = LS(I)

Thu 30 Jun 83 i 6:43:58 Page 4 of marq.f
66

-.

..

marq.f

52

54

0(1) = O.
IF (JFLAG(I) .EQ. 0) THEN

DO 52. J.= 1.1
LJ = LS(J)
D(I) = D(I) + A(I +LJ) ·GS(J)

IF (I .NE. NPARM) THEN
JJ = I + 1
DO 54 J = JJ.NPARM

ENDIF
ENDIF

0(1) = 0(1) + A(J+LI)·GS(J)

0(1) = D(I)·RTID(I)
TAR(I) = PARM(r) + 0(1)

50 CONTINUE

marq.f

C --
C TEST STEP
C --
C
C Test for a good step.

CALL MQCHI (FUN.NPAR.PAR.NPARM.MAP.TAR.
1 NDAT.T.DAT.ERR.TCHI)

IF (TCHI .LE. CHI) GO TO 70
TEST = .TRUE.
IF (VERBOS) GOTO 73 ! go do debug printout first

C Not a good step; see if we're near the gradient.

51 COSINE = DOT(G.D.NPARM)/
SQRT(DOT(G.G.NPARM)·DOT(D.D.NPARM»

IF(~OSINE .GT. COZ) GOTO 60

C Increase XLAM and try again.

XLAM = XLAM·VLAM
IF (QUIT) THEN

IERR = 4
GOTO 81

ENDIF
GO TO 40

C Bad step but right direction;
C reduce step size until chi-squared is ok.

60 CONST = CONST·VCONST
DO 62 I = 1.NPARM

0(1) = D(I)·VCONST
62 TAR(I) = PARM(I) + D(I)

CALL MQCHI (FUN.NPAR.PAR.NPARM.MAP.TAR.
1 NDAT.T.DAT.ERR.TCHI)

IF (TCHI .LE. CHI) GO TO 70
IF (QUIT) THEN

IERR = 4
GbTO 81

ENDIF
GOTO 60

\'

C Good step; update chi-squared and parameters.

70 TEST = .FALSE.
CHI = TCHI
DO 72 I = 1.NPARM

72 PARM(I) = T AR(I)

1hu 30,}un 83 16:43:58 Page 5 of marq.f

67

marq.f

C
c
C

73

94

C

74

DEBUG PRINTOUT

IF (DEBUG) THEN
CALL RTOE(CHI,COV,11,3)
CALL FPRINT(LDEBUG,'@nIteration %d
CALL RTOE(XLAM,COV,11.3)

! sorry, this is sooooo grody
! use COV as string scratch
Chisqr = %s'. ISTEP, COV)

CALL FPRINT(LDEBUG,' Lam = %s', COY)
CALL RTOE(CONST.COV,l1,3)
CALL FPRINT(LDEBUG,' Const = %s@n'.COV)
DO 94 I = 1. NPARM

CALL RTOE(PARM(I),COV,11.3)
CALL FPRINT(LDEBUG: Par %2d %s', I. COY)
CALL RTOE(D(I). COV, 11. 3)
CALL FPRINT(LDEBUG,' ; %s %d@n'. COV, JFLAG(I)

CONTINUE
IF (TEST) GOTO 51

ENDIF
! we were just testing this set of pa rams
! ... but you've seen worse so don't complain

Test for convergence; if not. go take another step.

DO 74 I = 1.NPARM
IF (ABS(D(l)/(TCON+ABS(PARM(I))) .GT. ECON) GO TO 30

CONTINUE

marq.f

C --
C CONVERGENCE',
C --
C
C Put 1. on the diagonal, and
C bring the normalized matrix to the upper triangle.

IF (DEBUG) CALL FPRINT(LDEBUG,'@nConvergence!!!@n')
81 CONTINUE

DO 80 J = l,NPARM
LJ = LS(J)
IF (RTID(J) .GT. 0.) THEN

A(J+U) = 1.
ELSE

A(J+U) = o.
ENDIF

DO 80 I = J,NPARM
LI = LS(O

80 A(I+U) = A(J+LI)

C Invert the matrix.

CALL SPDlNV (A,NPARM,IFLAG,JFLAG)
IF (IFLAG .NE. 0) THEN

IERR = 3
RETURN

END IF

C Unnormalize the inverted matrix (gives covariance matriX).

DO 84 J = 1,NPARM
LJ = LS(J)
DO 84 I = J,NPARM

84 A(I+LJ) = A(I+LJ)·RTID(I)·RTID(J)

C Extract uncertainties, and symetrize
C covariance matrix to lower triangle,

DO 8S J = l,NPARM

Thu 30 Jun 83 16:43:58 Pa.ge 6 of ma.rq .f
68

",

marq.f

LJ = LS(J)
D(J) = SQRT(A(J+LJ))

DO 86 I = J.NPARM
LI = LS(I)

86 A(J +LI) = A(I +LJ)

C Unmap parameters. errors. and covariance matrix.

CALL MQMAP (-l.NPAR.PAR.NPARM.MAP.PARM)
CALL MQMAP (-lOl.NPAR.DPAR.NPARM.MAP.D)
CALL MQMAP (-102.NPAR.COV.NPARM.MAP.A)

C Set JERR equal to JFLAG when fit; set to -1 when not.

DO 88 I = 1.NPAR
88 JERR(I)= -1

DO 89 I = 1.NPARM
J = MAP(I)

89 JERR(J) = JFLAG(I)

RETURN
END

Thu 30.fun 83 16:43:58

marq.f

Page 7 of marq./
69

mqchLf mqchi.f

C MQCHI - Compute Chi-squared by calling user's FUN.

SUBROUTINE MQCIII (FUN ,NPAR,P AR,NPARM , MAP ,PARM,
1 NDAT,T,DAT,ERR,CHI)

EXTERNAL FUN
INTEGER NPAR, NPARM, MAP(l), NDAT
REAL PAR(1), PARM(1), T(1), DAT(l), ERR(l), CHI

BYTE VAL(40)
LOGICAL TDERIV
DATA TDERIV I.FALSE.!
DATA BIG 11.0E+201 ! upper limit on chi square
LOGICAL DEBUG, VERBOS, TEST
COMMON IMDEBUGI DEBUG, VERBOS, LDEBUG

C Unmap parameters before calling FUN.

CALL MQMAP(-1,NP AR,PAR,NPARM,MAP ,PARM)

IF (VERBOS) THEN
CALL FPRINT(LDEBUG:[CHI] Params:@n')
DO 1 K = 1, NPARM

CALL RTOE(PARM(K) ,VAL, 1 t,3)
CALL FPRINT(LDEBUG:%d) %s ',K, VAL)

1 CONTINUE_
CALL FPRINT(LDEBUG:@n')

ENDIF

C Calculate the chi-squared.

CHI= O.
DO 16 K = l,NDAT

CALL FUN (TDERIV,PAR,T(K),Y)
CHI = CHI + «DAT(K)-Y)/ERR(K»"2
IF (CHI .GE. BIG) GOTO 11

10 CONTINUE
11 CONTINUE

IF (VERBOS) THEN
CALL RTOE(CHl, VAL, 11, 3)
CALL FPRINT(LDEBUG, '»> Chi = %s@n', VAL)

ENDIF
RETURN
END

Thu 30 Jun 83 16:43:59 page 1 of mqchi.f

70

..

..

mqder.f mqder.f

C MQDER - Compute Derivative Matrix from user's FUN.

10
11

SUBROUTINE MQDER (FUN,NPAR,PAR,NPARM,MAP,PARM,
1 NDAT,T,DAT,ERR,TDER,G,A)

EXTERNAL FUN
LOGICAL TDER(1)
INTEGER NPAR, NPARM, MAP(1), NDAT
REAL PAR(1), PARM(1), T(1), DAT(1), ERR(1), G(1), A(1)

PARAMETER maxp = 10 ! max # of parameters

REAL DY(maxp),DYM(maxp)
COMMON ILST ILS(1)
LOGICAL TDERIV, DEBUG, VERBOS
COMMON IMDEBUGI DEBUG, VERBOS, LDEBUG
DATA TDERIV I.TRUE.I

DO 11 J = 1,NPARM
G(J) = O.
LJ = LS(J)
DO 10 I = J,NPARM

A(I+LJ) = O.
CONTINUE

CONTINUE

! clear gradient & deriv products

CALL MQMAP(-l,NPAR,PAR.NPARM,MAP,PARM)! Unmap the paramters before calling FN

C Calculate the gradient (G) and the second derivative matrix (A).

20

21
22

1

23

DO 23 K = 1,NDAT
CALL FUN (TDERIV,PAR,T(K),Y,TDER,Dy)
ERSQl = 1./ERR(K)"2
CALL MQMAP(1,NPAR,DY,NPARM,MAP,DYM)

DO 20 I = l.NPARM
G(I) = G(I) + DYM(I)·(DAT(K) - y)·ERSQI

CONTINUE

DO 22 J = l,NPARM
LJ = LS(J)
DO 21 I = J,NPARM

A(I+LJ) = A(I+LJ) + DYM(I)·DYM(J)·ERSQI
CONTINUE

CONTINUE

IF' (VERBOS) THEN
CALL RTOF(T, VAL, 6, 1)
CALL FPRINT(LDEBUG:Der> @t=%s',VAL)
CALL RTOE(Y, VAL, 11, 3)
CALL FPRINT(LDEBUG: y=%s@n', VAL)
DO 1 J = 1, NPARM

CALL RTOE(DYM(J) ,VAL, 13, 3)
CALL FPRINT(LDEBUG:d%d=%s ',J, VAL)

CONTINUE
CALL FPRINT(LDEBUG:@n')

ENDIF
CONTINUE
RETURN
END

Thu 30 Jun 83 16:44:01

map derivatives

Page 1 of mqder.f

71

mqmap.f

C MQMAP - Map/Unmap parameter array or matrix

SUBROUTINE MQMAP (N,NPAH,X,N"PARM,MAP,XM)

C Map (or unmap if N<O) NPARM (of the NPAR) values of X
C into XM according to MAP.
C MAP contains the indices to the unmapped array.
C N indicates the dimension of the array (2 or less),
C and legal values are 1. 2, -1, -2, -101, -102.
C Negative values of N indicate unmapping, and for
C those less than -100, X is zeroed before the transfer.

INTEGER N, NPAR, NPARM, MAP(l)
REAL X(l), XM(l)

LOGICAL ZERO

NABS = IABS(N)
ZERO = NABS .GT. 100
IF (ZERO) NABS = NABS - 100
IF (N .GT. 0) GO TO (10, 20) NABS
IF (N .LT. 0) GO TO (110,120) NABS
RETURN

10 DO 121M = l,NPARM
I = MAP(IM)

12 XM(IM) = X(I)
RETURN

20 IJM = 0
DO 22 JM = l,NPARM

J == NPAR·(MAP(JM)-l)·
DO 221M = 1,NPARM

IJM = IJM + 1
IJ = J + MAP (1M)
XM(IJM) = X(IJ)

22 CONTINUE
RETURN

110 IF (ZERO) THEN
DO 112 I = 1,NPAR

112 XCI) = O.
ENDIF

114 DO 116 1M = l,NPARM
r = MAP(IM)

116 XCI) = XM(IM)

120

122

RETURN

IF (ZERO) THEN
NPSQ = NPAR"2
DO 122 I = l,NPSQ

XCI) = o.
END IF

124 IJM = 0
DO 126 JM = l,NPARM

J = NPAR·(MAP(JM)-l)
DO 126 1M = 1,NPARM

IJM = IJM + 1
IJ = J + MAP(1M)
X(IJ) = XM(IJM)

126 CONTINUE
RETURN
END

Thu 30 Jun 83 16:44:03

mqrnap.f

Page 1 of mqmap.f
72

..

penter.r

penter - enter definition into symbol table

subroutine penter (name, par) .
character name (ARB) , par(ARB)

enters defintion 'par' of parameter 'name'.

pointer point
integer info(T .-SIZE)
extJunc pointer sdupl
extJunc integer lookup, enter
ext.-<;ubr strcpy, dsfree, error
include tablecom

if (lookup(name, info, table) == YES) [# there's an old definition

]
call dsfree(info(T JlOINTER)) # so free its string space

penter.r

point = sdupl(par) # enter defn into data storage
if (point == LAMBDA)

call error("Couldn't allocate string space for parameter")

info(T JlOINTER) = point # this is the stuff to store
if (enter(name, info, table) == ERR)

call error("Couldn't add definition to table")

? call fprint(STDERR, "[PENTER] '%s' '%s'@n", name, par)
return

end

Thu 30 Jun 83 16:44:10 Page 1 of penter.r
73

pflag.r

pflag - print strings for flags MARQ returns

subroutine pflag (fdes, flag)
integer fdes, flag

prints a cha,rara.cter string on fdes

end

select(flag) [
case -1:

call putlin(" (not fit)", fdes)
case 0:

]

,
case 1:

call putlin("
case 2:

call putlin("
default:

call putlin("

return

insensitive", fdes)

correlated", fdes)

??? flag ???", fdes)

Thu 30.fun 83 16:44:11

nothing - fit ok

unlcnown flag

pflag.r

Page 1 of pflag.r
74

pget.r

pget - get ROJ symbol definition in desired format

integer function pget(name. fmt. par)
character name(ARB). fmt
integer par(2)

fetches parameter 'name' into 'par' interpreted in format 'fmt':
's' = string. 'd' = decimal integer. '0' = octal integer. 'j =
floating point (single precision).
1/ the parameter was defined. returns YES. If not. doesn't alter par
and returns NO.

character cmem(l)
extJunc integer lookup. ctoi
extJunc real ctor
exL..subr strcpy
integer info(TsIZE)
real rpar
integer ipar(2)
equivalence (rpar. ipar(1))
include tablecom
common Icdsmeml cmem

union !real. integer(2)!

? call fprint(STDERR."[PGET] '%s' '%c m
• name. fmt)

if (Iookup(name. info. table) != YES) [# well. that's that.
? call fprint(STDERR. " ·@n")

return(NO)

pget.r

= cvLto...cptr(info(T ...POINTER» # convert integer array index to
character array index

? call fprint(STDERR. " = '%s'@n". cmem(j»

select (fmt) [
case's':

call strcpy(cmem(j). par)
s: copy string

case 'd': # d: decode as integer

end

pare!) = ctoi(cmem. j)

case 'r':
rpar = ctor(cmem. j)
pare!) = ipar(l)
par(2) = ipar(2)

r: decode as real

we assume a real is same
size as two integers

case '0': # 0: decode as octal
par(1) = 0
while (cmem(j) >= '0' & cmem(j) <= '7') [

par(1) = par(l)·a + cmem(j)-'O'
j = j + 1

]

default:
call error("PGET with undefined format")

]
return(YES)

Thu 30 Jun 83 16:44:13 Page 1 of pget.r
75

rt3.r

rt3 - find roots of cubic polynomial with three real roots.

subroutine rt3 (p, q, r, alpha, beta,
real p, q, r, alpha, beta, garruna
integer ierr

gamma, ierr)

.#---

Ji1inds the 3 real roots of the cubic equation;

1he roots are returned in alpha, beta, and gamma.

If three real unequal roots exist, ierr= 0 is returned;
if three real roots ezist, at least two of which are
equal, ierr= 1 is returned; otherwise ierr=-l is returned,
and alpha, beta, and gamma are meaningless.

real = -(2. ·p"3 - 9.·p·q + 27. ·r) 1 54.

rt3.r

sqimag = -(4. ·p"3·r - (p·q)"2 - 18. ·p·q·r + 4. ·q"3 + 27. ·r··2)1 108.

end

if (sqimag < 0.)
ierr = -1
return

J
if (sqimag == 0.)

ierr = 1
else

ierr = 0

lheta3 = alan2(sqrt(sqimag), real) 1 3.
abs3 (real··2 + sqimag)"(1./6.)

real3 = abs3· cos(theta3)
aimag3 = abs3 • sin(theta3)
sqrl3 = sqrt(3.)

alpha = 2. ·real3 - p/3.
bela = - real3 - sqrl3·aimag3 - p 13.
gamma = - real3 + sqrt3·aimag3 - p/3.

return

1'hu 30 Jun 83 16:44: 15 Page 1 of rt3.r
76

j)--

setmap.r setmap.r

setmap - determine which parameters to /it

subroutine setmap (line. map. nparm.
character line(ARB)

which)

integer map(ARB). nparm. which

?

end

line() is a list oj parameters to /it.
into a list (map) oj parameters to fit.

extJunc integer type. gettok. equal
character var(MAXNAME)
integer set. i. ind
logical dupe

nparm = 0
idebug = 0
j = 1

while (gettok(var. line. j) != EOF) [
if (equal(var. ".") == YES)

next

call whopar(var. set. ind)

It is picked apart

call fprint(STDERR."· parameter set ind %s %d %d@n". var. set. ind)

]

if (set == UNKNOWN) [

]

call fprint(STDERR."Unknown parameter name %s@n". var)
nparm = 0
return

if (set != INPUTPAR & set != UPTAKEPAR) [

]

call fprint(STDERR."Can only fit input or uptake parameters@n")
return

if (nparm == 0)
which = set

else [

]

if (set != which) [

]

call fprint(STDERR."Can't mix in/up params in one fit@n")
nparm = 0
return

dupe = .false.
do i = 1. nparm

if (map(i) == ind) [
call fprint(STDERR."%s duplicated in parameter list@n")
dupe = . true.

]

if (! dupe)
nparm = nparm + 1
map(nparm) = ind

call skip bl(line. j)

return

Thu 30.fun 83 16:44: 16 Page 1 of setmap.r
77

setvar.r

setvar - set parameter by name

integer function setvar (var, val)
character var(ARB)
real val

real qpar(l)
extJunc integer index
integer kind, status

include parcom
common /marq/ qpar

status = OK

call whopar(var, kind, index)
? call fprint(STDERR,"[SETVAR] 70s = %d %d@n", var, kind, index)

end

select (kind) [
case INPUTPAR:

inpar(index) = val
case UPTAKE PAR:

uppar(index) = val
case MARQPAR:

qpar(index) = val
case INPUTFUNCTION:

i = int(val)·
if (i < 1 Ii> minfun)

call fprint(STDERR,"·Bad input function number %d@n",i)
else [

infun = i
call finit

]
case uPTAKEFUNCTlON:

i = int(val)
if (i < 1 Ii> mupfun)

call fprint(STDRR,"·Bad uptake function number %d@n.",i)
else [

]

upfun = i
call finit

case NSTEPS:
nsteps = int(val)

default:
status = ERR

return(status)

setvar.r

Thu 30.fun 83 16:44: 18 Page 1 of setVrLT.T

78

, .

shocov.r

shoeov - print aova:ria.nee matri.x

subroutine shocov(cov,
real cov(ARB)
integer npar, which

npar, which)

shocov.r

prints covariance matriz and correlations for the parameters.
we print covariances in the u.pper triangle and correlations
in the lower triangle.

version 2: only prints correlations (Lower triangle).

character var(MAXNAME)
define(COV.cov«Sl-1)·npar+S2»

call fprint(STDOUT, "@nCorreiation Matrix:@n ")

?
?
?
?

end

do i = 1, npar [
call getnam(var, which, i)
call fprint(STDOUT, " %s

]
call putch('@n', STDOUT)

do i = 2, npar L
call getnam(var, which. i)
call fprint(STDOUT, "%s " var)

for (j = 1; j < i; j = j + 1) [
cor = COV(Li) ·COV(j,j)
if (cor> 0.)

cor = COV(i,j)/sqrt(cor)
else

cor = 0 ..
call rtof(cor, var, 7, 3)

",var)

call fprint(STDOUT," %s " var)

]

]
for (; j <= npar; j = j + 1) [

call rtoe(COV{i,j), var, 11, 3)
call putlin(var, STDOUT)

]
call putch('@n', STDOUT)

return

Thu 30 Jun 83 16:44:19

only print cov's when
debu.gging

Pa.ge 1 of shocov.r
79

shopar.r

shopar - print parameters on file

subroutine shopar (fdes, dounc, uncert,
integer fdes, dounc, do flag, flags(ARB)
real uncert(ARB)

doflag, flags)

II

end

shopar prints the input and uptalce function nubmers and
parameters on 'fdes'. If dounc is INPUTPAR or UPTAKEPAR
we print uncertainties next to the appropriate parameters.
Lilcewise, we print the flag labels next to
the parameters if doflag = INPUTPAR or UPTAKEPAR:
for param(i), we print

(not fit)

correlated
insensitive

character name(3), va I(MAXNAM E)
include parcom

if flags(i) =

call fprint(fdes, "InputJunctioIl %d@n", infun)

do i = 1, ninpar [
call getnam(name, INPUTPAR, i)
call rtoe(inpar(i), val. 11, 4)
call fprint(fdes,"%s = %s", name, val)
if (dounc == INPUTPAR) [

call rtoe(uncert(i), val, 11, 4)
call fprint(fdes," +- %s", val)

]
if (do flag = = INPUTPAR)

call pflag(fdes, flags(i»
call pulch('@n', fdes)

-1
a
1
2

call fprint(fdes, "@n@UptakeJunction %d@n", upfun)

do i = 1, nuppar [

]

call getnam(name, UPTAKEPAR, i)
call rtoe(uppar{i), val, 11, 4)
call fprint(fdes,"%s = %s", name, val)
if (dounc == UPTAKEPAR) [

call rtoe(uncert{i), val, 11, 4)
call fprint{fdes," +- %s", val)

]
if (do flag == UPTAKE PAR)

call pflag(fdes, flags{i»
call putch('@n', fdes)

return

Thu 30 Jun 83 16:44:21

shopar.r

Page 1 of shopar,r
BO

0,

spdinv.f spdinv.f

C SPDINV - Invert Symmetric PosDev Matrix.

SUBROUTINE SPDINV(S.N.IFLAG.JFLAG)

C INVERTS SYMMETRIC POSITIVE-DEFINITE MATRIX "S" IN PLACE
C USING ONLY THE UPPER TRIANGLE. USER PROVIDES ARRAY "LS"
C OF POINTERS TO THE VIRTUAL ROW ORIGINS OF "S".
C
C S (I + LS(J)) IS THE (I.J) ELEMENT OF THE MATRIX
C FOR 1 .LE. J .LE. N • J .LE. I .LE. N

12

11

50
13

14

15

16

18

19

DIMENSION S(1).JFLAG(l)
COMMON ILST ILS(1)
DOUBLE PRECISION SA.SB
DATA EPS 1.EPS2/1.E-35.l.E-61

DO 10 r = 1.N
LI = LS(I)
IF(S(LI+I) .LT. EPS1) GO TO 14

IF(I .EQ. 1) GO TO 11
TEMP = S(LI+I)
KI<=1-1

DO 12 K = l.KI<
LK = LS(K)
S(Ll+I) = S(Ll+I) - S(LK+I)"2

IF(S(LI+I) .LT. EPS2·TEMP) GO TO 15

JFLAG(I) = 0
SA = S(Ll+I)
SB = DSQRT(SA)
S(LI+I) = SB

IF(I .EQ. N) GO TO 10
JJ = I + 1

DO 13 J = JJ.N
IF(I .EQ. 1) GO TO 13
DO 50 K = 1.KI<

LK = LS(K)
S(LI+J) = S(LI+J) - S(LK+I)·S(LK+J)

S(Ll+J) = S(Ll +J) IS(U+I)

GO TO 10
JFLAG(I) = 1
GO TO 16
JFLAG(I) = 2
IF(S(LI+I) _LT. -EPS2~EMP) GO TO 100
DO 18 J = 1.1

LJ = LS(J)
S(LJ+I) = O.

DO 19 J = I.N
S(Ll+J) = O.

S(LI +I) = 1.

10 CONTINUE

DO 20 1 = 1.N
LI = LS(I)
S(LI+I) = 1./S(LI+I)
IFeI .EQ. N) GO TO 20
JJ = I + 1

DO 21 J = JJ.N

Thu 30 Jun 83 16:44:23 Page 1 of spdinv.J

81

spdinv.f

LJ = LS(J)
S(Ll+J) = S(U+J)·S(LI+I)
IF(J .EQ. JJ) GO TO 21
KK = J - 1
DO 52 K = JJ,KK

LK = LS(K)
52 S(U+J) = S(LI+J) + S(LI+K)·S(LK+J)
21 S(LI+J) = -S(LI+J)/S(LJ+J)
20 CONTINUE

DO 30 I = 1,N
LI = LS(I)
DO 30 J = I,N

W = LS(J)
S(LI+J) = S(LI+J)·S(LJ+J)
IF(J .EQ. N) GO TO 30
KK=J+1
DO 54 K = KK,N

54 S(U+J) = S(LI+J) + S(LI+K)·S(LJ+K)

30 CONTINUE

IF LAG = a
RETURN

100 IF LAG = I
RETURN
END

Thu 30.fun 83 16:44:23

spdinv.f

Page 2 of spdinv.J
62

tinit.r

tinit - initialize ROI symbol ta.ble

subroutine lini t

extJunc integer mktabl
DS-DECL(mem.TABLESIZE)
include tablecom

call dsinit(T ABLESIZE)
table = mktabl(T -SIZE)
if (table == LAMBDA)

call error("Can't create parameter table")

? call fprint(STDERR. "[TINIT] Size = %d@n". TABLESIZE)
return

end

Thu 30 Jun 83 18:47:04

tinit.r

Page 1 of tinit.T
83

whopar.r

whopar - find out what lcind oj parameter the named variable is

subroutine whopar (var, kind, index)
character var(ARB)
integer kind, index

define(NQP AR, 7)

byte name(2)
integer iname
integer in, up, ns
integer mqnam(NQPAR)
equivalence (iname, name)

include namcom
include parco m
common Imqnaml mqnam, in, up, ns

% data mqnaml 'tc', 'ec', 'zl', 'vI', 'co', 'vc', 'ep'l
% data in, up, ns I'in', 'up', 'ns'l

name{l) = var(1)
name(2) = var(2)

whopar.r

? call fprint(STDERR, "[WHOPAR] '%c' '%c'@n", name(1), name(2))

do i = 1, ninpar [
if (iname == innam(i)) [

end

kind = INPUT PAR
index =
return

]
]
do i = 1, nuppar [

if (iname -- upnam(i))
kind = UPTAKE PAR
index =
return

]
]
do i = 1, NQPAR [

if (iname -- mqnam(i))
kind = MARQPAR
index =
return

]
]

if (iname == in)
kind = INPUTFUNCTION

else if (iname == up)
kind = UPTAKEFUNCTION

else if (iname == ns)
kind = NSTEPS

else
kind = UNKNOWN

return

Thu 30,fun 83 16:44:27

[

[

Page 1 of whopar.r
84

Appendix B. Format of ROI and Blood Data Files

B.l. Region of Interest (ROI) File Format
Data reduced from PET images consist of several activity-per-volume

element vs. time sets. This section describes a file format to represent these
data with adequate internal documentation, allowing for easy extension of the
types of included data.

A ROI file consists of the following parts:

1. header comments (2 or more lines)
2. sample times
3. activity values (lor more sets)

Comment lines begin with #' and may appear anywhere in the file. Blank lines
may appear anywhere; they are ignored.

B.l.l. Header comments
Comment lines with % as the first nonblank character after # are parame

ter definitions, and have the following format:

%P ARAMETER_ NAME% parameter_value

The parameter name consists of one or more printing characters embedded
between %'s. The parameter value (string representation) starts with the first
nonblank character after the closing % and continues to the end of the line.
Thus

%LABEL% My Dog Has Fleas
#%ITEM%
%DIGIT% 5
this is a comment.

defines three parameters, LABEL="My Dog Has Fleas", ITEM='~" (empty string),
and DIGIT="5".

Parameters may be redefined anywhere in the file. The definition of a
parameter may thus depend on how far one has read into the file. The only
parameters which may be sensibly redefined are LABEL and NPIXELS. Definition
of NREGIONS and NTIMES is mandatory. The basic set of parameters for the ROI
files are:

Name
BED
BOI
COMPOUND
DATE
HGAP
HLIFE
ISOTOPE
LABEL
NPIXELS
NREGIONS
NTIMES
ORGAN
OVDATE
OVLABEL
OVTIME
PWID
SPECIES
STUDY
SUBJECT
XCENT
YCENT

Description
bed position in mm
time of injection
compound injected
date of study
ring half-gap in cm
half life of isotope in seconds
labeling isotope in XXnn format
description of region
number of pixels in region
number of regions of interest
number of time points
organ counted/imaged
date overlay file was created
overlay file label
time overlay file was created
pixel width in proj. bins
subject species
experiment title
subject's name
image horizontal offset
image vertical offset

Example
450
14:43:12
Palmitate
21-Aug-82
1.
1230.
Cll
Left ventricle
234
2
45
Heart
22-Aug-82
Spot Heart Overlays
10: 12:01
.2
Dog
PA #2, +drug, Sn spheres
Spot
2
o

85

B.1.2. Sample Times
There are NTIMES samples represented in a ROI file. The sample time list

gives the start and stop times in seconds of each sample counted. The times are
in floating point format, one start/stop pair per line, separated by white space.

B.1.3. Activity Data
NREGIONS sets of NTIMES data lines each follow the sample times. These

lines contain two numbers each: activity in counts/volume/sec at the
corresponding sample time, and the uncertainty in the measurement. Before
each set of activities there will be at least one comment line describing the
data. The parameters LABEL, NPIXELS and UNITS would be useful to set as well.

B.1.4. Sample HOI tile
ROI file with 2 overlays of 4 files each
%DATE% 21-Aug-82
%BOI% 14:43: 12
%HLIFE% 76.
%ISOTOPE% Rb82
%COMPOUND% Rb-B2
%SPECIES% Dog
%SUBJECT% Spot
%ORGAN% Heart
%STUDY% Rb #3
%BED% 450
%HGAP% 1.
%OVLABEL% Spot Heart Overlays
%OVTIME% 10: 12:01
%OVDATE% 22-Aug-82
%PWID% .2
%XCENT% 2
%YCENT% 0
%NTIMES% 5
%NREGIONS% 2

Times:
start stop

O. 5.

5. 10.
10. 15.
15. 20.

Overlay 1
%NPIXELS%
%LABEL%
%UNITS%
1.4032E-03
3.0123E-02
4.4343E-01
1.3432E-02

Overlay 2
%NPIXELS%
%LABEL%
1.5432E-03
6.1938E-Ol
4.1945E+00
3.5343E+00

5.4543E-02
6.3432E-02
8.3432E-02
7.2353E-03

2.3423E-04
3.5234E-02
1.2345E-02
1.3433E-02

1033
Left Ventricle
Cts/pix/sec

154
Myocardium

86

t

B.2. Blood File Format
The blood data format has a long, sad history. The only relevant parts for

this program are:

1. Eight lines of text at the top, to be ignored ..

2. Variable number of data lines after header, with five fields: sample number,
draw time (seconds after injection), weight (gm), counts/min,
counts/mini gm. The second and fifth fields are the data we use in fit.

There are often spurious entries at the end of the file with odd times; there-
fore, we read data lines until we find a time earlier than the one last read, or
end-of-file.

B.3. Archiving Convention
The ROI and blood files are stored in Software Tools ar archive files, in a

hierarchical scheme. The outer file is given the subject's last name, with exten
sion ".a". This file is an archive of study archive files, given names such as
"rbl", "fdg2", and "water2", which denote the several studies for a given sub
ject. The study archives contain data files with standardized names:

roi
blood
comments

ROI data from PET analysis
Blood draw data (if any)
any useful information about the particular study

For example, if patient Wilson had two Rubidium-82 studies and one FDG study
with blood draws, the file structure would be:

wilson.a
'rbl

'fdg

'roi
'comments

'roi
'blood
'comments

There are several programs and command files to manipUlate these archives;
see appendix D.

87

Appendix C. Software Tools Library

The table below lists library routines used by the fitting program. The routines
are from the Software Tools Portable· Library, except those marked * (local addi
tions to Ratfor Library) and t (RSX-llM Fortran Library).

integer function agtlin
get next line from an archive module

tiJedes function aopen
open archive module for reading

subroutine cant
print "Can't open" message and terminate execution

subroutine close
close (detach) a file

subroutine concat
concatenate 2 strings together

integer function ctoi
convert string at in(i) to integer, increment i

real function ctor
convert string at in(i) to real, increment i

subroutine dsfree
free a block of dynamic storage

subroutine dsinit
initialize dynamic storage space

integer function enter
place symbol in symbol table

integer function equal
compare str 1 to str2: return YES if equal

subroutine error
print single-line message and terminate execution

subroutine errsett
control printing of error messages

subroutine fmtdat
convert date information to character string

subroutine fold
convert string to lower case

subroutine fprint *
formatted output conversion to file

integer function getarg
get command line arguments

subroutine getarg
get command line arguments

subroutine getnow
determine current date and time

integer function index

88

. '

find character c in string str

integer function isatty
determine if file is an interactive device

integer function length
compute length of string

integer function lookup
retrieve information from a symbol table

integer function mktabl
make a symbol table

tiledes function open
open an existing file

subroutine penter
place symbol in symbol table

integer function prompt
get next line from file. prompting if a terminal

subroutine putch
write character to file

subroutine putlin
output aline onto a given file

subroutine query
print c'ommand usage information on request

subroutine remark
print single-line message

subroutine rtoe*
subroutine rtof*

convert real to character string

pointer function sdupl
duplicate a string in dynamic storage

subroutine skipbl
skip blanks and tabs at str(i}

subroutine sprint*
formatted output conversion to string

subroutine strcpy
copy string at "from" to "to".

integer function type
determine type of character

89

Appendix D. Documentation

Fit (1) Fit (1)

NAME
Fit - fit compartment models to ROI data

SYNOPSIS
fit [file] [-sfactor] [-i[n]] [file] [-sfactor] [-urn]]

DESCRIPTION
Fit reads region-of-interest data from ROI-format files and can fit
compartmental models to them. It generates two forms of output: a
commentary on fitting progress and results, and a table of input data and
model values. This latter can be used to plot the results of fitting, and
for simulation purposes.

COMMAND LINE ARGUMENTS specify the source and treatment of input and residue
function data.

file
Specifies a file from which the next region(s) are to be read. The
file may be changed between regions. The file may be a subfile in an
archive; the file'subfile... format of acat(l) is accepted. If there
is no period in the filename (that is, no extension), a subfile name
('roi or 'blood) is appended to the name when the region number is
specified.

-sf actor

-i[n]
~[n]

Specifies a .scale factor by which the next region data·· and
uncertainties are multiplied. 'Factor' is a 'number in floating point
or exponential notation. A scale factor is applied only to the next
region read with the' -i or -u flag.

These direct fit to read input (-i) or uptake (-u) data from the last
specified file. If the region number n is omitted or zero, data are
assumed to be in the format of the .JOB file produced from well counter
data by CTSDON. If the region number is a positive integer, the data
are assumed to be in ROI format. If current filename does not contain
a period (.) a subfile is appended to the specified filename: 'roi if
there is a region number or 'blood if the region number is missing or
O. Examples:

fit dog'fdg1 -i1 -u2
fit [15,1]human.job -s6.26e-6 -i [100,6]human.roi -u3

COMMANDS are read
parameters, fit to
produced on the
and results. This
output to a file.

from the standard input and direct fit to set
models, and report the results. A commentary is
standard output, describing the input data, commands,
documentation may be collected by redirecting fit's

If the standard input is a terminal, fit prompts with a colon (:). The
commands are:

debug [verboseloff]

-1-
90

Fit (1) Fit (1)

Controls fit's comments on the progress of fitting. If the
command 'debug' is given, chi-square and the current parameters
are reported to the standard error output at the end of each
iteration. If the 'debug verbose' command is given, further
information is printed. This mode is generally useful only for
debugging fit. The 'debug off' command suppresses debug output.

name =value
Sets the parameter named 'name' to 'value' expressed in floating
point or exponential notation. The parameters select the input
and uptake models, their rate constants, and control the behavior
of the Marquardt fitting algorithm. Names may be abbreviated to
two letters. The names are:

infun
selects input function model:

1 al exp(-ml T) + a2
2 al T exp(-ml T) + a2
3 al T exp(-ml T**2) + a2
4 linear interpolation of

where T = (t - ti).

aI, a2, ml, m2, ti

exp(-m2 T)
T exp(-m2 T)
T exp(-m2 T**2)
input data

input function model parameters.
linear interpolation input model.

Ti does NOT affect the

upfun
selects uptake function model. All are of form

Up(t) = fv In(t') + (l-fv) In*Imp(t'),
t' = t - to

where Up = uptake model, In = input model, Imp = impulse
response, and * denotes convolution.

The impulse responses are selected by upfun for the following
models:

1 +----+ kl +-----+ k3 +----+
\blOOd 1< -> \ tissue 1<-::\ tissue \

+-----+ k2 +----+ k4 +-----+

2 same model as 3 but parameters
triexponential impulse response:

are those

fl exp(-kl t) + f2 exp(-k2 t) + f3 exp(-k3 t)

3 +-----+ ka +------+ kl +-----+ k3 +-----+
\blOOd 1< >\tissue\< >\tissue\~==:\tissue\
+-----+ kb +----+ k2 +----+ k4 +----+

tcon,econ

of its

fit convergence parameters. When an iteration ends with

-2-
91

Fit (1) Fit (1)

abs(step)/[abs(parameter) + tcon] <= econ for each
parameter, the fitting algorithm terminates. Default values:
I.E-S,I.E-4.

zlam, vlam, eps

coz

Marquardt diagonal lambda control. Lambda is initially set
to zlam.It is changed by multiplying or dividing by vlam
but it not permitted to become smaller than eps. Default
values: 0.1, 10, 1.E-6.

limit of
vectors.
increased.

cosine of angle between gradient and Gauss-Newton
When the angle exceeds arccos(coz), lambda is

Default: 0.8

vconst
factor by which stepsize is cut when gradient/Gauss angle is
ok (cosine)= coz) but chi-square was not reduced. Default:
.S

nsteps

fit list

maximum number of iterations allowed in fitting attempts. If
the number of iterations exceeds nsteps, the fit is abandoned
and a message is printed to the effect that a minimum was not
found. This is not a fatal error.

specifies the names of parameters to fit, separated by commas.
The list may contain all input or all uptake parameters. Input
function parameters are varied to minimize the errors between -the
selected input function model and the input data read by the -i

- flag. Uptake function parameters are varied to minimize the
errors between the selected uptake function model and the uptake
data read by the -u flag, using the selected input function model
and its current parameters.

During the fitting process, typing a (CONTROL-C) at the terminal
keyboard will interrupt the fit at the current iteration. This
works whether or not the standard input has been redirected. A
note is printed on the output to the effect that fitting was
interrupted before convergence.

The input and uptake function numbers and parameters are printed
before and after fitting. The parameters have an estimated
uncertainty next to them, and may include the comments:

(not fit)
correlated
insensitive

not listed in the fit command
correlated to another parameter in the model
has no effect on the model value.

The parameter uncertainty is computed with the assumption that the
model is correct and that the uncertainties in the JOB or ROI file
are off by a constant factor. We assume that chi-squared is equal
to the number of degrees of freedom (number of data points minus

-3- 92

...

Fit (1) Fit (1)

number of
thereupon.
parameters.
correlation

fitted param~ters), and compute the uncertainties
The correlation matrix is printed after· the

For parameters bearing one of the comments above, the
is shown as O.

write inlup [>1» file]
Prints the input or uptake data and model values. The report goes
to the standard output, or to a specified file. The» version of
file redirection means "append" rather than "write from scratch".

The first lines of the file describe the input data, the models
selected and the input or uptake parameters. Subsequent lines are
printed for each sample, listing the time, measurement,
measurement uncertainty, and model value. The "write up" report
also gives the value of the input function model at each time
point.

In the examples below, the columns have been made a bit narrower
to fit this page. The actual reports have the same layout.
Sample "write in" report:

Input: dog.roi - BLOOD (reg. 1 * 1.000E+00) Modell

a1 = 1.82E+01 m1 = 1.07E+01 a2 = 2.26E+00 m2 = •••
ti = 7.00E+00

time
2.5
7.5
•••

input
2.611E-01
1.765E+01

uncert
3.046E-02
2.335E-01

Sample "write up" report:

in model
O.OOOE-Ol
1.901E+01

Input: man.epi - SAG SINUS (reg. 1 * 1.00)
Uptake: man.epi - CORTEX (reg. 2 * 1.00)
k1 = 3.80E-03 k2 = 4.76E-02 k3 = 0.00E-01
fv = 1.52E-01 to = 4.80E+OO

Model 4
Model 1

k4 = •••

time uptake
2.5 -2.147E-03
7.5 -5.565E-03

uncert
2.147E-03
5.565E-03

up model
1.199E-03
2.212E-05

input
7.877E-03
O.OOOE-Ol

•••

IMPLEMENTATION
Fit is a Software Tools Ratfor program (with some Fortran-77 and
Macro-II). The source is currently in [21,10]fit.tcs but may be moved
to the ST binary directory ~in. Fit.tcs maintains fit.w, which
contains all necessary files:

Include files:
datcom, parcom, namcom, tablecom, fit.h

-4- 93

Fit (1)

Sources (and routines):
fit.r main

funin, funup, con, rt3
fimpls, finit
init

Fit (1)

fun.r
fimpls.r
init.r
getdata.r getdat, getfun, get job, getroi, datlin, tinit, penter,

pget
getcmd.r
dofit.r
misc.r

marq.f
catch.mac

Build files:

getcmd
dofit
getnam, gettok, pflag, setmap, setvar, shocov, whopar,
dowrit
marq, mqchi, mqder, mqmap, spdinv, dot
catch

makefit.cmd, fit.tkb, fit.odl

Documentation:
fit.fmt

The file fit.h contains a macro de'finition of a string 'VERSION' which
should be updated to reflect the TCS revision level.

The program is overlayed as follows:

fit,fun,fimpls -+--- init,getdata
I
+--- getcmd,dofit,catch -+--- mise

I
+--- marq

AUTHORS
Brian Knittel, Ron Huesman

-5- 94

makearch Page 1

NAME
makearch - make new patient archive

SYNOPSIS
makearch

DESCRIPTION

FILES

The data generated in Ring studies are stored in Software Tools archive
files. The ST archive program combines many files into one, and
provides the . capability to insert, extract, list, and update consitit
uent files. Thus we can access the entire set of patient data with
just one file name, but will retain the ability to play with the
individual files.

Several study archives (e.g. fdg, rbl •••) are combined in one patient
archive. The study archives contain ROI, blood, and other study data.
files. In particular, there is an optional 'comments' file which can
contain text describing the experimental protocol and the regions of
interest.

This program creates new patient archives - it is faster than modarch
because it does not try to extract study archives before updating,
and it does not update (or create) the patient archive until all the
studies have been entered. The archive is given the patient name
·with extension '.a'.

The program asks for input in this order:

Patient name: enter a 1-9 letter name, or <return> to
stop making archives.

Study name: enter a 1-9 letter name or <return> to stop
entering studies into the patient archive. Studies should named
something like xxxn where xxx is "rb" or "water" or "fdg" or
some such, and n is the study number. For example, rb2 and waterl.

For each study, you are asked for 6 files:
comments \
blood
roi enter name (including extension) or <return>
counts
weights /

If one of the files you specify does not exist, you are returned to
the Study Name question.

When all the files have been specified, you are given a chance
reject the set of files and return to the Study Name without adding
the study to the patient archive.

\ back to Study name question
\ ~ack to Patient name question

patient.a
drO:[100,I]makearch.cmd

patient archive created
command file

95

modarch Page

NAME
modarch - modify patient archives

DESCRIPTION

FILES

Modarch modifies patient data archives made with "makearch". The
procedure is exactly the same, except that the patient archive must
already exist. The questions asked and the procedure are the same.

Modarch attempts to extract named study archives from the patient
archive. If they do not exist, they are created. Named study data
files are inserted into the study archives, replacing any old files
of the same type in the archive. Other files are left untouched.

For example, if a patient archive 'ROGER' was made with two studies
composed as follows

roger
'fdgl

'rbl

'roi
'comments
'blood

'roi
'coinments

and we told Modarch

comments:
counts:

ROGER
fdgl

from ROGERFDGl.ROI
ROGERFDGl.CMT
[15,1]ROGERFDGl.JOB

from ROGERRBl.ROI
ROGERRB 1 • CMT

ROGERNEW.CMT
[15,1]ROGERFDGl.CTS

then the new archive would be

roger
'fdgl

'rbl

'roi
'comments
'blood
'counts

'roi
'comments

patient.a
drO:[lOO,l]modarch.cmd

from ROGERFDGl.ROI
ROGERNEW.CMT
[15,1]ROGERFDGl.JOB
[15,1]ROGERFDGl.CTS

from ROGERRBl.ROI
ROGERRBl.CMT

patient archive
command file

96

1

" .

. "

plotfit Page 1

NAME
plotfit - plot results of compartment model fits on line printer

SYNOPSIS
plotfit [file [inscale [timescale [spool [ymax [plotsizeJJJJJJ

DESCRIPTION

FILES

Plotfit reads a "write in" or "write up" file from FIT and plots
the ROI data and the model values on the line printer. Plotfit is
a command file in [100,lJ and can be run in one of two ways:

- from inside another command file, with
@drO:[100,lJplotfit <args>

or from the terminal with
plotfit <args>

where <args> is an optional list of arguments separated by spaces:

file the name of the "write .•. " file

inscale factor to scale input function by in uptake plots.
This can be a number in floating point format or
the letters IFVI, which scales the input function
by the fit vascular fraction. This shows how much
of the tissue activity is due to blood.
"_" suppresses plotting of.the input function; this
should be used when plotting input function fits.

timescale
ILl for log time x axis, ITI for linear time axis,
lSI for sample number axis.

spool "Y" - yes, spool plot immediately
"Nil - no, make PLOTFIT.LST but dont spool yet.
"XXX" - use XXX instead of LPP
"XXX/YY" - use XXX and use IYY flag too. For example,
answering "N" is the same as answering "LPP/-SP"

ymax maximum Y value for plot (Default - max data value) .

plotsize
x, y size in inches for plot (Default "8,8.5")

If any of the first four arguments are not given, they are prompted
for.

The fit rate constants are printed at the top of the plot.

plotfit.par
plotfit.plt
plotfit.lst

temporary parameter file for PLT.
temporary graphics file between PLT and LPP.
output listing (autodeleted if spool = "Y")

97

• •

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

.. ~, .. ~

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.~; Io~

