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Kinetic Analysis of Dynamic PET Data 

Brian Knittel 
Department of Electrical Engineering and Computer Sciences, 

University of California at Berkeley 
and Lawrence Berkeley Laboratory 

1. Introduction 
Our goal is to quantify regional physiological processes such as blood flow 

and metabolism by means of tracer kinetic modeling and positron emission 
tomography (PET). Compartmental models are one way of characterizing the 
behavior of tracers in physiological systems. This paper describes a general 
method of estimating compartmental model rate constants from measurements 
of the concentration of tracers in blood and tissue, taken at multiple time inter
vals. A computer program which applies the method is described, and examples 
are shown for simulated and actual data acquired from the Donner 2BO-Crystal 
Positron Tomograph. 

2. Background 

2.1. Compartmental Models 
Compartmental models can account for the exchange of tracer between 

physiological spaces such as blood and tissue, and between chemical states such 
a metabolic substrate and its products. 

For example, Figure 1 shows a model which might be used to represent the 
exchange of a tracer between capillary blood and cells in an organ, where b (t) is 
the concentration of tracer in the blood and q (t) the concentration of tracer in 
the cells. The rate constants of exchange k 1 and k2 are the parameters which 
describe the behavior of the tracer in the differential equation 

:;(t) = kib(t) -k2q(t). (2.1) 

The figure shows the concentration of tracer measured in the blood and in tis
sue after an ideal rapid bolus injection. The blood concentration b (t) is called 
the input function. The cell concentration function resulting from an impulse 
injection of a unit amount of tracer is called the impulse response, and is 
denoted h (t). For the model in Figure 1, 

(2.2) 

The tissue measurement w (t) is called the residue function, and includes con
tributions from both the cell concentration q (t), and blood in the vasculature. 

The shape of the input function in actual experiments depends on the dura
tion of the injection, the blood flow to the organ, and the behavior of the tracer 
in the rest of the body. The response of the model to an arbitrary input function 
is given by the convolution integral 

q ( t) = J h ( j) b (t -7") d 7" = J b ( 7") h ( t -7") d 7" (2.3) 

and is denoted q(t) = b®h(t). h(t) = 0 for t < 0 and we assume that bet) = 0 for 
t < 0, so 



Blood Cell 

~ 
kl 

1 b(t) q(t) 

k2 

"- Blood A Tissue ) 
y y 

b(t) w(t) 

Time - t t 

Figure 1. Two Compartment Model and Impulse Response. 

t 

q ( t) = f h ( 1') b (t -1') d l' (2.4) 
o 

The tissue tracer concentration w (t) must account for the tissue volume 
occupied by blood in the vasculature. If the fractional volume of blood in a 
region of tissue is I v' then the residue function is 

w(t) = Iv b(t) + (l-Iv)q(t) 

= I v b (t) + (1 - I v) b®h (t ) 
(2.5) 

This is the basic equation for all the models discussed here. 

In tomographic experiments, the two measurable quantities are b (t) and 
w (t); it is not possible to independently measure the compartments contribut
ing to w. The impulse response required for the computation of w (t) is that of 
the combination of all nonvascular compartments. The determination of h (t) for 
arbitrary compartmental models is discussed in section 4.2. 

The blood activity is sometimes measured at a location somewhat distant to 
the site which we are modeling. We assume that the input function is shifted in 
time only. That is, we assume that all blood leaving the heart at a given moment 
has the same concentration of tracer, but the time it takes to reach different 
parts of the body varies. To determine the residue function from such a shifted 
input function we need only shift the time of evaluation of the model function by 
the same amount. 

2.2. Parameter Estimation 
After injecting a tracer, we collect measurements of the input function and 

residue function which include errors due to the statistics of radioactive decay 
and artifacts due to PET reconstruction. After selecting a physiologically 
appropriate compartmental model, we wish to determine what values of the 
model's parameters gave rise to the measurements. We will use the following 
symbols for the quantities under discussion: 
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Notation: 
R 
E 
Ei 
B 
Bij or [B]ij 
E'l' 
BT 

italic letter: scalar function or variable 
bold letter: column vector function or variable 
i'th element of vector E 
capital roman letter: matrix 
element in i'th row, j'th column of matrix B. 
row vector: transpose of E 
transpose of matrix B 

Measurements: 
Nb number of blood measurements 
N1J) number of tissue measurements 
Bi i'th blood measurement, i = 1, 2, ... , Nb 
Wi i'th tissue measurement, i = 1, 2, ... , N1J) 
T~ time of i'th blood measurement 
Tw~ time of i'th tissue measurement 

Parameters: 
fJ 

uncertainty in i'th tissue measurement 

an arbitrary set of k model parameters (a vector of dimen
sion k). These could be rate constants, vascular partial 
volumes, time shifts, etc. 
the true values of fJ in the region of interest. 
our estimate of fJ-
uncertainty in determined ~j 

Model Functions: 
b (t) input function 
W (fJ,t) residue function 
Wi (fJ) residue function evaluated at Tw~ 

We assume that there are only random errors in the measurements Wj' That is, 
Wj = Wj(fJ-) + E:j' where E:j are random with zero mean. Since there are errors in 
the measurements, we cannot determine the exact rate constants fJ- which gen
erated the observed residue function. We must find some method of estimating 
P- from imprecise measurements. Estimation theory is a branch of mathemati
cal statistics which deals with problems of this nature. For an introduction to 
estimation theory with an emphasis on the type of modeling problem discussed 
here, the reader is referred to a text such as Bard [1]. 

We hope to find a criterion for selecting a Ii which is as close to fJ- as possi
ble. Since the measurements have random variations and would vary in repeti
tions of the same experiment, we expect that our parameter estimates would 
vary as well. Two desirable constraints on this variability are that 

(1) the average of I!.. in re~etitions of the experiment should be fJ-, that is, the 
expectations E(/3 i) = {3i' and 

(2) the average squared errors (~ariances) in the estimated parameters are as 
small as possible, that is. E({3 i - {3i.)2 = apt are the smallest obtainable for 
any estimator of {3':, for every possible value of {3.t 

This is called the "uniform minimum variance unbiased" (UMVU) criterion. 
Proof that an estimation method is UMVU can only be obtained in certain cases. 
For example, when the function W is linear in fJ (that is, 

" w(fJ, t) = ~(3i.gi.(t) (2.6) 
i=l 

where gi are arbitrary functions of t), and the errors E:j are independent an£ 
distributed normally with mean 0 and variance ali' then the parameters fJ 
minimizing 
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(2.7) 

are a UMVU estimate of {J. [2]. 
However, in PET kinetic modeling, the errors are not exactly normally dis

tributed, and the function w is not linear in its parameters. Still, the least 
squares estimate is probably the best available estimate. If the model function 
is "locally" linear, that is, w varies more or less linearly when its parameters 
are varied small amounts (as we often consider the surface of the Earth to be 
locally fiat), and ~the measurement errors are approximately normally distri
buted, then the {J minimizing R in Equation 2.7 at least approximately meets 
the UMVU criterion. 

We now need an algorithm to find the values of the rate constants which 
minimize R. The algorithm is to produce this P and is also to estimate up. 

2.3. Parameter Covariance 
The variance aj( of an estimate Pi. is the expected squared deviation of the 

estimat~ from its true value P/' This is the variance we would expect to meas
ure in Pi if the experiment were repeated many times. If our assumptions 
about the normal 'distribution of the errors in the residue function are true, 
t~ere is ~ :::::I66.percent (1 standard deviation) chance that Pi is in the range 
Pi -ap( :0::; Pi :0::; Pi. +apc . 

Up;. is estimated as the amount Pi must be varied from Pi to increase R({J) 
from the minimum by one (Fig. 2). The more Pi. can be varied without much 
changing R, the greater its variance. When there is more than one parameter, 
we must consider the amount that Pi can be varied to increase R by one when 
the other parameters are allowed to vary as well. Figure 3 is a contour map of R 
as a function of P1 and P2' We see tha~ apl and ap2 are the distances which 
inctease R frl?m the minimum Rrrtin = R({J). by one, under the most unfavorable 
circumstances (P1 and P2 increased together). When changing parameters 
together produces little net change in R, we say that the parameters are highly 
correlated. The covariance matrix C describes this relationship between param
eters. Its elements are defined by 

C';.j = E(Pi. - Pt)(Pj - Pj} . (2.8) 

Note that the diagonal elements Cii = E(Pi - pt)2 are the variances ap;. 2. The 
correla.tion coefficient defined by 

-.J aj( aji 
(2.9) 

conveniently describes the covariance between parameters Pj and Pj. It takes 
values between -1 and + 1. r is zero for uncorrelated parameters and increases 
in magnitude toward 1 as correlation becomes greater. 

The covariance matrix or the correlation matrix is important in the con
sideration of the significance of fit parameters, for they describe the reliability 
of the determination of the rate constants. One needs covariances to accurately 
estimate the uncertainty of functions (e.g. sums or ratios) of the determined 
parameters. 

When comparing competing models for the explanation of tracer kinetics, 
one can consider Lhe sum of squared errors R({J); the model which produces the 
lowest R is considered better. R can always be lowered by increasing the 
number of compartments; with more parameters to adjust. the data can be 
better fit. However, as the number of parameters is increased, so are the 
parameter variances. When the number of parameters is increased beyond that 
required to adequately represent the data. the correlation between the fit 
parameters increases dramatically. The covariance matrix thus indicates the 
information content of the parameters. 
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3. The Minimization Method 

The minimum of R({J) is found at the zero gradient point 

aR«(!) 
a(3i, = cr. i = 1. .... k 

or in vector form 

VR(P) = 0 . 

The gradient of R as defined in (2.7) is 

or in matrix notation 

aR N1J) Wi - Wj ((J) aw - = -2 ~ --=----:.....-
a(3i, i=l al a(3i, 

R{{J) = [W -W{{J)]T 'ii-I [W -W({J)] 

V R{{J) = -2 T({J)! 'ii-leW - W{{J)] 

(3.1) 

(3.2) 

(3.3) 

where W is the observation vector. 'ii is the covariance matrix for the observa
tions. w({J) is the vector of model values generated from the parameters (J. and 
T{{J) is the gra9.ient of w: 

r W 1{{J) 1 
w2{{J) 

w{{J) = : . 
WN1J)({J) 

r WI 1 
W2 

W= 

WN. 
1J) 

all 
Cov{ WI' W2) 

'ii= 

Cov{WI.WN. ) 
1J) 

and 

r aWl aWl 

a(31 a(32 

aW2 aW2 --
T{{J) = a(31 a(32 

awN. 
1J) 

awN. 
1J) --

a(31 a(32 

Cov{ WI' W2) Cov{WI.WN. )1 
1J) 

ala Cov{ W2• WN. ) 
1J) 

Cov{ W2• WN. ) aJ.N, 1U 
1J) 

aWl 1 
a(3" 
aW2 --
a(3" 

= Vpw{{J) . 

awN. 
1J) --

a(3" 

When we ssume that the meas rements are uncorrelated. the Cov terms in 'ii 
are zero. 

If W ({J.t) is a linear function of (J. R is quadratic and has a unique solution. 
easily obtained from (3.1). When w({J.t) is not linear in {J. the solution to (3.1) 
may not be unique - there may be many extrema of R. Furthermore. it may be 
difficult to solve (3.1) for p. Nonline~ar least squares methods usually proceed by 
choosing {Jo. an initial estimate of {J. examining R at {Jo. and iteratively moving 
{Jo toward the minimum. 
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3.1. Gauss-Newton Method 
We can make a linear approximation to w with the first order Taylor expan

sion 
Ie Bw (Po,t) 

w{P,t) :!! w{Po,t) + j~l{Pj-POj) BPj (3.4) 

or in matrix notation 

(3.5) 

if J!. is c~ose to Po. If we use this approximation in (3.3) and assume that 
T{P) :!! T{P 0) then the minimum is found at 

T{Po)T 'lr-1 (W - w{po) - T{Po)T (P - Po») = 0 . (3.6) 

Defining A = T{Po)T'lr-1T{Ii) and G = T{Po)T'lr-l{W - w{Po», we can solve (3.6) for Ii: 
G - A{P - PO) = 0 

A (Ii - Po) = G 

(3.7) 

where 6t = A -lG is the Taylor series correction vector (iteration step). 

When the measurements are uncorrelated, 'lr is diagonal, and the elements 
of the matrix A and vector E are 

N'U) Bw· Bw· 1 
A =~ -'---'-

mn j=l BPm BPn Gj 
N'U) Bw· w.. - w'{Po) 

E,.",=.~ -'-' , 
, =1 BPm Gj 

(3.8) 

In the Gauss-Newton minimization method, one iter~tively solves (3.7) for steps 
6 t . The magnitude of 6t must be reduced if it takes P to a higher value of R than 
R(Po). 

3.2. Steepest Descent Method 
The gradient of R at an estimate Po is given by 

V R(P) = -2 T(Po)T \{I-I (W - W{Po») == -2G (3.9) 

Iterative steps 6g proportional to V R always lead to a lower value of R for a 
sufficiently small proportion of 6g , but are slow to converge near the minimum. 
Near the minimum, where R is relatively fiat, gradient steps tend to zig-zag 
across the true direction of the minimum (as streams will meander across a 
meadow). For this reason, strict steepest descent methods are seldom used in 
practice. 

3.3. Marquardt Interpolation 
The Marquardt Algorithm [3] interpolates between the Taylor and gradient 

steps 6 t and 6g with a step computed by 

6 = (A + IX)-l G (3.10) 

As X ... 0, 6 ... A -IG, the Taylor step, and as X ... 00, 6 ... GI X , the steepest descent 
step. The algorithm attempts to use as small a value of X as possible. If the step 
6 would increase R, and 6 is not near the gradient 6g , say more than 37° apart, 
the step is recomputed with a larger X. X is typically increased or decreased by 
a factor v = 10, changing X 

When 6 increases R but 6 and 6g are close together, changing X won't help 
as much as reducing the magnitude of 6, so the step is divided by two until R is 
no longer increased. 

The numerical aspects of the algorithm are improved if the matrix A has 
one on the diagonal. To achieve this, the computation of 6 is performed with 
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scaled variables A· and G·. The true step 6 is computed by reversing the scaling 
on 0·. 

3.4. Algorithm. Outline 

1. Initialize: 
P '""" Po. I\. '""" . 1 . 

2. Start an iteration. Try reducing 1\.. save initial conditions: 
P' '""" p. R' +- R(P), I\. '""" 1\.1 v. 

3. compute A, E by Equation (3.B). 

4. Scale A and E so that A has 1 on the diagonal: 

~j +- ~jl V ~i A;j. 

Gt'""" Gil V ~i' 
5. Compute (still scaled) step: 

o· '""" (A· + 1\.1)-1 G·. 

6. Unscaie ste~ 

60t '""" 6tl V ~i' 
7. Compute (tentative) new value of p: 

P '""" fI' + O. 

B. Bad Step? - if so, alter the step: 
if R(fI) ~ R' 

if angle between £5 and 6g . < 37c
, reduce step size: 

(i.e. if 6T·o IV 6T'6 6t6g~cos(37C» 
1 repeat 

I I 6i '""" 6i l 2 
fI +- fI' + h 0 

1 until R(fI) ~ R', then go to 9 
otherwise. repeat step calculation with increased t..: 

I\. '""" v 1\., then go to 5. 

9. check convergence: 

. f 16i 1 t 2 h' t t· 
1 any 1 Pi 1 + T ~ t. go 0 for anot er 1 era lOn. 

10. stop. 

The convergence test parameters T and e are typically 10-6 and 10-4 respec
tively. 

8 



4. Program Pit - Numerical Methods 
Computer program fit was written to implement the kinetic analysis 

method described above. The Marquardt Algorithm requires w (t ,(3) and the 
derivatives awl a{3i' This section describes the numerical methods used to 
compute the required functions. 

4.1. Input Function Model 
The computer program has four selectable input function models: 

2 
1. b (t) = 2: A- e -Hi (t -tl) 

j =1 ] 

2 
2. bet) =.2: A· (t-tJ) e-Mj(t-tl) 

J =1 ] 

2 
3. bet) = j~1 Aj (t-tJ) e-Mj (t-tl )2 

where A; units of blood activity 
Mj rate constants, min-I 
tJ input function starting time in seconds 

(4.1) 

(4.2) 

(4.3) 

The times and time shifts are in seconds and the rate constants in min-I; 
the program inserts the required 1/60 conversion factors. 

4. b (t) = linear interpolation or extrapolation of input measurements: 

0, t < 0 

= (4.4) 

(clipped to 0 if ~he interpolated or extrapolated value is negative). 

Model 4 requires no fitting to the input measurements and does not make 
any assumptions about its form. However, as the input measurements are time 
averages of the input function over the image collection intervals, some infor
mation is necessarily lost. In Figure 4, we show a fast-rising input function, the 
averaged samples, and the resulting Model 4 function. The shaded areas show 
the error in the approximation. The areas of over- and underestimation should 
approximately cancel each other. If the input function is not fast-rising, these 
errors are small. 

Also, Model 4 introduces statistical errors into the model function, due to 
the f v b (t) term in Equation (2.5), which we do not currently account for in the 
fitting process. The uncertainty of the input measurements should be incor
porated into the weighting of the squared-error function R(P). 

4.2. Impulse Response Computation 
The program fits rate constants for the three-compartment model below 

(Fig. 5), which we apply to several physiological systems. Compartments q I and 
q 2 represent tracer in two spaces or chemical states in tissue. The differential 
equations for this system are 
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Figure 4. Actual Input Function and Model 4. 
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Figure 5. Three Compartment Model 

dq2 (t) = 
dt 

(4.5) 

The impulse response may be derived by solving the differential equations for a 
delta function input b (t) = o(t). or by solving for b (t) = 0 with initial conditions 
Ql(O) = kl and Q2(O) = O. Impulse response is more easily calculated by signal
flow graph analysis. which yields the impulse response of an arbitrary network 
of compartments with minimal effort. See Mason & Zimmermann[ 4] for a dis
cussion of the method. 

The impulse response h (t) of the sum of compartments q 1 and q 2 is 

h(t)=fle-o.lt+f2e-o.2t. (4.6) 

where 
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,-----
{3 I = k 2 + k s + k 4 {32 = V (3 r - 4k 2k 4 

kl(k S + k4 - 0.1) k l (o.2 - k3 - k 4 ) 

f I = ---{3-2 --- f 2 = (32 . 

When ks = 0, the model is effectively reduced to two compartments, and the 
impulse response is correctly evaluated using Equation (4.6); the function 
reduces to 

(4.7) 

4.3. Convolution Method 
The cell concentration q (t) is computed by the convolution integral in 

Equation (2.3). Rather than explicitly solve the convolution integral for all input 
function models. We use an approximate method. To compute the convolution 
integral. we evaluate the impulse response and input function at the tissue and 
blood measurement times TWj and TBi respectively. Function con computes the 
convolution of the two linearly interpolated functions b '(t) and h ,(t) described 
by these points. The error introduced by this piecewise-linearization is less 
than one percent with the exponential and near-exponential functions encoun
tered in our studies; see section 6.3 for a discussion. 

The integral of h '( 7')b '(t -,) over the whole interval 0 ~ , ~ t is the sum of 
the integrals over intervals bounded by the set of times 
!o. T"'t. TWa' .... TN)U!t. t-Twl, t-Twa • .... t-TN1JJ~ (Fig. 6). The integrand over one 
of these intervals. say r ~ ,5; S. is the product of the line segments 
(r. br)~(s. bs ) acd (r, hr)->(s. h s ). where hr = h(r). hs = h(s). br = b(t-r). and 
bs = b (t -s). The integ rul is 

(4.8) 

Let /)., = s - r. /).h = hs - hr' /).b = bs - br' and change the variable of integration 
to TJ = , - r: 

hr/).b br/)'h /).h/).b = /)., (hrbr + -2- + -2- + -3-) 

= /).; (2hrbr + 2hs bs + hrbs + hsbr ) 

so the complete convolution is 

q(t) = .~ I /).6' (2hrbr + 2hs bs + hrbs + hsbr ) . 
mterva.s\r.s) 
spanning C.t 

(4.9) 

( 4.10) 

(4.11) 

( 4.12) 

The code in function con steps through the set of times TPt'j and t -TB",. looks for 
boundary points. and sums the interval integrals. 

4.4. Residue Function 
The residue functien is computed as in Equation (2.5), as the sum of the 

vascular and cell components. There is an additional time shift parameter to 
which accounts for a difference in the sampling time between the blood and tis
sue sites, as discussed in Section 2.1. The model function is 

( 4.13) 
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Figure 6. Convolution by Summation of Linear Intervals. 
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4.5. Partial Derivatives 

We compute the model residue function by the convolution method 
described above, and its derivatives by the forward difference equation. For a 
given parameter {it in the vector (i, 

Bw.({i.) w.(R.+h) -w.({i.) 
~(ii \.~ J 1-'\ h J \ ,h>O. (4.13) 

The error in this estimate is a function of h, given by 

E(h) = ~h IW"(17)1 , {it ~ 17 ~ {i;.+h (4.14) 

for some 17 in the range {it ~ 17 ~ {ii +h. Reducing h to zero would reduce the 
error to zero if it were not for the finite precision of digital computer floating 
point representations. Due to the round-off or discretization error in the calcu
lation of w ({i;. +h)-w ({i;.), which we will call t., the error in the derivative esti
mate is 

(4.15) 

The minimum E is found at 

r 2t. 1* 
hopt = II w "(17 ) 1 j ( 4.16) 

For single preclslOn (24 bit mantissa) on the PDP-ll, t. = 5x 10-7. We find 
h = 1.00 1 {it 1 to work well in our application. The error in the derivative estimate 
is around one percent with parameters in the range we encounter. 

While other numerical derivative formulae offer lower errors, the forward 
difference requires only one additional w evaluation for each required deriva
tive. This is a considerable saving in this application, for we must compute, 
store, and convolve a complete set of impulse function samples for each deriva-
tive. . 

4.6. Covariance Matrix 

The covariance matrix C of a set of linear parameters P is the inverse of the 
derivative matrix B (defined in Equation 3.9) evaluat~d at p-. The Marquardt 
subroutine estimates C by inverting B eval~ated at p under the assumptions 
that w (P) is linear in the peighborhood of p, that p is close to p-, and that B 
evaluated at our estimate p is a good approximation to B evaluated at p •. 

After each fit we print the parameter uncertainties (square root of their 
variance, from the covariance matrix), and the correlation matrix: 

(Jp" :!! V[B-1];'i 
ot [B-1];.; (4.17) 

r;.; -
(Jp" apt 
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5. Implementation 

5.1. Software Tools 
Program fit (listing in Appendix A, documentation in Appendix D) is written 

largely in Ratfor for operation under the Software Tools (ST) Virtual Operating 
System. Software Tools is portable program development environment which is 
modeled after UNIX·, and whose design and philosophy are expounded in 
Software Tools by Brian W. Kernighan and P.J. Plauger [5J. ST provides the same 
programming and command languages, user interface, documentation, utilities, 
and library subroutines for all operating systems and computers on which it is 
supported. We use the RSX-llM V4.0t implementation of the Software Tools Vir
tual Operating System, obtained from the Computer Science and Applied 
Mathematics group at Lawrence Berkeley Laboratory[6]. This ST system is 
currently running on a PDP-ll/44 computer. 

An invaluable feature of ST is the ability to conveniently specify at run time 
whether the program's input and output are to be connected to the user's ter
minal, to disk files, or directly to other programs. This enables the same pro
gram to be used interactively, as a "batch" type program, or as part of a 
metaprogram comprised of several tools. In the words of the authors, 

Whenever possible we will build more complicated programs up from the simpler; 
whenever possible we will avoid building at all, by finding new uses for existing 
tools, singly or in combination. Our programs work together; their cumulative 
effect is much greater than you could get from a similar collection of programs 
that you couldn't easily connect [7]. 

For example, the simulation data presented in Section 6 were generated, fit, 
plotted, and summarized by applying both newly-built and existing tools, with 
almost no manual manipulation. The versatility of ST makes it useful in the 
development and testing of scientific data analysis programs. 

5.2. Source of the Data 
Positron emission tomography (PET) noninvasively measures radioaCtivity 

in tissue volumes as small as one cubic centimeter, without superposition of 
activity from other regions. 

The Donner 2S0-crystal positron tomograph[S] is capable of taking cross
sectional images as frequently as every second, and can synchronize data col
lection with the beating of the heart. The spatial resolution of S mm full width 
at half-maximum (FWHM) is sufficient to quantify radioisotope concentration in 
regions of tissue of 2 cm. dimension. 

Images are typically taken every 2.5 to 5.0 seconds for the first one or two 
minutes after a rapid intravenous injection of 5 - 10 seconds duration, and at 
longer intervals thereafter. 

The input function is measured tomographicaUy if the left ventricle or 
aorta is visible in the field of view, otherwise "the input function is measured by 
sampling arterial or arterialized blood from a catheter. 

After imaging. regions of interest (ROIs) are drawn over a high statistics 
image in which anatomical details are well-defined. A region of interest in the 
middle of the left ventricle of the heart or the aorta may supply the input func
tion. 

Sequential PET images are reconstructed[9] and the activity density in 
each region is computed after appropriate corrections for radioactive decay, 
attenuation, and detector efficiency. The units of activity for PET data are "PET 
events per second per pixel." A pixel is a unit of volume. and is a function of the 
reconstruction pixel size and the slice thickness. 

The uncertainty in the number of events in a ROI is currently approximated 
by a naive estimate which assumes a Poisson distribution for the number of 
events in a entire region. The uncertainty of the per pixel quantity is taken as 
the square root of the number of events in the region, divided by the number of 

·UNIX is a trademark of Bell Laboratories. 
tPDP and RSX are trademarks of Digital Equipment Corporation. 
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pixels and multiplied by the decay correction factor. This estimate is an order 
of magnitude too small, and must be compensated for when the parameter 
uncertainties are reported (see subroutine dotit in Appendix A, page 42). A new 
uncertainty estimation algorithm has been developed correctly propagates 
errors through the entire reconstruction process, and will yield accurate uncer
tainties[lO]. 

If taken, blood samples are counted on a gamma well counter with a mul
tichannel analyzer. The well counter data are corrected for radioactive decay, 
weight of sample, counting duration, and background radiation. The units of 
these data are "well-counter events per gram per minute." The blood data differ 
from the PET data by three scale factors: 

1) 
2) 

3) 

counts per minute vs. counts per second (factor of 60), 

activity/pixel vs. activity / gm (function of blood density and pixel-volume 
correspondence), and 

PET events vs. well counter events (function of the sensitivity of the two 
devices). 

The overall scale factor for converting blood activity data to the 
corresponding PET activity has been determined empirically and is verified at 
each experiment by counting and imaging a vial of a radioactive solution. 

The program read two input data file formats: ... ROI"· files from the PET 
image analysis program and" .JOB" files from the blood analysis program. The 
format of these files is shown in Appendix C. 

All data files for a given experimental subject, along with comments 
describing the experimental protocol and a history of the data processing steps, 
are combined into a single ASCII file in the Software Tools ar archive format. 
This is called the patient study archive. The flow of data from the PET to graphs 
and analysis results is shown in Figure 7. 

5.3 .. Prograril Design 
The program has three phases: initialization, data reading, and command 

processing. Command processing includes parameter setting, data fitting, and 
reporting. 

In the initialization phase, subroutine init sets global variables to default 
values: the number of blood and tissue data points is set to zero, their descrip
tive labels to "Undefined". 

In the data reading phase, subroutine getdat examines the program's com
mand line arguments for data input instructions. The arguments may specify 

1) 
2) 

3) 

a file from which data are to be read, 

a scale factor to apply to the next region-of-interest read, and 

a region of interest from which to read the blood or tissue measurements. 
These are specified by their cardinal order in the data file. At this point 
times, activities, and uncertainties are read and scaled as necessary. Rou
tine geUun reads these data by calling format-dependent routines getroi or 
get job. The blood measurements taken in time intervals (0, tbl ), (tb

l
, tb2 ), ... 

are the time averages over these intervals, and the measurement times 
TB1 , TB2 are taken to be the middle of the intervals: TB~ = (tbi _l 

+ tbi)1 2. 
Likewise, the PET measurement times are taken to be the middle of the 
image collection intervals. 

The command processor subroutine getcmd reads commands from the 
standard input, which is the user's terminal in interactive mode or a file in 
batch mode. Parameter setting commands are handled by subroutine setvar, 
lhe display of data and model values by subroutine dowrit. and fitting by subrou
line do tit. which in turn invokes the Marquardt algorithm routine subroutine 
marq, and the parameter value and uncertainty display subroutines shopar and 
shocov. Subroutine setvar allows the user to select the input and residue model 
functions, to set model parameters, and to alter the Marquardt parameters 7". e, 
v, etc. 
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protocol 
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RATE CONSTANTS 

Figure 7. Data Flow. 

The input function and residue function models are evaluated by functions 
funin and funup. Funup contains code to evaluate and convolve the impulse 
response and input functions as necessary, and to compute the numerical 
derivatives. Only the impulse response function fimpls needs to know the par
ticulars of the compartmental model in use; it can provide the impulse 
responses of any models of interest. The version of timpls in Appendix A con
tains five impulse responses; the first is the function in Equation (4.6), and the 
others will not be discussed here. 

Globally accessible data are stored in three named common blocks: model 
parameter names in Inamcoml (these are set by finit, which is easily changed 
along with timpls), the current set of model parameters in Iparcoml and the 
input and residue measurements and uncertainties in Idatcom/. 

The general outline of the program is shown in Figure 8, with the smaller 
utility and library routines omitted. 
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In a typical fitting session. the operator invokes fit with a command line 
specifying the source of the data. Model functions are selected and initial 
parameters are set with commands of the form "parametername = value." The 
parameters are fit with the "fit parameter. parameter ...... command. A file con
taining the measurements and model values can be created with the "write" 
command. to be fed to a suitable plotting program. 

The program is also useful for simulation of compartment models. given a 
source of blood and tissue measurement times (from existing data files). The 
user may specify an input function and residue model. set rate constants. and 
generate the expected response with the "write" command., 

fit 
init 

finit 
getdat 

getfun 
getbld 
getroi 

tinit 
datlin 
penter 
pget 

getcmd 
dowrit 

funin 
funup 

funin 
fimpls 
con 

setvar 
whopar 
finit 

dofit 
setmap 

whopar 
marq 

mqchi 
fun(in or up) 

rnqder 
fun (in or up) 

mqmap 
spdinv 

dot 
shopar 

shocov 

Figure 8. Outline of fitting program. 
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6. Simulations 
A program was written to simulate PET data. Data were generated using a 

biexponential input function with typical model parameters, and compared to 
the results of the fitting program. The method of simulation is described below. 

6.1. Simulation Program 
For the biexponential input function (model 1), 

2 
b(t) = .~ AJ" e-Mjt 

1 =1 
(6.1) 

the exact solution for the convolution of the input with the three compartment 
impulse response (Eq. 4.6) is 

q (t) = b®h (t ) 

=~ ~ A;f" re-Mjt_e~aktl 
Ii: = 1 j = 1 a" - Mj l J 

For PET images taken over intervals (1i-1. ~), the simulated measured activities 
Bi. and Wi. are averages over the collection interval: 

1 ~ 
Bi. = J b(,) d, 

ti. - ti.-1 ~-1 

1 ~ 
Wi. = J w(,) d, 

ti. - t i - 1 t ';-1 

(6.3) 

These functions are: 
2 

~ = j~1 (ti. 
(6.4) 

The simulation program adds Gaussian errors with mean zero and standard 
deviations 'lBi. and 'l Wi. to Bi. and Wi. respectively, 'l ~ O. Gaussian noise is gen
erated by projecting the computer's pseudorandom, uniform [0,1) numbers onto 
a polynomial approximation to the inverse of the normal distribution function. 
This distribution is not quite realistic, for the relative error'l should be a func
tion of the activity in a region. 

6.2. Two-Compartment Model 
Data were generated for a two-compartment system, with parameters typi

cal for injections of H2 I50 in the dog heart. 

Input Function: Model Parameters: 
Al 50. ki 2.35 min-I 
M I 6.2 min- I k2 1.75 min-I 
A2 13. ks O. 
M2 0.12 min- 1 k4 O. 

Number of Simulations 
1 with no noise. 

f v 0.15 

10 each with 'l = .03, .06, .09, .12 .. 15, .18. 

Collection Intervals: 
24 x 5 sec 
18 x 10 sec 

When the correct model values were given to the fitting program, the rms 
error in the model computation was 1.3 percent. The peak error was 1.5 percent 
and the average error was 0.5 percent. The computed value was always greater 
than the actual valu"e. This error in the model computation is due to the errors 
in the piecewise linear approximation of the exponential impulse response and 
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input function, and to the fact that the interval-center value of the model will be 
higher than the interval-average value. This is only a problem with the func- . 
tions are rapidly changing, as with injections of HZ

I50. This systematic error will 
result in slightly smaller fit values for k l' 

Representative fits to two compartments (k s held at 0.) are shown in Figure 
9, and fit rate constants are summarized in Figure lOa. The mean and standard 
deviation of the fit values are shown, along with the standard error of the mean 
(SEM), the bias (error in mean), and mean estimated uncertainty. The useful 
comparisons are error in mean to SEM (accuracy of fit), and standard deviation 
to mean estimated uncertainty (accuracy of uncertainty estimate). Figure lOb 
shows relative uncertainty (standard deviation / true value) vs. noise. 

The kl fits show that the estimated uncertainty in the rate constant deter
mination is roughly correct, approximately equal to the sample standard devia
tion. While there is a small systematic error in the model computation, the 
error in the rate constant determination is of the same magnitude as the stan
dard error of the mean for these simulations. Tj1e program gives even better 
estimates of the k z and f v values and uncertainties. 

In Figure lOb we see that relative uncertainty increases roughly linearly 
with noise, up to the 18 percent case. The sharp rise in uncertainty at 18 per
cent is due to the increasing frequency of poor fits observed when noise reaches 
approximately 20 percent. Some manual coaxing could have improved the bad 
fits. 

When forced to fit three compartments to two compartment data, the pro
gram would not converge in the no-noise and several noise-added fits.. The fits 
were discontinued after the 15 percent category. The partial results shown in 
Figure 11. 

The estimated uncertainties clearly indicate that the program detects the 
lack of significance of the estimates, especially k 3 and k 4. 

6.3. Three-Compartment Model 
Data were generated for a three-compartment system, with parameters 

typical for the dog heart in injections of F-18 fiuorodeoxyglucose. 
Input Function: Model Parameters: Collection Intervals: 

Al 6.0 kl 0.30 min- 1 24 x 5 sec. 
f,{1 0.82 min-1 k z 0.50" 12 x 10 sec. 
Az 4.8 ks 0.05'" 10 x 60 sec. 
f,{z 0.03 min- 1 k4 0.006 " 5 x 60 sec 

Number of Simulations: 
1 with no noise 

f v 0.15 

10 each with "'t = .03, .06, .09, .12, .15, and .18. 

Representative fits are shown in Figure 12, and the results are summarized in 
Figures 13a and 13b. 

In the three compartment case, estimation of k I, kz, and f v and their 
uncertainties are good even with high noise. The evaluation of ks and k4 is poor 
at high noise with the sampling intervals used, but the uncertainty estimate 
grows large as well, so there is no false confidence in the poor estimates. The 
sharp rise in uncertainty is again seen at 18 percent noise. 
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Figure lOa. Two-Compartment Fits to Two-Compartment Data 
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Figure 11. Three-Compartment Fits to Two-Compartment Data 

Parameter k 1 = 2.35 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertaintr 

3 3.97 1.67 1.62 5.28 4.27 
6 2.lD 0.19 -0.25 0.60 9.31 
9 2.23 0.17 -0.12 0.55 7.35 

12 3.12 0.73 0.77 2.30 1.90 
15 1.98 0.15 -0.37 0.45 4.35 

Parameter k2 = 1. 75 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertaintr 

3 10.40 8.74 8.65 27.65 8.24 
6 2.61 1.17 0.86 3.69 42.24 
9 1.83 0.30 0.08 0.94 0.50 

12 4.81 2.17 3.06 6.87 8.57 
15 1.62 0.28 -.12 0.83 2.72 

Parameter ka = O. 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertaintr 

3 -0.44 1.23 -0.43 3.90 11.80 
6 1.84 1.82 1.84 5.76 48.40 
9 0.09 0.12 0.09 0.39 0.79 

12 0.71 0.48 0.71 1.52 59.42 
15 -0.26 0.42 -0.26 1.27 19.23 

Parameter k4 (no definite value) 

Mean Standard Mean Estimated 
% Noise Fit Value SEM Deviation Uncertaintr 

3 4.66 2.28 7.21 33.67 
6 3.53 1. 71 5.40 256. 
9 2.58 2.32 7.36 1106. 

12 5.37 3.03 9.59 2172. 
15 1.83 0.98 2.95 114. 

Parameter f v = 0.15 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertainty 

3 .094 .058 -.056 .184 .148 
6 .170 .014 .020 .045 .196 
9 .160 .0lD .0lD .032 .154 

12 .107 .033 -.043 .104 .079 
15 .129 .020 -.021 .060 .122 
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Figure 13a. Three-Compartment Fits to Three-Compartment Data 

Parameter kl = .3 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertainty 

0 .300 o . 
3 . 294 .003 -.006 .010 .008 

·6 .303 .006 .003 .019 .017 
9 .289 .011 -.011 .036 .025 

12 .323 .017 .023 .055 .034 
15 .311 .014 .011 .043 .045 
18 .350 .061 .050 .193 .0'71 

Parameter k2 = .5 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertainty: 

0 . 501 o . 
3 .483 .007 -.016 .022 .025 
6 .516 .020 .016 .063 .054 
9 .497 .025 -.003 .078 .080 

12 .577 .055 .077 .175 .110 
15 .554 .046 .055 .146 .149 
18 .800 .274 .300 .866 .273 

Parameter k3 = .05 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertainty 

0 .0499· -.0001 
3 .0490 .0016 -.0010 .0050 .0058 
6 .0509 .0043 .0009 .0136 .0115 
9 .0516 .0062 .0016 .0197 .0177 

12 .0514 .0097 .0014 .0308 .0207 
15 .0607 .0107 .0107 .0339 .0315 
18 .0764 .0307 .0264 .0971 .0404 

Parameter k4 = .006 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertainty 

0 .00600 o. 
3 .0059 .0020 -.0001 .0062 .0056 
6 .0052 .0036 -.0008 .0114 .0108 
9 .0014 .0061 -.0046 .0109 .0163 

12 .0015 .0094 -.0045 .0296 .0216 
15 .0049 .0115 -.0011 .0362 .0288 
18 .0108 .0149 .0048 .0470 .0438 

Parameter f v = .15 

Mean Error Standard Mean Estimated 
% Noise Fit Value SEM in Mean Deviation Uncertainty 

0 .150 o. 
3 .150 .002 o. .005 .003 
6 .149 .002 -.001 .008 .007 
9 .148 .005 -.002 .015 .010 

12 .124 .005 -.026 .015 .012 
15 .139 .006 -.011 .020 .016 
18 .111 .008 -.039 .024 .018 
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Figure 13b. Relative Uncertainty vs. Noise 
for Three-Compartment Simulations. 

(Standard Deviation of fit parameter / true value) 
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7. Applications to Experimental Data 
Below we show examples of fitting compartmental models to actual data 

from animal experiments. These examples are intended only to demonstrate 
the program's ability to provide useful data for the investigation of physiological 
models. 

7.1. 0-15 Water 
0-15 water (H2150) is under consideration as an indicator of blood flow in 

the brain and heart. We find that 0-15 water in the dog heart is well modeled by 
two compartments, one for blood and one for tissue. 

Blood 
Water 

b{t) 
~. 
I' 

k 

k 

1: , 

2 

Cell 
Water 

q(t) 

Studies were carried out on mongrel dogs with 0-15 water generated in the 
LBL BO-inch cyclotron. ECG-gated images were collected with the time intervals 
noted in the 2-compartment simulations in section 6.2, before and after raising 
myocardial blood flow by injection of Dipyridimole. Actual blood flow in the 
heart was measured simultaneously by the microsphere reference organ tech
nique[ll]. Regions of interest were drawn in the middle of the left ventricle for 
the input function, and in the left ventricular wall for the residue function. The 
data and fits are shown in Figure 14, and the results are summarized below. 

Actual Flow 
kl 
k2 
Iv 

Before 
0.66 
0.93 ± .14 
1.01 ± .20 
O.lB ± .04 

6 min. 
After Dipyridimole 
1.47 
1.6B ± .2B 
1.6B ± .31 
0.35 ± .05 

cc/gm/min 
min- l 

min- l 

The increase in blood flow was accompanied by a corresponding increase in 
k I and k 2 and I v . 

7.2. Fluorodeoxyglucose 
[18F] 2-fl"tioro-2-deoxy-D-glucose (FDG) is a tracer for regional glucose meta

bolism in the brain and heart [12]. Cell in these organs treat FDG like glucose 
through the first reaction in glycolysis, 

hexokinase 

glucose + ATP ~ .' glucose-6-phosphate + ADP 
glucose -6-phosphatase 

While glucose-6-phosphate is further metabolized, FDG-6-phosphate is not.. How
ever, the rates of transport and metabolic reactions of glucose and FDG are 
similar. A model for FDG kinetics in the brain and heart is 
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Figure 14. Oxygen-15 Water in the Canine Hearl. 
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Be for e -------------------------
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9 . 338 I E- OI • 1. 4215E- OI 
1. 0079E+00 , 1.9 753E- OI 
I.R3 56F.- OI , 1 . 7703F.- 02 

C() rr ~la tion Matrix: 
~ 1 k2 

k2 0 . 949 
foJ - 0 . 499 - 0 . 453 

Af te r -- ------------- - ----------

kl 
k2 
fv 

1. R086E+00 2 . R392F. - OI 
1.6809E+00 3 . 06R 9E-OI 
3 . 4732F.- OI 4 . 7471E- 0 2 

Co rr e lation Matrix : 
k l k2 

k2 0 . 961 
fv - 0 . 42R - 0 . 45 0 

XBB 830-11016 
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Blood 

FDG 

bet) . 

~ 

I' 

k 1 

k 2 

Cell 
FDG 

q1 (t) 

k 

~ 

I' 

k 

3 

4 

Cell 
FDG-6-P 

q2(t) 

where the first cell compartment represents free FDG and the second cell com
partment represents phosphorylated FDG. Rate constants kl and k2 account for 
the kinetics of glucose transport between the blood and the cell, and rate con
stants ks and k4 account for the rate of the hexokinase and phosphatase reac
tions in the cell. 

If we assume that the rate constants for glucose are proportional to the 
rate constants determined for FDG, then the glucose metabolic rate GMR in a 
region of interest is given by 

[Glu]p klks 
GMR = LC k2+ks ' 

where LC is the "lumped constant" which accounts for the difference between 
glucose and FDG rate constants, and [Glu,k is the plasma glucose concentration 
L13]. We can thus estimate GMR from Pl!;T determined rate constants, a blood 
analysis for glucose, and Le. 

F-18 has a 112 minute half life. Data are collected for 45 minutes after 
injection, at the time intervals noted in the three compartment simulations in 
section 6.3. Data were obtained from the right frontal and temporal cortex of 
two human subjects, one healthy and one with diagnosed Alzheimer's Type 
Dementia (ATD). Images of FDG distribution after 45 minutes are shown in Fig
ure 15, with the data and fits to the temporal cortex. The slices were obtained 
at slightly different levels of the brain. The ventricles seen as dark regions in 
the middle of the ATD brain are not observed in the normal brain; however, the 
cortex regions are approximately equivalent. Notice the reduced uptake in the 
temporal cortex of the ATD subject. 

The determined rate constants are 

Normal ATD 
[Glu]p 102. 98. 

Frontal Normal ATD 
kl .121 ± .004 .104 ± .006 
k2 .198 ± .018 .256 ±.031 
ks .0875 ± .0084 .1148 ± .0108 
k4 .0094 ± .0024 .0412 ± .0020 
Iv .070 ±.004 .041 ±.005 

GMR-LC 3.78 3.16 

Temporal Normal ATD 
kl .136 ± .005 .062 ± .004 
k2 .204 ± .018 .196 ±.029 
ks .0640 ± .0064 .0708 ±.0128 
k4 .0012 ± .0028 .0339 ±. 0050 
Iv .075 ± .006 .034 ±.004 

GMR-LC 3.31 1.61 

min 
min-1 

min-1 

min-1 

mg/ min/ l00g tissue 

min 
min-1 

min-1 

min-1 

mg/ min/ l00g tissue 

The ATD temporal cortex has substantially lower k 1 and GMR-LC values. 
However, we cannot draw conclusions about GMR because we cannot know 
whether I.C is altered with Alzheimer's dementia. The ATD cortex also seems to 
have a lower vascular volume and a higher phosphatase (k 4 ) activity. 
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F igure 15. Fluorine-IB F luo r odeoxygl uc os e in th e H um a n Br ain . 
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k2 2 .0403E -01 t 1. 7846E-02 k2 1. 9607 E- 01 t 2 . 9215E - 02 
k3 6 .4026E -02 t 6.4 200 E- 03 k3 7 . 0846 E- 02 t 1. 2809 E-02 
k4 1.1498E- 03 t 2 .8383E - 03 k4 1 . 6094 E-02 t 5 . 0160E-03 
fv 7 . 4523E- 0 2 t 5.5367E- 03 fv 3 . 38 76E- 02 t 4. 1648E -03 
t o -1. 2071E+0 1 7 .5438 E-01 to - 6 .8431E+00 • 9. 7430 E-Ol 

Co r reia!. ion Mat r ix: Correlat io n Matrix: 
<1 k2 k3 k4 fv k1 k2 k3 k4 fv 

k2 0 .944 k2 0 . 941 
k3 O. fi lB 0 .828 k3 O. ~6 7 0 .867 
k4 0 .492 0 . fi 80 0 .9 29 k4 0 .460 0 . 66 0 0 .911 
fv - 0 .61 3 - 0 . 51 1 -0 . 218 - 0 . 221 f v - O. fi RS - 0 . '5 4 1 -0 . :>73 - 0 . 193 
to - 0 . 294 - 0 . 245 -0 . 095 -0 . 105 o. '5)) to - 0 . 313 - 0 . 237 - 0 . 109 -0 . 081 o. '560 

XBB 830-11017 
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8. Summary 

Program fit provides good estimates of two- and three-compartment model 
rate constants from input function and residue functions acquired by PET. It 
also provides reasonable estimates of the uncertainty and covariance of the fit 
rate constants. 

Program features include 

1. easy addition of new models, 

2. interactive or batch use, and 

3. easy interface with other programs. 

Needed improvements in the program fall into four categories: 

1. Speed. Computation of the uptake function and derivatives is currently 
quite inefficient. In the case of models 1, 3, and 5, the impulse response 
characteristic decay constants are computed at every invokation. Routines 
mqchi, mqder, funup, and fimpls should be rewritten to compute values for 
all Nw values at once. This rearrangement would also make possible the 
use of an array processor for further speed increases. 

2. Linear-Interpolation Approximations. The piecewise linear approximations 
of the input and impulse response functions introduce errors in the compu
tation of the residue· function. These errors are small but unnecessary. 
Punup could be rewritten to analytically convolve the piecewise linear 
input function with a vector of n exponentials (n is generally the number of 
non-vascular compartments in the model). This would likely increase 
speed as well, as the method of conv is not terribly efficient. 

3. Sampling. We currently ignore the fact that our measurements are aver
ages over known time intervals (Equation 6.3). We can more accurately 
model our measurements by using the time-average of w(t) over these 
intervals. 

4. Data Statistics. We ignore the effect of input function noise and input
residue measurement correlation in our least-square function R. This can 
be corrected when the new ROI uncertainty and correlation estimation 
algorithm has been implemented in our data collection system. This will 
require the addition of a new data field in the ROI file format, for covariance 
with respect to a designated input function region. 
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Appendix A. Fit SoUrce Listing 

main.r 

# fit - fit compartmental models to ring data 

DRIVER (fit) 

end 

include datcom 
include namcom 
include parcom 

# make S'Ure these commons are in root overlay 

string usestr "Usage: fit [[ -sscale] [file] -i[n]] [[ -sscale] [file] -u[n]]" 

call query(usestr) 

call init 
call getdat 
call getcmd 

DRETURN 

H set defaults 
# read data files named on command line 
# process fit commands 

main.r 

FH 05 Aug 83 1 7:45: 13 Page 1 of maiTt:.r 
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fit.h 

II fit.h - definitions Jor FIT 

derme (VERSION. "FIT Vl.3") 

define (MAXNAME,40) 
define (MAXLABEL.30) 
define (ARGMAX.80) 
define (MAXINPAR.6) 
define (MAXUPPAR.8) 
define (MAXFIT.8) 
define (MAXDATA.80) 

derme (UNKNOWN.-l) 
define (INPUTPAR.l) 
derme (UPTAKEPAR.2) 
define (MARQP AR.3) 
define (INPUTFUNCTION,4) 
derme (UPTAKEFUNCTION.5) 
derme (NSTEPS.6) 

fit.h 

# dimensions Jor 
II ". character strings 

II ... parameter arrays 

II ". measurement arrays 

II the types oj variables we set 

II special definitions Jor .ROI file routines (tinit.penter.pget) 

define (TABLE SIZE. 1 000) 
define (T~IZE.l) 
define (T -POINTER. 1) 

Tue 05 Jul 83 16:26:00 

II dynamic storage: 2K bytes 
II size oj table entry 
II string pointer offset in table inJo 

Page 1 of fit.h 
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date om 

# datcom measured data common 

real tblood(MAXDATA) # times oj blood measurements 
real blood(MAXDATA) # blood activity meas. 
real ub lood(MAXDATA) # uncertainty in blood meas. 
integer nblood # number oj tisStl.e points 
logical btrue # blood uncertainties correct 

real ltissu(MAXDATA) # times oj tisStl.e measurements 
real tissu(MAXDAT A) # tissue activity meas. 
real utissu(MAXDATA) # uncertainty oj tisStl.e meas. 
integer ntissu # number oj tisStl.e points 
logical ttrue # tissue uncertainties correct 

character bfile(MAXNAME) # name oj blood source file 
real bscale # blood scale Jactor 
integer breg # blood region number 
character blabel(MAXLABEL) # label from blood region 

character tfile(MAXNAME) # name oj tisStl.e source file 
real tscale # tissue scale factor 
integer treg # tissue region number 
character tlabel(MAXLABEL) # label from tisStl.e region 

common Idatcoml tblood,blood,ublood,nblood,btrue 
ttissu, tissu, u tissu,ntissu, ttrue 
bfile,bscale,breg,blabel, 
lfile, tscale, treg,tlabel 

dateom 

Fri 05 Aug 83 . 17:46:05 Pa.ge 1 of da.tcom 

nameom 

# namcom - names oj parameters 

integer innam(MAXINPAR) 
integer upnam(MAXUPPAR) 

common Inamcoml innam, upnam 

rue 05 Jul 83 16:38:03 

# stored two characters in one word, 
# input junction model param names 
# residue junction model param names 

nameom 

Page 1 of namcom 
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parcom 

II parcom - model parameters 

real inpar(MAXINPAR) 
integer ninpar 
integer infun 
integer minfun 

real uppar(MAXUPPAR) 
integer nuppar 
integer upfun 
integer mupfun 

integer idebug 
integer nsteps 

parcom 

.11 input junction parameters 
II number of input junctwn parameters 
II input ju.nction selector 
II maximum injun 

II uptake model parameters 
II number of uptake model parameters 
II uptake ju.nction selector 
II maximum uptake function 

II fitting trace flag 
II maximu.m number of iterations allowed 

co mmon Iparcom/in par,ninpar,infun, uppar ,nuppar, upfun,minfun,mupfun, 
idebug,nsteps 

rue 05 Jul 83 16:37:54 

table com 

II tablecom - roi parameter table memory 

pointer table 
common Itable I table 

Tue 05 Jul 83 16:38:51 

II lake table declaration 

Page 1 of parcom 

tablecom 

Page 1 of tablecom 
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catch.mac 

;fffCATCH - catch terminal interrupt 
.title CATCH 
.ident 11 9 JAN / 

catch.mac 

CATCH attaches the specified lun with an AST looking for 
for CHAR. When one is received. FLAG is set to fortran logical .TRUE. 

Fortran calling sequence: 

logical' flag 
integer lun 
byte char 

call catch(flag. [lun]. [char]) 
call catch 

! arm 
! disarm 

The default for lun=5. for char=-C. for reatch=.true. 

After catching a CHAR. catch detaches the lun. Catch may 
also be forced to detach (disarm itself) by calling with no arguments. 

If the attach fails. catch attempts to print a message on LUN. 

DEFAULT SETTINGS: 
LUNIT = 5 
BREAKC = 3 

NARGS = 0 
FLAG = 2 
LUN = 4 

. CHAR = 6.· 

NOARG = -1 
TRUE = -1 
FALSE = 0 

.mcall qi08s. astxSs 
.. globl CATCH. note 

pure code 
.psect 8R.ROU.RO.CON.REL.LCL 

default unit for read 
default break char -C 

offsets into arg block 

address of null argument 
fa rtran logical values 

;---------------------------------- CATCH -----------------------------

CATCH: tstb NARGS(r5) 
bie disarm 

cmp FLAG(r5). #NOARG 
beq disarm 
mov FLAG(r5). flagp 
mav #FALSE. @flagp 

cmp NARGS(r5). #2 
bit doqio 
cmp LUN(r5). #NOARG 
beq 28 
mov @LUN(r5). luntt 

2$: cmp NARGS(r5). #3 
bit doqio 
cmp CHAR(r5). #NOARG 
beq doqio 
movb @CHAR(r5). break 

Thu 30/un 83 .17:01:30 

if no arguments 
disable thyself 

flag wasn't passed 
so this is a disable call 
get pointer to flag 
clear it 

see if LUN was passed 
no lun and no char - go qio 
see if LUN was passed 

save the unit number 

see if char arg is there 

store break character 

Page 1 of catch. mac 
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catch.mac 

doqio: cmp 
beq 
mov 

jsr 

QIOSS 
bcs 
cmp 
beq 

mov 
mov 
mov 
jsr 
lsl 
tst 

armed. #TRUE 
done 
#TRUE. armed 

pc. ttydel 

#IO.ATA.luntt ... #isb .. <#golch> 
bad 
ish. #IS.SUC 
done 

#badmsg. -(sp) 
#1. -(sp) 
sp. r5 
pc. note 
(sp)+ 
(sp)+ 

• catch.mac 

see if we have to do this 
if it's done. don't redo it 

detach tty 

attach keyboard 

;---------------------------------- DISARM ----------------------------
; DISARM - undo calchc 

disarm: cmp armed. #FALSE if not armed. just return 
beq done 

mov #FALSE. armed 
QIOSS #IO.DET.luntt issue delach from lun 
call ttyatt 

done: rts pc 

;---------------------------------- GOTCH -----------------------------
; gotch - ast routine called when a character comes in 

GOTCH: 

1$: 

bicb 
cmpb 
bne 
mov 
jsr 
lst 
ASTXSS 
hall 

#200. (sp) 
(sp). break 
1$ 
#TRUE. @flagp 
pc. disarm 
(sp)+ 

clear parily 
see if it's whal we wanl 
discard if -not 
yes - sel users flag 
issue delach from lun 
discard character 
exit ast routine 
should never happen 

;---------------------------------- DATA ------------------------------
; impure dala 

.psect Sr.rwd.D.RW.CON.REL.LCL 

armed: .word FALSE 
flagp: .word 0 
luntt: .word LUNIT 
isb: .blkw 2 
break: .byle BREAKC 

.even 

; pure data 
.psect Sr.rod.D.RO.CON.REL.LCL 

badmsg: .asciz /[CATCH] Attach LUN 
.even 

.end 

Thu 30Jun 83 17:01:30 

failed/ 

flag indica ling pending read 
address of user's flag 
logical unit lo read 
QIO success buffer 
character we're looking for 

Page 2 of catch.mac 
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con.r 

# con - convolution oj two sampled functions. 

real function con (a, b, ta, tb, time, aO, bO, taO, tbO, na, nb) 
integer na, nb 
real a(na), b(nb), ta(na), tb(nb), time, aO, bO, taO, tbO 
#. 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

PerJorm onvolution of functions a and b 

Eualuates a fb (time) where a(s) = linear interpolation 
of points (taO, a 0), (ta(i),a(i)) and b(s) = linear interpolation 
of points (tbO,bO), (tb(i), b (i)). Any ta(i) less than taO or 
tbO less than tbO are ignored a is the maximum index in a, to.. 
Nb is the maximum index in b, tb. 

We integrate by summing a series oj trapezoidal panels, delimited 
by the known time points (taO, to. (1), .,. ta(na)) and 
(time-tbO, time-tb(O, ... time-tb(nb) 
The time interval oj a panel is t = ts to te, 
For function a the panel is (ts, as), (te,ae). For function 
b the panel is (ts,bs), (te, be). The logical flags tell 
whether we know the functions exactly at the start and end points. 
IJ we don't know, we interpolate. 

real tend, ts, te, as, ae, bs, be, sum 
logical enda, endb 
integer ia, ib 

con.r 

# begin con ------------------------------------------------------------
tend = time - tbO # upper limit oj integration 
sum = O. # initialize integral sum 
ia = 1 # starting pointers to Junctions 
ib = nb 
ts = taO # starting time 
as = aO # we know start of a 

while «time-tb(ib)) < ts & ib > 1) # find where to start b 
ib = ib - 1 

if (ib < nb) # extrapolate from first point 
ib = ib + 1 # beJore taO 

bs = b(ib) + (b(ib-1)-b(ib)·(ts-(time-tb(ib)))/(tb(ib)-tb(ib-l)) 

While (ls < tend) [ 
while (ta(ia) <= ts & ia < na) 

ia=ia+l 
while «time - tb(ib» <= ts & ib > 

ib = ib - 1 

te = time - tb(ib) 
if (ta(ia) < te I te <= ts) 

te = ta(ia) 
if (te <= ts) 

te = tend 

enda = te 
endb = te 

if (enda) 
ae = a(ia) 

ta(ia) 
(time - tb(ib» 

1) 

# INTEGRAL LOOP 
# find first time after current 
# time, in both. a and b series 

# take smallest of these 
# as paneL limit 

# but ma.lce sure we advance 

# find out which we Icnow 

# know it directly 

else if (ia == 1) # interpolate from (to. 0,0. D) 
ae = aO + (a(1)-aO)·(te-taO)/(ta(1)-taO) 

else # interpolate between 2 points 
ae = a(ia-l) + (a(ia)-a(ia-l»·(te-ta(ia-l»/(ta(ia)-la(ia-1» 
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end 

] 

if (endb) # know it directly 
be = b(ib) 

else if (te < (time - tb(l)) # interpolate between 2 points 
be = b(ib+l) +_ 

(b(ib)-b(ib+l»·( te-(time-tb(ib+ 1») I (tb(ib+ 1 )-tb(ib» 
else if (te == tend) # i~s the endpoint 

be = bO 
else # interpolate from (tbO, bOy 

be = b(1) + (bO-b(l»)·(te-(time-lb(l»)/(lb(l)-tbO) 

# integral of panel 
panel=(te-ts)·(l.l3. ·(ae-as)·(be-bs) + 0.5 ·(bs·(ae-as)+_ 

as·(be-bs» + as·bs) 

sum = sum + panel 
as = ae 
bs = be 

# add panel to rum 

return(sum) 

con.T 
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# datlin - read ROI data line 

integer function datlin (line. fdes. size) 
character line (ARB) 
filedes fdes 
integer size(2) 
# 

datlin.r 

# reads a data line from archive file 'fdes'. Ignores blanic lines and comments. 
# and enters parameter-setting comment lines into the table. 
# Retu.rns EOF on end of file. This junction is just like getlin except 
# it will not return blanic or comment lines. 
# 

exLfunc integer length. agtlin 
ext....subr skipbl, penter 
character name(MA.."XNAME) 
integer info (T..SIZE). i. j. last 

while (agtlin(Iiue. fdes. size)!=EOF) [ # try reading a line 
? call fprint(STDERR. "[DATLIN] read: %s". line) 

? 

end 

last = 0 
for (j=l; line(j) != EOS; j=j+1) # find last nonwhite character 

if (line(j)!=BLANK & line(j)!=NEWLINE & lineU)!=TAB) 
last = j 

line{last+l) = EOS 

j = 1 
call skipbl(line. j) 
if (line(j) == EOS) 

next 
if {line(j) != 'I') [ 

call fprint(STDERR. 
return(OK) 

j = j + 1 
call skipbl(line. j) 
if (line(j) != '%') 

next 

i = 1 

# trim trailing whitespace 

# look at first nonblanic char 
# blanic line - ignore it 

# not a comment: 
"[DATLIN] ·@n") 

# return triu.mphant. 

# look at next nonblanic char 

# this is just a comment 

for (j=j+l; line(j) != '%'; j=j+l) [ 
if (line(j) == EOS I i == MAXNAME) 

next 2 # no closing %. forget it 
name(i) = line(j) # extract the parameter name 
i = i + 1 

] 
name(i) = EOS 

j = j + 1 
call skip bl(line. j) 
call penter(name. line(j» 

] 
return(EOF) 

# find beginning of definition 
# enter definition 
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# dojit - perform fit on parameters 

subroutine dofit (line, j) 
character line(ARB) 
integer j 
# 
# 
# 
# 
# 

Line(j .. .) is a list oj parameters to /it. It is picked apart 
by setmap. We print initial values, caLL marqu.ardt, print 
resu.Lts. 

extJunc rIledes open 
extJunc integer isatty 
character val(MAXNAME) . 
integer map(MAXFIT), nparm, which, flags(MAXFIT) 
real uncert(MAXFIT), eov(MAXFIT·MAXFIT) 
filedes ttydes 
external funin, funup 
logical quit 
logical true 
common Iquit! quit 

include da teorn 
include pareom 

# set by typing control-C 
# true uncertainties Jor our fit? 

call setmap(line(j), map, nparm. which) 

if (nparm == 0) [ 

] 

call fprint(STDERR,"No paramaters to fit@n") 
return 

call fprint(STDOUT, "#IIiitifil Conditions:@n@n")· 
call shopar(STDOUT, NO, uncert, NO, flags) 
eall fprint(STDOUT, "@n# Fit 70s", line(j)) 

chi = O. 
chiO = O. 
istep = 0 
quit = .false. 

dofit.r 

if (isatty(STDIN) == YES) 
ttydes = STDIN 

# lun for control-C is terminal 

else 
ttydes = open("TI:", READ) 

call catch(quit, ttydes) 

if (which == INPUTPAR) 
call marq(funin,ninpar ,inpar, uncert,cov ,nparm,map,nblood, 

tblood, blood, ubloo d,nsteps,e hiO,istep,chi,ierr ,flags ,ide bug) 
else 

call marq(funup,nuppar,uppar,uncert,cov,nparm,map,ntissu, 
ttissu.tissu.utissu.nsteps.chiO,istep,chi,ierr,flags.idebug) 

call catch 
if (ttydes '= STDIN) 

call close(ttydes) 

call rtoe(chiO, val, 11. 4) 
call fprint(STDOUT. lI@n# Results:@n# Initial chi square: 7os@n". val) 
call rtoe(chi, val, 11, 4) 
call fprint(STDOUT, "# Final chi square: 70s after 70d iterations@n@n", 

val, istep) 

if (ierr != 0) [ 
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end 

call fprint(STDOUT. "# *** Marquardt error %d: ". ierr) 
select (ierr) [ 

case -1: 
call fprint(STDOUT. "Parameter setup@n") 

case 1: 
call fprint(STDOUT. "Too many iterations@n") 

case 2: 
call fprint(STDOUT. "Matrix invert while stepping@n") 

case 3: 
call fprint(STDOUT. "Matrix invert after convergence@h") 

case 4: 

dofit.r 

call fprint(STDOUT. "Terminated by user before convergence@n") 
default: 

call fprint(STDOUT. "?@n") 
] 

] 

if (which == INPUTPAR) [ 
npar = ninpar 
ndat = nblood 
true = btrue 

] 
else [ 

npar = nuppar 
ndat = ntissu 
true = ttrue 

ndf = ndat - nparm # degrees 0/ freedom 
call fprint(STDOUT. "# Number of degrees of freedom: %d". ndf) 

if (!true) [ 
sc = sqrl(chi I float(ndf)) 
do i = 1. npar 

uncert(i) = uncert(i) * sc 
do i = 1. npar**2 

cov(i) = cov(i) * sc 

II have to· fudge uncerta.inties 
# pretend model fit: chi=ndJ 
# sca.le uncerl. cov 

call fprint(STDOUT." -- Uncertainties fudged@n") 
] 
else 

call putch(NEWLlNE. STDOUT) 

call shopar(STDOUT. which. uncert. which. flags) 
call shocov(cov. npar. which) 

return 

.. 
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C DOT - Compute Dot-Product of Vectors 

FUNCTION DOT(A.B.N) 
DIMENSION A(l).B(1) 

D = O. 
DO 10 I = 1.N 

D = D + A(I) ·B(I) 
10 CONTINUE 

DOT = D 

RETURN 
END 
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# dowrit - write input or u.ptake data & model to file 

subroutine doW'rit (line, j) 
character line(ARB) 
integer j 
# 
# line(j .. .) is a write-data command. Format is: 
# [I.i\Pu.t] [.] [UPtake] [> file] 
# 
# 

extJunc integer gettok, equal 
extJunc filedes open 
character va r(MAXNAME) , filnam(MAXNAME) 
filedes fdes 
integer which, mode, ndat 
real time, meas, uncert, model, inp, par 
external funin, funup 

include parcom 
include datcom 

fdes = STDOUT 
mode = WRITE 

if (gettok(var, line, j) == EOF) [ 
100 call fprint(STDERR, " ••• Usage: write inlup [>1» file]@n") 

return 
1 

if (var(l) == 'i' & var(2) 
which = INPUTPAR 
npar = ninpar 

] 

'n') [ 

else if (var(t) == 'u' & var(2) 
which = UPTAKEPAR 
npar = nuppar 

] 
else 

gata 100 

'p') [ 

dowrit.r 

call gettok(var, line, j) 
if (var( 1) == '>') [ # redirection 

if (line(j) == '>') [ 
mode = APPEND 
j = j + 1 

] 

filnam(l) = EOS 
while (gettok(var, line, j) != EOF) 

call concat(filnam, var, filnam) 
# remaining tokens are 
# tacked onto file name 

if (length(filnam) <= 0) 
gato 100 

# missing name 

] 

fdes = open(filnam, mode) 
if (fdes == ERR) [ 

] 

call fprint(STDERR, "Can't write to %s@n", filnam) 
return 

call rtoe(bscale, var, la, 3) 
call fprint(fdes,"Input: %s - %s (reg. %d • %s Model %d@n", 

bfile, blabel, breg, var, infun) 
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"if (which == UPTAKE PAR) [ 
call rtoe(tscale, var, 10, 3) 

] 

call fprint(fdes,"Uptake: %s - %s (reg. 
tfile, tlabel. treg, var, up fun) 

else 
call putch('@n', fdes) 

for (i = 1; i <= npar; i=i+i) [ 
callgetnam(var, which, i) 

] 

call fprint(fdes, "%s = ", var) 
if (which == INPUT PAR) 

par = inpar(i) 
else 

par = uppar(i) 
call rtoe(par, var, 11, 3) 
call putlin(var, fdes) 

if (mod{i,4) == 0) 
call putch(,@n', fdes) 

else 
call putlin{" " fdes) 

if (mod{i,4) != 1) 
call putch{'@n', fdes) 

if (which == INPUTPAR) [ 

dowrit.r 

%d • %s) Model %d@n", 

# parameter name 

# and valu.e 

call fprint{fdes,"@n time input uncert in.JIlodel@n") 
ndat = nblood 

] 
else [ 

call fprint{fdes, 
"@n time uptake uncert uPJIlodel inpul@n") 

ndat = ntissu 
] 

do i = 1, ndat [ 
if (which == INPUTPAR)" [ 

time = tblood(i) 
meas = blood(i) 
uncert = ublood{i) 
call funin(.false.,inpar,time.model) 

] 
else [ 

time = ttissu(i) 
meas = tissu(i) 
uncert = utissu{i) 
call funup(.false.,uppar,time,model) 

] 
call funin(.false.,inpar,time-uppar(6),inp) 

call rtof(time, var, 7, 1) 
call putlin(var, fdes) 

call rtoe(meas, var, 11, 3) 
call putlin(var, fdes) 

call rtoe(uncert, var, 11, 3) 
call putlin(var, fdes) 

call rtoe{model. var, 11, 3) 
call putlin{var, fdes) 

Thu 30.fun 83 17:07:28 
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] 

if (which == UPTAKE PAR) [ 
call rtoe(inp, var, 11, 3) 
call putlin(var, fdes) 

] 

call putch('@n', fdes) 

if (fdes != STDOUT) [ 
call close(fdes) 

dowrit.r 

# show. inpu.t function 
# if doing u.pta.ke 

call fprint(STDOUT,"# Wrote data/fit list to file '%s'@n", filnam) 

return 
end 
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real function fimpls(par, t) 
real par(ARB), t 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

lrnpuLse function Jor compartmentaL modeLs 

t = time oJ evaLuation in terms oJ input function time, in sec. 
This routine evaluates several diJferent modeL input ju.nctions: 
upju.n = 1 three compartments in a row e.g. (FDG) 

2 three exponentials (bastard function Jor 3, below) 
3 four compartments 
4 two compartments, k1 both ways 
5 fou.r compartments, kb heLd equ.aL to ka 

real ka6, k16, pO, pl, p2, al, a2, a3, fl, f2, f3, time 
include parcom 

define (Kl,par(l» 
define (K2,par(2» 
define (K3,par(3» 
define (K4,par( 4» 

define (Fv,par(5» 
define (KA.par(7» 
define (KB,par(8» 
define (Fe,par(9» 

# inLine functions Jor case 3: numerator poLynomials 
anume(s) = ka6·(s·0t2 + (K2+K3+K4)·s + K2·K4) . 
anum12(s) = ka6 ·Kl·(s + K3 + K4) 

if (t < 0.) 
return(O.) 

time = -tl60. 

# return 0 Jor t < 0 

fimpls.r 

k16 = Kl·(1.-Fv)/60. # a frequ.ently needed number 

select (upfun) [ 
case 1: 

# par(1) = k1 (bLood Jdg <=> tissu.e Jdg) 
# par(2) = k2 
# par(3) = k3 (tissu.e Jdg <=> phosphorylated) 
# par(4) = 1e4 
# par(5) = Pu (vascu.lar partial volume) 

# 
# 
# 
# 

if (time == 0.) 
return(k 16) 

betal = K2 + K3 + K4 
beta2 = beta 1"2 - 4.·K2 ·K4 
if (beta2 <= 0.) [ 

call fprint(STDERR,"···Unable to solve roots@n") 
return(O.) 

] 

beta2 = sqrt(beta2) 
alpha 1 = (beta 1 - beta2)·.5 
alpha2 = (beta 1 + beta2) ·.5 
fl = k16 • (K3+K4-alphal)/beta2 
f2 = k16 - fl 

case 2: 
par(1) = J1 
par(2) = 1e1 
par(3) = J2 
par(4) = 1e2 

coeJficient Jor first exponential 
rate constant Jor first ezponentiaL 
(second ezp) 
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# 
# 
# 

# 
# 
# 
# 
# 
# 
# 
# 

# 

end 
] 

par(?) = J3 (third e:cp) 
par(8) :;:: 1e3 
par(5) = Pu (vascular partial volume) 

if (time == 0.) 
return{{par( 1 )+par{3)+par{7»·( 1. -Fv) 160.) 

return{ (par(1)·exp{time·par(2))+_ 

case 3: 
case 5: 

par(3) ·exp(time·par(4»+_ 
par(7)·exp(time·par(8» ) ·(1.-Fv)1 60.) 

par(1) = lel (extracellular space <=> tissue) 
par(2) = 1e2 
par(3) = 1e3 (tissu.e Jdg <=> phosphorylated) 
par(4) = 1e4 
parr?) = lea (blood <=> extracellular space) 
par(8) = leb (always equal to lea in model 5) 
par(5) = Pu: vascular partial volume 
par(9) = Fe: extracellular partial volume 

\ 
l old Ie's 
/ 

fimpls.r 

\ 
/ new Ie's 

ta.1ce care oj time unit dependence oj Ka: convert l/min to l/sec 
ka6 = KA 1 60. 

if (time == 0.) 
return(ka6·Fe) 

time = -time 
if (up fun == 5) 

KB=KA 

# a's are already < a 
# model 5: lea and leb equal 

p2 = KB+K1+K2+K3+K4 # coeJficients oj characteristic eqn 
p1 = (K1+KB)·(K3+K4)+K2·(KB+K4) 
pO = KB·K2·K4 
call rt3(p2.p1.pO.a1.a2.a3.ierr)# find. its roots 

if (ierr < 0) [ 
call remark("···Unable to solve roots in fimpls") 
return( 1.0e+ 1 0) 

] 
if (ierr > 0) 

call remark("···Equal roots. hope that's ok") 

ea1 = exp(time·a1) 
ea2 = exp(time·a2) 
ea3 = exp(time*a3) , 

Fc = 1. - Fv - Fe # cell volume 
f1 = (Fe·anume{a 1)+Fc ·anum12(a 1» I«a 1-a2)·(a1-a3» 
f2 = (Fe·anume(a2)+Fc·anum12(a2»/«a2-a1)·(a2-a3» 
f3 = (Fe*anume(a3)+Fc·anum12(a3»/«a3-a1)·(a3-a2» 
return(f1·ea1+f2·ea2+f3·ea3) 

case 4: 
if (time == 0.) 

return(k16) 
return(k 16 ·exp (time·K1» 

default: 

# two compart. lel both directions 

call error('···· in fimpls. can't happen") 
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# /init - initialize parameter names and values 

subroutine finit 

# this routine defines the names oJ the parameters and the maximum number 
# oJ parameters. Initialization must be done by assignment statements. 
# The routine is caLLed whenever the input or u.ptake fu.nction is changed. 

% 
% 
% 
% 
% 

include datcom 
include parcom 
include namcom 

minfun = 4 
mupfun = 5 

ninpar = 5 
innam(1) = 'a1 ' 
innam(2) = 'm1' 
innam(3) = 'a2' 
innam(4) = 'm2' 
innam(5) = 'ti' 
innam(6) = 0 

% upnam(5) = 'tv' 
% upnam(6) = 'to' 

% 
% 
% 
% 

% 
% 
% 
% 
% 
% 

% 
% 
% 
% 
% 
% 
% 

% 
% 
% 
% 

select (uplun) [ 
case 1: 

nuppar 
upnam(1) 
upnam(2) 
upnam(3) 
upnam(4) 

case 2: 
nuppar 

upnam(l) 
upnam(2) 
upnam(3) 
upnam(4) 
upnam(7) 
upnam(8) 

case 3: 
case 5: 

nuppar 
upnam(l) 
upnam(2) 
upnam(3) 
upnam(4) 
upnam(7) 
upnam(8) 
upnam(9) 

case 4: 
nuppar 

upnam(l) 
upnam(2) 
upnam(3) 
upnam(4) 

default: 

= 6 
= 'k1 ' 
= 'k2' 
= 'k3' 
= 'k4' 

= 8 
= 'f1' 
= 'k1' 
= 'f2' 
= 'k2' 
= 'f3' 
= 'k3' 

= 9 
= 'k1' 
= 'k2' 
= 'k3' 
= 'k4' 
= 'ka' 
= 'kb' 
= 'fe' 

= 6 
= 'k1' 
= 
= 
= 

call error(,'··· in finit, can't happen") 
] 
return 

end 

finit.r 
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# junin - compute input junction (& maybe derivatives) 

subroutine funin (tderiv. par. 
logical tderiv. tder(ARB) 

t. y. tder. dy) 

real par(ARB). t. dy(ARB) 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

input Junction Jor fitting 
choices are: 

1 biezponential a1 ezp(-m1 T) + a2 ezp(-m2 T) 
2 time ff>iezponentictL a1 T ezp (-m1 T) + a,2 T ezp (-m2 T) 
3 gamma, va,ria,te a1 T ezp(-m2 TU 2) + a,2 T ezp(-m2 T**2) 
4 Linear interpolation from input mea.su.rement 

where T = (t-1'i) /60. This 1'i shift does not affect model 4. 

units: a1. a2 - units oj the input mea.su.rements (cts /min/cc) 
mI. m2 - 1/min 
t. 1'i - seconds 

include parcom 
include datcom 
real time. tk. eml. ern2 
integer 10. hi. try 

define (Al. 1) 
define (M 1. 2) 
define (A2. 3) 
define (M2. 4) 
define (Ti. 5) 

if (infun == 4) [ # Linea,r interpolation 

] 

if (t < 0.) 
.y= 0.· 

else [ 
10 = 1; hi = nblood # binary sea,rch for nea,rest time 

] 

while (10 < hi) [ 

] 

try = (Io + hi) / 2 
if (tblood(try) < t) 

10 = try + 1 
else 

hi = try - 1 

if (tblood{lo) > t) 
10 = 10 - 1 

if (10 <= 0) 
10 = 1 

else if (Io >= nblood) 
10 = nblood - 1 

# we want to interpola,te 
# between (loy a,nd (lo+1) so 
# make su.re lo points where it 
# shouLd. 

# interpola,te 
y = blood(lo) + (t-tblood{lo)) • (blood(10+1)-blood(lo))_ 

/ (tblood(lo+l)-tblood(lo)) 
if (y < 0.) 

Y = O. # no nega,tive numbers 

if (tderiv) 
do i = 1. ninpar 

if (tder(i)) 
dy(i) = O. 

return 
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# other models: 
time = (t-par(Ti» I 60. 
il (lime < 0.) [ 

# convert to minutes 
# a.nd handle t-ti < a 

] 

Y = O. 
if (lderiv) 

do i = 1, ninpar 
if (lder(i» 

dy(i) = O. 
return 

if (infun == 1 I infun == 2) [ # ezp, t~xp 
em1 = exp( -time·par(M1» 
em2 = exp( -time·par(M2» 
y = par(A1)·eml + par(A2)·em2 
if (lderiv) [ . 

] 

if (lder(A1» dy(Al) = em1 
if (lder(A2» dy(A2) = em2 
if (tder(M1» dy(M1) = -time·par(A1)·em1 
if (tder(M2» dy(M2) = -time·par(A2)·em2 
if (tder(Tl» dy(Ti) = (par(M1)·par(A1)·em1 +_ 

par(M2)·par{A2)·em2) I 60. 

if (infun == 2) [ 
y = y • time 
if (lderlv) [ 

do i = 1, ninpar 
if (tder(i» 

funin.r 

dy(i) = dy(i) • time 
if (lder(Ti) 

dy(Ti) = dy(Ti)-(par(A1)·em1+par(A2)·em2) 160. 

end 

J 
] 

] 
else [ # infun == 3: t ezp -t p2 

] 

em1 = exp( -par(M 1) ·time"2) 
em2 = exp( -par(M2) ·time"2) 
y = par(Al)·time·em1 + par(A2)·time·em2 
if (lderiv) [ 

] 

if (lder(A1» dy(A1) = lime·eml 
if (lder(A2» dy(A2) = lime·em2 
if (tder(M1» dy(M1) =-par(Al)·time"3·em1 
if (lder(M2» dy(M2) =-par(A2)·time·~·em2 
if (tder(Tl» dy{Ti) = _ 

«2.·par(Ml)·time"2-1.)·par(A1)·ern1 + _ 
(2. ·par(M2)·time"2-1.)·par(A2)·em2) I 60. 

return 
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# ju.nup - compute uptake (residue) ju.nction (& maybe derivatives) 

subroutine funup (tderiv, par, 
logical tderiv, tder(ARB) 

t, y, tder, dy) 

real par(ARB), t, y, dy(ARB) 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

uptaJce ju.nction lor fitting. Returns tissue activity level 
at time t according to parameters 'par' (and implicitly, the input 
function and its parameters). IJ tderiv is true, Jor every true 
tder(i) we return dy(i) = dy / dpar(i). 

parameters: 
par(1-4,7.8) = kl.k2,k3,k4 FDG rate constants 
pa.r(5) =.tv fractional blood volume 
par (6) = to time shijt between input and tissue blood 

This routine uses a.ctual blood measurements and times jor 
convolution when possible (inju.n==4). 

extJunc real fimpls, con 
real time (MAXDATA), f(MAXDATA,MAXl"IT), 
integer k 

b(MAXDATA), tlast 

data tlast 11.0e+20 I 

include parcom 
include datcom 

if (t < tlast) [ 
k = 0 

] 
call funin(.false., inpar, 0., bO) 

k=k+1 . 
time(k) = t 
tlast = t 

call funin(.false., inpar, t-par(6), bhere) 
f(k, 1) = fimpls(par, t) 

if (infun == 4) 
Y = con(f(1.1),blood,time,tblood,t-par(6). 

fimpls(par,O.),bO,O.,O.,k,nblood) 
else [ 

call funin(.false.,inpar,t,~(k». 
y = con(f(1,l),b, lIme, lIme, t-par(6), 

fimpls(par,O.),bO,O.,O.,k,k) 

y = y + par(5) ·bhere 

if (tderlv) [ 
jder = 1 
do i = 1, nuppar 

if (tder(i» [ 
jder = jder + 1 
opar = par(i) 
if (i == 6) [ 

h = abs(.O 1 • parO» +1.0e-3 
par(6) = par(6) + h 

# need to see inju.n 
# need to see blood 

# start new TUn-through 

# store current point 
# remember last seen 

# a.dd one more input 
# and impulse point 

call funin(.false.,inpar,t-par(6),b 1 here) 

if (infun == 4) 
y1 = con(f(1.1),blood, time,tblood,t-par(6), 
fimpls(par ,0.), bO ,0 .,0 .,k,nblood) 

else 
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] 
] 
return 

end 

] 

yl = con(f(l.l).b,time.time.t-par(6), 
fimpls(par,O.).bO.O.,O .• k.k) 

yl = yl + par(5)·blhere 

else [ 

] 

h = abs(.005 • par(i» + 1.0e-6 
par(i) = par(i) + h 
f(k. jder) = fimpls(par. t) 

if (infun == 4) 

else 

yl = con(f(1.jder).blood.time.tblood.t-par(6). 
fimpls(par,O.).bO ,0.,0 .,k.nblood) 

yl = con(f(l.jder).b, time. time. t-par(6). 
fimpls(par,O.).bO.O .• O.,k.k) 

yl = yl + par(5) ·bhere 

par(i) = opar 
dy(i) = (yl-y)/h 

funup.r 
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# getbld - get time-activity-uncertainty data from .JOB format file 

subroutine getbld (file,ndat,time,value,uncert,scale,true) 
character file(ARB) 
integer ndat 
real time (ARB) , value(ARB), uncert(ARB),scale 
logical true 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

Reads activity vs. time from the (archived) blood file named 'file' 
Sets number of values 'ndat' and fills arrays time (collection time 
(in sec. after injection), vaLue (counts /min/gm), uncert. 

function returns OK if successjul, ERR if file wa,s not found or 
a read error wa,s encountered. The the filename can be of the form 
name, archive1l.ame'fiLena.me, archive1l.ame'su barchive 'filename , etc. 

Scale is a scale factor to appLy to the data and uncertainties. 

extJunc integer aopen, agtlin, ctoi 
extJunc real ctor 
integer (d, size(2) 
character line(ARGMAX) 

define (HEADERLINES,8) # bLood file junlc 

ndat = a 
? call (print(STDERR, "[GETBLD] file = %s@n", file) 

? 

if (aopen(file, fd, size) == ERR) 
call canl(file) 

for (i- = 1; i <= HEADERLINES; i = i + 1) [, 
if (agtlin(line, fd, size) == EOF) 

# skip header 

goto 100 
call remark(line) 

while (agtlin(Iine, fd, size) 
j = 1 

] 

i = ctoi(line, j) 
t = ctor(line, j) 
x = ctor(line, j) 
x = ctor(line, j) 
v = ctor(line, j) 

if (ndat >= 1) 
if (t < time(ndat» 

break 

ndat = ndat + 1 
time(ndat) = t 
value(ndat) = v·scale 
uncert(ndat)= 1. 

true = .false. 
call close(fd) 
return 

!= EOF) [ 

# sampLe number 
# time 
#weig/tt 
# counts /min 
# corrected counts /min/gm 

# check for early junlc at end 

# a kludge for now 

#- .• , uncertainties are bad 

100 call sprint(line, "Error - bad format in blood file %s@n", file) 
call putlin(line, STOOUT) 
call error(line) 

end 

getbld.T 
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# getcmd - read commands 

subroutine getcmd 

extJunc integer prompt. gettok. equal. setvar. index 
character line(ARGMAX). var(MAXNAME) 
real ctor 
real val 
string prstr ": " 
include parcom 

? call fprint(STDERR. "[GETCMD]@n") 

? 

end 

while(prompt(prstr. line. STDIN) != EOF) [ 
call fold(line) 

j = index (line. '#') 
if (j > 1) 

line(j) = EOS 

# get instruction 
# force Lower case 

# cLip comments 

call fprint(STDERR."command = '%s'@n". line) 

j = 1 
if (gettok(var. line. j) == EOF) 

next 

call fprint(STDERR."var = '%s'@n", var) 

call skip bl(line. j) 
if (line(j) == '=') [ 

j = j + 1 
val = ctor(line. j) 

if (setvar(var. val) == ERR) 
call fprint(STDERR."·Error -

] 

else if (equal(var. "write") == YES) 
call dowrit(line. j) 

else if (equal{var. "fit") == YES) 
call dofit(line. j) 

else if (equal{var. "debug") == YES) [ 
idebug = STDERR 
while (gettok(var. line. j) != EOF) 

# ignore empty Lines 

# it is an assignment 
# pick u.p vaLu.e to assign 

# set it 
couldn't set %s@n". var) 

if (equal(var. "verbose") == YES) 

] 
idebug = -STDERR 

else if (equal(var. "nodebug") == YES) 
idebug = 0 

else call fprlnt{STDERR."·Error - illegal command: %s@n". var) 

return 

getcmd.r 
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# getdat - read data as directed by command line arguments 

subroutine getdat 

exLfunc integer getarg. getepi. getbld. ctoi 
extJunc real ctor 
real scale 
character arg(ARGMAX). file(MAXNAME) 

include parco m 
include datcom 

scale = 1. 
call strcpy{"No file specified". file) 

for (i = 1; getarg(i. argo ARGMAX) != EOF; = + 1) [ 
call fold(arg) 

if (arg(1) == '-') 
select (arg(2» [ 

case '5': 
j = 3 
scale = ctor(arg. j) 
if (scale <= 0.) 

call error("Bad scale factor") 

case ;i': 
j = 3 
breg = ctoi(arg. j) 
bscale = sca Ie 
call strcpy(file. bfile) 

getdat.r 

call get fun(bfile. breg.bscale.nblood. t blood. blood. 

else 

] 
return 

end 

] 

ublood.blabel.btrue) . 
scale = 1. 

call rtoe(bscale.arg, 1.4) 
call fprint(STDOUT. 
"# Input: %5 - %s (region %d) Scale = 

bfile. blabel. breg. argo nblood) 

case 'u': 
j = 3 
treg = ctoi(arg. j) 
tscale = scale 
call strcpy(file. tfile) 
call getfun( trile. trego tscale.ntissu. ttissu. tissu. 

utissu. tla bel. ttrue) 
scale = 1. 

call rtoe(tscale,arg.l.4) 
call fprint(STDOUT, 
"# Tissue: %s - %s (region %d) Scale = 

tfile. tlabel. trego argo ntissu) 

default: 
call error("Unknown flag") 

call strcpy(arg. file) 

F'ri 05 Aug 83 1 7:47: 18 
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II getfun - read input or uptalce function from bLood file or epi file 

subroutine getfun (file ,re~ion,scale,ndat ,time ,value, uncert,label, true) 
character file (ARB) , label(ARB) 
integer region, ndat 
real scale, time(ARB), value (ARB) , uncert(ARB) 
logical true II uncertainties true? 

extJunc integer index 
real t1(MAXDATA) II hoLds end times 

# if no ., append subfile 
if (index(file, ~:) <= 0) II to archive name 

if (region > 0) 
call concat(file, "'roi", file) 

else 
call concat(file, '''blood'', file) 

? call fprint(STDERR,"[GETFUN] file = %s@u", file) 

if (region <= 0) [ II read from blood file 
call getbld(file,ndat, time, value, uncert,scale, true) 
call strcpy("Blood draws", label) 

] 
else # read from roi file 

call getroi(fiie, region,ndat, time, value,uncert,label,scale, true) 

return 
end 

getfun.r 
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# getnam - get parameter name by type. inverse oj whopar. 

subroutine getnam (var, kind, index) 
character var(ARB) 
integer kind, index 

byte name(2) 
integer ina me 
integer in, up, ns 
integer mqnam(NQPAR) 
equivalence (iname, name) 

include namcom 
include parcom 
common Imqnaml mqnam, in, up, ns 

% iname = '??' 

end 

if (index >= 1) 
select (kind) [ 

] 

case INPUTPAR: 
if (index <= ninpar) 

iname = innam(index) 
case UPT AKEPAR: 

if (index <= nuppar) 
iname = upnam{index) 

case MARQPAR: 
if (index <= NQPAR) 

iname = mqnam(index) 
case INPUTFUNCTION: 

iname = in 
case UPT AKEFUNCTlON: 

iname = up 
case NSTEPS: 

iname = ns 

var(1) = name(1) 
var(2) = name(2) 
var(3) = EOS 

return 
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# getroi - read time-activity-uncertainty data. from .ROI format file 

subroutine getroi (file,region,ndat,time,value,uncert.label.scale.true) 
character file(ARB). label(ARB) 
integer region. ndat 
real time (ARB), value(ARB). uncert(ARB). scale 
logical true 

# Set ndat. time. value. and uncert. label. true. If the file or the specified 
# region does not exist we print an error message and ezit. 

character line(134) 
filedes fdes 
real to. tl 
extJunc integer da tlin. aopen. pget 
int~ size(2) 

call tinit 
if (aopen(file. fdes. size) == ERR) 

call cant(file) 

if (datlin(line. fdes. size) == EOF) 
call error("No data in ROI file") 

if (pget{"NTIMES". 'd'. ndat) != YES) 
call error("NTlMES not defined") 

if (pget("NREGIONS". 'd'. nov I) != YES) 
call error("NREGIONS not defined") 

if (region < 1 I region > novI) 
call error{"Region out of range") 

# initialize data table 
# attempt to open rei file 

# read up to first data line 
# there's nothing there? 

# get counts 

getroLr 

for (i = 1; i <= ndat; i = i + 1) [ 
j = 1 

# get tim.es. average start&stop 
# note that we have first line 

] 

to = ctor{line. j) 
t1 = ctor{line. j) 
time(i) = (to+t1) 12. 
if (i < ndat) 

call datlin(line. fdes. size) 

# start & stop times 

# take m.iddle as measurement time 
# get nezt line 

for (i = 1; i < region; i = i + 1) # skip other regions 
for (j = 1; j <= ndat; j = j + 1) 

if (datlin(line. fdes. size) == EOF) 
1 call error("Out of data in ROI file") 

end 

for (i = 1; i <= ndat; i = i + 1) [ 
if (datlin{line. fdes. size) == EOF) 

] 

goto 1 
j = 1 
vaIue(i) = ctor(line. j); uncert(i) = 
if (scale != 1.) [ 

value(i) = value{i) ·scale 
uncert(i) = uncert(i) ·scale 

if (pget("LABEL". 's'. label) == NO) 
call strcpy("(No LABEL)". label) 

# get requested regian. 

ctor(line.j ) 
# apply scaling factor 

true = .false. 
if (pget{"TRUE_UNCERT". 

true = i == 1 

# true only if TRUE_UNCERT == 1 
'd'. i) == YES) 

call close(fdes) .. 
return ' 
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# gettok - extract alpha.numeric or punc. token from string 

.integer function gettok (tok, 
character tok(ARB), str(ARB) 
integer j 

str, j) 

# 
# 
# 
# 
# 
# 

eztracts a token from str starting at j. Skips blanks and 
takes a string consisting of all alpha.numeric or one punctuation 
character. 
Returns EOF when there no StLch tokens to find, OK otherwise. 

extJunc integer type # function returns LETTER 
# or DIGIT or char. 

while (str(j) == ' , I str(j) == '@t' I str(j) == '@n') 
j = j + 1 

if (str(j) == EOS) [ # detect no token 
? call fprint(STDERR,"[GETTOK] EOF@n") 

return (EO F) 
] 

iout = 2 
lok( 1) = str(j) 
j = j + 1 

if (type(tok(1)) != tok(1)) 
while (type(str(j)) != str(j)) [ 

tok(iout) = str(j) 
iout = iout + 1 
j = j + 1 

] 

tok(iout) = EOS 
? call fprint(STDERR,"[GETTOK] '%s'@n", tok) 

return(OK) 
end 

# take first one anyhow 

# first is LETTERlDIGIT 
# while rest are, 
# copy them in 

gettok.r 
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# init - initialize data variables, parameters, etc. 

subroutine init 

end 

integer now(9) 
character dat(10), tim(9) 
include datcom 
include parcom 

data inpar /1.0, 1.0, 1.0, .01, 0., 0.1 
data uppar / .1, 0.1, 1.0, .001, .1, 0., 0., 0.1 

infun = 1 
upfun = 1 
nsteps = 1000 
call finit # initialize junction stu!! 

call strcpy("No file specified", bfile) 
call strcpy(bfile, tfile) 
blabel(1) = EOS 
tlabel( 1) = EOS 

nblood = 0 
ntissu = 0 
breg = 0 
treg = 0 
tscale = 1. 
bscale = 1. 

call errset(72,. true.,.false.) #ignore 
call errset(73,.true.,.false.) # 
call errset(74,.true.,.false.) # 
call errset(75,.true.,.false.) # 
call errsel(84,. true. ,.false.) # 

call getnow(now) 
call fmtdat(dat, tim, now, LETTER) 

# defaults 

floating overflow 
zero divide 
underflow 
float to integer ofl. 
sqrt«O) 

call fprint(STDOUT,"# %s %s %s@n", VERSION, dat, tim) 

return 
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C MARQ - Marquart Least-Squares fit 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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C 
C 
C 
C 
C 

SUBROUTINE MARQ (l"UN,NPAR,PAR.DPAR,COV,NPARM,MAP, 
1 NDAT,T,DAT,ERR, 
2 NSTEP,CHIO,ISTEP,CHI,IERR,JERR,IDEBUG) 

EXTERNAL FUN 
INTEGER NPAR, NPARM, MAP(l), NDAT, NSTEP, ISTEP, IERR, JERR(l) 
REAL PAR(1). DPAR(l), COV(l), T(1), DAT(1) , ERR(1), CHIO, CHI 

Subroutine MARQ finds the set of parameters of function 
FUN which minimizes chi-squared for the set of measurements 
provided. In the arugument descriptions below, [I] means 
that the argument is an input (used by the subprogram), [0] means 
that the argument is an output (set by the subprogram), [10] means 
that it is both used and set. 

FUN 

NPAR 
PARO 
DPARO 
COVO 

NPARM 
MAPO 

NDAT 
T{) 
DATO 
ERRO, 

NSTEP 
CHIO 
ISTEP 
CHI 

[I] - Function and derivative routine supplied by user 
SUBROUTINE FUN (TDERN,PAR,TIME,Y,TDER,Dy) 
LOGICAL TDERN,TDER(l) 
REAL PAR(l),TIME,Y,DY(l) 

TDERN [1]- If .true., compute derivatives. If 

PARO 
TIME 
Y 
TDERO 

DYO 

.false., do not return any derivatives in 
[1]- Parameters of function 
[1]- Value of independent variable 
[0]- Value of the function at TIME 
[1]- Logical array: if TDER(i) then compute 

DY(i) = dFUN IdPAR(i) 
[0]- Array of derivatives 

[IJ - Length of parameter array PAR 
[10]- Parameter array 
[0] uncertainties of fit parameters (0 if not fit) 
[0] - Covariance matrix: 

COV«I-l)·NPARM + J) = cov(par(i),par(j)) 
if par{i) and par(j) were fit, 0 otherwise 

[I] - Number of parameters in PAR to fit 
[I] - List (indices) of which parameters in PAR to fit 

[I] - Length of data array 
[I] - Values of the independent variable 
[IJ - Data array 
[I] - Error array (uncertainties in DAT) 

[I] - Maximum number of steps to take 
[0] - Initial chi-squared 
[0] - Number of steps taken 
[0] - Final chi-squared 

IERR [0] - Error flag: 
-I, Error in parameter setup 

I, Too many iterations 
0, No errors detected 
2, Failed to invert matrix while stepping 
3, Failed to invert matrix after convergence 
4, Fit interrupted by QUIT before convergence 

JERR [0] - Parameter error flags: 
-1, Parameter not fit 

0, Normal parameter fit 
1, Parameter insensitive 
2, Parameter correlated 

marq.f 

DY 
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C 
C 
C 
C 
C 
C 
C 
c--
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

IDEBUG [I] - file descriptor for reporting debug information: 
<0 large amount of info on unit iabs(idebug) 
o no debugging information 

>0 iterations reported on unit idebug 

MARQ will exit prematurely with exit status 4 if the 
logical flag QUIT in common 1 QUIT 1 is set true. 

Variables internal to this routine: 

A 

D 
G 
GS 
JFLAG 

PARM 
RTID 

TAR 
TDER 

Second derivative matrix in various forms: 
originally calculated in upper triangle, 
normalized into lower triangle, 
brought to upper triangle and inverted in place. 

This is the matrix '8' in the Marquardt algorithm. 
- Step 
- Gradient. This is the vector 'E' in the Marquardt algorithm. 
- Normalized gradient 

Flags from SPDINV 
JFLAG = 0, Normal 
JFLAG = 1, Insensative parmeter 
JFLAG = 2, CorreIa ted parameter 

Mapped parameters 
- Normalization factors (square-root of inverse 

of diagonals of A) 
- Temporary parameters 
- Logical array indicating which derivatives 

to return 
DEBUG,VERSOS - logical debug printing flags 
TEST - used in debug printout; true if just had a bad step 

PARAMETER maxp = 10 ! .max # of paramters (See also MQDER) 
PARAMETER rripsq = lOa! and squared 

DIMENSION JFLAG(maxp),COM(3) 
DIMENSION PARM(maxp),G(maxp),GS(maxp),RTID(maxp),TAR(maxp) 
DIMENSION D(maxp),A(mpsq) 
LOGICAL TDER(maxp), debug, verbos, quit, test 
COMMON lMARQ/TCON,ECON,ZLAM,VLAM,COZ,VCONST,EPS 
COMMON/LST ILS(maxp) 
common 1 qui t 1 quit 
common Imdebugl debug, verbos, ldebug 
DATA EPSIl.E-61 

C Convergence parameters 

DATA TCON,ECON 1 l.E-5,1.E-41 

C Diagonal increment, factor to change it by, 
C limiting cosine of angle from the gradien t, 
C factor to cut step size. 

DATA ZLAM,VLAM,COZ,VCONST 10.1,10.,0.8,0.51 

marq.f 

C --------------------------------------------------------------------
C SETUP 
C --------------------------------------------------------------------

C Check some input parameters. 

IERR = -1 
DEBUG = IDE BUG .NE. 0 
VERBOS = IDEBUG .LT. 0 
LDEBUG = IABS(IDEBUG) 

Thu 30,}un 83 16:43:58 
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IF (NPAR.LT.1 .OR. NPAR.GT.MAXP .OR. 
1 NPARM.LT.1 .OR. NPARM.GT.NPAR) RETURN 

DO 12 I = 1.NPARM 
J = MAP(I) 
IF (J.LT.1 .OR. J.GT.NPAR) RETURN 
IF (I .GT. 1) THEN 

II=I-1 
DO 10 JJ = 1.I1 

IF (J .EQ. MAP(JJ» RETURN 
10 CONTINUE 

ENDIF 
12 CONTINUE 

IERR = 0 

C Setup virtual row ongms 

out of range 

out of range 

duplicate 

C (For a square matrix. because we will use both upper 
C and lower triangles) 

LS(l) = 0 
DO 14 1 = 2.NPARM 

14 LS(l) = LS(I-1) + NPARM 

C Setup derivative flags for variable parameters. 

DO 16 I = 1.NPAR 
16 TDER(I) = .FALSE. 

DO 18 1 = 1.NPARM 
J = MAP(l) 

18 TDER(J) = .TRUE. 
C 
C . ·Map parameters and calculate initial chi-squared. 
C 

CALL MQMAP (l.NPAR.PAR,NPARM.MAP.PARM) 
CALL MQCHI (FUN.NPAR.PAR.NPARM.MAP.PARM. 

1 NDAT.T.DAT.ERR.CHI) 
CHIO = CHI 

C..... DEBUG PRINTOUT 

IF (DEBUG) THEN 
CALL RTOE(CHI.A.11.3) ! use A as string scratch 
CALL FPRINT(LDEBUG.'Entering MARQ. Chi = 7os@n'. A) 

ENDIF 

C Setup initial values for stepping. 

XLAM = ZLAM !starting value of diagonal increment 
ISTEP = 0 !initiaJize step number 

marq.f 

C --------------------------------------------------------------------
C TOP OF STEPPING LOOP 
C --------------------------------------------------------------------
C 
C Stay within step limit. 

30 IF (ISTEP .GE. NSTEP) THEN 
IERR = 1 
RETURN 

ENDIF 
IF (QUIT) THEN 

IERR = 4 
GOTO 81 

ENDIF 
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ISTEP = ISTEP + 1 
CONST = 1. !keep track of step cut factor 

C Get gradient (G) and second derivative matrix (A); 
C second derivatives go to upper triangle. 

CALL MQDER (FUN,NPAR.PAR.NPARM.MAP,PARM. 
1 NDAT.T.DAT.ERR.TDER.G.A) 

C Calculate normalization factors. 

DO 32 I = l,NPARM 
LI = LS(I) 
RTID (I) = O. 

32 IF (A(I+LI) .GT. 0.) RIID(r) = l.1SQRT(A(I+LI)) 

C Normalize gradient (G) and second derivative matrix (A); 
C normalized gradient goes to GS. and 
C normalized second derivatives go to lower triangle. 

DO 34 J = l,NPARM 
LJ = LS(J) 
GS(J) = G(J) ·RTID(J) 

DO 34 I = J,NPARM 
LI = LS(I) 

34 A(J +LI) = A(I +LJ) ·RTID(I) ·RTID(J) 

C Cut XLAM if not too small already. 

IF (XLAM .GT. EPS)XLAM = XLAM/VLAM 

marq.f 

C --------------------------------------------------------------------
C 
C 
C 
C 
C 
C 

Put XLAM + 1. on the diagonal (same as adding XLAM; we've 
normalized the diagonal to one. and bring the normalized matrix 
to the upper triangle. 

40 DO 42 J = l,NPARM 

C 

42 

LJ = LS(J) 
IF (RTID(J) .GT. 0.) THEN 

A(J +LJ) = XLAM + 1. 
ELSE 

A(J +I.J) = XLAM 
ENDIF 

DO 42 I = J,NPARM 
LI = LS(I) 
A(I+LJ) = A(J+LI) 

C Invert the matrix. 

CALL SPDrNV (A.NPARM,IFLAG.JFLAG) 
IF (IFLAG .NE. 0) THEN 

[ERR = 2 
RETURN 

ENDIF 

C Matrix multiply and unnormalize to get new parameters. 

DO 50 I = 1,NPARM 
LI = LS(I) 

Thu 30 Jun 83 i 6:43:58 Page 4 of marq.f 
66 

-. 



.. 

marq.f 

52 

54 

0(1) = O. 
IF (JFLAG(I) .EQ. 0) THEN 

DO 52. J.= 1.1 
LJ = LS(J) 
D(I) = D(I) + A(I +LJ) ·GS(J) 

IF (I .NE. NPARM) THEN 
JJ = I + 1 
DO 54 J = JJ.NPARM 

ENDIF 
ENDIF 

0(1) = 0(1) + A(J+LI)·GS(J) 

0(1) = D(I)·RTID(I) 
TAR(I) = PARM(r) + 0(1) 

50 CONTINUE 

marq.f 

C --------------------------------------------------------------------
C TEST STEP 
C --------------------------------------------------------------------
C 
C Test for a good step. 

CALL MQCHI (FUN.NPAR.PAR.NPARM.MAP.TAR. 
1 NDAT.T.DAT.ERR.TCHI) 

IF (TCHI .LE. CHI) GO TO 70 
TEST = .TRUE. 
IF (VERBOS) GOTO 73 ! go do debug printout first 

C Not a good step; see if we're near the gradient. 

51 COSINE = DOT(G.D.NPARM)/ 
SQRT(DOT(G.G.NPARM)·DOT(D.D.NPARM» 

IF(~OSINE .GT. COZ) GOTO 60 

C Increase XLAM and try again. 

XLAM = XLAM·VLAM 
IF (QUIT) THEN 

IERR = 4 
GOTO 81 

ENDIF 
GO TO 40 

C Bad step but right direction; 
C reduce step size until chi-squared is ok. 

60 CONST = CONST·VCONST 
DO 62 I = 1.NPARM 

0(1) = D(I)·VCONST 
62 TAR(I) = PARM(I) + D(I) 

CALL MQCHI (FUN.NPAR.PAR.NPARM.MAP.TAR. 
1 NDAT.T.DAT.ERR.TCHI) 

IF (TCHI .LE. CHI) GO TO 70 
IF (QUIT) THEN 

IERR = 4 
GbTO 81 

ENDIF 
GOTO 60 

\' 

C Good step; update chi-squared and parameters. 

70 TEST = .FALSE. 
CHI = TCHI 
DO 72 I = 1.NPARM 

72 PARM(I) = T AR(I) 
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C 
c ..... 
C 

73 

94 

C 

74 

DEBUG PRINTOUT 

IF (DEBUG) THEN 
CALL RTOE(CHI,COV,11,3) 
CALL FPRINT(LDEBUG,'@nIteration %d 
CALL RTOE(XLAM,COV,11.3) 

! sorry, this is sooooo grody 
! use COV as string scratch 
Chisqr = %s'. ISTEP, COV) 

CALL FPRINT(LDEBUG,' Lam = %s', COY) 
CALL RTOE(CONST.COV,l1,3) 
CALL FPRINT(LDEBUG,' Const = %s@n'.COV) 
DO 94 I = 1. NPARM 

CALL RTOE(PARM(I),COV,11.3) 
CALL FPRINT(LDEBUG: Par %2d %s', I. COY) 
CALL RTOE(D(I). COV, 11. 3) 
CALL FPRINT(LDEBUG,' ; %s %d@n'. COV, JFLAG(I) 

CONTINUE 
IF (TEST) GOTO 51 

ENDIF 
! we were just testing this set of pa rams 
! ... but you've seen worse so don't complain 

Test for convergence; if not. go take another step. 

DO 74 I = 1.NPARM 
IF (ABS(D(l)/(TCON+ABS(PARM(I))) .GT. ECON) GO TO 30 

CONTINUE 

marq.f 

C --------------------------------------------------------------------
C CONVERGENCE', 
C --------------------------------------------------------------------
C 
C Put 1. on the diagonal, and 
C bring the normalized matrix to the upper triangle. 

IF (DEBUG) CALL FPRINT(LDEBUG,'@nConvergence!!!@n') 
81 CONTINUE 

DO 80 J = l,NPARM 
LJ = LS(J) 
IF (RTID(J) .GT. 0.) THEN 

A(J+U) = 1. 
ELSE 

A(J+U) = o. 
ENDIF 

DO 80 I = J,NPARM 
LI = LS(O 

80 A(I+U) = A(J+LI) 

C Invert the matrix. 

CALL SPDlNV (A,NPARM,IFLAG,JFLAG) 
IF (IFLAG .NE. 0) THEN 

IERR = 3 
RETURN 

END IF 

C Unnormalize the inverted matrix (gives covariance matriX). 

DO 84 J = 1,NPARM 
LJ = LS(J) 
DO 84 I = J,NPARM 

84 A(I+LJ) = A(I+LJ)·RTID(I)·RTID(J) 

C Extract uncertainties, and symetrize 
C covariance matrix to lower triangle, 

DO 8S J = l,NPARM 
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LJ = LS(J) 
D(J) = SQRT(A(J+LJ)) 

DO 86 I = J.NPARM 
LI = LS(I) 

86 A(J +LI) = A(I +LJ) 

C Unmap parameters. errors. and covariance matrix. 

CALL MQMAP (-l.NPAR.PAR.NPARM.MAP.PARM) 
CALL MQMAP (-lOl.NPAR.DPAR.NPARM.MAP.D) 
CALL MQMAP (-102.NPAR.COV.NPARM.MAP.A) 

C Set JERR equal to JFLAG when fit; set to -1 when not. 

DO 88 I = 1.NPAR 
88 JERR(I)= -1 

DO 89 I = 1.NPARM 
J = MAP(I) 

89 JERR(J) = JFLAG(I) 

RETURN 
END 
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C MQCHI - Compute Chi-squared by calling user's FUN. 

SUBROUTINE MQCIII (FUN ,NPAR,P AR,NPARM , MAP ,PARM, 
1 NDAT,T,DAT,ERR,CHI) 

EXTERNAL FUN 
INTEGER NPAR, NPARM, MAP(l), NDAT 
REAL PAR(1), PARM(1), T(1), DAT(l), ERR(l), CHI 

BYTE VAL(40) 
LOGICAL TDERIV 
DATA TDERIV I.FALSE.! 
DATA BIG 11.0E+201 ! upper limit on chi square 
LOGICAL DEBUG, VERBOS, TEST 
COMMON IMDEBUGI DEBUG, VERBOS, LDEBUG 

C Unmap parameters before calling FUN. 

CALL MQMAP( -1,NP AR,PAR,NPARM,MAP ,PARM) 

IF (VERBOS) THEN 
CALL FPRINT(LDEBUG:[CHI] Params:@n') 
DO 1 K = 1, NPARM 

CALL RTOE(PARM(K) ,VAL, 1 t,3) 
CALL FPRINT(LDEBUG:%d) %s ',K, VAL) 

1 CONTINUE_ 
CALL FPRINT(LDEBUG:@n') 

ENDIF 

C Calculate the chi-squared. 

CHI= O. 
DO 16 K = l,NDAT 

CALL FUN (TDERIV,PAR,T(K),Y) 
CHI = CHI + «DAT(K)-Y)/ERR(K»"2 
IF (CHI .GE. BIG) GOTO 11 

10 CONTINUE 
11 CONTINUE 

IF (VERBOS) THEN 
CALL RTOE(CHl, VAL, 11, 3) 
CALL FPRINT(LDEBUG, '»> Chi = %s@n', VAL) 

ENDIF 
RETURN 
END 
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mqder.f mqder.f 

C MQDER - Compute Derivative Matrix from user's FUN. 

10 
11 

SUBROUTINE MQDER (FUN,NPAR,PAR,NPARM,MAP,PARM, 
1 NDAT,T,DAT,ERR,TDER,G,A) 

EXTERNAL FUN 
LOGICAL TDER( 1) 
INTEGER NPAR, NPARM, MAP( 1), NDAT 
REAL PAR(1), PARM(1), T(1), DAT(1), ERR(1), G(1), A(1) 

PARAMETER maxp = 10 ! max # of parameters 

REAL DY(maxp),DYM(maxp) 
COMMON ILST ILS( 1) 
LOGICAL TDERIV, DEBUG, VERBOS 
COMMON IMDEBUGI DEBUG, VERBOS, LDEBUG 
DATA TDERIV I.TRUE.I 

DO 11 J = 1,NPARM 
G(J) = O. 
LJ = LS(J) 
DO 10 I = J,NPARM 

A(I+LJ) = O. 
CONTINUE 

CONTINUE 

! clear gradient & deriv products 

CALL MQMAP(-l,NPAR,PAR.NPARM,MAP,PARM)! Unmap the paramters before calling FN 

C Calculate the gradient (G) and the second derivative matrix (A). 

20 

21 
22 

1 

23 

DO 23 K = 1,NDAT 
CALL FUN (TDERIV,PAR,T(K),Y,TDER,Dy) 
ERSQl = 1./ERR(K)"2 
CALL MQMAP(1,NPAR,DY,NPARM,MAP,DYM) 

DO 20 I = l.NPARM 
G(I) = G(I) + DYM(I)·(DAT(K) - y)·ERSQI 

CONTINUE 

DO 22 J = l,NPARM 
LJ = LS(J) 
DO 21 I = J,NPARM 

A(I+LJ) = A(I+LJ) + DYM(I)·DYM(J)·ERSQI 
CONTINUE 

CONTINUE 

IF' (VERBOS) THEN 
CALL RTOF(T, VAL, 6, 1) 
CALL FPRINT(LDEBUG:Der> @t=%s',VAL) 
CALL RTOE(Y, VAL, 11, 3) 
CALL FPRINT(LDEBUG: y=%s@n', VAL) 
DO 1 J = 1, NPARM 

CALL RTOE(DYM(J) ,VAL, 13, 3) 
CALL FPRINT(LDEBUG:d%d=%s ',J, VAL) 

CONTINUE 
CALL FPRINT(LDEBUG:@n') 

ENDIF 
CONTINUE 
RETURN 
END 
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C MQMAP - Map/Unmap parameter array or matrix 

SUBROUTINE MQMAP (N,NPAH,X,N"PARM,MAP,XM) 

C Map (or unmap if N<O) NPARM (of the NPAR) values of X 
C into XM according to MAP. 
C MAP contains the indices to the unmapped array. 
C N indicates the dimension of the array (2 or less), 
C and legal values are 1. 2, -1, -2, -101, -102. 
C Negative values of N indicate unmapping, and for 
C those less than -100, X is zeroed before the transfer. 

INTEGER N, NPAR, NPARM, MAP(l) 
REAL X(l), XM(l) 

LOGICAL ZERO 

NABS = IABS(N) 
ZERO = NABS .GT. 100 
IF (ZERO) NABS = NABS - 100 
IF (N .GT. 0) GO TO ( 10, 20) NABS 
IF (N .LT. 0) GO TO (110,120) NABS 
RETURN 

10 DO 121M = l,NPARM 
I = MAP(IM) 

12 XM(IM) = X(I) 
RETURN 

20 IJM = 0 
DO 22 JM = l,NPARM 

J == NPAR·(MAP(JM)-l)· 
DO 221M = 1,NPARM 

IJM = IJM + 1 
IJ = J + MAP (1M) 
XM(IJM) = X(IJ) 

22 CONTINUE 
RETURN 

110 IF (ZERO) THEN 
DO 112 I = 1,NPAR 

112 XCI) = O. 
ENDIF 

114 DO 116 1M = l,NPARM 
r = MAP(IM) 

116 XCI) = XM(IM) 

120 

122 

RETURN 

IF (ZERO) THEN 
NPSQ = NPAR"2 
DO 122 I = l,NPSQ 

XCI) = o. 
END IF 

124 IJM = 0 
DO 126 JM = l,NPARM 

J = NPAR·(MAP(JM)-l) 
DO 126 1M = 1,NPARM 

IJM = IJM + 1 
IJ = J + MAP(1M) 
X(IJ) = XM(IJM) 

126 CONTINUE 
RETURN 
END 
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penter.r 

# penter - enter definition into symbol table 

subroutine penter (name, par) . 
character name (ARB) , par(ARB) 
# 
# enters defintion 'par' of parameter 'name'. 

pointer point 
integer info(T .-SIZE) 
extJunc pointer sdupl 
extJunc integer lookup, enter 
ext.-<;ubr strcpy, dsfree, error 
include tablecom 

if (lookup(name, info, table) == YES) [ # there's an old definition 

] 
call dsfree(info(T JlOINTER)) # so free its string space 

penter.r 

point = sdupl(par) # enter defn into data storage 
if (point == LAMBDA) 

call error("Couldn't allocate string space for parameter") 

info(T JlOINTER) = point # this is the stuff to store 
if (enter(name, info, table) == ERR) 

call error("Couldn't add definition to table") 

? call fprint(STDERR, "[PENTER] '%s' '%s'@n", name, par) 
return 

end 
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# pflag - print strings for flags MARQ returns 

subroutine pflag (fdes, flag) 
integer fdes, flag 
# 
# prints a cha,rara.cter string on fdes 
# 

end 

select(flag) [ 
case -1: 

call putlin(" (not fit)", fdes) 
case 0: 

] 

, 
case 1: 

call putlin(" 
case 2: 

call putlin(" 
default: 

call putlin(" 

return 

insensitive", fdes) 

correlated", fdes) 

??? flag ???", fdes) 

Thu 30.fun 83 16:44:11 
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# pget - get ROJ symbol definition in desired format 

integer function pget(name. fmt. par) 
character name(ARB). fmt 
integer par(2) 
# 
# fetches parameter 'name' into 'par' interpreted in format 'fmt': 
# 's' = string. 'd' = decimal integer. '0' = octal integer. 'j = 
# floating point (single precision). 
# 1/ the parameter was defined. returns YES. If not. doesn't alter par 
# and returns NO. 

character cmem(l) 
extJunc integer lookup. ctoi 
extJunc real ctor 
exL..subr strcpy 
integer info(T ....sIZE) 
real rpar 
integer ipar(2) 
equivalence (rpar. ipar(1)) 
include tablecom 
common Icdsmeml cmem 

# union !real. integer(2)! 

? call fprint(STDERR."[PGET] '%s' '%c m
• name. fmt) 

if (Iookup(name. info. table) != YES) [ # well. that's that. 
? call fprint(STDERR. " ·@n") 

return(NO) 

pget.r 

= cvLto...cptr(info(T ...POINTER» # convert integer array index to 
# character array index 

? call fprint(STDERR. " = '%s'@n". cmem(j» 

select (fmt) [ 
case's': 

call strcpy(cmem(j). par) 
# s: copy string 

case 'd': # d: decode as integer 

end 

pare!) = ctoi(cmem. j) 

case 'r': 
rpar = ctor(cmem. j) 
pare!) = ipar(l) 
par(2) = ipar(2) 

# r: decode as real 

# we assume a real is same 
# size as two integers 

case '0': # 0: decode as octal 
par(1) = 0 
while (cmem(j) >= '0' & cmem(j) <= '7') [ 

par(1) = par(l)·a + cmem(j)-'O' 
j = j + 1 

] 

default: 
call error("PGET with undefined format") 

] 
return(YES) 
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# rt3 - find roots of cubic polynomial with three real roots. 

subroutine rt3 (p, q, r, alpha, beta, 
real p, q, r, alpha, beta, garruna 
integer ierr 

gamma, ierr) 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
.#---

Ji1inds the 3 real roots of the cubic equation; 

1he roots are returned in alpha, beta, and gamma. 

If three real unequal roots exist, ierr= 0 is returned; 
if three real roots ezist, at least two of which are 
equal, ierr= 1 is returned; otherwise ierr=-l is returned, 
and alpha, beta, and gamma are meaningless. 

real = -(2. ·p"3 - 9.·p·q + 27. ·r) 1 54. 

rt3.r 

sqimag = -(4. ·p"3·r - (p·q)"2 - 18. ·p·q·r + 4. ·q"3 + 27. ·r··2)1 108. 

end 

if (sqimag < 0.) 
ierr = -1 
return 

J 
if (sqimag == 0.) 

ierr = 1 
else 

ierr = 0 

lheta3 = alan2(sqrt(sqimag), real) 1 3. 
abs3 (real··2 + sqimag)"(1./6.) 

real3 = abs3· cos(theta3) 
aimag3 = abs3 • sin(theta3) 
sqrl3 = sqrt(3.) 

alpha = 2. ·real3 - p/3. 
bela = - real3 - sqrl3·aimag3 - p 13. 
gamma = - real3 + sqrt3·aimag3 - p/3. 

return 
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setmap.r setmap.r 

# setmap - determine which parameters to /it 

subroutine setmap (line. map. nparm. 
character line(ARB) 

which) 

integer map(ARB). nparm. which 
# 
# 
# 

? 

end 

line() is a list oj parameters to /it. 
into a list (map) oj parameters to fit. 

extJunc integer type. gettok. equal 
character var(MAXNAME) 
integer set. i. ind 
logical dupe 

nparm = 0 
idebug = 0 
j = 1 

while (gettok(var. line. j) != EOF) [ 
if (equal(var. ".") == YES) 

next 

call whopar(var. set. ind) 

It is picked apart 

call fprint(STDERR."· parameter set ind %s %d %d@n". var. set. ind) 

] 

if (set == UNKNOWN) [ 

] 

call fprint(STDERR."Unknown parameter name %s@n". var) 
nparm = 0 
return 

if (set != INPUTPAR & set != UPTAKEPAR) [ 

] 

call fprint(STDERR."Can only fit input or uptake parameters@n") 
return 

if (nparm == 0) 
which = set 

else [ 

] 

if (set != which) [ 

] 

call fprint(STDERR."Can't mix in/up params in one fit@n") 
nparm = 0 
return 

dupe = .false. 
do i = 1. nparm 

if (map(i) == ind) [ 
call fprint(STDERR."%s duplicated in parameter list@n") 
dupe = . true. 

] 

if (! dupe) 
nparm = nparm + 1 
map(nparm) = ind 

call skip bl(line. j) 

return 
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# setvar - set parameter by name 

integer function setvar (var, val) 
character var(ARB) 
real val 

real qpar(l) 
extJunc integer index 
integer kind, status 

include parcom 
common /marq/ qpar 

status = OK 

call whopar(var, kind, index) 
? call fprint(STDERR,"[SETVAR] 70s = %d %d@n", var, kind, index) 

end 

select (kind) [ 
case INPUTPAR: 

inpar(index) = val 
case UPTAKE PAR: 

uppar(index) = val 
case MARQPAR: 

qpar(index) = val 
case INPUTFUNCTION: 

i = int(val)· 
if (i < 1 Ii> minfun) 

call fprint(STDERR,"·Bad input function number %d@n",i) 
else [ 

infun = i 
call finit 

] 
case uPTAKEFUNCTlON: 

i = int(val) 
if (i < 1 Ii> mupfun) 

call fprint(STDRR,"·Bad uptake function number %d@n.",i) 
else [ 

] 

upfun = i 
call finit 

case NSTEPS: 
nsteps = int(val) 

default: 
status = ERR 

return(status) 

setvar.r 
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# shoeov - print aova:ria.nee matri.x 

subroutine shocov(cov, 
real cov(ARB) 
integer npar, which 

npar, which) 

shocov.r 

# 
# 
# 
# 
# 
# 

prints covariance matriz and correlations for the parameters. 
we print covariances in the u.pper triangle and correlations 
in the lower triangle. 

version 2: only prints correlations (Lower triangle). 

character var(MAXNAME) 
define(COV.cov«Sl-1 )·npar+S2» 

call fprint(STDOUT, "@nCorreiation Matrix:@n ") 

? 
? 
? 
? 

end 

do i = 1, npar [ 
call getnam(var, which, i) 
call fprint(STDOUT, " %s 

] 
call putch('@n', STDOUT) 

do i = 2, npar L 
call getnam(var, which. i) 
call fprint(STDOUT, "%s " var) 

for (j = 1; j < i; j = j + 1) [ 
cor = COV(Li) ·COV(j,j) 
if (cor> 0.) 

cor = COV(i,j)/sqrt(cor) 
else 

cor = 0 .. 
call rtof(cor, var, 7, 3) 

",var) 

call fprint(STDOUT," %s " var) 

] 

] 
for (; j <= npar; j = j + 1) [ 

call rtoe(COV{i,j), var, 11, 3) 
call putlin(var, STDOUT) 

] 
call putch('@n', STDOUT) 

return 
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shopar.r 

# shopar - print parameters on file 

subroutine shopar (fdes, dounc, uncert, 
integer fdes, dounc, do flag, flags(ARB) 
real uncert(ARB) 

doflag, flags) 

# 
# 
# 
II 
# 
# 
# 
# 
# 
# 
# 
# 

end 

shopar prints the input and uptalce function nubmers and 
parameters on 'fdes'. If dounc is INPUTPAR or UPTAKEPAR 
we print uncertainties next to the appropriate parameters. 
Lilcewise, we print the flag labels next to 
the parameters if doflag = INPUTPAR or UPTAKEPAR: 
for param(i), we print 

(not fit) 

correlated 
insensitive 

character name(3), va I(MAXNAM E) 
include parcom 

if flags(i) = 

call fprint(fdes, "InputJunctioIl %d@n", infun) 

do i = 1, ninpar [ 
call getnam(name, INPUTPAR, i) 
call rtoe(inpar(i), val. 11, 4) 
call fprint(fdes,"%s = %s", name, val) 
if (dounc == INPUTPAR) [ 

call rtoe(uncert(i), val, 11, 4) 
call fprint(fdes," +- %s", val) 

] 
if (do flag = = INPUTPAR) 

call pflag(fdes, flags(i» 
call pulch('@n', fdes) 

-1 
a 
1 
2 

call fprint(fdes, "@n@UptakeJunction %d@n", upfun) 

do i = 1, nuppar [ 

] 

call getnam(name, UPTAKEPAR, i) 
call rtoe(uppar{i), val, 11, 4) 
call fprint(fdes,"%s = %s", name, val) 
if (dounc == UPTAKEPAR) [ 

call rtoe(uncert{i), val, 11, 4) 
call fprint{fdes," +- %s", val) 

] 
if (do flag == UPTAKE PAR) 

call pflag(fdes, flags{i» 
call putch('@n', fdes) 

return 
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spdinv.f spdinv.f 

C SPDINV - Invert Symmetric PosDev Matrix. 

SUBROUTINE SPDINV(S.N.IFLAG.JFLAG) 

C INVERTS SYMMETRIC POSITIVE-DEFINITE MATRIX "S" IN PLACE 
C USING ONLY THE UPPER TRIANGLE. USER PROVIDES ARRAY "LS" 
C OF POINTERS TO THE VIRTUAL ROW ORIGINS OF "S". 
C 
C S ( I + LS(J) ) IS THE (I.J) ELEMENT OF THE MATRIX 
C FOR 1 .LE. J .LE. N • J .LE. I .LE. N 

12 

11 

50 
13 

14 

15 

16 

18 

19 

DIMENSION S(1).JFLAG(l) 
COMMON ILST ILS(1) 
DOUBLE PRECISION SA.SB 
DATA EPS 1.EPS2/1.E-35.l.E-61 

DO 10 r = 1.N 
LI = LS(I) 
IF(S(LI+I) .LT. EPS1) GO TO 14 

IF(I .EQ. 1) GO TO 11 
TEMP = S(LI+I) 
KI<=1-1 

DO 12 K = l.KI< 
LK = LS(K) 
S(Ll+I) = S(Ll+I) - S(LK+I)"2 

IF(S(LI+I) .LT. EPS2·TEMP) GO TO 15 

JFLAG(I) = 0 
SA = S(Ll+I) 
SB = DSQRT(SA) 
S(LI+I) = SB 

IF(I .EQ. N) GO TO 10 
JJ = I + 1 

DO 13 J = JJ.N 
IF(I .EQ. 1) GO TO 13 
DO 50 K = 1.KI< 

LK = LS(K) 
S(LI+J) = S(LI+J) - S(LK+I)·S(LK+J) 

S(Ll+J) = S(Ll +J) IS(U+I) 

GO TO 10 
JFLAG(I) = 1 
GO TO 16 
JFLAG(I) = 2 
IF(S(LI+I) _LT. -EPS2~EMP) GO TO 100 
DO 18 J = 1.1 

LJ = LS(J) 
S(LJ+I) = O. 

DO 19 J = I.N 
S(Ll+J) = O. 

S(LI +I) = 1. 

10 CONTINUE 

DO 20 1 = 1.N 
LI = LS(I) 
S(LI+I) = 1./S(LI+I) 
IFeI .EQ. N) GO TO 20 
JJ = I + 1 

DO 21 J = JJ.N 

Thu 30 Jun 83 16:44:23 Page 1 of spdinv.J 
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LJ = LS(J) 
S(Ll+J) = S(U+J)·S(LI+I) 
IF(J .EQ. JJ) GO TO 21 
KK = J - 1 
DO 52 K = JJ,KK 

LK = LS(K) 
52 S(U+J) = S(LI+J) + S(LI+K)·S(LK+J) 
21 S(LI+J) = -S(LI+J)/S(LJ+J) 
20 CONTINUE 

DO 30 I = 1,N 
LI = LS(I) 
DO 30 J = I,N 

W = LS(J) 
S(LI+J) = S(LI+J)·S(LJ+J) 
IF(J .EQ. N) GO TO 30 
KK=J+1 
DO 54 K = KK,N 

54 S(U+J) = S(LI+J) + S(LI+K)·S(LJ+K) 

30 CONTINUE 

IF LAG = a 
RETURN 

100 IF LAG = I 
RETURN 
END 

Thu 30.fun 83 16:44:23 

spdinv.f 
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tinit.r 

# tinit - initialize ROI symbol ta.ble 

subroutine lini t 

extJunc integer mktabl 
DS-DECL(mem.TABLESIZE) 
include tablecom 

call dsinit(T ABLESIZE) 
table = mktabl(T -SIZE) 
if (table == LAMBDA) 

call error("Can't create parameter table") 

? call fprint(STDERR. "[TINIT] Size = %d@n". TABLESIZE) 
return 

end 

Thu 30 Jun 83 18:47:04 

tinit.r 

Page 1 of tinit.T 
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whopar.r 

# whopar - find out what lcind oj parameter the named variable is 

subroutine whopar (var, kind, index) 
character var(ARB) 
integer kind, index 

define(NQP AR, 7) 

byte name(2) 
integer iname 
integer in, up, ns 
integer mqnam(NQPAR) 
equivalence (iname, name) 

include namcom 
include parco m 
common Imqnaml mqnam, in, up, ns 

% data mqnaml 'tc', 'ec', 'zl', 'vI', 'co', 'vc', 'ep'l 
% data in, up, ns I'in', 'up', 'ns'l 

name{l) = var(1) 
name(2) = var(2) 

whopar.r 

? call fprint(STDERR, "[WHOPAR] '%c' '%c'@n", name(1), name(2)) 

do i = 1, ninpar [ 
if (iname == innam(i)) [ 

end 

kind = INPUT PAR 
index = 
return 

] 
] 
do i = 1, nuppar [ 

if (iname -- upnam(i)) 
kind = UPTAKE PAR 
index = 
return 

] 
] 
do i = 1, NQPAR [ 

if (iname -- mqnam(i)) 
kind = MARQPAR 
index = 
return 

] 
] 

if (iname == in) 
kind = INPUTFUNCTION 

else if (iname == up) 
kind = UPTAKEFUNCTION 

else if (iname == ns) 
kind = NSTEPS 

else 
kind = UNKNOWN 

return 

Thu 30,fun 83 16:44:27 

[ 

[ 
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Appendix B. Format of ROI and Blood Data Files 

B.l. Region of Interest (ROI) File Format 
Data reduced from PET images consist of several activity-per-volume

element vs. time sets. This section describes a file format to represent these 
data with adequate internal documentation, allowing for easy extension of the 
types of included data. 

A ROI file consists of the following parts: 

1. header comments (2 or more lines) 
2. sample times 
3. activity values (lor more sets) 

Comment lines begin with #' and may appear anywhere in the file. Blank lines 
may appear anywhere; they are ignored. 

B.l.l. Header comments 
Comment lines with % as the first nonblank character after # are parame

ter definitions, and have the following format: 

# %P ARAMETER_ NAME% parameter_value 

The parameter name consists of one or more printing characters embedded 
between %'s. The parameter value (string representation) starts with the first 
nonblank character after the closing % and continues to the end of the line. 
Thus 

# %LABEL% My Dog Has Fleas 
#%ITEM% 
# %DIGIT% 5 
# this is a comment. 

defines three parameters, LABEL="My Dog Has Fleas", ITEM='~" (empty string), 
and DIGIT="5". 

Parameters may be redefined anywhere in the file. The definition of a 
parameter may thus depend on how far one has read into the file. The only 
parameters which may be sensibly redefined are LABEL and NPIXELS. Definition 
of NREGIONS and NTIMES is mandatory. The basic set of parameters for the ROI 
files are: 

Name 
BED 
BOI 
COMPOUND 
DATE 
HGAP 
HLIFE 
ISOTOPE 
LABEL 
NPIXELS 
NREGIONS 
NTIMES 
ORGAN 
OVDATE 
OVLABEL 
OVTIME 
PWID 
SPECIES 
STUDY 
SUBJECT 
XCENT 
YCENT 

Description 
bed position in mm 
time of injection 
compound injected 
date of study 
ring half-gap in cm 
half life of isotope in seconds 
labeling isotope in XXnn format 
description of region 
number of pixels in region 
number of regions of interest 
number of time points 
organ counted/imaged 
date overlay file was created 
overlay file label 
time overlay file was created 
pixel width in proj. bins 
subject species 
experiment title 
subject's name 
image horizontal offset 
image vertical offset 

Example 
450 
14:43:12 
Palmitate 
21-Aug-82 
1. 
1230. 
Cll 
Left ventricle 
234 
2 
45 
Heart 
22-Aug-82 
Spot Heart Overlays 
10: 12:01 
.2 
Dog 
PA #2, +drug, Sn spheres 
Spot 
2 
o 
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B.1.2. Sample Times 
There are NTIMES samples represented in a ROI file. The sample time list 

gives the start and stop times in seconds of each sample counted. The times are 
in floating point format, one start/stop pair per line, separated by white space. 

B.1.3. Activity Data 
NREGIONS sets of NTIMES data lines each follow the sample times. These 

lines contain two numbers each: activity in counts/volume/sec at the 
corresponding sample time, and the uncertainty in the measurement. Before 
each set of activities there will be at least one comment line describing the 
data. The parameters LABEL, NPIXELS and UNITS would be useful to set as well. 

B.1.4. Sample HOI tile 
# ROI file with 2 overlays of 4 files each 
# %DATE% 21-Aug-82 
# %BOI% 14:43: 12 
# %HLIFE% 76. 
# %ISOTOPE% Rb82 
# %COMPOUND% Rb-B2 
# %SPECIES% Dog 
# %SUBJECT% Spot 
# %ORGAN% Heart 
# %STUDY% Rb #3 
# %BED% 450 
# %HGAP% 1. 
# %OVLABEL% Spot Heart Overlays 
# %OVTIME% 10: 12:01 
# %OVDATE% 22-Aug-82 
# %PWID% .2 
# %XCENT% 2 
# %YCENT% 0 
# %NTIMES% 5 
# %NREGIONS% 2 
# 
# Times: 
# start stop 

O. 5. 

# 

5. 10. 
10. 15. 
15. 20. 

# Overlay 1 
# %NPIXELS% 
# %LABEL% 
# %UNITS% 
1.4032E-03 
3.0123E-02 
4.4343E-01 
1.3432E-02 
# 
# Overlay 2 
# %NPIXELS% 
# %LABEL% 
1.5432E-03 
6.1938E-Ol 
4.1945E+00 
3.5343E+00 

5.4543E-02 
6.3432E-02 
8.3432E-02 
7.2353E-03 

2.3423E-04 
3.5234E-02 
1.2345E-02 
1.3433E-02 

1033 
Left Ventricle 
Cts/pix/sec 

154 
Myocardium 
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B.2. Blood File Format 
The blood data format has a long, sad history. The only relevant parts for 

this program are: 

1. Eight lines of text at the top, to be ignored .. 

2. Variable number of data lines after header, with five fields: sample number, 
draw time (seconds after injection), weight (gm), counts/min, 
counts/mini gm. The second and fifth fields are the data we use in fit. 

There are often spurious entries at the end of the file with odd times; there-
fore, we read data lines until we find a time earlier than the one last read, or 
end-of-file. 

B.3. Archiving Convention 
The ROI and blood files are stored in Software Tools ar archive files, in a 

hierarchical scheme. The outer file is given the subject's last name, with exten
sion ".a". This file is an archive of study archive files, given names such as 
"rbl", "fdg2", and "water2", which denote the several studies for a given sub
ject. The study archives contain data files with standardized names: 

roi 
blood 
comments 

ROI data from PET analysis 
Blood draw data (if any) 
any useful information about the particular study 

For example, if patient Wilson had two Rubidium-82 studies and one FDG study 
with blood draws, the file structure would be: 

wilson.a 
'rbl 

'fdg 

'roi 
'comments 

'roi 
'blood 
'comments 

There are several programs and command files to manipUlate these archives; 
see appendix D. 
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Appendix C. Software Tools Library 

The table below lists library routines used by the fitting program. The routines 
are from the Software Tools Portable· Library, except those marked * (local addi
tions to Ratfor Library) and t (RSX-llM Fortran Library). 

integer function agtlin 
get next line from an archive module 

tiJedes function aopen 
open archive module for reading 

subroutine cant 
print "Can't open" message and terminate execution 

subroutine close 
close (detach) a file 

subroutine concat 
concatenate 2 strings together 

integer function ctoi 
convert string at in(i) to integer, increment i 

real function ctor 
convert string at in(i) to real, increment i 

subroutine dsfree 
free a block of dynamic storage 

subroutine dsinit 
initialize dynamic storage space 

integer function enter 
place symbol in symbol table 

integer function equal 
compare str 1 to str2: return YES if equal 

subroutine error 
print single-line message and terminate execution 

subroutine errsett 
control printing of error messages 

subroutine fmtdat 
convert date information to character string 

subroutine fold 
convert string to lower case 

subroutine fprint * 
formatted output conversion to file 

integer function getarg 
get command line arguments 

subroutine getarg 
get command line arguments 

subroutine getnow 
determine current date and time 

integer function index 
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find character c in string str 

integer function isatty 
determine if file is an interactive device 

integer function length 
compute length of string 

integer function lookup 
retrieve information from a symbol table 

integer function mktabl 
make a symbol table 

tiledes function open 
open an existing file 

subroutine penter 
place symbol in symbol table 

integer function prompt 
get next line from file. prompting if a terminal 

subroutine putch 
write character to file 

subroutine putlin 
output aline onto a given file 

subroutine query 
print c'ommand usage information on request 

subroutine remark 
print single-line message 

subroutine rtoe* 
subroutine rtof* 

convert real to character string 

pointer function sdupl 
duplicate a string in dynamic storage 

subroutine skipbl 
skip blanks and tabs at str(i} 

subroutine sprint* 
formatted output conversion to string 

subroutine strcpy 
copy string at "from" to "to". 

integer function type 
determine type of character 
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Appendix D. Documentation 

Fit (1) Fit (1) 

NAME 
Fit - fit compartment models to ROI data 

SYNOPSIS 
fit [file] [-sfactor] [-i[n]] [file] [-sfactor] [-urn]] 

DESCRIPTION 
Fit reads region-of-interest data from ROI-format files and can fit 
compartmental models to them. It generates two forms of output: a 
commentary on fitting progress and results, and a table of input data and 
model values. This latter can be used to plot the results of fitting, and 
for simulation purposes. 

COMMAND LINE ARGUMENTS specify the source and treatment of input and residue 
function data. 

file 
Specifies a file from which the next region(s) are to be read. The 
file may be changed between regions. The file may be a subfile in an 
archive; the file'subfile... format of acat(l) is accepted. If there 
is no period in the filename (that is, no extension), a subfile name 
('roi or 'blood) is appended to the name when the region number is 
specified. 

-sf actor 

-i[n] 
~[n] 

Specifies a .scale factor by which the next region data·· and 
uncertainties are multiplied. 'Factor' is a 'number in floating point 
or exponential notation. A scale factor is applied only to the next 
region read with the' -i or -u flag. 

These direct fit to read input (-i) or uptake (-u) data from the last 
specified file. If the region number n is omitted or zero, data are 
assumed to be in the format of the .JOB file produced from well counter 
data by CTSDON. If the region number is a positive integer, the data 
are assumed to be in ROI format. If current filename does not contain 
a period (.) a subfile is appended to the specified filename: 'roi if 
there is a region number or 'blood if the region number is missing or 
O. Examples: 

fit dog'fdg1 -i1 -u2 
fit [15,1]human.job -s6.26e-6 -i [100,6]human.roi -u3 

COMMANDS are read 
parameters, fit to 
produced on the 
and results. This 
output to a file. 

from the standard input and direct fit to set 
models, and report the results. A commentary is 
standard output, describing the input data, commands, 
documentation may be collected by redirecting fit's 

If the standard input is a terminal, fit prompts with a colon (:). The 
commands are: 

debug [verboseloff] 

-1-
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Controls fit's comments on the progress of fitting. If the 
command 'debug' is given, chi-square and the current parameters 
are reported to the standard error output at the end of each 
iteration. If the 'debug verbose' command is given, further 
information is printed. This mode is generally useful only for 
debugging fit. The 'debug off' command suppresses debug output. 

name =value 
Sets the parameter named 'name' to 'value' expressed in floating 
point or exponential notation. The parameters select the input 
and uptake models, their rate constants, and control the behavior 
of the Marquardt fitting algorithm. Names may be abbreviated to 
two letters. The names are: 

infun 
selects input function model: 

1 al exp(-ml T) + a2 
2 al T exp(-ml T) + a2 
3 al T exp(-ml T**2) + a2 
4 linear interpolation of 

where T = (t - ti). 

aI, a2, ml, m2, ti 

exp(-m2 T) 
T exp(-m2 T) 
T exp( -m2 T**2) 
input data 

input function model parameters. 
linear interpolation input model. 

Ti does NOT affect the 

upfun 
selects uptake function model. All are of form 

Up(t) = fv In(t') + (l-fv) In*Imp(t'), 
t' = t - to 

where Up = uptake model, In = input model, Imp = impulse 
response, and * denotes convolution. 

The impulse responses are selected by upfun for the following 
models: 

1 +----+ kl +-----+ k3 +----+ 
\blOOd 1< -> \ tissue 1<-::\ tissue \ 

+-----+ k2 +----+ k4 +-----+ 

2 same model as 3 but parameters 
triexponential impulse response: 

are those 

fl exp(-kl t) + f2 exp(-k2 t) + f3 exp(-k3 t) 

3 +-----+ ka +------+ kl +-----+ k3 +-----+ 
\blOOd 1< >\tissue\< >\tissue\~==:\tissue\ 
+-----+ kb +----+ k2 +----+ k4 +----+ 

tcon,econ 

of its 

fit convergence parameters. When an iteration ends with 

-2-
91 



Fit (1) Fit (1) 

abs(step)/[abs(parameter) + tcon] <= econ for each 
parameter, the fitting algorithm terminates. Default values: 
I.E-S,I.E-4. 

zlam, vlam, eps 

coz 

Marquardt diagonal lambda control. Lambda is initially set 
to zlam.It is changed by multiplying or dividing by vlam 
but it not permitted to become smaller than eps. Default 
values: 0.1, 10, 1.E-6. 

limit of 
vectors. 
increased. 

cosine of angle between gradient and Gauss-Newton 
When the angle exceeds arccos(coz), lambda is 

Default: 0.8 

vconst 
factor by which stepsize is cut when gradient/Gauss angle is 
ok (cosine )= coz) but chi-square was not reduced. Default: 
.S 

nsteps 

fit list 

maximum number of iterations allowed in fitting attempts. If 
the number of iterations exceeds nsteps, the fit is abandoned 
and a message is printed to the effect that a minimum was not 
found. This is not a fatal error. 

specifies the names of parameters to fit, separated by commas. 
The list may contain all input or all uptake parameters. Input 
function parameters are varied to minimize the errors between -the 
selected input function model and the input data read by the -i 

- flag. Uptake function parameters are varied to minimize the 
errors between the selected uptake function model and the uptake 
data read by the -u flag, using the selected input function model 
and its current parameters. 

During the fitting process, typing a (CONTROL-C) at the terminal 
keyboard will interrupt the fit at the current iteration. This 
works whether or not the standard input has been redirected. A 
note is printed on the output to the effect that fitting was 
interrupted before convergence. 

The input and uptake function numbers and parameters are printed 
before and after fitting. The parameters have an estimated 
uncertainty next to them, and may include the comments: 

(not fit) 
correlated 
insensitive 

not listed in the fit command 
correlated to another parameter in the model 
has no effect on the model value. 

The parameter uncertainty is computed with the assumption that the 
model is correct and that the uncertainties in the JOB or ROI file 
are off by a constant factor. We assume that chi-squared is equal 
to the number of degrees of freedom (number of data points minus 
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number of 
thereupon. 
parameters. 
correlation 

fitted param~ters), and compute the uncertainties 
The correlation matrix is printed after· the 

For parameters bearing one of the comments above, the 
is shown as O. 

write inlup [>1» file] 
Prints the input or uptake data and model values. The report goes 
to the standard output, or to a specified file. The» version of 
file redirection means "append" rather than "write from scratch". 

The first lines of the file describe the input data, the models 
selected and the input or uptake parameters. Subsequent lines are 
printed for each sample, listing the time, measurement, 
measurement uncertainty, and model value. The "write up" report 
also gives the value of the input function model at each time 
point. 

In the examples below, the columns have been made a bit narrower 
to fit this page. The actual reports have the same layout. 
Sample "write in" report: 

Input: dog.roi - BLOOD (reg. 1 * 1.000E+00) Modell 

a1 = 1.82E+01 m1 = 1.07E+01 a2 = 2.26E+00 m2 = ••• 
ti = 7.00E+00 

time 
2.5 
7.5 
••• 

input 
2.611E-01 
1.765E+01 

uncert 
3.046E-02 
2.335E-01 

Sample "write up" report: 

in model 
O.OOOE-Ol 
1.901E+01 

Input: man.epi - SAG SINUS (reg. 1 * 1.00) 
Uptake: man.epi - CORTEX (reg. 2 * 1.00) 
k1 = 3.80E-03 k2 = 4.76E-02 k3 = 0.00E-01 
fv = 1.52E-01 to = 4.80E+OO 

Model 4 
Model 1 

k4 = ••• 

time uptake 
2.5 -2.147E-03 
7.5 -5.565E-03 

uncert 
2.147E-03 
5.565E-03 

up model 
1.199E-03 
2.212E-05 

input 
7.877E-03 
O.OOOE-Ol 

••• 

IMPLEMENTATION 
Fit is a Software Tools Ratfor program (with some Fortran-77 and 
Macro-II). The source is currently in [21,10]fit.tcs but may be moved 
to the ST binary directory ~in. Fit.tcs maintains fit.w, which 
contains all necessary files: 

Include files: 
datcom, parcom, namcom, tablecom, fit.h 
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Sources (and routines): 
fit.r main 

funin, funup, con, rt3 
fimpls, finit 
init 

Fit (1) 

fun.r 
fimpls.r 
init.r 
getdata.r getdat, getfun, get job, getroi, datlin, tinit, penter, 

pget 
getcmd.r 
dofit.r 
misc.r 

marq.f 
catch.mac 

Build files: 

getcmd 
dofit 
getnam, gettok, pflag, setmap, setvar, shocov, whopar, 
dowrit 
marq, mqchi, mqder, mqmap, spdinv, dot 
catch 

makefit.cmd, fit.tkb, fit.odl 

Documentation: 
fit.fmt 

The file fit.h contains a macro de'finition of a string 'VERSION' which 
should be updated to reflect the TCS revision level. 

The program is overlayed as follows: 

fit,fun,fimpls -+--- init,getdata 
I 
+--- getcmd,dofit,catch -+--- mise 

I 
+--- marq 

AUTHORS 
Brian Knittel, Ron Huesman 
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NAME 
makearch - make new patient archive 

SYNOPSIS 
makearch 

DESCRIPTION 

FILES 

The data generated in Ring studies are stored in Software Tools archive 
files. The ST archive program combines many files into one, and 
provides the . capability to insert, extract, list, and update consitit
uent files. Thus we can access the entire set of patient data with 
just one file name, but will retain the ability to play with the 
individual files. 

Several study archives (e.g. fdg, rbl ••• ) are combined in one patient 
archive. The study archives contain ROI, blood, and other study data. 
files. In particular, there is an optional 'comments' file which can 
contain text describing the experimental protocol and the regions of 
interest. 

This program creates new patient archives - it is faster than modarch 
because it does not try to extract study archives before updating, 
and it does not update (or create) the patient archive until all the 
studies have been entered. The archive is given the patient name 
·with extension '.a'. 

The program asks for input in this order: 

Patient name: enter a 1-9 letter name, or <return> to 
stop making archives. 

Study name: enter a 1-9 letter name or <return> to stop 
entering studies into the patient archive. Studies should named 
something like xxxn where xxx is "rb" or "water" or "fdg" or 
some such, and n is the study number. For example, rb2 and waterl. 

For each study, you are asked for 6 files: 
comments \ 
blood 
roi enter name (including extension) or <return> 
counts 
weights / 

If one of the files you specify does not exist, you are returned to 
the Study Name question. 

When all the files have been specified, you are given a chance 
reject the set of files and return to the Study Name without adding 
the study to the patient archive. 

\ back to Study name question 
\ ~ack to Patient name question 

patient.a 
drO:[100,I]makearch.cmd 

patient archive created 
command file 
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NAME 
modarch - modify patient archives 

DESCRIPTION 

FILES 

Modarch modifies patient data archives made with "makearch". The 
procedure is exactly the same, except that the patient archive must 
already exist. The questions asked and the procedure are the same. 

Modarch attempts to extract named study archives from the patient 
archive. If they do not exist, they are created. Named study data 
files are inserted into the study archives, replacing any old files 
of the same type in the archive. Other files are left untouched. 

For example, if a patient archive 'ROGER' was made with two studies 
composed as follows 

roger 
'fdgl 

'rbl 

'roi 
'comments 
'blood 

'roi 
'coinments 

and we told Modarch 

comments: 
counts: 

ROGER 
fdgl 

from ROGERFDGl.ROI 
ROGERFDGl.CMT 
[15,1]ROGERFDGl.JOB 

from ROGERRBl.ROI 
ROGERRB 1 • CMT 

ROGERNEW.CMT 
[15,1]ROGERFDGl.CTS 

then the new archive would be 

roger 
'fdgl 

'rbl 

'roi 
'comments 
'blood 
'counts 

'roi 
'comments 

patient.a 
drO:[lOO,l]modarch.cmd 

from ROGERFDGl.ROI 
ROGERNEW.CMT 
[15,1]ROGERFDGl.JOB 
[15,1]ROGERFDGl.CTS 

from ROGERRBl.ROI 
ROGERRBl.CMT 

patient archive 
command file 
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NAME 
plotfit - plot results of compartment model fits on line printer 

SYNOPSIS 
plotfit [file [inscale [timescale [spool [ymax [plotsizeJJJJJJ 

DESCRIPTION 

FILES 

Plotfit reads a "write in" or "write up" file from FIT and plots 
the ROI data and the model values on the line printer. Plotfit is 
a command file in [100,lJ and can be run in one of two ways: 

- from inside another command file, with 
@drO:[100,lJplotfit <args> 

or from the terminal with 
plotfit <args> 

where <args> is an optional list of arguments separated by spaces: 

file the name of the "write .•. " file 

inscale factor to scale input function by in uptake plots. 
This can be a number in floating point format or 
the letters IFVI, which scales the input function 
by the fit vascular fraction. This shows how much 
of the tissue activity is due to blood. 
"_" suppresses plotting of.the input function; this 
should be used when plotting input function fits. 

timescale 
ILl for log time x axis, ITI for linear time axis, 
lSI for sample number axis. 

spool "Y" - yes, spool plot immediately 
"Nil - no, make PLOTFIT.LST but dont spool yet. 
"XXX" - use XXX instead of LPP 
"XXX/YY" - use XXX and use IYY flag too. For example, 
answering "N" is the same as answering "LPP/-SP" 

ymax maximum Y value for plot (Default - max data value) . 

plotsize 
x, y size in inches for plot (Default "8,8.5") 

If any of the first four arguments are not given, they are prompted 
for. 

The fit rate constants are printed at the top of the plot. 

plotfit.par 
plotfit.plt 
plotfit.lst 

temporary parameter file for PLT. 
temporary graphics file between PLT and LPP. 
output listing (autodeleted if spool = "Y") 
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Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 
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