LBL-17313
<D

E Lawrence Berkeley Laboratory

Ec
UNIVERSITY OF CALIFORNIASSEIvED
_ BERK&EV} Ao -
o ~ ’ T o
o | | MAR 20 1984

. A LiBRARY AN
AND
_ : DocumenTg SECTION

KINETIC ANALYSIS OF DYNAMIC PET DATA

——
—— e
——————

B. Knittel \

(M.S. Thesis) TWO-WEEK LOAN COPY

|
This is a Library Cj - ’
December 1983 which ry CIrCUIat/ng VCOpy I
ich may be borrowed for two weeks.)

|

l
l
l For a personal retention copy, call
. Tech. Info. Division, Ext. 6782.

_

)

SlcLl— i

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Kinetic Analysis of Dynamic PET Data

Brian Knittel
Master’s Report
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

230 Donner Laboratory
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Table of Contents

1. Introduction ..

2. Background ..o e e eaa

2.1. Compartmental Modelscccooooiiiiiiiinnnnn.e. et e e

2.2. Parameter Estimation .ot es e e

2.3. Parameter Covariancecceccceeviiciieniiincenniennes N ereruerenrearreraar st e
3. The Minimization Methodccooiiiriiii e,
3.1. Gauss-Newton Method ..o e e,
3.2. Steepest Descent Methodcccoviviiiiiniiiiiini e
3.3. Marquardt Interpolation PP
3.4, ALGOrithITl OULLINE c.veueeroeereeieieeeeceeeeereee et s ere e eneseeeste s s see s eesseaseeeneeeee
4. Program Fit — Numerical Methodscccociiiiiiiiiiiii e,

4.1. Input Function Modelcoocoiiiiiiiiiiiiiiii i,

4.2. Impulse Response Computationc..ccceevieiimimeniiiiiiiiiniiinin e,
4.3. Convolution Methodccoiiiiiiiiiiii e ea e

4.4, ReSidUe FURCLION ittt ettt eee e et eteensatararteeneenenrans

4.5, Partial DerivaliVes .ouiii ittt ettt raraeseteetsnteneastessraenansrns

4.8, CovarianeCe Mabrlim oottt ettt et teteiarea e eenes e iainseenas

5. Implementation PO
" 5.1. Software ToOlS ...cceeevenenn.. R o
5.2. Source of the Data e
5.3, Program DeSign it e en e e eeneas

B. Simulationsccccoeveeiiiiiiiiiniiiii R

B.1. Simulation Program ... e,

8.2. Two-Compartment Modelc.ccccooviiimniiimiiiiiiii e,

6.3. Three-Compartment Modelccocoviiiiiiiiiiiiiiiiicc e,

7. Applications to Experimental Datacccccevrmiiiiiiiiniiiiniciiiiiine e,
Tl 0-10 WAl e o

SIS o 0B o T ¥ o OO PO OP PSR

Appendix A.
Appendix B.
Appendix C.
Appendix D.

Fit Source Listingcooviiiiiiiiniini
Format of ROI and Blood Data Filescoccceeiiiieiiiiiciiiiiniininnn.
Software Tools Librarycceeeivennn. e et eeeeeea et s ar s aanas

DocumeEntAtion .oiiiiiiiiii e ter e eans

O © @ 2 2 DR N

© @ M W W W N N N = e b 2 b b b ph b b e e
O O O W N = 1 2 2 O @ O O O & B Hh W WweE = ©

Kinetic Analysis of Dynamic PET Data

Brian Knittel ‘
Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley
and Lawrence Berkeley Laboratory

1. Introduction

QOur goal is to quantify regional physiological processes such as blood flow
and metabolism by means of tracer kinetic modeling and positron emission
tomography (PET). Compartmental models are one way of characterizing the
behavior of tracers in physiological systems. This paper describes a general
- method of estimating compartmental model rate constants from measurements
of the concentration of tracers in blood and tissue, taken at multiple time inter-
vals. A computer program which applies the method is described, and examples
are shown for simulated and actual data acquired from the Donner 280-Crystal
Positron Tomograph. '

2. Background

2.1. Compartmental Models _ A _

Compartmental models can account for the exchange of tracer between
physiological spaces such as blood and tissue, and between chemical states such
a metabolic substrate and its products. _

For example, Figure 1 shows a model which might be used to represent the
exchange of a tracer between capillary blood and cells in an organ, where b (t) is
the concentration of tracer in the blood and g{¢) the concentration of tracer in
the cells. The rate constants of exchange k, and k5, are the parameters which
describe the behavior of the tracer in the differential equation

ZL(t) = kb (t) - keg(t) (2.1)

The figure shows the concentration of tracer measured in the blood and in tis-
sue after an ideal rapid bolus injection. The blood concentration b(t) is called
the input function. The cell concentration function resulting from an impulse
injection of a unit amount of tracer is called the impulse response, and is
denoted h(t). For the model in Figure 1,

h(t) =k, e %2t (2.2)
The tissue measurement w(t) is called the residue function, and includes con-
tributions from both the cell concentration g(t), and blood in the vasculature.

The shape of the input function in actual experiments depends on the dura-
tion of the injection, the blood flow to the organ, and the behavior of the tracer
in the rest of the body. The response of the model to an arbitrary input function
is given by the convolution integral

q(t) =7h(7‘)b(t—7‘) d’r=?b(‘r)h(t—1‘) dr (2.3)

and is denoted q(¢t) = b®h(t). h(t) =0 for t < 0 and we assume that b(t) = 0 for
t <0, so

Blood Cell

kg
b(t) q(t)
k2
_ Blsﬁd A Tis\sfue)
b(t) w(t)
Time - t t

Figure 1. Two Compartment Model and Impulse Response.

¢.
g(t) ;{h(r)b_(t-ﬂ dr . _ (R.4)

The tissue tracer concentration w(t) must account for the tissue volume
occupied by blood in the vasculature. If the fractional volume of blood in a
region of tissue is f,, then the residue function is

w(t) = f,8(t) + (1-f,)q(t)
= fub(t) + (1—fu)b®h'(t) :
This is the basic equation for all the models discussed here.

In tomographic experiments, the two measurable quantities are b{¢) and
w(t); it is not possible to independently measure the compartments contribut-
ing to w. The impulse response required for the computation of w(t) is that of
the combination of all nonvascular compartments. The determination of h(t) for
arbitrary compartmental models is discussed in section 4.2.

The blood activity is sometimes measured at a location somewhat distant to
the site which we are modeling. We assume that the input function is shifted in
time only. That is, we-assume that all blood leaving the heart at a given moment
has the same concentration of tracer, but the time it takes to reach different
parts of the body varies. To determine the residue function from such a shifted
input function we need only shift the time of evaluation of the model function by
the same amount.

(2.5)

2.2. Parameter Estimation

After injecting a tracer, we collect measurements of the input function and
residue function which include errors due to the statistics of radioactive decay
and artifacts due to PET reconstruction. After selecting a physiologically
appropriate compartmental model, we wish to determine what values of the
model’s parameters gave rise to the measurements. We will use the following
symbols for the quantities under discussion: .

&

K italic letter: scalar function or variable

E bold letter: column vector function or variable

E; 1’th element of vector E

B capital roman letter: matrix

B;; or [B]y element in i’th row, 7’th column of matrix B.

ET row vector: transpose of E

BT . transpose of matrix B
Measurements:

Ny number of blood measurements

Ny number of tissue measurements

5; 1’th blood measurement, 1 = 1,2, ... , N,

A 1’th tissue measurement, i =1, 2, ... , Ny

Tg, time of i’th blood measurement

Ty, time of 1’th tissue measurement

O, uncertainty in i’th tissue measurement
Parameters:

8 an arbitrary set of k model parameters (a vector of dimen-

sion k). These could be rate constants, vascular partial
volumes, time shifts, ete.

B’ the true values of g in the region of interest.
B our estimate of 8°
Tg, uncertainty in determined ﬂ,
Model Functions:
b(t) input function
'w(f,t) ~ residue function
B) residue function evaluated at Ty,

We assume that there are only random errors in the measurements #;. That is,

W; = w; B°) + &¢;, where ¢; are random with zero mean. Since there are errors in
the measurements, we cannot determine the exact rate constants 8° which gen-
erated the observed residue function. We must find some method of estimating
B° from imprecise measurements. Estimation theory is a branch of mathemati-
cal statistics which deals with problems of this nature. For an introduction to
estimation theory with an emphasis on the type of modeling problem discussed
here, the reader is referred to a text such as Bard [1].

We hope to find a criterion for selecting a # which is as close to 8° as possi-
ble. Since the measurements have random variations and would vary in repeti-
tions of the same experiment, we expect that our parameter estimates would
vary as well. Two desirable constraints on this variability are that
(1) the average of f in repetitions of the experiment should be 87, that is, the

expectations E(8;) = 8, and
(2) the average squared errors variances) in the estimated parameters are as

small as possible, that is, E(f; — ;)% = o, are the smallest obtainable for

any estimator of 8, for every possible value of 8;".

This is called the "‘uniform minimum variance unbiased" (UMVU) criterion.

Proof that an estimation method is UMVU can only be obtained in certain cases.
For example, when the function w is linear in g8 (that is,

w(B, t) = Zﬂz’.gi(t) (2.8)

where g; are arbitrary functions of ¢), and the errors ¢; are independent and
distributed normally with mean 0 and variance Uﬁ' then the parameters

mlmmlzmg

(W —w;(B))*
A,

Ny
R®=L (2.7)

are a UMVU estimate of 8° [2].

However, in PET kinetic modeling, the errors are not exactly normally dis-
tributed, and the function w is not linear in its parameters. Still, the least
squares estimate is probably the best available estimate. If the model function
is “locally’ linear, that is, w varies more or less linearly when its parameters
are varied small amounts (as we often consider the surface of the Earth to be
locally flat), and the measurement errors are approximately normally distri-
buted, then the B minimizing R in Equation 2.7 at least approximately meets
the UMVU criterion.

We now need an algorithm to find the values of the rate constants which
minimize R. The algorithm is to produce this £ and is also to estimate ag.

2.3. Parameter Covariance -
The variance 0'3‘ of an estimate 8; is the expected squared deviation of the

estimate from its true value ;" This is the variance we would expect to meas-
ure in @; if the experiment were repeated many times. If our assumptions
about the normal ‘distribution of the errors in the residue function are true,
there is a ~66 percent (1 standard deviation) chance that g; is in the range

ﬂ'l. —0Opg, = ﬁt = ﬂt +0'31
Og, is estimated as the amount §; must be varied from Ei to increase R{B)

from the minimum by one (Fig. 2). The more §; can be varied without much
changing R, the greater its variance. When there is more than one parameter,
we must consider the amount that §; can be varied to increase K by one when
the other parameters are allowed to vary as well. Figure 3 is a contour map of /%
as a function of 8, and f8;. We see that 0g, and dg, are the distances which
increase R from the minimum Ry, = R(8) by one, under the most unfavorable
circumstances (8, and B, increased together). When changing parameters
together produces littie net change in K, we say that the parameters are highly
correlated. The covariance matrix C describes this relationship between param-
eters. Its elements are defined by

Gy =E(B: —B)B; -6 - (2.8)
Note that the diagonal elements C; = E(8; — ;)% are the variances og,® The

correlation coefficient defined by

Gy

Ty = —————
3 -\/O-E‘ O.Ej . (2.9)

conveniently describes the covariance between parameters §; and §;. It takes
values between -1 and +1. 7 is zero for uncorrelated parameters and increases
in magnitude toward 1 as correlation becomes greater.

The covariance matrix or the correlation matrix is important in the con-
sideration of the significance of fit parameters, for they describe the reliability
of the determination of the rate constants. One needs covariances to accurately
estimate the uncertainty of functions (e.g. sums or ratios) of the determined
parameters.

When comparing competing models for the explanation of tracer kinetics,
one can consider Lhe sum of squared errors R(8); the model which produces the
lowest K is considered better. A can always be lowered by increasing the
number of compartments; with more parameters to adjust, the data can be
better fit. However, as the number of parameters is increased, so are the
parameter variances. When the number of parameters is increased beyond that
required to adequately represent the data, the correlation between the fit
parameters increases dramatically. The covariance matrix thus indicates the
information content of the parameters.

N/

C+1
min \

min

Figure 2. Parameter Variance.

g

Figure 3. Parameter Variance with Correlation.

3. The Minimization Method
The minimum of R{B) is found at the zero gradient point

9R(B) _
=0,1=1,...%k
88,

or in vector form
VR(B)=0.

The gradient of R as defined in (2.7) is
0R _ _,'w ¥ —wi(B) sw

08: i=1 a? 08

or in matrix notation

R(8) = [W-w(@)]" ¥~ [W-w(g)]
VR(B) = -2 T(8)" ¥-1[W — w(g)]

(3.1)

(3.2)

(3.3)

where W is the observation vector, ¥ is the covariance matrix for the observa-
tions, w(8) is the vector of model values generated from the parameters 8, and

T(B) is the gradient of w:

[
w,(B)
wo(B)
w(g) = : ,
wy,, (B)
W,
1 Wy
W= : ,
WN,,,
d
— Cov(Wy. Wg) -+ Cov(W,,Wy,)
| Cov(W1.Wy) o%, + . Cov(Wy Wy,)
¥ = : : : : ,
Cov(Wy. Wy,) Cov(Wa Wy,) --- o,
w
and
|' awl awl 6'!1)1 1
96, 08z T 0B
a'l.Uz ng awz
98, 8B T 0Bk
TB)=| - : - | =Vgw(B) .
awNw BwNw a‘wNw
98, 882 ' 8Bk
When we assume that the measdrements are uncorrelated, the Cov terms in ¥

are zero.

If w(B.t) is a linear function of 8, R is quadratic and has a unique solution,
easily obtained from (3.1). When w(g,t) is not linear in 8, the solution to (3.1)
may not be unique — there may be many extrema of R. Furthermore, it may be
difficult to solve (3.1) for B. Nonlinear least squares methods usually proceed by
choosing B, an initial estimate of §, examining R at 8, and iteratively moving

By toward the minimum.

.
X

3.1. Gauss-Newton Method

We can make a linear approximation to w with the first order Taylor expan-
sion

dw (B,
w(B, t) 2 w(fo.t) + 2 (5; —Boj) % (3.4)

or in matrix notation

w(B) = w(Bo) + T(Bo) (B — Bo) . (3.5)

if B is close to Bo. If we use this approximation in (3.3) and assume that
T(B) 2 T(B,) then the minimum is found at

T(8o)" ¥~ (W - w(8o) ~ T(Bo)™ (B - o)) = 0. (3.6)
Defining A = T(Bo)T¥!T(B) and G = T(B;)T¥ (W — w(B,)), we can solve (3.8) for 8-
G-AB-8%=0
A(f -Bo)=G
F=80+A_1G=ﬂ0+6t : (3.7

where 6; = A"!Gis the Taylor series correction vector (iteration step).

When the measurements are uncorrelated, ¥ is diagonal, and the elements
of the matrix A and vector E are
Ny dw; dw; 1
i=1 0Bm aﬂn 0;
Em = NE aw WJ J(ﬁﬁ)

j=1 aﬂm U'j

In the Gauss- Newton minimization method, one 1terat1vely solves (3.7) for steps
6;(The magnitude of 8; must be reduced if it takes 8 to a higher value of R than
R(Bo).

3.2. Steepest Descent Method
The gradient of K at an estimate B4 is given by

VR(B) = ~2 T(Bo)" ¥~ [W - w(Bp)| = —2G . (3.9)

lterative steps d; proportional to VR always lead to a lower value of F for a
sufficiently small proportion of dy4, but are slow to converge near the minimum.
Near the minimum, where F is relatively flat, gradient steps tend to zig-zag
across the true direction of the minimum (as streams will meander across a
meadow). For this reason, strict steepest descent methods are seldom used in
practice.

Amn =

(3.8)

3.3. Marquardt Interpolation

The Marquardt Algorithm [3] interpolates between the Taylor and gradient
steps §; and 6, with a step computed by

S=(A+IN1G (3.10)

As A > 0, 6 » A"!'G, the Taylor step, and as A » =, § » G/ A, the steepest descent
step. The algorithm attempts to use as small a value of A as possible. If the step
6 would increase X, and & is not near the gradlent 6,, say more than 37° apart,
the step is recomputed with a larger A. Ais typlcally increased or decreased by
a factor v = 10, changing A

When 6 increases R but 6 and , are close together, changing A won't help
as much as reducing the magnitude of 4, so the step is divided by two until K is
no longer increased.

The numerical aspects of the algorithm are improved if the matrix A has
one on the diagonal. To achieve this, the computation of 4 is performed with

scaled variables A® and G°. The true step 6 is computed by reversing the scaling
onéd”’.

3.4. Algorithm Outline

1. Initialize:
B« Bo A+.1.

2. Start an iteration. Try reducing A, save initial conditions:

B« B R «R(B)LAcNuv.
3. compute A, E by Equation (3.8).

4. Scale A and E so that A has 1 on the diagonal:
45 « Ag/ N Ay .
Gi.‘— G,_/ \/A‘u.

5. Compute (still scaled) step:
6° « (A + AL G

8. Unscale step:
8; « 6,/ V Ay.

7. Compute (tentative) new value of 8:

BB +6.

8. Bad Step? — if so, alter the step:
if R(B) = R'

if angle between 6 and §, < 37°, reduce step size:

(i.e. if 678,/ \/6T'6 64 6,<cos(37°))
repea
6.,'_ « 6‘/ 2
BB +hé
| until R(B) < R', then go to 9
otherwise, repeat step calculation with increased A:
A « U\ then goto5.-

9. check convergence:

: |6 | : :
if any W > g, go to 2 for another iteration.

10. stop.

The convergence test parameters 7 and ¢ are typically 1078 and 107* respec-
tively.

-

+

4. Program Fit — Numérical Methods

Computer program fit was written to implement the kinetic analysis
method described above. The Marquardt Algorithm requires w(t,8) and the
derivatives dw/ 88;. This section describes the numerical methods used to
compute the required functions.

4.1. Input Function Model
The computer program has four selectable input function models:

2

Lob(t)= X 4 e M (t-t) (4.1)
2

2. b(t) =J_z_;1 4 (t—t;) e M (t-tp) . (4.2)
2 .

3. b(t) = I 4 (t~t;) e 4 (4.3)

where ;} units of blood activity
; rate constants, min™!
t; input function starting time in seconds
The times and time shifts are in seconds and the rate constants in min -1
the program inserts the required 1/80 conversion factors.

4. b(t) = linear interpolation or extrapolation of input measurements:
f

t = Tp,
By + -T——_—'T—(B,). Ost<t,
_ (4.4)
B, + T—_—T—(B Bio), ti<t<t

t—T
By, + —TT(BN By-y). t>ty

\

(clipped to 0 if the interpolated or extrapolated value is negative).

Model 4 requires no fitting to the input measurements and does not make
any assumptions about its form. However, as the input measurements are time
averages of the input function over the image collection intervals, some infor-
mation is necessarily lost. In Figure 4, we show a fast-rising input function, the
averaged samples, and the resulting Model 4 function. The shaded areas show
the error in the approximation. The areas of over- and underestimation should
approximately cancel each other. If the input function is not fast-rising, these
errors are small.

Also, Model 4 introduces statistical errors into the model function, due to
the f, b(t) term in Equation (2.5), which we do not currently account for in the
fitting process. The uncertainty of the input measurements should be incor-
porated into the weighting of the squared-error function R{(g8).

4.2. Impulse Response Computation

The program fits rate constants for the three-compartment model below
(Fig. 5), which we apply to several physiological systems. Compartments g, and
g0 represent tracer in two spaces or chemical states in tissue. The differential
equations for this system are

Input Function
Blood Measurement

Model 4

>

Sampling Interval

Figure 4. Actual Input Function and Model 4.

Blood Cell
4
k1 “ kg
b(t) q,(t) 9,(t)
ka Ky

Figure 5. Three Compartment Model

dq,
“L(t) = kib(t) = (ke + Bodgy(t) + kagalt)

dgg

(4

ksq (t) —k4ga(t)

.5)

The impulse response may be derived by solving the differential equations for a
delta function input b(¢) = &(t), or by solving for b(t) = 0 with initial conditions
@,(0) =k, and @,(0) = 0. Impulse response is more easily calculated by signal-
flow graph analysis, which yields the impulse response of an arbitrary network
of compartments with minimal effort. See Mason & Zimmermann[4] for a dis-

cussion of the method.

The impulse response h(t) of the sum of compartments g, and g, is
R(t)=fye™ +fae™

where

(4.8)

10

2
%

1= (81 —B2)/ 2 oz = (B, + Bg)/ 2

: / —
By =kpt+kgtk, Bz =V BE — dkyk,
_kylkg ik, —ay) _ ki(og — kg —k,)
fi= fa= -
B2 B2

When k3 = 0, the model is effectively reduced to two compartments, and the
impulse response is correctly evaluated using Equation (4.6); the function
reduces to

R(t) =k, e 2 | (4.7)

4.3. Convolution Method

The cell concentration g(¢) is computed by the convolution integral in
Equation (2.3). Rather than explicitly solve the convolution integral for all input
function models, we use an approximale method. To compute the convolution
integral, we evaluate the impulse response and input function at the tissue and
blood measurement times TWj and TB respectively. Function con computes the
convolution of the two linearly 1nterpolated functions b'(¢) and h'(t) described
by these points. The error introduced by this piecewise-linearization is less
than one percent with the exponential and near-exponential functions encoun-
tered in our studies; see section 8.3 for a discussion.

The integral of A'{(7)b'(t —7) over the whole interval 0 <7<t is the sum of
the integrals over intervals: bounded by the set of times
{0, Ty, Twp - T, UL, t=Ty, t=Ty, .., t—=Ty 3} (Fig. 6). The integrand over one
of these intervals, say r <7<s, is the product of the line segments
(7' b,)-(s, bs) and (r ‘hy)(s, hy), where h, =h(r), hy = h(s), b, = b(t—'r) and

s = b(t—s) The integral is :

T (b, —b,)) dT . (4.8)

f(h-, T (hy = 1) (b,

Let AT =s -, Ah = ks —h,., Ab = bg — b,, and change the variable of integration
ton=7-r1:

AT .
={(h, + 7 AR) (b, + £ 4b) dn (4.9)

h AL b.Ah ARADL

2+2+3) (4.10)

= At (h, b, +

= %T—-(Eh,b,. +2h b, + hoby + hyb,) . (4.11)
so the complete convolution is

AT
= v _—
9(t) intervals(r.s) 6 (2hb, + 2hsbs + hobg + hsb,) (4.12)

spanning C.¢
The code in function con steps through the set of times Tyj and t—Tp,, looks for

boundary points, and sums the interval integrals.

4.4. Residue Function

The residue functicn is computed as in Equation (2.5), as the sum of the
vascular and cell components. There is an additional time shift parameter {0
which accounts for a difference in the sampling time between the blood and tis-
sue sites, as discussed in Section 2.1. The model function is

w(t-ﬂ)zfvb(t—t0)+(1_fv)q(ﬂ‘t_t0) . (4'13)

11

O O e m

h(0)
B(Ty)
b(0)

b(t-Ty)

: 'i"-._ime of Evaluation

t="T

A

<

Sampling Intervals

N7

h'(7) h"(T)b’(t-T)
|
.. %) — ‘
— Interva)

Figure 6. Convolution by Summation of Linear Intervals.

12

4.5. Partial Derivatives

We compute the model residue function by the convolution method
described above, and its derivatives by the forward difference equation. For a
given parameter 8; in the vector 8,

ow;(B;) wj(!éi +h) —w;(B;)

-3
B R , h>0. (4.13)
The error in this estimate is a function of h, given by
1
B(h) = Sh|w'(n)l . B <n<pi+h (+.14)

for some 7 in the range B; <7 < 8;+h. Reducing h to zero would reduce the
error to zero if it were not for the finite precision of digital computer floating
point representations. Due to the round-off or discretization error in the calcu-
lation of w(ﬁ,_ +h)—w(B;), which we will call A, the error in the derivative esti-

mate is
E(h) = 2hwi(n)] + & (4.15)
2 h . '

The minimum £ is found at
on M
hwmﬂ

For single precision (24 bit mantissa) on the PDP-11, A =5x1077. We find
h=|.0018,| to work well in our application. The error in the derivative estimate
is around one percent with parameters in the range we encounter.

While other numerical derivative formulae offer lower errors, the forward
difference requires only one additional w evaluation for each required deriva-
tive. This is a considerable saving in this application, for we must compute,
store, and convolve a complete set of impulse function samples for each deriva--
tive.

(4.18)

4.6. Covariance Matrix

The covariance matrix C of a set of linear parameters 8 is the inverse of the
derivative matrix B (defined in Equation 3.9) evaluated at 8°. The Marquardt
subroutine estimates C by inverting B evaluated at ﬂ under the assurnptlons
that w(B) is linear in the neighborhood of g. that B is close to B°, and that B
evaluated at our estimate £ is a good approximation to B evaluated at [:

After each fit we print the parameter uncertainties (square root of their
variance, from the covariance matrix), and the correlation matrix:

og, = \/[B_l]ﬁ

fm [B-1],, (4.17)

13

5. Implementation

5.1. Software Tools

Program fit (listing in Appendix A, documentation in Appendix D) is written
largely in Ratfor for operation under the Software Tools (ST) Virtual Operating
System. Software Tools is portable program development environment which is
modeled after UNIX*, and whose design and philosophy are expounded in
Software Tools by Brian W. Kernighan and P.J. Plauger [5? ST provides the same
programming and command languages, user interface, documentation, utilities,
and library subroutines for all operating systems and computers on which it is
supported. We use the RSX-11M V4.01 implementation of the Software Tools Vir-
tual Operating System, obtained from the Computer Science and Applied
Mathematics group at Lawrence Berkeley Laboratory[6]. This ST system is
currently running on a PDP-11/44 computer.

An invaluable feature of ST is the ability to conveniently specify at run time
whether the program’s input and output are to be connected to the user’s ter-
minal, to disk files, or directly to other programs. This enables the same pro-
gramm to be used interactively, as a ‘“batch’” type program, or as part of a
metaprogram comprised of several tools. In the words of the authors,

Whenever possible we will build more complicated programs up from the simpler;
whenever possible we will avotd building at all, by finding new uses for existing
tools, singly or in combination. Our programs work together; their cumulative
effect is much greater than you could get from a similar collection of programs
that you couldn't easily connect [7].

For example, the simulation data presented in Section 8 were generated, fit,
plotted, and summarized by applying both newly-built and existing tools, with
almost no manual manipulation. The versatility of ST makes it useful in the
development and testing of scientific data analysis programs.

5.2. Source of the Data

Positron emission tornbgraphy (PET) noninvasively measures radioactivity
in tissue volumes as small as one cubic centimeter, without superposition of
activity from other regions.

The Donner 280-crystal positron tomograph[8] is capable of taking cross-
sectional images as frequently as every second, and can synchronize data col-
lection with the beating of the heart. The spatial resolution of 8 mm full width
at half-maximum (FWHM) is sufficient to quantify radioisotope concentration in
regions of tissue of 2 cm. dimension.

Images are typically taken every 2.5 to 5.0 seconds for the first one or two
minutes after a rapid intravenous injection of 5 - 10 seconds duration, and at
longer intervals thereafter.

The input function is measured tomographically if the left ventricle or
aorta is visible in the field of view, otherwise the input function is measured by
sampling arterial or arterialized blood from a catheter.

After imaging, regions of interest (ROIs) are drawn over a high statistics
image in which anatomical details are well-defined. A region of interest in the
middle of the left ventricle of the heart or the aorta may supply the input func-
tion.

Sequential PET images are reconstructed[9] and the activity density in
each region is computed after appropriate corrections for radicactive decay,
attenuation, and detector efficiency. The units of activity for PET data are "'PET
events per second per pixel.”” A pixel is a unit of volume, and is a function of the
reconstruction pixel size and the slice thickness.

The uncertainty in the number of events in a ROl is currently approximated
by a naive estimate which assumes a Poisson distribution for the number of
events in a entire region. The uncertainty of the per pixel quantity is taken as
the square root of the number of events in the region, divided by the number of

*UNIXis a trademark of Bell Laboratories.
tPDP and RSX are trademarks of Digital Equipment Corporation.

14

pixels and multiplied by the decay correction factor. This estimate is an order
of magnitude too small, and must be compensated for when the parameter
uncertainties are reported (see subroutine dofit in Appendix A, page 42). A new
uncertainty estimation algorithm has been developed correctly propagates
errors through the entire reconstruction process, and will yield accurate uncer-
tainties[10].

If taken, blood samples are counted on a gamma well counter with a mul-
tichannel analyzer. The well counter data are corrected for radioactive decay,
weight of sample, counting duration, and background radiation. The units of
these data are ‘‘well-counter events per gram per minute.” The blood data differ
from the PET data by three scale factors:

1) counts per minute vs. counts per second (factor of 80),

2) activity/pixel vs. activity/gm (function of blood density and pixel-volume
correspondence), and

3) PET events vs. well counter events (function of the sensitivity of the two
devices).
The overall scale factor for converting blood activity data to the
corresponding PET activity has been determined empirically and is verified at
each experiment by counting and imaging a vial of a radioactive solution.

The program read two input data file formats: ‘“.ROI" files from the PET
image analysis program and ““.JOB’’ files from the blood analysis program. The
format of these files is shown in Appendix C.

All data files for a given experimental subject, along with comments
describing the experimental protocol and a history of the data processing steps,
are combined into a single ASCII file in the Software Tools ar archive format.
This is called the patient study archive. The flow of data from the PET to graphs
and analysis results is shown in Figure 7.

5.3. Program Design ‘ o

The program has three phases: initialization, data reading, and command
processing. Command processing includes parameter setting, data fitting, and
reporting.

In the initialization phase, subroutine init sets global variables to default
values: the number of blood and tissue data points is set to zero, their descrip-
tive labels to "Undefined".

In the data reading phase, subroutine getdat examines the program’s com-
mand line arguments for data input instructions. The arguments may specify

1) a file from which data are to be read,
2) ascale factor to apply to the next region-of-interest read, and

3) a region of interest from which to read the blood or tissue measurements.
These are specified by their cardinal order in the data file. At this point
times, activities, and uncertainties are read and scaled as necessary. Rou-
tine getfun reads these data by calling format-dependent routines getroi or
getjob. The blood measurements taken in time intervals (0, £y,), (£5,. fp,), ---
are the time averages over these intervals, and the measurement times
Tp, Tp, are taken to be the middle of the intervals: Tp = (to,_, * to,)/ 2.
Likewise, the PET measurement times are taken to be the middle of the
image collection intervals.

The command processor subroutine getemd reads commands from the
standard input, which is the user’'s terminal in interactive mode or a file in
batch mode. Parameter setting commands are handled by subroutine setvar,
the display of data and model values by subroutine dowrit, and fitting by subrou-
tine dofit, which in turn invokes the Marquardt algorithm routine subroutine
marq, and the parameter value and uncertainty display subroutines shopar and
shocov. Subroutine setvar allows the user to select the input and residue model
functions, to set model parameters, and to alter the Marquardt parameters 7, &,
v, etc.

15

DISK . 4GRCHIVE TAPE)
IMAGES Reconstruction, = Regions of
Attenuation & Efficiency Interest

Correction

ROI Extraction,
Decay Correction ——
Uncertainty estimation

other inforrhation: l -
patient history =e———m(STUDY DATAFILD‘
protocal : .

plotter em——meeee——— Kinetic Analysis —»QATE CONSTANTS ,
GRAPHS \ Simulation programs

Figure 7. Data Flow.

The input function and residue function models are evaluated by functions
funin and funup. Funup contains code to evaluate and convolve the impulse
response and input functions as necessary, and to compute the numerical
derivatives. Only the impulse response function fimpls needs to know the par-
ticulars of the compartmental model in use; it can provide the impulse
responses of any models of interest. The version of fimpls in Appendix A con-
tains five impulse responses; the first is the function in Equation (4.6), and the
others will not be discussed here.

Globally accessible data are stored in three named common blocks: model
parameter names in /namcom/ (these are set by finit, which is easily changed
along with fimpls), the current set of model parameters in /parcom/ and the
input and residue measurements and uncertainties in /datcom/.

The general outline of the program is shown in Figure 8, with the smaller
utility and library routines omitted.

16

In a typical fitting session, the operator invokes fit with a command line
specifying the source of the data. Model functions are selected and initial
parameters are set with commands of the form ‘‘parametername = value.” The
parameters are fit with the ''fit parameter, parameter, ...”” command. A file con-
taining the measurements and model values can be created with the “write”
command, to be fed to a suitable plotting program.

The program is also useful for simulation of compartment models, given a
source of blood and tissue measurement times (from existing data files). The
user may specify an input function and residue model, set rate constants, and
generate the expected response with the "write” command.

fit
init
finit
getdat
getfun
getbld
getroi
“tinit’
‘datlin
penter
pget
getemd
dowrit
funin
funup
funin
fimpls
con
setvar
whopar
finit
dofit
setmap
whopar
marq
mgqchi
fun(in or up)
mgder
fun{in or up)
magmap
spdinv
dot
shopar
shocov

Figure 8. Outline of fitting program.

17

6. Simulations

A program was written to simulate PET data. Data were generated using a
biexponential input function with typical model parameters, and compared to
the results of the fitting program. The method of simulation is described below.

6.1. Simulation Program
For the biexponential input function {(model 1),

2
b(t) = L 4 e 4t (6.1)
J:
the exact solution for the convolution of the input with the three compartment
impulse response (Eq. 4.6) is
g(t) = b®h(t)
= g § __A_j__-fk_[e—yj‘ _ e-‘ﬂkt])) (6‘2)
Ic=lj=1ak"'Mj|, | o :

For PET images taken over intervals (7;_;,7;), the simulated measured activities
B; and W; are averages over the collection interval:

1 §
B; = T:_tz_——l:;f b(r)dr
. (6.3)
W= _1t. [w(r)dr
i i-1 ¢,
These functions are:
2 .
A famigmee e
.Q- _ § ;} Ai [: [e Mt _ o -Mik _ g CkH-1 _ ot (6.4)
Yogmks (o - My)(E - ti—-l)l H; Qi

Wi =fuBi +(1 _fu)Qt

The simulation program adds Gaussian errors with mean zero and standard
deviations yH; and y#; to B5; and W; respectively, ¥ = 0. Gaussian noise is gen-
erated by projecting the computer’s pseudorandom, uniform [0,1) numbers onto
a polynomial approximation to the inverse of the normal distribution function.
This distribution is not quite realistic, for the relative error ¥ should be a func-
tion of the activity in a region. ’

6.2. Two-Compartment Model

Data were generated for a two-compartment system, with parameters typi-
cal for injections of Hp'%0 in the dog heart.

Input Function: Model Parameters: Collection Intervals:
A, 50. k, 2.35min7! 24x 5sec
M, 6.2 min~! kz 1.75min™! 18 x 10 sec
Az 13, ks 0.
Ma 0.12 min™! ky, O.
fu. 0.15

Number of Simulations
1 with no noise,
10 each with ¥ = .03, .06, .09, .12, .15, .18.

When the correct model values were given to the fitting program, the rms
error in the model computation was 1.3 percent. The peak error was 1.5 percent
and the average error was 0.5 percent. The computed value was always greater
than the actual value. This error in the model computation is due to the errors
in the piecewise linear approximation of the exponential impulse response and

18

input function, and to the fact that the interval-center value of the model will be
higher than the interval-average value. This is only a problem with the funec--
tions are rapidly changing, as with injections of Hy!%0. This systematic error will
result in slightly smaller fit values for k.

Representative fits to two compartments (k3 held at 0.) are shown in Figure
9, and fit rate constants are summarized in Figure 10a. The mean and standard
deviation of the fit values are shown, along with the standard error of the mean
(SEM), the bias (error in mean), and mean estimated uncertainty. The useful
comparisons are error in mean to SEM (accuracy of fit), and standard deviation
to mean estimated uncertainty (accuracy of uncertainty estimate). Figure 10b
shows relative uncertainty (standard deviation / true value) vs. noise.

The k, fits show that the estimated uncertainty in the rate constant deter-
mination is roughly correct, approximately equal to the sample standard devia-
tion. While there is a small systematic error in the model computation, the
error in the rate constant determination is of the same magnitude as the stan-
dard error of the mean for these simulations. The program gives even better
estimates of the k; and f, values and uncertainties.

In Figure 10b we see that relative uncertainty increases roughly linearly
with noise, up to the 18 percent case. The sharp rise in uncertainty at 18 per-
cent is due to the increasing frequency of poor fits observed when noise reaches
approximately 20 percent. Some manual coaxing could have improved the bad
fits.

When forced to fit three compartments to two compartment data, the pro-
gram would not converge in the no-noise and several noise-added fits.. The fits
were discontinued after the 15 percent category. The partial results shown in
Figure 11.

The estimated uncertainties clearly indicate that the program detects the
lack of significance of the estimates, especially k3 and k4.

.6.3. Three-Compartment Model

Data were generated for a three-compartment system, with parameters
typical for the dog heart in injections of F-18 fluorodeoxyglucose.

Input Function: Model Parameters: Collection Intervals:
A, 8.0 k, 0.30min"! 24x 5 sec.
M, 0.82 min™! ks 050" 12 x 10 sec.
As 4.8 ks 0.05" 10 x 80 sec.
M, 0.03 min~! ky 0.008" 5 x B0 sec
J., 0.15
Number of Simulations:

1 with no noise
10 each with v = .03, .06, .09, .12, .15, and .18.

Representative fits are shown in Figure 12, and the results are summarized in
Figures 13a and 13b. ~

In the three compartment case, estimation of k,, kg, and f, and their
uncertainties are good even with high noise. The evaluation of kg and k4 is poor
at high noise with the sampling intervals used, but the uncertainty estimate
grows large as well, so there is no false confidence in the poor estimates. The
sharp rise in uncertainty is again seen at 18 percent noise.

19

Two Compartment Simulations

k1
fy

® O

fg% .

2.35
15

ko = 1.75

blood x fit fy

tissue

fit model

Tise (min}

1.763
1.348
0.145

I+ i+ I+

.0985
.0870
.0180

¥

0% Noise — w34 —

. 1 .
S8 ase fy -6 -8

ky = 2.298 ' k1 = 2.296 + ,0065
ko = 1.718 ko = 1.742 + .0396
fy = = 0.128 + ,0073

-12% C . tafnh\l:m: zs 15'% torreluu:ns:

0.150" ' fy

k2
i s .. K bo
fy -2 .se0 fy -8 -.s80

ooooooooooooo

>
O .
#Houou

Time (min) Time (min)

2.862 + .2667 X
2.373 + .2392 k7
0.097 + .0338 fy

+

wosuon
[y
~
=3
o

i+ 1+t
N
[
D
(=3}

Figure 9. Representative Two Compartment Simulation Fits

.

6% —

kq = 2.277 + .0949
kp = 1.673 + .0793
fy ¢ 0.169 + .0159
!18% - :orrel.nf;:i.:; o

ooooo
ooooooooooooooooooooooooo

2.430
2.063
0.131

.

~
noaon
+ o+ 1+

w

—

~

[0}

Figure 10a. Two-Compartment Fits to Two-Compartment Data

Parameter k&, = 2.35

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
0 2.298 -.052
3 2.303 .020 -.047 .083 .048
6 2.268 .059 -.082 .188 .095
9 2.078 .084 -.272 .266 .124
12 2.223 .060 -.127 .190 .186
15 2.151 .112 -.199 .355 .229
18 2.292 .192 -.058 .609 .321

Parameter kp = 1.75

7 Mean Error Standard - Mean Estimated

% Noise Fit Value SEM in Mean Deviation Uncertainty
0 1.718 -.032 _
3 1.723 .015 -.027 046 .040
6 1.714 .046 -.036 .146 .081
S 1.599 .068 -.151 .215 .108
12 1.719 .046 -.031 .145 .162
15 1.668 .104 -.082 - .329 .200

18 1.786 = .141 .036 .445 .280

Parameter f, = .15

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
0 .150 0.
3 .152 .003 .002 .010 .008
6 L1587 .005 .007 .015 .015
9 .144 .007 -.006 .022 .021
12 141 .009 -.009 .027 .030
15 .168 021 .018 .066 .039

18 .184 .030 .034 .094 .050

Relative Uncertainty

1.

0.8

0.6

0.4

0.2

0.

Figure 10b. Relative Uncertainty vs. Noise

for Two-Compartment Simulations.

(Standard Deviation of fit parameter / true value)

xkl Ak2 o fv

o
-
o A
° x
A
o
a A
o
A
! - 2 i
0. 0.05 0.1 0.15

Relative Noise

0.2

22

Figure 11. Three-Compartment Fits to Two-Compartment Data

Parameter k; = 2.35

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
3 3.97 1.67 1.62 5.28 4.27
6 2.10 0.19 -0.25 0.60 9.31
9 2.23 0.17 -0.12 0.55 7.35
12 3.12 0.73 0.77 2.30 1.90
15 1.98 0.15 -0.37 0.45 4.35
Parameter k; = 1.75
Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
3 10.40 8.74 8.65 27.65 8.24
6 2.61 1.17 0.86 3.69 42.24
9 1.83 0.30 0.08 0.94 0.50
12 4.81 2.17 3.06 6.87 8.57
15 1.62 0.28 -.12 0.83 2.72
Parameter kg = 0.
Mean Error Standard Mean Estimated
% Noise Fit Value =~ SEM in Mean Deviation Uncertainty
: 3 -0.44 - 1.23 - -0.43 3.90 - 11.80
6 1.84 1.82 1.84 5.76 48.40
9 0.09 0.12 0.09 0.39 0.79
12 0.71 0.48 0.71 1.52 59.42
15 -0.28 0.42 -0.26 1.27 19.23
Parameter k, (no definite value)
Mean Standard Mean Estimated
% Noise Fit Value SEM Deviation Uncertainty
3 4.68 2.28 7.21 33.67
8 3.53 1.71 o 5.40 258.
9 2.58 2.32 . 7.36 11086.
12 5.37 3.03 9.59 2172.
15 1.83 0.98 2.95 114,
Parameter f, = 0.15
Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
3 .094 .058 -.056 .184 .148
6 .170 .014 .020 .045 .196
9 .160 .010 .010 .032 .154
12 .107 .033 -.043 .104 .079
15 .129 .020 -.021 .060 .122

23

¥c

-

Three Compartment Simulations * 0% Noise « 'a , . 3% e T 6%

.7, Ji _iss N :; jé};& -Ang . 3 Ei; k.:bn ’
kl - .3 k2 - 5 PR L VA fo 699 sse ek o . "o 22‘3 e aw
k3 = .05 kg = .006
fv = .15 . ,

e = tissue " . _ N §
—= fit model \ 1
) N ' l .é#"’sr
ky = 0.3000 k1 = 0.2751 + 0.0075 k1 = 0.3118 + 0.0185
ko = 0.5006 ko = 0.4411 + 0.0242 ko = 0.5689 *+ 0.0599
k3 = 0.0499 k3 = 0.0481 + 0.0062 k3 = 0.0566 + 0.0115
kg = 0.0060 kg = 0.0072 + 0.0061 kg = 0.0060 + 0.0097
fy = 0.1499 fy = 0.1534 * 0.0032 fy = 0.1498 + 0.0067
1 R 126 e, TS e L I8 e

1. ‘*"-.:'.. l‘:}

o,
k1 = 0.3038 * 0.0206 k1 = 0.3484 * 0.0456 k1 = 0.2407 + 0.0309 ki = 0.4181 + 0.0794
ko = 0.4600 * 0.0590 ko = 0.7351 +0.1727 ko = 0.3730 + 0.1062 ko = 0.9064 + 0.2663
k3 = 0.0313 + 0.0121 kz3 = 0.0976 + 0.0379 k3 = 0.0494 + 0.0340 k3 = 0.0771 + 0.0366
kg = -0.0055 + 0.0175 kg = 0.0527 * 0.0225 kg = 0.0083 *+ 0.0318 - kg = 0.0272 + 0.0244"
fy = 0.1255 + 0.0087 fy = 0.1195 + 0.0128 fy = 0.1360 + 0.0145 fy = 0.1153 * 0.0207

Figure 12. Representative Three Compartment Simulation Fits.

Figure 13a. Three-Compartment Fits to Three-Compartment Data

Parameter k; = .3

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty

0 .300 0.

3 294 .003 -.0086 .010 .008
"B .303 .006 .003 .019 .017

9 .289 .011 -.011 .0386 .025
12 .323 .017 .023 .055 . .034
15 311 .014 - .011 .043 .045
18 .350 .061 .050 .193 .071

Parameter k; = .5

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
0 .501 0.
3 .483 007 -.0186 .022 .025
6 516 .020 .016 .063 .054
9 .497 .025 -.003 .078 .080
12 577 .055 077 175 .110
15 - .554 .046 .055 .146 .149
18 .800 274 .300 .868 273

Parameter k3 = .05

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
0 .0499° . -.0001 :
3 .0490 .00186 -.0010 .0050 .0058
6 .0509 .0043 .0009 .0136 ..0115
9 .0516 .0062 .0016 0197 0177
12 .0514 .0097 .0014 .0308 .0207
15 .0607 .0107 .0107 .0339 .0315
18 .0764 .0307 .0264 .0971 .0404

Parameter k4 = .006

Mean Error Standard Mean Estimated
% Noise Fit Value . SEM in Mean Deviation Uncertainty
0 .00800 0.
3 .0059 .0020 -.0001 .0062 .0056
6 .0052 .00386 -.0008 0114 .0108
9 .0014 .0061 -.0046 .0109 .0163
12 .0015 .0094 -.0045 .0296 - .0216
15 .0049 .0115 -.0011 .0362 .0288
18 .0108 .0149 .0048 .0470 .0438

Parameter f, = .15

Mean Error Standard Mean Estimated
% Noise Fit Value SEM in Mean Deviation Uncertainty
0 .150 . 0.
3 .150 .002 0. .005 .003
6 .149 .002 -.001 .008 .007
9 .148 .005 -.002 .015 .010
12 .124 .005 -.026 .015 012
15 .139 .006 -.011 .020 .016

18 111 .008 -.039 .024 .018

\

Figure 13b. Relative Uncertainty vs. Noise
for Three-Compartment Simulations.

(Standard Deviation of fit parameter / true value)’

kl
k2
k3
fv

Relative Uncertainty

x kl A k2 + k3 o k& o fv
2. 20, k&
1.5 T T 15.
1. T T 10.
+
0.5 T) T s.
+
A
+ A
L} z x
P A s o 8 .
4 , 8 N ,
0. ¥ ’ * 0.
0. " 0.05 0.1 0.15 0.2

Relative Noise

26

7. Applications to Experimental Data

Below we show examples of fitting compartmental models to actual data
from animal experiments. These examples are intended only to demonstrate
the program’s ability to provide useful data for the investigation of physiological
models.

7.1. 0-15 Water

0-15 water (H,1%0) is under consideration as an indicator of blood flow in
the brain and heart. We find that 0-15 water in the dog heart is well modeled by
two compartments, one for blood and one for tissue. '

Blood Cell
Water Water
ky
b(t) q(t)
ko

Studies were carried out on mongrel dogs with 0-15 water generated in the
LBL 80-inch cyclotron. ECG-gated images were collected with the time intervals
noted in the 2-compartment simulations in section 6.2, befere and after raising
myocardial blood flow by injection of Dipyridimole. Actual blood flow in the
heart was measured simultaneously by the microsphere reference organ tech-
nique[11]. Regions of interest were drawn in the middle of the left ventricle for
the input function, and in the left ventricular wall for the residue function. The
data and fits are shown in Figure 14, and the results are summearized below.

6 min.
Before After Dipyridimole
Actual Flow 0.66 1.47 cc/gm/min
k 0.93 +.14 1.68 + .28 min~!
ko 1.01 + .20 1.68 + .31 min™!
I 0.18 + .04 0.35 +£.05

The increase in blood flow was accompanied by a corresponding increase in
k, and k3 and f,,.

7.2. Fluorodeoxyglucose

['8F] 2-fluoro-2-deoxy-D-glucose (FDG) is a tracer for regional glucose meta-
bolism in the brain and heart [12]. Cell in these organs treat FDG like glucose
through the first reaction in glycolysis,

hexokinase N
glucose + ATP __ glucose—6-phosphate + ADP
glucose—6—phosphatase

While glucose-B8-phosphate is further metabolized, FDG-8-phosphate is not. How-
ever, the rates of transport and metabolic reactions of glucose and FDG are

similar. A model for FDG kinetics in the brain and heart is

27

“mmemnn >

Figure 14. Oxygen-15 Water in the Canine Heart.

Myocardium——"""

Left Ventric]ez”///ﬁ

defore Dipyridimole

15O-Water Lmage and
Regions of Interest

After Dipyridimole

Correlation Matrix:

k1 k2
k2 0.949
fv -0.499 -0.453

® = {nput x Fv, o = uptake, . = model
N,
o
® o
o ° i, NG 4 o 15
[~
n,
. . *
o .. * .
o .’ s .. . "
Y., o . 2 . . . - s .
0. - 2 + +
1 2. 3. “ 5 0. 1 2. 3 4
Time (min) Time (min)
Before After ——--
kl = 9.3381E-01 ¢ 1.4215E-01 kl = 1.8086E+00 + 2.8392E-01
k2 = 1.0079E+00 + 1.9753E-01 k2 = 1.6809E+00 + 3.0689E-01
fv = 1.8356E-01 + 3.7703E-02 fv = 3.4732E-01 + 4.7471E-02

Correlation Matrix:

k1 k2
k2 0.961
fv -0.428 -0.450

XBB 830-11016

28

Blood Cell Cell
FDG FDG FDG-8-P

b(t) a, () a5(®)

ko ky

where the first cell compartment represents free FDG and the second cell com-
partment represents phosphorylated FDG. Rate constants k; and k; account for
the kinetics of glucose transport between the blood and the cell, and rate con-
stants kg and k4, account for the rate of the hexokinase and phosphatase reac-
tions in the cell.

If we assume that the rate constants for glucose are proportional to the
rate constants determined for FDG, then the glucose metabolic rate GMF in a
region of interest is given by

Glu k. k
GHME = []p 1%3 ’
LC kaotkg
where LC is the “lumped constant” which accounts for the difference between
lucose and FDG rate constants, and [Glu], is the plasma glucose concentration
13]. We can thus estimate GMR from PE%‘ determined rate constants, a blood
analysis for glucose, and LC.

F-18 has a 112 minute half life. Data are collected for 45 minutes after
injection, at the time intervals noted in the three compartment simulations in
section 6.3. Data were obtained from the right frontal and temporal cortex of
two human subjects, one healthy and one with diagnosed Alzheimer’'s Type
Dementia (ATD). Images of FDG distribution after 45 minutes are shown in Fig-
ure 15, with the data and fits to the temporal cortex. The slices were obtained
at slightly different levels of the brain. The ventricles seen as dark regions in
the middle of the ATD brain are not observed in the normal brain; however, the
cortex regions are approximately equivalent. Notice the reduced uptake in the
temporal cortex of the ATD subject.

The determined rate constants are

Normal ATD
[Glul, 102. 98.
Frontal Normal ATD
k, 121 +.004 .104 +.006 min~!
ko .198 +.018 .66 +.031 min~!
kg .0875 + .0084 .1148 +.0108 min™!
kg .0094 + .0024 .0412 +.0020 min™!
fo .070 +.004 .041 +.005
GMRE'LC 3.78 3.18 mg/min/100g tissue
Temporal Normal ATD
k, .136 + .005 .062 +.004 min™!
ko .204 +.018 .196 +.029 min~!
k3 .0640 + .0064 .0708 +.0128 min!
ky .0012 +.0028 .0339 +.0050 min™!
i .075 <+ .006 .034 +.004
GMR-LC 3,31 : 1.61 mg/min/100g tissue

The ATD temporal cortex has substantially lower k; and GMFE-LC values.
However, we cannot draw conclusions about GMFK because we cannot know
whether LC is altered with Alzheimer’s dementia. The ATD cortex also seems to
have a lower vascular volume and a higher phosphatase (k,) activity.

29

R e

+ = fnput x Fv, o=

Figure 15.

Normal

uptake, — = mode!

Right Temporal

Frontal

Temporal

Normal

kl = 1.3643E-01 +
k2 = 2.0403E-01 +
k3 = 6.4026E-02 +
k4 = 1.1498E-03 *
fv = 7.4523E-02 +
t0 = -1.2071E+01 +
Correlation Matrix:

k1 k2

k2 0.944

k3 0.618 0.828
k4 0.492 0.680
fv. -0.613 -0.511
th -N.294 -0.7245

5.2825E-03
1.7846E-02
6.4200€E-03
2.8383E-03
5.5367E£-03
7.5438E-01

k3

0.929
-0.218
-0.095

k4

-0.221
-0.105

fv

0.577

Fluorine-18 Fluorodeoxyglucose in the Human Brain.

Cortex

2.5

Alzheimer's Type Dementia

n. 10 . n. 4
ATD =mmmmmmmmmmm e
kl = 6.2098E-02 + 4.0143E-03
k2 = 1.9607E-01 + 2.9215E-02
k3 = 7.0846E-02 + 1.2809E-02
k4 = 1.6094E-02 + 5.0160E-03
fv = 3.3876E-02 + 4.1648E-03
t0 = -6.8431E+00 + 9.7430E-01
Correlation Matrix:
k1l k2 k3 ka fv
k2 0.941
k3 0.667 0.867
k4 0.460 0.660 0.911
fv. -0.688 -N.541 -0.273 -N.193
th -0.313 -0.237 -0.109 -0.081 0.560

XBB 830-11017

30

8. Summary

Program fit provides good estimates of two- and three-compartment model
rate constants from input function and residue functions acquired by PET. It
also provides reasonable estimates of the uncertainty and covariance of the fit
rate constants.

Program features include

1. easy addition of new models,

2. interactive or batch use, and

3. easy interface with other programs.

Needed improvements in the program fall into four categories:

1. Speed. Computation of the uptake function and derivatives is currently
quite inefficient. In the case of models 1, 3, and 5, the impulse response
characteristic decay constants are computed at every invokation. Routines
mqchi, mqder, funup, and fimpis should be rewritten to compute values for
all N,, values at once. This rearrangement would also make possible the
use of an array processor for further speed increases.

2. Linear-Interpolation Approximations. The piecewise linear approximations
of the input and impulse response functions introduce errors in the compu-
tation of the residue function. These errors are small but unnecessary.
Funup could be rewritten to analytically convolve the piecewise linear
input function with a vector of n exponentials (n is generally the number of
non-vascular compartments in the model). This would likely increase
speed as well, as the method of conv is not terribly efficient.

3. Sampling. We currently ignore the fact that our measurements are aver-
ages over known time intervals (Equation 6.3). We can more accurately
model our measurements by using the time-average of w(t) over these
intervals. ' :

4. Data Statistics. We ignore the effect of input function noise and input-
residue measurement correlation in our least-square function XK. This can
be corrected when the new ROI uncertainty and correlation estimation
algorithm has been implemented in our data collection system. This will
require the addition of a new data field in the ROI file format, for covariance
with respect to a designated input function region.

31

References

[1] Bard, Y., Nonlinear Parameter Estimation, Academic Press, New York, New
York, 1974.

[2] mid, p. 59.

[3] Marquardt, D.W., **An Algorithm for Least-Squares Estlmatlon of Nonlinear
Parameters,” J. Soc. lndust. Appl. Math. 11(2): 431, 1963.

[4] Mason, S.J., Zimmermann, H.J., Electronic Circuits, Signals, and Systems,
John Wiley & Sons, New York, New York, 1960.

[5] Kernighan, B.W. and Plauger, P.J., Software Tools, Addison-Wesley, Reading,
Mass., 1976.

[6] Hall, D.E., Scherrer, D.D., and Sventek, J.S., “‘A Virtual Operating System,"”
Communications of the ACM 23(9): 495, 1980.

[7] Kernighan and Plauger, ap cit., p. 3.

[8] Derenzo, S.E., Budinger, T.F., Huesman, R.H., Cahoon, J.L., and Vuletich, T.,
“Imaging Propertles of a Positron Tornograph with 280 BGO Crystals " [EEER
Trans. Nucl. Sci. 28(1), 1981.

[9] Budinger, T.F., Gullberg, G.T., Huesman, R.H., “Emission Computed Tomog-
raphy’’ in /mage Reconstruction from Projections, mplementation and
Application, G.T. Herman, ed., Springer-Verlag, 1979, pp 147-2486.

[10] Huesman, R.H., “A New Fast Algorithm for the Evaluation of Regions of
Interest and Statistical Uncertainty in Computed Tomography,” Lawrence
Berkeley Laboratory Report LBL 16521, August 1983 (to be published in
Phys. Med. Biol.). .

[11] Dornenech M.D., Hoﬁ'man, JIE Noble, M.IM., Saunders, X.B., Henson, J.R.,
Subijanto, S., “Total and Reglonal Coronary Blood Flow - Measured by
Radiocactive Microspheres in Conscious and Anesthetized Dogs,” Circulation
Kes. 25: 581, 1969.

[12] Gallagher, B.M., Fowler, J.S., Gutterson, N.I, MacGregor, R.R., Wan, C., Wolf,
AP, “Metabohc Trapping as a Principle of Radloph%‘maceutlcal Design:
Some Factors Responsible for the Biodistribution of [*"F] 2-fluoro-2-deoxy-
D-glucose,” J. Nucl. Med. 19(10): 1154, 1978.

[13] Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L., Kuhl, D.E.,
“Tomographlc g{easurement of Local Cerebral Glucose Metabolic Rate in
Humans with [*"F] 2-fluoro-2-deoxy-D-glucose: Validation of Method,”” Annals
of Neurology 6(5) 388, 1979.

Acknowledgements

This work was supported by the Department of Energy under contract number
DE-ACO03-76SF00098.

I greatly appreciate the support and encouragement of my advisor, Dr. Thomas
Budinger.

I want to thank the entire staff of the Donner Research Medicine Group for their
friendship and supporting efforts, especially Dr. Ronald Huesman for the Mar-
quardt code, his advice, and patience for my Unix proselytizing. I also extend
my appreciation to the team responsible for the human and animal experiments
mentioned in Section 7: Katie Brennan, Thomas Budinger, Robert Friedland,
John Frisch, Marty Morimoto, Brian Moyer, Mohindar Smgh Julie Twitchell-
Mathis, Donald Uber, and Yukio Yano.

32

Appendix A. Fit Source Listing
main.r main.r

fit — fit compartmental models to ring daia

DRIVER (fit)
include datcom - # make sure these commons are in root overlay

include namcom
include parcom

string usestr "Usage: fit [[—sscale] [file] —i[n]] [[-sscale] [file] —u[n]]"

call query{usestr)

call init. # set defaults .
call getdat # read data files named on command line)
call getemd # process fit commands
DRETURN
end :
Fri 05 Aug 83 17:45:13 Page 1 of mairr

33

fit.h ' fit.h

. # fit.h — definitions for FIT

define (VERSION, "FIT V1.3")
: # dimensions for
define (MAXNAME,40) # ... character sirings
define (MAXLABEL,30)
define (ARGMAX,80)
define (MAXINPAR,6) # ... parameter arrays
define (MAXUPPAR,8)
define (MAXFIT,8) :
define (MAXDATA,80) # .. measurement arrays

define (UNKNOWN,—1) # the types of variables we set
define (INPUTPAR,1) ’
define (UPTAKEPAR,2)

define (MARQPAR,3)

define §INPUTFUNCTION,4)

define (UPTAKEFUNCTION,5)

define (NSTEPS,6)

special definitions for .ROI file routines (tinit,penterpget)

define (TABLESIZE,1000) # dynamic storage: 2K bytes

define (T_SIZE,1) # size of table entry

define (T_POINTER,1) # string pointer offset in table info

Tue 05 Jul 83 16:26:00 : Page 1 of fit.h

34

datcom

daitcom - measured data common

datcom

real tbloocd(MAXDATA) # times of blood measurements
real blocd(MAXDATA) # blood activity meaos.

real ublood(MAXDATA) # uncertainty in blood meas.
integer nblood # number of tissue points
logical btrue # dlood uncertainiies correct
real ttissu(MAXDATA) # times of tissue measurements
real tissu(MAXDATA) # tissue activity meas.

real utissu(MAXDATA) # uncertainty of tissue meas.
integer ntissu # number of tissue points
logical ttrue # tissue uncertainties correct
character bfile(MAXNAME) # name of blood source file
real bscale # blood scale factor

integer breg # blood region number
character blabel(MAXLABEL) # label from blood region
character tfile(MAXNAME) # name of tissue source file
real tscale # tissue scale factor

integer treg # tissue region number
character tlabel(MAXLABEL) # label from tissue region

common /datcom/ tblood,blood,ublood,nblocod,btrue
ttissu,tissu,utissu,ntissu,ttrue
bfile,bscale,breg,blabel,
tfile,tscale,treg,tlabel

Pri 05 Aug 83 17:46:05 Page 1 of datcom

namcom namcom

namcom - names of parameters

stored two characters in one word,
input function model param names

integer innam(MAXINPAR)
residue funcltion model param names

integer upnam(MAXUPPAR)

common /namcom/ innam, upnam

Page 1 of namcom
35

Tue 05 ful 83 16:38:03

parcom ‘ parcom

parcom — model parameters

real inpar(MAXINPAR) 4 input function parameters

integer ninpar # number of input function parameters
integer infun # input function selector

integer minfun # mazrimum infun

real uppar(MAXUPPAR) # uptake model parameters

integer nuppar # number of upiake model parameters
integer upfun # uptake function selector

integer mupfun # mazimum uptake funciion

integer idebug # fitting trace flag

integer nsteps # mazimum number of iteraiions allowed

common /parcom/inpar,ninpar,infun,uppar,nuppar,upfun,minfun,mupfun,
idebug,nsteps

Tue 05 Jul 83 16:37:54 ' Page 1 of parcom

tablecom ‘ ’ tablecom

tablecom -~ roi parameter table memory

pointer table # Jake table declaration ’
common /table/ table

Tue 05 ful 83 16:38:51 Page 1 of tablecom
36

catch.mac

JHffCATCH — catch terminal interrupt

title CATCH
.ident /1QJAN/

LUNIT
BREAKC

NARGS
FLAG
LUN

" CHAR

- NOARG
TRUE
FALSE

Fortran calling sequence:

logical - flag
integer lun
byte char

call catch(flag, [lun], [char])
call catch

DEFAULT SETTINGS:

w W

wiuun
oW v o

-1
-1
e

.mcall qic8s, astxS8s
..globl CATCH, note

; pure code

.psect $R.ROLILRO,CO

N,REL,LCL
CATCH

CATCH: tstb
ble

cmp
beq

mov
mov

cmp
blt
cmp
beq
mov

23: cmp
blt
cmp
beq
movb

NARGS(r5) -
disarm

FLAG(r5), #NOARG
disarm

FLAG(r5), flagp
#FALSE, @flagp

NARGS(rs), #2
dogio

LUN(r5), #NOARG
23

@LUN(rs5), luntt

NARGS(r5), #3
doqio :
CHAR(r5), #NOARG
dogqio

@CHAR(rs), break

Thu 30 ;Jun 83 17:01:30

catch.mac

CATCH attaches the specified lun with an AST locking for
for CHAR. When one is received, FLAG is set to fortran logical .TRUE.

! arm
! disarm

The default for lun=5, for char=~C, for reatch=.true.

After catching a CHAR, catch detaches the lun, Catch may
also be forced to detach (disarm itself) by calling with no arguments.

If the attach fails, catch attempts to print a message on LUN.

; default unit for read
; default break char ~C

; offsets into arg block

; address of null argument
; fortran logical values

; if no arguments
disable thyself

; flag wasn’t passed

so this is a disable call
; get pointer to flag

; clear it

; see if LUN was passed
no lun and no char — go qio
see if LUN was passed

save the unit number

see if char arg is there

store break character

Page 1 of catch.mac

37

catch.mac

dogio: cmp
beq

mov
jsr

QIOSS
bes
cmp
beq
bad: mov
mov
mov
jsr
tst
tst

armed, #TRUE ;
done :
#TRUE, armed

pc, ttydet 3

#10.ATA luntt,, #isb, <#gotch> ;
bad

isb, #IS.SUC

done

#badmsg, —(sp) ;
#1, —(sp) ;
sp, ré

pc, note

(sp)+

(sp)+

; DISARM - undo catche

disarm: cmp
beq

mov
QIOSS
call

done: rts

armed, #FALSE ;
done

#FALSE, armed
#10.DET,luntt ;
ttyatt

pc

; gotch — ast routine called whe

bicb
cmpb
bne
mov
jsr
18: tst

GOTCH:

ASTXS8S

halt

#200, (sp)
(sp), break
138

#TRUE, @flagp :
pc, disarm _ ;
(sp)+ ;

DATA

»

; impure data

armed: .word
flagp: .word
luntt: .word
isb: .blkw
break: .byte

.even

; pure data

.psect 8r.rwd,D,RW,CON,REL,LCL

FALSE

0

LUNIT

2
BREAKC

e e S we

.psect $r.rod,D,RO,CON,REL,LCL

badmsg: .asciz
.even

.end

/[CATCH] Attach LUN failed/

Thu 30 Jun 83 17:01:30

DISARM

GOTCH
n a character comes in

catch.mac

see if we have to do this
if it’s done, don’t redo it
detach tty

attach keyboard

L]
print error message
with call note("[CATCH]...")

if not armed, just return

issue detach from lun

; clear parity

; see if it’s what we want
; discard if not

; yes — set users flag

issue detach from lun

; discard character
; exit ast routine
; should never happen

flag indicating pending read
address of user’s flag
logical unit to read

QIO success buffer
character we’re looking for

Page 2 of catch.mac
38

con.r

con — convoluiion of two sampled functions.

con.r

real function con (a, b, ta, tb, time, a0, b0, ta0, tbC, na, nb)

integer na, nb

real a(na), b{nb), ta(na), tb(nb), time, a0, b0, tal, tbo

#.

Perform onvolution of functions a and b

#

FPualuates a®(time) where a(s) = linear interpolation

of points (ta0,a0), {tafi)a(i)) and bfs) = linear interpolation

of points (tb0,b0), (tb(i)b(i})). Any ta(i) less than ta0O or

tb0 less than tb0 are ignored a is the mazimum indez in a, ia.

Nb is the mazimum indez in b, tb.

#

We integrate by summing a series of trapezoidal panels, delimited

by the known time points (ta0, ta(l), .. ta(na)) and

(time—tb0, time—td(1), ... time—tb(nb)

The time interval of a panel s t = ts to te.

For function a the panel is (is, as) (te,ae). For function

b the panel is (ts,bs), (te,be). The logical flags tell

whether we know the functions ezactly at the start and end points.

If we don’t know, we interpolate.
real tend, ts, te, as, ae, bs, be, sum
logical enda, endb
integer ia, ib

begin con _— —————
tend = time — tbO # upper limit of integration
sum = 0. # inifialize integral sum
ia =1 # starting pointers to funcihions
ib = nb . . '
ts = ta0 # starting time
as = a0 # we know start of a

while ((time—tb(ib)) < ts & ib > 1)

ib =ib - 1
if (ib < nb)
1b=1b+1

find where to start b

extrapolate from first poini
before tal

bs = b(ib) + (b{ib— 1)—b(1b))'(ts—(tlme—tb(lb)))/(tb(lb)—tb(lb—l))

while (ts < tend) {
while (ta(ia) <= ts & ia < na)
ia = ija + 1

while ((time — tb(ib)) <= ts & ib > 1)

ib =ib -1

te = time — tb(ib)
if (ta(ia) < te | te <= ts)

INTEGRAL LOOP
find first time after current
time, in both a and b series

take smallest of these
as panel limit

dbut make sure we advance
find out which we know

know it directly
interpolate from (ta0,a0)

interpolate between 2 points

te = ta(ia)
if (te <= ts)

te = tend
enda = te == ta(ia)
endb = te == (time - tb(ib))
if (enda)

ae = a(ia)
else if (ia ==

ae = a0 + (a(l)—aO)‘(te—taO)/(ta(l)-—taO)
else

a =

Tue 05 Jful 83 16:27:R7

a(ia—1) + (a(ia)=a(ia—1))*(te—ta(ia—1))/(ta(ia)-ta(ia—1))

Page 1 of con.r
39

con.r con.r
if (endb) # know it directly
be = b(ib)
else if (te < (time — tb(1))) # interpolate between 2 points
be = b(ib+1) +_
(b(ib)—b(ib+1))*(te—(time—tb(ib+1)))/(tb(ib+1)—tb(ib))
else if (te == tend) # it's the endpoint
be = b0
e]se # interpolate from (tb0, b0)
= b(1) + (b0- b(l))‘(te—(tlme—tb(l)))/(tb(l)—tbo)
tntegral of panel
panel=(te—ts)*(1./3.*(ae—as)*(be—bs) + 0.5%*bs*(ae—as)+_
as*(be—bs)) + as*bs) _
sum = sum + panel # add panel to sum
as = ae :
bs = be
1
return(sum)
end
Tue 05 Al 83 16:27:27 Page 2 of con.T

40

datlin.r

datlin.r

datlin — read ROI data line

integer function datlin (line, fdes, size)
character line(ARB)

filedes fdes
integer size(2)
#

reads a data line from archive file ‘fdes’. [gnores blank lines and comments,
and enters parameter—setting comment lines into the table.

it will not return blank or comment lines.

#

#

Returns EOF on end of file. This function is just like getlin excepi
#

#

ext_func integer length, agtlln
ext_subr skipbl, penter
character name(MAXNAME)
integer info(T_SIZE), i, j, last

while (agtlin(line, fdes, size)!=EQF) [# fry reading a line

? call fprint(STDERR, "[DATLIN] read: Zs", line)
last = 0O
for (j=1; line(j) !'= EOS; j=j+1) # find last nonwhite character
if (line(j)!=BLANK & hne(J)'-NEWLINE & line(j)!=TAB)
last = j
line(last+1) = EOS # trim trailing whitespace
i=1
call skipbl(line, j) # look at first nonblank char
if (line(j) == EOS) # blank line — ignore it
next ,
if (line(j) '= ‘#) [# mot a comment:
? call fprint(STDERR, "[DATLIN] '@n”)
return{0K) # return triumphant.
]
j=3j+1 # look at mezt nonbdlank char
call skipbl(line, j)
if (line(j) '= ’%’) # this is just a comment
next
i=1
for (j=j+1; llne(J) 1= ‘%’ j=j+1) [
if (line(j) == EOS l i == MAXNAME) .
next 2 # no closing %, forget it
name(i) = line(j) # eztract the parameter name
i=1i+1 g
]
name(i) = EOS
=j+1
call skipbl(line, j) # find beginning of definifion
] call penter{name, line(j)) # enter definition
_ return(EOF)
end
Thu 30 fun 83 16:43:15 Page 1 of datlin.r

41

dofit.r

dofit.r

doﬁt — perform fit on parameters

subroutine dofit (line, j)
character line(ARB)

integer j

T MM

line(j...) is a list of parameters to fit. R is picked apart
by setmap. We print iniiial values, call marquardt, print
results.

ext _func filedes open

ext.func integer isatty

character val(MAXNAME)

integer map(MAXFIT), nparm, whlch flags(MAXFIT)

real uncert(MAXFIT), cov(MAXFIT‘MAXFIT)

filedes ttydes

external funin, funup ,

logical quit # set by typing conirol-C
logical true # true uncertainties for our fit?
common /quit/ quit

include datcom
include parcom

call setmap(line(j), map, nparm, which)

if (nparm == 0) {
call fprint(STDERR,”"No paramaters to flt@n")
return

]

call fprint(STﬁOUT, "#Initial Conditions:@n@n") "
call shopar(STDOUT, NO, uncert, NO, flags)
call fprint(STDOUT, "@n# Fit Z%s”, line(j))

chi = Q.

chi0 = 0.

istep = 0

quit = .false.

if (isatty(STDIN) == YES) # lun for control—C is terminal
ttydes = STDIN

else

ttydes = open("TL", READ)
call catch(quit, ttydes)

if (which == INPUTPAR)
call marq(funin,ninpar,inpar,uncert,cov,nparm,map,nblocd,
tblocd,blocd,ublocd,nsteps,chil,istep,chi,ierr,flags,idebug)
else
call marq(funup,nuppar,uppar,uncert,cov,nparm,map,ntissu,
ttissu,tissu,utissu,nsteps,chi0,istep,chi,ierr,flags,idebug)

call catch
if (ttydes '= STDIN)
call close(ttydes)

call rtoe(chi0, val, 11, 4)

call fprint(STDOUT, "@n# Results:@n# Initial chi square: %s@n", val)

call rtoe(chi, val, 11, 4)

call fprint(STDOUT, "# Final chi square: %s after %d iterations@n@n",
val, istep) _

’

if (ierr 1= 0) [

Pri 05 Aug 83 17:53:32 Page 1 of dofit.r

42

dofit.r

dofit.r

call fprint(STDOUT, "# *** Marquardt error %d: ", ierr)

select (ierr) [

case —1:
call fprint(STDOUT,
case 1:
call fprint(STDOUT,
case 2:
call fprint(STDOUT,
case 3:
call fprint(STDOUT,
case 4:
call fprint(STDOUT,
~ default:
] call fprint(STDOUT,
]
if (which == INPUTPAR) [
npar = ninpar
ndat = nblood
true = btrue
else [
npar = nuppar
ndat = ntissu
true = ttrue

ndf = ndat — nparm

"Parameter setup@n")

"Too many iterations@n')

"Matrix invert while stepping@n")

"Matrix invert after convergence@n')
"Terminated by user before coﬁvergence@n”)

H?@nll)

degrees of freedom

call fprint(STDOUT, "# Number of degrees of freedom: %d", ndf)

if ('true) [
sc =

= sqrt{chi / float{(ndf))
do i

1, npar

have to fudge uncertainties
pretend model fit: chi=ndf
scale uncert, cov

uncert(il) = uncert(i) * sc

do i = 1, npar**2
cov(i) = cov(i) * sc
call fprint(STDOUT,"
]
else
call putch(NEWLINE, STDOUT)

~= Uncertainties fudged@n")

call shopar(STDOUT, which, uncert, which, flags)

call shocov(cov, npar, which)

return
end

Fri 05 Aug 83 17:63:32

Page 2 of dofit.r

43

dot.f | - dot.f

C DOT — Compute Dot—Product of Vectors

FUNCTION DOT(A,B,N)
DIMENSION A(1),B(1)

D = 0.
DO 10 I = 1,N
D =D + A()*B(I)
10 CONTINUE
DOT = D

RETURN
END

Thu 30 Jun 83 16:43:18 Page 1 of dot.f
; 44

dowrit.r : dowrit.r

dowrit — write input or uptake data & model to file

subroutine dowrit (line, j)
character line(ARB)
integer j

line(d...) its a write—data command. Format is:

[INput] [.] [UPtake] [> file]

e W He T

ext_func integer gettok, equal

ext_func filedes open

character var(MAXNAME), filnam(MAXNAME)
filedes fdes

integer which, mode, ndat

real time, meas, uncert, model, inp, par
external funin, funup

include parccm
include datcom

fdes = STDOUT
-mode = WRITE

' if (gettok(var, line, j) == EOF) ['
100 call fprint{STDERR, "*** Usage: write 1n|up [>I>> file]@n")

return
]

if (var(1) == ‘i* & var(2) == ‘n’) [
which = INPUTPAR _
npar. = ninpar

else if (var(l) == ‘v’ & var(2) == p) [
which = UPTAKEPAR
npar = nuppar

else
goto 100

call gettok(var, line, j)
if (var(1) == >°) [# redirection
if (line(j) == >°) [
mode = APPEND
i=i+1

]

filnam(1) = EQOS
while (gettok(var, line, j) != EOF) # remaining tokens are
call concat(filnam, var, filnam) # tacked onto file name

if (length{filnam) <= 0) # missing name
goto 100

fdes = open(filnam, mode)

if (fdes == ERR) [
call fprmt(STDERR "Can’t write to %s@n”, filnam)
return

call rtoe(bscale, var, 10, 3)
call fprint(fdes,”Input: %s — %s (reg. %#d * %s Model %d@n",

bfile, blabel, breg, var, infun)

Thu 30 fun 83 17:07:28 Page 1 of dowrit.r
45

dowrit.r

if (which == UPTAKEPAR) |
call rtoe(tscale, var, 10, 3)

dowrit.r

call fprint(fdes,"Uptake: %s — %s (reg. %d * %s) Model %d@n",

tfile, tlabel, treg, var, upfun)
1
else
call puteh(*@n’, fdes)

for (i = 1; i <= npar; i=i+1) [
call getnam(var, which, i)

call fprint(fdes, "%s = ", var)
if (which == INPUTPAR)

par = inpar(i)
else

par = uppar(i)
call rtoe(par, var, 11, 3)
call putlin{var, fdes)

if (mod(i,4) == 0)

call putch(*@n’, fdes)
else
| call putlin(" *, fdes)
if (mod(i,4) '= 1)

call putch(*@n’, fdes)

if (which == INPUTPAR) [

parameter name

and value

call fprint(fdes,"@n time input uncert in_model@n")
] ndat = nblood
else |
call fprint(fdes, : :
"@n time uptake uncert up.model ° input@n™)-
ndat = ntissu '

do i = 1, ndat |
if (which == INPUTPAR).[
time = tblood(i)
meas = blood(i)
uncert = ublood(i)
call funin(.false.,inpar,time,model)

]

else [
time = ttissu(i)
meas = tissu(i)

uncert = utissu(i)
call funup(.false.,uppar,time,model)
call funin(.false.inpar,time—uppar(6),inp)

call rtof(time, var, 7, 1)
call putlin{var, fdes)

call rtoe(meas, var, 11, 3)
call putlin{(var, fdes)

call rtoe(uncert, var, 11, 3)
call putlin(var, fdes)

call rtoe(model, var, 11, 3)
call putlin(var, fdes)

Thu 30 fun 83 17:07:28

time
measured value
uncertainty

model value

Page 2 of dowrit.r
46

dowrit.r - dowrit.r

if (which == UPTAKEPAR) [# show input function
call rtoe(inp, var, 11, 3) # if doing uptake
call putlin(var, fdes) .

call putch(*@n’, fdes)

if (fdes != STDOUT) [
call close(fdes)
call fprint(STDOUT,"# Wrote data/fit list to file “%s’@n", fxlnam)

return
end

Thu 30 fun 83 17:07:28 Page 3 of dowrit.r
47

fimpls.r | fimpls.r

real function fimpls(par, t)
real par(ARB), t

#
Impulse function for compartmental models
#
t = time of evaluation in lterms of input funcltion iime, in sec.
This routine evaluates several different model input funciions:
upfun = 1 three compartments in & row e.g. (FDG)
2 three ezponentials (bastard function for 3, below)
3 four compartments
4 two compartments, k1 both ways
5 four compartments, kb held equal to ka
real ka6, k16, p0, pl, p2, al, a2, a3, f1, 12, {3, time
include parcom
define (K1,par(1)) define (Fv,par(5))
define (K2,par(2)) define (KA,par(7))
define (K3,par(3)) define (KB,par(8))
define (K4,par(4)) define (Fe,par(9))
inline functions for case 3. numeralor polynomials
anume(s) = ka6*(s**2 + (K2+K3+K4)*s + K2*K4)
anuml2(s) = ka6*K1i*(s + K3 + K4)
if (t < 0) # return 0 for t < O
return(0.)
time = -t/60.
k16 = Kt*(1.—-Fv)/60. # a frequently needed number
select (ﬁpfun) [-
case 1:
par(1) = k1 (blood fdg <=> tissue fdg)
par(2) = k2
par(3) = k3 (tissue fdg <=> phosphorylated)
par(4) = k4
par(5) = Fv (vascular partial volume)
if (time ==
retum(k16)
betal = K2 + K3 + K4
beta2 = betal®**2 — 4.*K2*K4
if (beta2 <= 0.) [
call fprint(STDERR,"***Unable tc sclve roots@n")
return(0.)
beta? = sqrt(beta2)
alphal = (betal — beta2)*.5
alpha2 = (betal + beta2)*5
f1 = k16 * (K3+K4—alphal)/beta2
f2 = k16 - f1
return(f1*exp(time*alphal) + f2%exp(time*alpha2))
case 2:
par(l) = f1 coefficient for first exponential
par(2) = ki1 rate constant for first ezponential
par(3) = f2 (second ezp)
par(4) = k2
Wed 03 Aug 83 18:23:58 Page 1 of fimpls.t

"48

fimpls.r fimpls.r

= f3 (third exp)
par(8) = k3
par(5) = Fy

if (time == 0.)
return{{par{1)+par(3)+par(7))*(1.=Fv)/60.)

W=k

(vascular partial volume)

return((par(1)*exp(time*par(2))+_
par(3)*exp(time*par(4))+—~
par(7)*exp(time*par(8))) *(1.—Fv)/ 60.)

case 3:
case 95:
par(1)
par

Z
par(3
(4
(

k1 (extracellular space <=> tissue)
k2 ‘

k3 (tissue fdg <=> phosphorylated)
k4

ka (blood <=> eztracellular space)

kb (always equal to ka in model 5)
Fv: vascular partial volume

Fe: extracellular partial volume

old k’s

par
par
par(8
par(s
par(9)

take care of time wunit dependence of Ka: convert 1/min to 1/sec
ka6 = KA /7 60.

NS NN

new k’s

)
)
)
7)
)
)

LI T IO T T TR

I RIS WIS

if (time == 0.).
- return{ka6*Fe)
time = -time ’ # a’s are already < 0
_if (upfun == 5) # model 5: ka and kb equal

KB = KA

KB+K1+K2+K3+K4 # coefficients of characteristic eqgn
pl (K1+KB)*(K3+K4)+K2*(KB+K4) :

pO0 KB*K2*K4

call rt3(p2,p1,p0,al1,a2,a3,ierr)# find its roots

if (ierr < 0) [
call remark("***Unable to solve roots in fimpls")

return(1.0e+10)

if (ierr > 0)
call remark("***Equal roots, hope that’s ck")

eal = exp(time*al
ea2 = exp{time*aZ2
ead = exp(time*a3)

1. — Fv — Fe # cell volume
(Fe*anume(al)+Fc*anuml2(al))/({(al1—a2)*(al—a3))
(Fe*tanume(a2)+Fc®*anumi2(a2))/((a2—al)*(a2-a3))

= (Fe*anume(a3)+Fc*anum12(a3))/((a3—~al)*(a3—a2))
retu_rn(fl *eal+f2*ea2+f3%eal)

Fe

f1
2

case 4: # two compart, k1 both directions
if (time == 0.)

return(k16)
return(k16*exp(time*K1))

default:
call error("*** in fimpls, can’t happen')

end

Wed 03 Aug 83 18:23:58 Page 2of fimpls.T
49

finit.r finit.r

finit — initialize parameter names and values

subroutine finit

this routine defines the names of the parameters and the mazimum number
of parameters.. Mnitialization must be done by assignment statements.
The routine is called whenever the input or upiake funciion is changed.

include datcom
include parcom
include namcom

minfun = 4
mupfun = 5

ninpar =95
% innam(1) = ‘al’
% innam(2) = ‘m1’
% innam(3) = ‘a2’
% innam(4) = ‘m2’
% innam(5) = “ti’
innam(6) = 0
% upnam(s) = ‘fv’
% upnam(6) = ‘t0’
select (upfun) [
case 1:
nuppar =6
% upnam(1) = ‘k1’
% upnam(2) = ‘k2‘
% upnam(3) = ‘k3*
% ' upnam(4) = k4’
case 2:
nuppar =8
% upnam(1) = “f1*
% upnam(2) = ‘k1’
% upnam(3) = ‘f2*
% upnamgtl) = ’k2’
% upnam(?7) = ‘f3°
% upnam(8) = ‘k3’
case 3:
case 5:
nuppar =9
% upnam(1) = “k1‘
% upnam(2) = ‘k2‘
% upnam(3) = ‘k3’
7% upnam(4) = ‘k4’
% upnam(?) = ‘ka’
4 upnam(8) = ‘kb’
% upnam(9) = ‘fe’
case 4:
nuppar =6
% upnam(1) = ‘k1‘
7% upnam(2) = *©
% upnam(3) = *© *
% upnam(4) = * *
default: ’
] call error(”*** in finit, can’t happen")
return
end
Wed 03 Aug 83 16:14:05 Page 1 of finit.r

50

funin.r

funin.r

funin — compute input function (& maybe derivatives)

subroutine funin (tderiv, par, t, y, tder, dy)
logical tderiv, tder(ARB)
real par(ARB), t, dy(ARB)

#
input function for fitting
choices are:
1 biezponential al! exp(-ml1 T) + a2 exp(-m2 T)
2 time ®biezponential al! T exp(-m1 T) + a2 T exp(-m2 T)
3 gamma variate al T exp(—m2 T**2) + a2 T exp(-m2 T*2)
4 linear interpolation from input measurement
where T = (t—T8)/60. This Ti shift does not affect model 4.
#
units: al, a2 — units of the input measurements (cts/min/cc)
ml, me - l/min
t, @ — seconds
#
include parcom
include datcom
real time, tk, eml, em?2
integer lo, hi, try
define (A1, 1)
define (M1, 2)
define (A2, 3)
define (M2, 4)
define (Ti, 5))
if (infun == 4 # linear interpolation
if (t <)
= 0.
else [
lo = 1; hi = nblood # binary search for nearest time
while (lo < hi) | :
try = (lo + hi) 7 2
if {tblood({try) < t)
lo = try + 1
else
hi = try - 1
]
if (tblood(le) > t) # we want to interpolate
lo =lo =1 # between (lo) and (lo+1) so
if (lo <= 0) : # make sure lo points where it
lo =1 # should.
else if (lo >= nblood)
lo = nbloed - 1
interpolate
= blood(lo) + (t—tblood(lo)) * (blood(lo+1)—blood(lc))_
/ (tblood(lo+1)—tblood(lo))
if (y < 0)
] y = 0. # no negative numbers
if (tderiv)
do i = 1, ninpar
if (tder(i))
dy(i) =
return
]
Thu 30 fun 83 16:43:33 Page 1 of funin.r

51

funin.r

funin.r

other models:

time = (t-par(Ti)) / 60. # convert to minutes
if (time < 0.) [# and handle t-ti < 0
y = 0.
if (tderiv)
do i = 1, ninpar
if (tder(i))
. dy(i) =
return
]
if {infun == 1 | infun == 2) | # exp, t*ezp
eml = exp(—time*par(M1))
em2 = exp(-time*par(M2)) :
= par(Al)*eml + par{A2)*em?2
1f (tderiv) [
if (tder(Al)) dy(Al) = eml
if (tder(A2)) dy(A2) = em2
if (tder(M1)) dy(M1) = —time®*par{Al)*eml
if (tder(M2)) dy(M2) = —time®*par(A2)*em2
if (tder(Ti)) dy(Ti) = (par(M1)*par(Al)*eml +_
] par{M2)*par{A2)*em2) / 60.
if (infun == 2) [
=y * time
1f (tderiv) [
do i = 1, ninpar
if (tder(i))
dy(i) = dy(i) * time
if (tder(Ti)) .
dy(Ti) = dy(Ti)—(par(Al)*eml+par(A2)*emz2)/860.
]
else | # infun == 3.t exp —-t*2
eml = exp(-par(M1)*time**2)
ern2 = exp(—par(M2)*time®**2)
par(Al)*time*eml + par{A2)*time®em2
1f (tderw) L
if (tder(A1)) dy(Al) = time*em1l
if (tder(A2)) dy(A2) = time®*em?
if (tder(M1)) dy(M1) =-—par(Al)*time**3*em!
if (tder(M2)) dy(M2) =—par(A2)*time**3*em?2
if (tder(Ti)) dy(Ti) = -
((2.*par(M1)*time**2—1.)*par(Al)*eml1 + _
] (2.*par(M2)*time**2—1.)*par{A2)*em2) / 60.
]
return

end

Thu 30 fun 83 16:43:33 Page 2 of funin.r

52

funup.r

funup.r

funup — compuie uptake (residue) function (& maybe derivatives)

subroutine funup (tderiv, par, t, y, tder, dy)
logical tderiv, tder(ARB)
real par(ARB), t, y, dy(ARB)

& .
uptake funciton for fitting. Returns tissue activity level
at time t according to parameters ‘par’ (and implicitly, the input
Sunction and its parameters) If tderiv is true, for every true
tder(i) we return dy(t) = dy / dpar(i).
#
parameters: :
por(1—4,7,8) = k1,k2k3.k4 FDG rate constants
par(s) = fv fractional blood volume
par(6) = t0 time shift between input and tissue blood
#
This routine uses actual blood measurements and times for
convolution when possible (infun==4)
#
ext_func real fimpls, con
real time(MAXDATA), {(MAXDATA ,MAXFIT), b(MAXDATA), tlast
integer k
data tlast /1.0e+20/
include parcom # need to see infun
include datcom . # need to see blood
if (t < tlast) [# start new run-—through
k=20
call funin(.false., inpar, 0., b0)
k=% +1"°
time(k) = t # store current point
tlast = # remember last seen
call funin(.false., inpar, t—par(6), bhere) # add one more input
f(k, 1) = fimpls(par, t) # and impulse point
if (infun == :
y = con(f{1,1),blood,time,tblood,t—par(6),
fimpls(par,0.),b0,0.,0.,k,nblood)
else [
call funini.false.,inpar,t,b(k))
y = con(f(1,1),b, time,time, t—par(6),
] fimpls(par,0.),b0,0.,0..k.,k)
y = y + par(5)*bhere
if (tderiv) |
jder = 1
. do i = 1, nuppar
if (tder(i)) [
jder = jder + 1
opar = par(i)
if (i ==6
h = abs{(.01 * par(i)) + 1.0e-3
par(6) = par(6) + h
call funin(.false.inpar,t—par(6),blhere)
if (infun == 4)
y1 = con(f(1,1),blocd, time,tblood,t—par(6),
fimpls(par,0.),b0,0.,0..k,nblood) 1.
else
Wed 03 Aug 83 18:256:23 Page 1 of funup.r

53

funup.r funup.r

yl = con(f(1,1),b,time,time,t—par(6),
fimpls(par,0.),b0,0.,0..k,k)

vyl = y1 + par(5)*blhere

else |
h = abs{.005 * par(i)) + 1.0e—6
par(i) = par(i) + h
f(k, jder) = fimpls(par, t)

if (infun == 4)
yl = con(f(1,jder),blood,time,tbloocd,t—par(6),
fimpls(par,0.),b0,0.,0..k,nblood)
else :
y1l = con(f(1,jder),b, time,time, t—par(86),
fimpls(par,0.),b0,0.,0.,k,k)

y1 = yl1 + par(5)*bhere

par{i) = opar
dy(i) = (y1-y)/h

]
return
end
Wed 03 Aug 83 18:25:23 Page 2 of funup.r

54

getbld.r ' getbld.r

getdld — get time—activity—uncertainty data from .JOB format file

subroutine getbld (file,ndat,time,value,uncert,scale,true)
character file(ARB)

integer ndat

real time(ARB), value{ARB), uncert(ARB),scale

logical true

Reads activity vs. time from the (archived) blood file named °file’
Sets number of values ‘ndat’ and fills arrays time (collection time
fin sec. after injection), value {counts/min/gm), uncert.
#
Punction returns OK if successful, ERR if file was not found or
a read error was encountered. The the filename can be of the form
name, archivename'filename, archivename'subarchive filename, efc.
' :
Scale is a scale factor to apply to the data and uncertainties.
’ :
ext_func integer aopen, agtlin, ctoi
ext _func real ctor
integer fd, size(2)
character line(ARGMAX)
define (HEADERLINES,8) # blood file junk
ndat = 0 -
? call fprint(STDERR, "[GETBLD] file = %s@n", file)
if (aopen(file, fd, size) == ERR)
call cant(file)
for (i = 1; i <= HEADERLINES; i =i + 1) [# skip header
if (agtlin(line, fd, size) == EQOF)
goto 100
? call remark(line)
while (agtlin(line, fd, size) != EOF) [
i=1
i = ctoi(line, j) # sample number
t = ctor(line, j) # time
x = ctor(line, j) # weight
x = ctor(line, j) # counts/min
v = ctor(line, j) " # corrected counts/min/gm
if (ndat >= 1)
if (t < time(ndat)) # check for early junk at end
break
ndat = ndat + 1
time(ndat) =t
value(ndat) = v*scale
| uncert{ndat)= 1. # a kiudge for now
true = .false. # ... uncertainties are bad
‘call close(fd)
return
100 call sprint(line, "Error - bad format in blood file %s@n", file)
call putlin(line, STDOUT)
call error(line)
end
Fri 05 Aug 83 17:48:53 Page 1 of getbld.r

55

getemd.r | getemd.r

getcmd — read commands
subroutine getemd

ext_func integer prompt, gettok, equal, setvar, index
character line(ARGMAX), var(MAXNAME)

real ctor

real val

string prstr ": "

include parcom
? call fprint(STDERR, "[GETCMD]}@n")

while(prompt(prstr, line, STDIN) != EOF) [# get i7istruction
call fold(line) # force lower case

j = index(line, “#’) # clip comments
if (] > 1)
line(j) = EOS
? call fprint(STDERR,"command = ‘%s’@n", line)

i=1
if (gettok(var, line, j) == EOF)

next # tgnore empty lines
? call fprint(STDERR,"var = ‘%s’@n", var)
call skipbl(line, j) '
if (line(j) == =") [# it is an assignment
j= i+t # pick up value to assign

val = ctor(line, j)

if (setvar(var, val) == ERR) # set it
call fprint(STDERR,”*Error — couldn’t set %s@n", var)

]

else if (equal(var, "write") == YES)
call dowrit(line, j)

else if (equal(var, "fit") == YES)
call dofit(line, j)

else if (equal(var, "debug”) == YES) {
idebug = STDERR
while (gettok(var, line, j) != EOF)
if (equal(var, "verbose") == YES)
] idebug = —STDERR

else if (equal(var, "ncdebug") == YES)
idebug = 0

| else call fprint(STDERR,"*Error — illegal command: %s@n", var)

return
end

Thu 30 Jun 83 16:43:39 Page 1 of getemd.r
56

getdat.r | getdat.r

getdat — read data as directed by command line arguments

subroutine getdat

ext_func integer getarg, getepi, getbld, ctoi
ext_func real ctor ,
real scale

character arg(ARGMAX), file(MAXNAME)

include parcom
include datcom

scale = 1.
call strepy("No file specified”, file)

for (i = 1; getarg(i, arg, ARGMAX) !'= EOF; i = i + 1) [
call fold(arg)

if (arg(1) == ")
select (arg(2)) [

case ‘s’:
ji=3
scale = ctor{arg, j)
if (scale <= 0.)

call error("Bad scale factor”)

case ‘i’:
i=3
breg = ctoi(arg, j)
bscale = scale
call strepy(file, bfile)
call getfun(bfile,breg,bscale,nblood,tblood,blood,
) " ublood,blabel,btrue) '
scale = 1.

call rtoe(bscale,arg,1,4)

call fprint(STDOUT,

"4 Input: %s — %s (region %d) Scale = %s %d points@n”,
bfile, blabel, breg, arg, nblood)

case ‘u”:
ji=3
treg = ctoi(arg, j)
tscale = scale
call strepy(file, tfile)
call getfun(tfile,treg,tscale,ntissu,ttissu,tissu,
utissu,tlabel,ttrue)
scale = 1.

call rtoe(tscale,arg,1,4)

call fprint(STDOUT,

"# Tissue: %s — %s (region %d) Scale
tfile, tlabel, treg, arg, ntissu)

%s %d points@n’,

default:
call error("Unknown flag")
]
else
call strepy(arg, file)
1
return
end
Pri 05 Aug 83 17:47:18 Page 1 of getdat.r

57

getfun.r ' getfun.r

getfun — read inpul or uplake funciion from blood file or epi file

subroutine getfun (file,region,scale,ndat,time,value,uncert,label,true)
character file(ARB), labelfARB)

integer region, ndat

real scale, tlrne(ARB) value(ARB), uncert{(ARB)

logical true # uncertainties true?
ext_func integer index
real t1(MAXDATA) # holds end times
if no ., append subfile
if (index(file, *.”) <= 0) # to archive name

if (region > Q)

call concat(file, "‘roi", file)
else

call concat(file, "*blood”, file)

? call fprint(STDERR,"[GETFUN] file = %s@u", file)
if (region <= 0) [# read from blood file

call getbld(file,ndat,time,value,uncert,scale,true)
call strepy("Blood draws”, label) :

] .
else # read from roi file
call getroi(file,region,ndat,time,value,uncert,label,scale,true)
return
end
Fri 05 Aug 83 17:48:14 Page 1 of getfun.r

58

getnam.r

getnam — get parameter name by type. Mhverse of whopar.

subroutine getnam (var, kind, index)
character var(ARB)
integer kind, index

byte name(2)

integer iname

integer in, up, ns

integer mqnam(NQPAR)
equivalence (iname, name)

include namcom
include parcom
common /mqgnam/ mqgnam, in, up, IS

% iname = ’?%

if (index >= 1)
select (kind) [
case INPUTPAR:
if (index <= ninpar)
iname = innam(index)
case UPTAKEPAR:
if (index <= nuppar)
iname = upnam(index)
case MARQPAR:
if (index <= NQPAR)
iname = mqnam(index)
case [NPUTFUNCTION:

iname = in
case UPTAKEFUNCTION:
iname = up
case NSTEPS:
iname = ns
]
var{(l) = name(1)
var(2) = name(2)
var(3) = EOS
return

end

Thu 30 fun 83 16:43:45

getnam.r

FPage 1 of getnam.r
59

getroi.r ' _ getroi.r

getroi — read time—activity—uncertainty date. from .ROI format file

subroutine getroi (file,region,ndat,time,value,uncert,label,scale,true)
character file(ARB), label(ARB)

integer region, ndat

real time(ARB), value(ARB), uncert(ARB), scale

logical true

Set ndat, time, value, and uncert, label, true. If the file or the specified
region does not exist we print an error message and ezxit.

character line(134) : -
filedes fdes

real t0, t1

ext.func integer datlin, acpen, pget

integer size(2)
call tinit # initialize data tabie

if (aopen(file, fdes, size) == ERR) # attempt to open roi file
call cant(file)

if (datlin(line, fdes, size) == EOF) # read up to first data line
call error("Noc data in ROI file") # there’s nothing there?

if (pget("NTIMES", ‘d’, ndat) != YES) 4 get counts

call error{"NTIMES not defined")

if (pget("NREGIONS", “d”, novl) != YES)
call error("NREGIONS not defined")

if (region < 1 | region > novl)
. call error("Region out of range") - I :
' ' " # get times, average start&stop

for (i = 1; i <='ndat; i =i+ 1) [# note that we have first line
i=1
t0 = ctor(line, j) # start & stop times
t1 = ctor(line, j)
time(i) = (t0+t1)/2. # take middle as measurement time
if (i < ndat) # get next line
] call datlin(line, fdes, size)
for (i = 1; i < region; i =i + 1) # skip other regions
for (j = 1; j <= ndat; j =j + 1)
if (datlin(line, fdes, size) == EOF)
1 call error("Out of data in ROI file")
for (i = 1; i <= ndat; i =i+ 1) [# get requested region
if (datlin(line, fdes, size) == EOF)
goto 1
i=1
value(i) = ctor(line, j); uncert(i) = ctor(line,j)
if (scale 1= 1) [# apply scaling factor
value(i) = value(i)*scale
uncert(i) = uncert(i)*scale
]

if (pget("LABEL", ’s’, label) == NO)
call strepy("(No LABEL)", label)

true = .false. # true only if TRUE_UNCERT ==
if (pget("TRUE_UNCERT", ‘d’, i) == YES)
true = i ==
call close(fdes)
return -
end

Mon 08 Aug 83 11:42:19 Page 1 of gelroi.r
60

gettok.r | gettok.r

gettok — extract alphanumeric or punc. token from string

integer function gettok (tok, str, j)
character tok(ARB), str(ARB)

integer j
¥ _
ezxtracts a token from str starting at j. Skips blanks and
takes a string consisting of all alphanumeric or one punctuation
character.
. Returns EOF when there no such tokens to find, OK otherwise.
_
ext_func integer type # function returns LETTER
: # or DIGIT or char.
while (str(j) == * * | str(j) == ‘@t" | str(j) == ‘@n")
i=i+1
if (str(j) == EOS) [- # detect no token
? call fprint(STDERR,"[GETTOK] ECF@n")
return(EQF)
iout = 2 »
tok(l) = str(j) : # take first one anyhow
i=j+1
if (type(tok(1)) !'= tok(1)) # first is LETTER\DIGIT
while (type(str(j)) '= str(G) [# while rest are,
tok(iout) = str(j) # copy them in
jout = iout + 1
i=j+1
]
tok(lout) = EOS
? ’ call fprint(STDERR, ”[GETTOK] ‘%s’@n", tok)
return{0K)
end

Thu 30 fun 83 16:43:50 Page 1 of gettok.r

init.r

init.r

init — initialize data variables, parameters, etc.

subroutine init

end

integer now(9)
character dat(10), tim(9)
include datcom
include parcom

data inpar /1.0, 1.0, 1.0, .01, 0,0
data uppar / .1, 0.1, 1.0, .001, .1, 0., 0, 0./

nsteps = 1000
call finit # initialize function stuff

call strepy("No file specified”, bfile) ' # defaults
call strepy(bfile, tfile)

blabel(1) = EOS

tlabel(1) = EOS

nblocd = 0
ntissu = 0
breg =0
treg =0
tscale = 1.
bscale = 1.

call errset(72,.true.,.false.) #ignore Jfloating overflow

call errset(73,.true.,.false.) # zero divide
call errset(74,.true.,.false.) # underflow
call errset(75,.true.,.false.) # float to integer ofl.
call errset{84,.true.,.false.) # : sqrt(<0) '

call getnow(now)
call fmtdat(dat, tim, now, LETTER)

call fprint(STDOUT,"# Zs %s %s@n", VERSION, dat, tim)

return

Thu 30 Jun 83 16:43:52 Page 1 of init.r

62

margq.f | ' marq.f

C MARQ - Marquart Least—Squares fit

SUBROUTINE MARQ (FUN,NPAR,PAR,DPAR,COV,NPARM,MAP,
1 NDAT,T,DAT,ERR,
2 NSTEP,CHIO,ISTEP,CHI IERR,JERR,IDEBUG)

EXTERNAL FUN
INTEGER NPAR, NPARM, MAP(1), NDAT, NSTEP, ISTEP, IERR, JERR(1)
REAL PAR(1), DPAR(1), COV(1), T(1), DAT(1), ERR(1), CHIO, CHI

Subroutine MARQ finds the set of parameters of function

FUN which minimizes chi—squared for the set of measurements
provided. In the arugument descriptions below, [I] means

that the argument is an input (used by the subprogram), [0] means
that the argument is an cutput (set by the subprogram), [I0] means
that it is both used and set.

FUN [I] — Function and derivative routine supplied by user
SUBROUTINE FUN (TDERIV,PAR,TIME,Y,TDER,DY)
LOGICAL TDERIV,TDER(1)

REAL PAR(1),TIME,Y,DY(1)
TDERIV [I]— If .true., compute derivatives. If
false., do not return any derivatives in DY
PAR() [I]- Parameters of function
TIME []— Value of independent variable
Y 0]- Value of the function at TIME
TDER{) [I]- Logical array: if TDER(i) then compute
DY(i) = dFUN/dPAR(i)
DY() [0]- Array of derivatives

NPAR [I] -~ Length of parameter array PAR
PAR() [I0]~ Parameter array
"DPAR() [O] - uncertainties of fit parameters (C if not fit)
Cov() [0] — Covariance matrix:
COV((I-1)*NPARM + J) = cov{par(i),par(j))
if par(i) and par(j) were fit, 0 otherwise

NPARM [I] — Number of parameters in PAR to fit
MAP() [I] — List (indices) of which parameters in PAR to fit
NDAT [I] - Length of data array

T(O 1] Values of the independent variable

- CAT() [I] — Data array
ERR(). [I] - Error array (uncertainties in DAT)

NSTEP [I] — Maximum number of steps to take

OOOOOOOOOOOOOOOOOOOOOOOOOGOGOOOOO()OOO()OOOOOOOOOOO(‘,OOOOO

CHIO [C] — Initial chi-squared
ISTEP [0] — Number of steps taken
CHI _O] — Final chi—squared
IERR [0] = Error flag:
-1, Error in parameter setup
1, Too many iterations
90, No errors detected
2, Failed to invert matrix while stepping
3, Failed to invert matrix after convergence
4, Fit interrupted by QUIT befcre convergence
JERR [0] — Parameter error flags:
-1, Parameter not fit
0, Normal parameter fit
1, Parameter insensitive
2, Parameter correlated
Thu 30 un 83 16:43:58 Page 1 of marqg.f

63

marq.f

QOO0 O0NN00NO0a0C00N0000

a0non

margq.f

IDEBUG [I] - file descriptor for reporting debug information:

<0 large amount of info on unit iabs(idebug)
0 no debugging information
>0 iterations reported on unit idebug

MARQ will exit prematurely with exit status 4 if the
logical flag QUIT in common /QUIT/ is set true.

Variables internal to this routine:

A — Second derivative matrix in various forms:
originally calculated in upper triangle,
normalized intc lower triangle,
brought to upper triangle and inverted in place.

This is the matrix ‘B’ in the Marquardt algorithm.

D — Step
G - — Gradient. This is the vector ‘E’ in the Marquardt algorithm.
GS — Normalized gradient
JFLAG - Flags from SPDINV
JFLAG = 0, Normal
JFLAG = 1, [nsensative parmeter
JFLAG = 2, Correlated parameter
PARM — Mapped parameters
RTID - Normalization factors (square-root of inverse
of diagonals of A)
TAR — Temporary parameters
TDER — Logical array indicating which derivatives
to return
DEBUG,VERBOS - logical debug printing flags
TEST — used in debug printout; true if just had a bad step

PARAMETER maxp = 10 ! max # of paramters (See also MQDER))
PARAMETER mpsq = 100 ! and squared

DIMENSION JFLAG(maxp),COM(3)

DIMENSION PARM{maxp),G(maxp),GS(maxp),RTID{maxp), TAR(maxp)
DIMENSION D{maxp),A(mpsq)

LOGICAL TDER(maxp), debug, verbos, quit, test
COMMON/MARQ/TCON,ECON,ZLAM,VLAM,COZ,VCONST,EPS
COMMON/LST /LS(maxp)

common /quit/quit

common /mdebug/ debug, verbos, ldebug

DATA EPS/1.E-6/

Convergence parameters

DATA TCON,ECON/1.E—5,1.E-4/

Diagonal increment, factor to change it by,
limiting cosine of angle from the gradient,

factor to cut step size.

DATA ZLAM,VLAM,COZ,VCONST/0.1,10.,0.8,0.5/

C ———

SETUP

C ——

Check some input parameters.

I[ERR = -1
DEBUG

VERBOS
LDEBUG

IDEBUG .NE. O ! flags for switching debug info
IDEBUG .LT. O
[ABS(IDEBUG)

Thu 30 Jun 83 16:43:58 Page 2 of marq.f

64

-

marq.f marq.f

[F (NPAR.LT.1 .OR. NPAR.GT.MAXP .OR. ! out of range
1 NPARM.LT.1 .OR. NPARM.GT.NPAR) RETURN

DO 12 I = 1,NPARM
I = MAP(D)
IF (J.LT.1 .OR. J.GT.NPAR) RETURN ! out of range
IF (I .GT. 1) THEN
I=10-1
DO 10 JJ = 1,I

IF (J .EQ. MAP(J])) RETURN t duplicate
10 CONTINUE
ENDIF
12 CONTINUE
[ERR = 0

C Setup virtual row origins '
C (For a squere matrix, because we will use both upper
C and lower triangles)
LS(1) = 0
DO 14 I = 2,NPARM
14 LS(I) = LS(I-1) + NPARM
C Setup derivative flags for variable parameters.
DO 16 I = 1,NPAR '
16 TDER(I) = .FALSE.
DO 18 [= 1,NPARM
J = MAP(I)
18 TDER(J) = .TRUE.
C : _ :
c - ‘Map parameters and calculate initial chi—squared.
C : . i . N
CALL MQMAP (1,NPAR,PAR,NPARM,MAP,PARM)
CALL MQCHI (FUN,NPAR,PAR.NPARM,MAP PARM,
1 NDAT,T,DAT,ERR,CHI)
CHIO = CHI
C.... DEBUG PRINTOUT
IF (DEBUG) THEN v
CALL RTOE(CHIL,A,11,3) ! use A as string scratch
CALL FPRINT(LDEBUG, Entering MARQ. Chi = %s@n’, A)
ENDIF
C Setup initial values for stepping.
XLAM = ZLAM !starting value of diagonal increment
ISTEP = 0 linitialize step number
C —_— —_ — —
C TOP OF STEPPING LOOP
C
c
C Stay within step limit.
30 [F (ISTEP .GE. NSTEP) THEN
IERR = 1
RETURN
ENDIF
IF (QUIT) THEN
[ERR = 4
GOTO 81
ENDIF
Thu 30 Jun 83 16:43:58 Page 3 of marg.f

65

marq.f

margq.f
ISTEP = [STEP + 1
CONST = 1. tkeep track of step cut factor
C Get gradient (G) and second derivative matrix (A);
C second derivatives go to upper triangle.
CALL MQDER (FUN,NPAR,PARNPARM,MAP,PARM,
1 NDAT,T,DAT,ERR,TDER,G,A)
C Calculate normalization factors.
DO 32 [= 1,NPARM
LI = LS(I)
RTID (I) = 0. '
32 IF (A(I+LD) .GT. 0.) RTID(I) = 1./SQRT(A(I+LI))
C Normalize gradient (G) and second derivative matrlx 4a); | .
C normalized gradient goes to GS, and
Cc normalized second derivatives go to lower trlangle.
DO 34 J = 1,NPARM
LJ = LS(J)
GS(J) = G(J)*RTID(®J)
DO 34 1 = J,NPARM
LI = L3(I)
34 A(J+LI) = A(I+LJ)*RTID(I)*RTID({J)
C Cut XLAM if not too small already.
IF (XLAM .GT. EPS) XLAM = XLAM/VLAM
C —_ —
c ADJUST DIAGONALS-AND INVERT
¢ .
C
C Put XLAM + 1. on the diagonal (same as adding XLAM; we’ve
C normalized the diagonal to one, and bring the normalized matrix
C to the upper triangle.
40 DO 42 J = 1,NPARM
LI = LS(.I)
IF (RTID(J) .GT. 0.) THEN
A(J+LJ) = XLAM + 1.
ELSE
A(J+LJ) = XLAM
ENDIF
C
DO 42 1 = J,NPARM
LI = LS(I)
42 A(I+LJ) = A(J+LI)
C Invert the matrix.
CALL SPDINV (ANPARM,IFLAG,JFLAG)
[F (IFLAG .NE. 0) THEN
IERR = 2
RETURN
ENDIF
C Matrix multiply and unnormalize to get new parameters.
DO 50 I = 1,NPARM
= L5(I)
Thu 30 Jun 83 16:43:58 Page 4 of marq.f

66

Y

&%

marq.f marq.f
D(I) = 0.
IF (JFLAG(I) .EQ. 0) THEN
DO 52 J =11
LI = LS(J) °
52 DI} = D) + A(I+LI)*GS(J)
IF (I .NE. NPARM) THEN
JJ=1I+1
DO 64 J = JJ,NPARM
54 D(I) = D(I) + AJ+LI*GS(J)
ENDIF
ENDIF
D(I) = D{I)*RTID(I)
TAR(I) = PARM(I) + D(I)
50 CONTINUE
C ——— it
C TEST STEP
C
c
C Test for a good step.
CALL MQCHI (FUN,NPAR,PAR,NPARM,MAP,TAR,
1 NDAT,T,DAT,ERR,TCHI)
[F (TCHI .LE. CHI) GO TO 70
TEST = .TRUE.
[F (VERBOS) GOTO 73 ! go do debug printout first
C Not a good step; see if we’re near the gradient.
51 . COSINE = DOT(G,D,NPARM)/
1 _ SQRT(DOT(G,G,NPARM)*DOT(D,D,NPARM))
[F(COSINE .GT. COZ) GOTO 60
C Increase XLAM and try again.
XLAM = XLAM*VLAM
IF (QUIT) THEN
[ERR = 4
GOTO 81
ENDIF
GO TO 40
C Bad step but right direction;
C reduce step size until chi—squared is ck
80 CONST = CONST*VCONST
DO 62 I = 1,NPARM
D(I) = D({I)*VCONST
62 TAR(I) = PARM(I) + D(I)
CALL MQCHI (FUN,NPAR,PAR,NPARM,MAP,TAR,
1 NDAT,T,DAT,ERR,TCHI)
IF (TCHI .LE. CHI) GO TO 70
IF (QUIT) THEN
[ERR = 4
GOTO 81
ENDIF
GOTO 60
C Good step; update chi—squared and parameters.
70 TEST = .FALSE.
CHI = TCHI
DO 72 [= 1,NPARM
72 PARM(I) = TAR(I)

Thu 30 Jun 83 16:43:58

Page 5 of marq.f

67

marq.f ' ' | marg.f

DEBUG PRINTOUT

a0on

IF (DEBUG) THEN ! sorry, this is sococc grody
73 CALL RTOE(CHI,COV,11,3) ! use COV as string scratch
CALL FPRINT(LDEBUG,’@nlteration %d Chisqr = %s’, ISTEP, COV)
CALL RTOE(XLAM,COV,11,3)
CALL FPRINT(LDEBUG,” Lam = %s’, COV)
CALL RTOE(CONST,COV,11,3)
CALL FPRINT(LDEBUG,” Const = %s@n’,COV)
DO 94 I = 1, NPARM
CALL RTOE(PARM(I),COV,11,3)
CALL FPRINT{LDEBUG,” Par %2d %s’, I, COV)
CALL RTOE(D(I), COvV, 11, 3)
CALL FPRINT(LDEBUG,” ; %s %d@n’, COV, JFLAG(D)
94 CONTINUE)
[F (TEST) GOTO 51 ! we were just testing this set of params
ENDIF : ! ... but you’ve seen worse so don’t complain

C Test for convergence; if not, go take another step.
DO 74 [= 1,NPARM

[F (ABS(D(1))/{TCON+ABS{PARM(I))) .GT. ECON) GO TO 30
74 CONTINUE

CONVERGENCE

Put 1. on the diagonal, and
bring the normalized matrix tc the upper triangle.

IF (DEBUG) CALL FPRINT(LDEBUG,’@nConvergence!!'@n’)
81 CONTINUE
DO 80 J = 1,NPARM
LJ = LS{J)
[F (RTID(J) .GT. 0.) THEN
A{+L]) = 1.

A(J+LI) = ©.

DO 80 I = JNPARM
LI = LS(D)
80 A(I+LI) = A(J+LD)

C -Invert the matrix.

CALL SPDINV (A,NPARM,IFLAG,JFLAG)
IF (IFLAG .NE. 0) THEN

IERR = 3

RETURN
ENDIF

C Unnormalize the inverted matrix (gives covariance matrix).

DO 84 J = 1,NPARM
LI = 1500
DO 84 I = J,NPARM
84 A(I+LJ) = A(I+LJ)*RTID(I)*RTID(J)

C Extract uncertainties, and symetrize
C covariance matrix to lower triangle,

DO 86 J = 1,NPARM

Thu 30 fun 83 16:43:58 Page 6 of marg.f
68

marq.f ' | marq.f

LI = LS(J)
D(J) = SQRT(A(J+LJ))

DO 86 I = JNPARM

' LI = LS(D)
86 A(J+LD) = A(I+LI])
C Unmap parameters, errors, and covariance matrix.

CALL MQMAP (—1,NPAR,PAR,NPARM,MAP,PARM)
CALL MQMAP (—101,NPAR,DPAR,NPARM,MAP,D)
CALL MQMAP (-102,NPAR,COV,NPARM,MAP,A)

C Set JERR equal to JFLAG when fit; set to =1 when not.
DO 88 I = 1{,NPAR
~ 88 JERR(I) = -1
DO 89 I = 1,NPARM
J = MAP(I)
89 JERR(J) = JFLAG(I)
RETURN
END
Thu 30 Jun 83 16:43:58 Page 7 of marq.f

69

mqchi.f

mqchi.f

C MQCHI — Compute Chi-squared by calling user’s FUN.

10
11

SUBROUTINE MQCHI (FUN,NPAR,PAR,NPARM,MAP PARM,
NDAT,T,DAT,ERR,CHI)

EXTERNAL FUN
INTEGER NPAR, NPARM, MAP(1), NDAT
REAL PAR(1), PARM(1), T(1), DAT(1), ERR(1), CHI

BYTE VAL(40)

LOGICAL TDERIV

DATA TDERIV /.FALSE./

DATA BIG /1.0E+20/ ! upper limit on chi square
LOGICAL DEBUG, VERBOS, TEST

COMMON /MDEBUG/ DEBUG, VERBOS, LDEBUG

Unmap parameters before calling FUN.

CALL MQMAP(—1,NPAR,PAR,NPARM,MAP,PARM)

IF (VERBOS) THEN
CALL FPRINT(LDEBUG,’[CHI] Params:@n’)
DO 1 K = 1, NPARM
CALL RTOE(PARM(K),VAL,11,3)
CALL FPRINT(LDEBUG,’zd) %s °, K, VAL)
CONTINUE _
CALL FPRINT(LDEBUG, @n")
ENDIF

Calculate the chi—squared.

CHI= O. :
DO 10 K = 1,NDAT
CALL FUN (TDERIV,PAR,T(K).Y)
CHI = CHI + ((DAT(K)-Y)/ERR(K))**2
IF (CHI .GE. BIG) GOTO 11
CONTINUE
CONTINUE

IF (VERBOS) THEN
CALL RTOE(CHI, VAL, 11, 3)
CALL FPRINT(LDEBUG, °>>> Chi = %s@n’, VAL)
ENDIF
RETURN
END

Thu 30 Jun 83 16:43:59 Page 1 of mqgchi.f

70

mqder.f | mgqder.f

C MQDER — Compute Derivative Matrix from user’s FUN.

SUBROUTINE MQDER (FUN,NPAR,PAR,NPARM,MAP,PARM,
1 NDAT,T,DAT,ERR,TDER,G,A)

EXTERNAL FUN
LOGICAL TDER(1)

INTEGER NPAR, NPARM, MAP(1), NDAT

REAL PAR(1), PARM(1), T(1), DAT(1), ERR(1), G(1), A(1)

PARAMETER maxp = 10 ! max # of parameters

REAL DY(maxp),DYM(maxp)
COMMON/LST/L3(1)

LOGICAL TDERILV, DEBUG, VERBOS

COMMON /MDEBUG/ DEBUG, VERBOS, LDEBUG
DATA TDERIV /.TRUE./

DO 11 J = 1,NPARM ! clear gradient & deriv products
Gl = 0.
LJ = LS(J)
DO 10 =
_ A(I+L.I)
10 CONTINUE
11 ‘CONTINUE

CALL MQMAP(—1,NPAR,PAR,NPARM,MAP,PARM)! Unmap the paramters before calling FN

J PARM

C Calculate the gradient (G) and the second derivative matrix (A).

DO 23 K = 1,NDAT
CALL FUN (TDERIV,PAR,T(K),Y,TDER,DY)
ERSQl = 1./ERR(K)**2 ~ :
CALL MQMAP(1,NPAR,DY,NPARM,MAP,DYM) ! map derivatives

DO 20 I = 1,NPARM
G(I) = G(I) + DYM(D*(DAT(K) — Y)*ERSQI
20 CONTINUE

DO 22 J = 1,NPARM
LI = LS(J)
DO 21 I = JNPARM
A(I+LJ) = A(I+LJ) + DYM(I)*DYM(J)*ERSQI
21 CONTINUE
22 CONTINUE

IF (VERBOS) THEN
CALL RTOF(T, VAL, 6, 1)
CALL FPRINT(LDEBUG, Der> @t=%s’ VAL)
CALL RTOE(Y, VAL, 11, 3)
CALL FPRINT(LDEBUG,” y=%s@n’, VAL)
DO 1 J = 1, NPARM
CALL RTOE(DYM(J),VAL, 13, 3)
CALL FPRINT(LDEBUG,’d%d=%s *J, VAL)

1 CONTINUE
CALL FPRINT(LDEBUG,’@n°)
ENDIF
23 CONTINUE
RETURN
END
Thw 30 fun 83 16:44:01 ' Page 1 of mqder.f

71

mqgmap.f) mgmap.f

C MQMAP - Map/Unmap parameter array or matrix
SUBROUTINE MQMAP (N,NPAR,X,NPARM,MAP,XM)

Map (or unmap if N<O) NPARM (cf the NPAR) values of X
into XM according to MAP.

MAP contains the indices to the unmapped array.

N indicates the dimension of the array (2 or less),

and legal values are 1, 2, —1, -2, —-101, —-102.

Negative values of N indicate unmapping, and for

those less than —100, X is zerced before the transfer.

OOOO000

INTEGER N, NPAR, NPARM, MAP(1)
REAL X(1), XM(1)

LOGICAL ZERO

NABS = IABS(N)

ZERO = NABS .GT. 100

IF (ZERO) NABS = NABS — 100

IF (N .GT. 0) GO TO (10, 20) NABS
IF (N .LT. 0) GO TO (110,120) NABS
RETURN

10 DO 12 IM = 1,NPARM
[= MAP(IM)
12 XM(IM) = X(I)
RETURN

20 LM =
DO 22 JM = 1,NPARM
. J = NPAR*(MAP(JM)-1)
DO 22 [M = 1,NPARM
UM = UM + 1
I =J + MAP(IM)
XM(UM) = X(IJ)
22 CONTINUE
RETURN

110 IF (ZERO) THEN
DO 112 I = 1,NPAR
112 X1y = 0.
ENDIF

114 DO 116 IM = 1,NPARM
I = MAP(IM)
116 X(I) = XM(IM)
RETURN

120 IF (ZERO) THEN
NPSQ = NPAR**2
DO 122 [= 1,NPSQ
122 X(I) = o.
ENDIF

124 M =
DO 126 JM = 1,NPARM
] = NPAR*(MAP(JM)-1)
DO 126 IM = 1,NPARM
UM = UM + 1
IJ =] + MAP(IM)
X(1J) = XM(LJM)
126 CONTINUE
RETURN

END

Thu 30 fun 83 16:44:03 ' Page 1 of mqmap .f
" 72

penter.r penter.r

penter — enter definition into symbol table

subroutine penter (name, par)
character name{ARB), par(ARB)

#
#

end

enters defintion ‘par’ of parameter ‘name’.

pointer point

integer info(T_SIZE)

ext_func pointer sdupl
ext_func integer lookup, enter
ext_subr strcpy, dsfree, error
include tablecom

if (lookup(name, info, table) == YES) [# there’s an old definition
call dsfree(info(T_POINTER)) # so free its siring space

point = sdupl(par) # enter defn into data storage |
if (point == LAMBDA) .
call error("Couldn’t allocate string space for parameter”)

info(T_POINTER) = point # this is the stuff to store
if (enter(name, info, table) == ERR)
call error("Couldn’t add definition to table')

call fprint(STDERR, "[PENTER] “%s” ‘%s’@n', name, par)
return

Thu 30 fun 83 16:44:10 Page 1 of penter.r

73

pflag.r :) pilag.r
pflag — print strings for flags MARQ returns

subroutine pflag (fdes, flag)
integer fdes, flag

#
prints a chararacter string on fdes
#
select(flag) |
case —1:
call putlin(" (not fit)", fdes)
case 0: i :
; # nothing — fit ok
case 1:
call putlin(" insensitive”, fdes)
case 2: :
call putlin(" correlated”, fdes)
default: # uninown flag
] call putlin(" ?2?? flag ???", fdes)
return
end
Thu 30 Jun 83 16:44:11 Page 1 of pflag.r

74

peget.r | peget.r

pget — get ROI symbol definition in desired format

integer function pget(name, fmt, par)
character name(ARB), fmt
integer par(2)

felches parameter ‘name’ into ‘par’ interpreted in format ‘fmi’:

’s’ = string, ‘d’ = dectmal integer, ‘0’ = octal integer, 'f =

floating point (single precision).

If the parameter was defmed returns YES. If not, doesn’t allter par
and returns NO.

character cmem(1)

ext_func integer lookup, ctoi

ext_func real ctor

ext_subr strcpy

integer info(T_SIZE)

real rpar

integer ipar(2)

equivalence (rpar, ipar(1)) # union {real, integer(2)}
include tablecom

common /cdsmem/ cmem

? call fprint(STDERR,"[PGET] ‘%s’ ‘%c’", name, fmt)
if (lookup(name, info, table) != YES) [# well, that’s that.
? call fprint(STDERR, " *@n")
return(NO)
j = evt_to_cptr(info(T_POINTER)) # convert integer array index to
: i # character array indez
? call fprint(STDERR, " = ‘%s’@n”, cmem(j))

select (fmt) [
case ‘s’: # s: copy siring
call strcpy(cmem(j), par) :

case ‘d”: # d: decode as integer
par(1) = ctoi(cmem, j)

case ‘r’: # r: decode as real
rpar = ctor(cmem, j)
par(1) = ipar{1) # we assume a real is same
par(2) = ipar(2) # size as two integers

case ‘0”: # o.: decode as octal
par(1) =

while (cmem(j) >= “0° & cmem(j) <= ‘7*) [
par(l) par(1)*8 + cmem(j)—"0’

j=j+1
]
default:
call error{"PGET with undefined format")
]
return(YES)
end
Thu 30 Jun 83 16:44:13 ' Page 1 of pget.r

75

rt3.r

rt3.r

73 — find roois of cubic polynomial with three real roots.

subroutine rt3 (p, q, r, alpha, beta, gamma, ierr)
real p, q, r, alpha, beta, gamma
integer ierr

e W W WA W eI eI

end

Finds the 3 real roots of the cubic equaiion:
y**3 + Py**2 + @y + R=0.
The roots are returned in alpha, beta, and geamma.

If three real unequal roots ezist, ierr=0 is returned;

if three real roots exist, at least two of which are
equal, terr=1 is returned; otherwise terr=—1 is returned,
and alpha, beta, and gamma are meaningless.

real = —(2.*p**3 — 9.*p*q + 27.*r) / 54. '
sqimag = —{4.*p**3°*r — (p*q)**2 — 18.*p*q°r + 4. ‘q“3 + 27.°r**2)/108.

if (sqimag < 0.) [
ierr = -1

_ return

]

if (sqgimag == 0.)
ierr = 1

else
ierr = 0

theta3 = atanz(sqrt(sqlmag) real) /. 3.
abs3 © = (real**2 + sqimag)**(1./6.)

abs3 * cos(theta3)
abs3 * sin(theta3)
sqrt(3.)

real3
aimag3 =
sqrt3 =
alpha = 2.*real3 - p/3.

beta = - reald - sqrt3*aimag3 - p/3.
gamma = ~— real3 + sqrt3*aimag3 - p/3.

returm

Thu 30 Jun 83 16:44:15 _ Fage 1 of rt3r

76

setmap.r | | setmap.r

setmap — determine which parameters o fit

subroutine setmap (line, map, nparm, which)

character line(ARB)

integer map(ARB), nparm, which

#

line() is a list of parameters to fit. R is picked apart
into a list {(map) of parameters to fit.

ext_func integer type, gettok, equal
character var{(MAXNAME)

integer set, i, ind

logical dupe

nparm = 0
idebug = 0
i=1

while (gettok(var, line, j) != EOF) {
if (equal{var, ",") == YES)
next

call whopar(vaf, set, ind)
? call fprint(STDERR,"* parameter set ind %s %d %d@n", var, set, ind)

. if (set == UNKNOWN) [
call fprint(STDERR,"Unkncwn parameter name %s@n”, var)
nparm = 0
return

if (set t= INPUTPAR & set != UPTAKEPAR) [
call fprint(STDERR,”Can only fit input or uptake parameters@n")
return

]

if (nparm == 0)
which =
else [
if (set !'= which) [
call fprint(STDERR,"Can’t mix in/up params in one flt@n“)
nparm = 0
return

]

dupe = .false.
do i = 1, nparm
if (map(x) == jnd) [
call fprint(STDERR, "%s duplicated in parameter list@n')
dupe = .true.

]

if (! dupe) |
nparm = nparm + 1
map{(nparm) = ind

call skipbl{line, j)
]

return
end

Thu 30 Jun 83 16:44:16 Page 1 of setmap.r
44

setvar.r setvar.r

setvar — set parameter by name

integer function setvar (var, val)
character var(ARB)
real val

real gpar(1)
ext_func integer index
integer kind, status

include parcom
common /marq/ gpar

status = OK

call whopar(var, kind, index)
? call fprint(STDERR, "[SE’I’VAR] %s = %d %d@n", var, kind, index)

select (kind) [
case INPUTPAR:
inpar(index) = val
case UPTAKEPAR:
uppar(index) = val
case MARQPAR:
gpar(index) = val
case INPUTFUNCTION:
i = int(val)-
if (i <1}|i> minfun)
call fprint(STDERR,"*Bad input function number %d@n" i)
else [
infun = i
call finit

I
case UPTAKTFUNCTION
i = int(val)
if i <1}i> mupfun)
call fprint(STDRR,"*Bad uptake function number %d@n".i)
else [
upfun = i
call finit

]
case NSTEPS:

nsteps = int(val)
default:

status = ERR

]

return(status)
end

Thu 30 lun 83 16:44:18 Page 1 of setvar.r
78

shocov.r shocov.r

shocov — print covariance maitriz

subroutine shocov(cov, npar, which)
real cov(ARB)
integer npar, which

#
prints covariance matriz and correlaiions for the parameters.
we print covariances in the upper triangle and correlations
n the lower triangle.
#
version 2: only prints correlations (lower triangle).
character var(MAXNAME) .
define(COV,cov({$1—1)*npar+$2))
call fprint(STDOUT, "@nCorrelation Matrix:@n)
do i = 1, npar [
call getnam(var, which, i)
call fprint(STDOUT, " %S ",var)
call putch(*@n’, STDOUT)
do i = 2, npar |
call getnam(var, which, i)
call fprint(STDOUT, "%s ', var)
for =1,j<iij=3j+ 1]
cor = COV(l i)*COV(.j)
if (cor. > ©.)
cor = COV(i,j)_/sqrt(co'r)
else ' : .
cor = Q. :
call rtof(cor, var, 7, 3)
call fprmt.(STDOUT " %s ", var)
? for (; j <= npar; j =j + 1) [# only print cov’s when
? call rtoe(COV(i,j}, var, 11, 3) # debdbugging
?] call putlin(var, STDOUT)
2
: : call putch(*@n’, STDOUT)
return
end
Thu 30 Jun 83 16:44:19 v Page 1 of shocov.r

79

shopar.r shopar.r

sh.opdr -~ print parameters on file

subroutine shopar (fdes, dounc, uncert, doflag, flags)
integer fdes, dounc, doflag, flags(ARB)
real uncert{ARB)

#
shopar prints the input and uptake function nubmers and
parameters on ‘fdes’. If dounc is INPUTPAR or UPTAKEPAR
we print uncertainties nezt to the appropriate parameters
Likewise, we print the flag labels next io
the parameters if doflag = INPUTPAR or UPTAKEPAR:
Jor param(i), we print]
z (not fit) if flags(i) = — 0
correlated 1
insensitive 2
.-
character name(3), val{(MAXNAME)
include parcom _
call fprint(fdes, "Input_function %d@n", infun)
do i = 1, ninpar [
. call getnam(name, INPUTPAR, i)
call rtoe(inpar(i), val, 11, 4)
call fprint(fdes,'%s = %s", name, val)
if (dounc == INPUTPAR) [
call rtoe(uncert(i), val, 11, 4)
call fprint(fdes, " +-— %s", val)
if (doflag == INPUTPAR) -
call pflag(fdes, flags(i))
call puteh(’@n’, fdes)
]
call fprint(fdes, "@n@Uptake_function %d@n", upfun)
do i = 1, nuppar |
call getnam(name, UPTAKEPAR, i)
call rtoe(uppar(i), val, 11, 4)
call fprint(fdes,"%s = %s”, name, val)
if (dounc == UPTAKEPAR) [
call rtoe(uncert(i), val, 11, 4)
call fprint(fdes, " +-— 7%s", val)
if (doflag == UPTAKEPAR)
call pflag(fdes, flags(i))
] call putch(’@n’, fdes)
return
end
Thu 30 Jun 83 16:44:21 Page 1 of shopar.r

80

spdinv.f

C SPDINV - Invert Symmetric PosDev Matrix.

SUBROUTINE SPDINV(S,N,IFLAG,JFLAG)

INVERTS SYMMETRIC POSITIVE-DEFINITE MATRIX "S" IN PLACE
USING ONLY THE UPPER TRIANGLE.USER PROVIDES ARRAY "L3"
OF POINTERS TO THE VIRTUAL ROW ORIGINS OF "S".

S (I + LS{)) IS THE (IJ) ELEMENT OF THE MATRIX
FOR 1 LE. J LEEN , J LE I .E. N

OO0

DIMENSION S(1),JFLAG(1)
COMMON/LST/LS(1)

DOUBLE PRECISION SA,SB
DATA EPS1,EPS2/1.E-35,1.E—6/

DO 10 [= 1IN
LI = LS(I)
IF(S(LI+I) .LT. EPS1) GO TO 14

IF(I .EQ. 1) GO TO 11
TEMP = S(LI+I)
KK =1 -1

DO 12 K = 1,KK
LK = LS(K)
12 . S(LI+I) = S(LI+I) — S(LK+I)**2
IF(S(LI+I) .LT. EPS2*TEMP) GO TO 15

11 JFLAG(I) = 0
SA = S(LI+D)
SB = DSQRT(SA)
S(LI+I) = SB

[FI .EQ. N) GO TO 10
JJ=1+1

DO 13 J = JJN
IF(I .EQ. 1) GO TO 13
DO 50 K = 1,KK
LK = LS(K)
50 S(LI+J) = S(LI+J) — S(LK+I)*S(LK+J)
13 S(LI+J) = S(LI+J)/S(LI+D)

GO TO 10 .
14 JFLAG(D) = 1
GO TO 16
15 JFLAG(I) = 2
[F(S(LI<I) .LT. —EPS2*TEMP) GO TO 100
16 DO 18 I = 1]
LI = LS(J)
18 S(LI+I) = 0.
DO 18 J = LN
19 S(LI+J) = 0.
S(LI+D) = 1.

10 CONTINUE
DO2C I = 1N
LI = LS()
S(LI+I) = 1./S(LI+I)
[F(I .EQ. N) GO TO 20
JJ=1+1

DO 21 J = JIN

Thu 30 Jun 83 16:44:23

spdinv.f

Page 1 of spdinv.f
81

spdiﬂv.f

LI = LS(J)

S(LI+J) = S(LI+I)*S(LI+I)

IF(J .EQ. JJ) GO TO 21
KK =J -1
DO 52 K = IJKK

LK = LS(K)

52 S(LI+J) = S(LI+J) + S(LI+K)*S(LK+J)
21 S(LI+J) = —S(LI+J)/S(Li+J)

20 CONTINUE

DO 30 I=1,N
Ll = LS(I)

DO 30 J = LN

LI = LS(J)

S(LI+J) = S(LI+J)*S(LI+I)

IF(J .EQ. N) GO TO 30
KK =J+1 :
DO 34 K = KK\N

54 S(LI+J) = S(LI+J) + S(LI+K)*S(LI+K)

30 CONTINUE
IFLAG = 0O
RETURN

100 IFLAG =1
RETURN
END

Thu 30 Jun 83 16:44:23

spdinv.f

Page 2 of spdinv.f
82

tinit.r | | tinit.r

tinitt — inilialize ROI symbol table
subroutine tinit

ext_func integer mktabl
DS_DECL(mem,TABLESIZE)
include tablecom

call dsinit(TABLESIZE)
table = mktabl(T_SIZE)
if (table == LAMBDA)
call error("Can’t create parameter table")

? call fprint(STDERR, "[TINIT] Size = %d@n", TABLESIZE)
return
end

Thu 30 Jun 83 18:47:04 Page 1 of tinit.r
: 83

whopar.r

wh.opdr — find out what kind of parameter the named variable is

subroutine whopar {(var, kind, index)
character var(ARB)
integer kind, index

define(NQPAR,7)

byte name(2)

integer iname

integer in, up, ns

integer mqnam(NQPAR)
equivalence (iname, name)

include namcom

include parcom

common /mqnam/ mgnam, in, up, ns
7% data mgnam/ ‘te’, ‘ec’, ‘zl’, vI, “co’, *
7% . data in, up, ns /‘in’, ‘up’, ‘ns’/

name(l) = var(1)
name(2) = var(2)

whopar.r

? _ call fprint(STDERR, "[WHOPAR] ‘%c’ ‘%c’@n"”, name(1), name(2))

do i = 1, ninpar | v
: if (iname == innam(i)) [
kind = INPUTPAR
index = i
return
]
]
do i = 1, nuppar [
if (iname == upnam(i)) [
kind = UPTAKEPAR
index = i
return

]
310 i = 1, NQPAR [

if (iname == mqgnam(i)) |
kind = MARQPAR
index = i
return

]

if (iname == in)

kind = INPUTFUNCTION
else if (iname == up)

kind = UPTAKEFUNCTION
else if (iname == ns)

kind = NSTEPS
else

kind = UNKNOWN

return
end

Thu 30 fJun 83 16:44:27

Page 1 of whopar.r
84

Appendix B. Format of ROI and Blood Data Files

B.1. Region of Interest (ROI) File Format

Data reduced from PET images consist of several activity-per-volume-
element vs. time sets. This section describes a file format to represent these
data with adequate internal documentation, allowing for easy extension of the
types of included data.

A ROI file consists of the following parts:

1. header comments (2 or more lines)
2. sample times
3. activity values

Comment lines begin with # and may appear anywhere in the file. Blank lines
may appear anywhere; they are ignored.

(1 or more sets)

B.1.1. Header comments

Comment lines with % as the first nonblank character after # are parame-
ter definitions, and have the following format:

ZPARAMETER_NAME?Y parameter_value

The parameter name consists of one or more printing characters embedded
between %'s. -The parameter value (string representation) starts with the first
nonblank character after the closing % and continues to the end of the line.
Thus

ZLABELZ My Dog Has Fleas
ZITEMZ

~# ZDIGITZ 5 -

this'is a comment .

defines three parameters, LABEL=""My Dog Has Fleas”, ITEM=""" (empty string),
and DIGIT="5".

Parameters may be redefined anywhere in the file. The definition of a
parameter may thus depend on how far one has read into the file. The only
parameters which may be sensibly redefined are LABEL and NPIXELS. Definition
of NREGIONS and NTIMES is mandatory. The basic set of parameters for the ROI
files are:

Name Description Example
BED bed position in mm 450
BOI time of injection 14:43:12
COMPOUND compound injected Palmitate
DATE date of study 21 -Aug-82
HGAP ring half-gap in cm
HLIFE half life of isotope in seconds | 1230
ISCTOPE labeling isotope in XXnn format Ci11
LABEL description of region Left ventricle
NPIXELS number of pixels in region 234
NREGIONS number of regions of interest 2
NTIMES number of time points 45
ORGAN organ counted/imaged Heart
OVDATE date overlay file was created 22-Aug-82
OVLABEL overlay file label Spot Heart Overlays
OVTIME time overlay file was created 10:12:01
PWID pixel width in proj. bins .2
SPECIES subject species Dog
STUDY experiment title PA #2, +drug, Sn spheres
SUBJECT subject’s name Spot
XCENT image horizontal offset 2
YCENT image vertical ofIset 0

85

B.1.2. Sample Times

There are NTIMES samples represented in a ROI file. The sample time list
gives the start and stop times in seconds of each sample counted. The times are
in floating point format, one start/stop pair per line, separated by white space.

B.1.3. Activity Data

NREGIONS sets of NTIMES data lines each follow the sample times. These
lines contain two numbers each: activity in counts/volume/sec at the
corresponding sample time, and the uncertainty in the measurement. Before
each set of activities there will be at least one comment line describing the
data. The parameters LABEL, NPIXELS and UNITS would be useful to set as well.

B.1.4. Sample ROI file
ROI file with 2 overlays of 4 files each

ZDATEZ 21-Aug-82

%ZBOI% 14:43:12
- # ZHLIFEZ 78.

Z1ISOTOPEZ " Rb82

ZCOMPOUNDZ Rb-82

ZSPECIES?Z Dog

ZSUBJECT% -Spot

ZORGANZ Heart

ZSTUDY% Rb #3

ZBED% 450

ZHGAP? 1.

ZOVLABELZ
ZOVTIMEZ
ZOVDATEZ
ZPWID7Z
ZXCENTZ
ZYCENTZ
ZNTIMES?Z
ZNREGIONSZ
#
Times:
start stop
0. 5.
5. 10.
10. 15.
15. 20.

#

Overlay 1
ZNPIXELS%
ZLABEL%

ZUNITS%

Spot Heart Overlays
10:12:01
22-Aug-82 .

1033
Left Ventricle
Cts/pix/sec

1.4032E-03 5.4543E-02
3.0123E-02 6.3432E-02
4.4343E-01 8.3432E-02
1.3432E-02 7.2353E-03

#

Overlay 2

ZNPIXELS?Z 154

ZLABELZ Myocardium
1.5432E-03 2.3423E-04

6.1938E-01 3.5234E-02

4.1945E+00 1.2345E-02

3.5343E+00 1.3433E-02

86

B.2. Blood File Format

The blood data format has a long, sad history. The only relevant parts for
this program are:

1. Eight lines of text at the top, to be ignored. .

2. Variable number of data lines after header, with five fields: sample number,
draw time (seconds after injection), weight (gm), counts/min,
counts/min/gm. The second and fifth fields are the data we use in fit.

There are often spurious entries at the end of the file with odd times; there-
fore, we read data lines until we find a time earlier than the one last read, or

end-of-file.

B.3. Archiving Convention

The ROl and blood files are stored in Software Tools ar archive files, in a
hierarchical scheme. The outer file is given the subject’s last name, with exten-
sion ‘“.a’. This file is an archive of study archive files, given names such as
“rbl”’, “fdg2”, and “‘water2”, which denote the several studies for a given sub-
ject. The study archives contain data files with standardized names:

roi ROI data from PET analysis
blood Blood draw data {if any)
comments any useful information about the particular study

For example, if patient Wilson had two Rubidium-82 studies and one FDG study
with blood draws, the file structure would be:

wilson.a
‘rbl
‘roi
‘comments
‘rb2
‘roi
‘comments
‘fdg
‘roi
*blood
‘comments

There are several programs and command files to manipulate these archives;
see appendix D.

87

Appendix C. Software Tools Library

The table below lists library routines used by the fitting program. The routines
are from the Software Tools Portable Library, except those marked * (local addi-
tions to Ratfor Library) and 1 (RSX-11M Fortran Library).

integer function agtlin
get next line from an archive module

filedes function aopen
open archive module for reading

subroutine cant
print "Can't open'" message and terminate execution

subroutine close
close (detach) a file

subroutine concat
concatenate 2 strings together

integer function ctoi
convert string at in(i) to integer, increment i

real function ctor
convert string at in(i) to real, increment i

subroutine dsfree
free a block of dynamic storage

subroutine dsinit
initialize dynamic storage space .

integer function enter
place symbol in symbol table

integer function equal
compare strl to str2; return YES if equal

subroutine error
print single-line message and terminate execution

subroutine errsetj
control printing of error messages

subroutine fmtdat :
convert date information to character string

subroutine fold
convert string to lower case

subroutine fprint*
formatted output conversion to file

integer function getarg
get command line arguments

subroutine getarg
get command line arguments

subroutine getnow
determine current date and time

integer function index

88

<ol

find character c in string str

integer function isatty
determine if file is an interactive device

integer function length
compute length of string

integer function lookup
retrieve information from a symbol table

integer function mktabl
make a symbol table

filedes function open
open an existing file

subroutine penter
place symbol in symbol table

integer function prompt
get next line from file, prompting if a terminal

subroutine putch
write character to file

subroutine putlin
output aline onto a given file

subroutine query _ _
print command usage information on request

subroutine remark
print single-line message

subroutine rtoe*
subroutine rtof*
convert real to character string

pointer function sdupl
duplicate a string in dynamic storage

subroutine skipbl
skip blanks and tabs at str(i)

subroutine sprint*
formatted output conversion to string

subroutine strcpy _
copy string at "from’ to "to".

integer function type
determine type of character

89

Appendix D. Documentation

Fit (1) : Fit (1)
NAME -
Fit - fit compartment models to ROI data
SYNOPSIS
fit [file] [-sfactor] [-i[n]] [file] [-sfactor] [-u[n]]
DESCRIPTION

Fit reads region—of-interest data from ROI-format files and can fit
compartmental models to them. It generates two forms of output: a
commentary on fitting progress and results, and a table of input data and
model values. This latter can be used to plot the results of fitting, and
for simulation purposes.

COMMAND LINE ARGUMENTS specify the source and treatment of input and residue
function data. '

file .
Specifies a file from which the next region(s) are to be read. The
file may be changed between regions. The file may be a subfile in an
archive; the file‘subfile... format of acat(l) is accepted. If there
is no period in the filename (that is, no extension), a subfile name
(*roi or ‘blood) is appended to the name when the region number is
specified. . »

-sfactor
Specifies a .scale factor by which the next region data- and
uncertainties are multiplied. ‘Factor’ is a number in floating point
or exponential notation. A scale factor is applied only to the next
region read with the -i or -u flag.

-i{n]

-u(n]

These direct fit to read input (-i) or uptake (-u) data from the last
specified file. If the region number n is omitted or zero, data are
assumed to be in the format of the .JOB file produced from well counter
data by CTSDON. If the region number is a positive integer, the data
are assumed to be in ROI format. If current filename does not contain
a period (.) a subfile is appended to the specified filename: ‘roi if

there is a region number or ‘blood if the region number is missing or

0. Examples:
fit dog*fdgl -1l =u2
fit [15,1]human.job -s6.26e-6 -1 [100,6]human.roi -u3

COMMANDS are read from the standard input and direct fit to set
parameters, fit to models, and report the results. A commentary is
produced on the standard output, describing the input data, commands,
and results. This documentation may be collected by redirecting fit’s
output to a file.

If the standard input is a terminal, fit prompts with a colon (:). The
commands are:

debug [verbose|off]

90

L€

Fit (1)

Fit (1)

Controls fit’s comments on the progress of fitting. If the
command ‘debug’ is given, chi-square and the current parameters
are reported to the standard error output at the end of each
iteration. If the ‘debug verbose’ command is given, further
information is printed. This mode is generally wuseful only for
debugging fit. The ‘debug off’ command suppresses debug output.

name=value

Sets the parameter named ‘name’ to ‘value’ expressed in floating
point or exponential notation. The parameters select the input

and uptake models, their rate constants, and control the behavior

of the Marquardt fitting algorithm. Names may be abbreviated to
two letters. The names are:

infun
selects input function model:
1 al exp(-ml T) + a2 exp(-m2 T)
2 al T exp(-ml T) + a2 T exp(-m2 T)
3 al T exp(-ml T**2) + a2 T exp(-m2 T**2)
4 linear interpolation of input data
where T = (t - ti).

al, a2, ml, m2, ti
input function model parameters. Ti does NOT affect the
linear interpolation input model.

~upfun

selects uptake function model. All are of form

Up(t) = fv In(t’) + (1-fv) In*Imp(t’),
t’ =t -¢t0
where Up = uptake model, In = 1input model, Imp = impulse

response, and * denotes convolution.

The 1impulse responses are selected by upfun for the following

models:
1 4 -+ k1l 4 —+ k3 + —t
lblood -—-> tissue|—->|tissue
(———
+ —+ kz : —+ k& += ,

2 same model as 3 but parameters are those of its
triexponential impulse response:

fl exp(-kl t) + £2 exp(~k2 t) + £3 exp(-k3 t)

3 + —+ ka +— + k1l 4= —+ k3 + +
blood |=—=>|tissue|-——>|tissue|===>|tissue
Gt (o -
+- —+ kb + + k2 4+~ + k&4 4= +

tcon,econ
fit convergence parameters. When an iteration ends with

2= 91

Fit (1)

Fit (1)

abs(step)/[abs(parameter) + tcon] {= econ for each
parameter, the fitting algorithm terminates. Default values:
].OE-S’ 1.E’4.

zlam, vlam, eps
Marquardt diagonal lambda control. Lambda is initially set
to zlam. It 1is changed by multiplying or dividing by vlam
but it not permitted to become smaller than eps. Default
values: 0.1, 10, 1.E-6.

coz
limit of cosine of angle between gradient and Gauss-Newton
vectors. When the angle exceeds arccos(coz), lambda is
increased. Default: 0.8

vconst :
factor by which stepsize is cut when gradient/Gauss angle is
ok (cosine >= coz) but chi-square was not reduced. Default:
.5

nsteps
maximum number of iterations allowed in fitting attempts. If
the number of iterations exceeds nsteps, the fit is abandoned
and a message 1is printed to the effect that a minimum was not
found. This is not a fatal error.

fit list

specifies the names of parameters to fit, separated by commas,
The 1list may contain all input or all uptake parameters. Input
function parameters are varied to minimize the errors between -the
selected input function model and the input data read by the =i

" flag. Uptake function parameters are varied to minimize the

errors between the selected uptake function model and the uptake
data read by the —u flag, using the selected input function model
and its current parameters.

During the fitting process, typing a <CONTROL-C> at the terminal
keyboard will interrupt the fit at the current iteration. This
works whether or not the standard input has been redirected. A
note is printed on the output to the effect that fitting was
interrupted before convergence.

The input and uptake function numbers and parameters are printed
before and after fitting. The parameters have an estimated
uncertainty next to them, and may include the comments:

(not fit) not listed in the fit command
correlated correlated to another parameter in the model
insensitive has no effect on the model wvalue.

The parameter uncertainty 1is computed with the assumption that the
model is correct and that the uncertainties in the JOB or ROI file
are off by a constant factor. We assume that chi-squared is equal
to the number of degrees of freedom (number of data points minus

=3 92

Fit (1) Fit (1)
number of fitted parameters), and compute the uncertainties
thereupon. The correlation matrix is printed after ° the
parameters. For. parameters bearing one of the comments above, the
correlation is shown as O.

write infup [D>|>> filel
' Prints the input or uptake data and model values. The report goes
to the standard output, or to a specified file. The >> version of
. file redirection means '"append" rather than '"write from scratch".
The first lines of the file describe the input data, the models
selected and the input or uptake parameters. Subsequent lines are
printed for each sample, listing the = time, measurement,
measurement uncertainty, and model value. The '"write up" report
also gives the value of the input function model at each time
point.
In the examples below, the columns have been made a bit narrower
to fit this page. The actual reports have the same layout.
Sample "write in" report:
Input: dog.roi — BLOOD (reg. 1 * 1.,000E+00) Model 1
al = 1,82E+01 ml = 1.07E+01 a2 = 2,26E+00 m2 = ...
ti = 7.00E+00 : :
time inpuf uncert in _model
2.5 2.,611E-01 3,046E-02 0.000E-01
7.5 1.765E+01 2,335E-01 1,901E+01
Sample "write up" report:
Input: man.epi - SAG SINUS (reg. 1 * 1.00) Model 4
Uptake: man.epi - CORTEX (reg. 2 * 1,00) Model 1
fv = 1,52E-01 tO = 4.80E+00
. time uptake uncert up_model input
2.5 -2.147E-03 2.147E-03 1.199E-03 7.877E-03
7.5 =-5.565E-03 5.565E-03 2,212E-05 0.000E-01
IMPLEMENTATION

Fit

is a Software Tools Ratfor program (with some Fortran-77 and

Macro—-11). The source is currently in [21,10]fit.tcs but may be moved

to

the ST binary directory “~bin. Fit.tcs maintains fit.w, which

contains. all necessary files:

Include files:

datcom, parcom, namcom, tablecom, fit.h

=4~ | 93

Fit (1)

Fit (1)

Sources {(and routines):

fit.r
fun.r
fimpls.r
init.r
getdata.r

getcmd.r
dofit.r
misc.r

marqe.f
catche.mac

Build files:

main

funin, funup, con, rt3

fimpls, finit

init

getdat, getfun, getjob, getroi, datlin, tinit, penter,
pget

getcemd

dofit

getnam, gettok, pflag, setmap, setvar, shocov, whopar,
dowrit

marq, mqchi, mgder, mgqmap, spdinv, dot

catch '

makefit.cmd, fit.tkb, fit.odl

Documentation:

The file fit.h contains a macro definition of a string ‘VERSION’ which
should be updated to reflect the TCS revision level.

The program is overlayed as follows:

fiﬁ,fun,fimpls ~t==- 1init,getdata

AUTHORS

l

+—— getcmd,dofit,catch —+——— misc

+=—- marq

Brian Knittel, Ron Huesman

makearch Page 1

NAME

makearch - make new patient archive

SYNOPSIS

makearch

DESCRIPTION

FILES

The data generated in Ring studies are stored in Software Tools archive
files. The ST archive program combines many files into one, and
provides the capability to insert, extract, list, and update consitit-
uent files. Thus we can access the entire set of patient data with
just one file name, but will retain the ability to play with the
individual files. .

Several study archives (e.g. fdg, rbl...) are combined in one patient
archive. The study archives contain ROI, blood, and other study data.
files. In particular, there is an optional ‘comments’ file which can
contain text describing the experimental protocol and the regions of
interest. :

This program creates new patient archives -~ it is faster than modarch
because it does not try to extract study archives before updating,
and it does not update (or create) the patient archive until all the
studies have been entered. The archive is given the patient name

’ ’

with extension “.a’.

The program asks for input in this order:

Patient name: enter a 1-9 letter name, or <return> to
stop making archives.

Study name: enter a 1-9 letter name or <return> to stop

entering studies into the patient archive. Studies should named
something like xxxn where xxx 1s "rb" or "water" or "fdg" or

some such, and n is the study number. For example, rb2 and waterl.

For each study, you are asked for 6 files:
comments \
blood
roi enter name (including extension) or <returnd>

counts
weights /

If one of the files you specify does not exist, you are returned to
the Study Name question.

When all the files have been specified, you are given a chance
reject the set of files and return to the Study Name without adding
the study to the patient archive.

__back to Study name question
_ back to Patient name question

patient.a patient archive created
dr0:[100,1]makearch.cmd command file

95

modarch Page

NAME
modarch - modify patient archives
DESCRIPTION .
Modarch modifies patient data archives made with '"makearch". The
procedure is exactly the same, except that the patient archive must
already exist. The questions asked and the procedure are the same.
Modarch attempts to extract named study archives from the patient
archive. If they do not exist, they are created. Named study data
files are inserted into the study archives, replacing any old files
of the same type in the archive. Other files are left untouched.
For example, if a patient archive ‘ROGER’ was made with two studies
composed as follows
roger
‘fdgl
‘roi from ROGERFDGI1.ROT
‘comments ROGERFDG1 ,CMT
*blood [15,1]ROGERFDG1.JOB
‘rbl
‘roi from ROGERRB1.ROI
‘comments ROGERRB1,CMT
and we told Modarch
ROGER
fdgl
comments: ROGERNEW.CMT
counts: [15,1]ROGERFDG1.CTS
then the new archive would be
roger
‘fdgl
‘roi from ROGERFDGI1.ROI
‘comments ROGERNEW.CMT
*blood [15,1]ROGERFDG1.JOB
‘counts [15,1]ROGERFDGL.CTS
‘rbl
‘roi from ROGERRB1.ROI
‘comments ROGERRB1.CMT
FILES
patient.a patient archive

dr0:[100,1]modarch.cmd

command file

96

plotfit : Page 1

\

NAME _
plotfit - plot results of compartment model fits on line printer

SYNOPSIS
plotfit [file [inscale [timescale [spool [ymax [plotsize]]]11]

DESCRIPTION .
- Plotfit reads a "write in" or "write up" file from FIT and plots .

the ROl data and the model values on the line printer. Plotfit is
a command file in [100,1] and can be run in one of two ways:

- from inside’another command file, with
@dr0:[100,1]plotfit <args>

or from the terminal with
plotfit <args>

where <args> is an optional list of arguments separated by spaces:
file the name of the "write ..." file

inscale factor to scale input function by in uptake plots.
This can be a number in floating point format or
the letters 'Fv', which scales the input function
by the fit vascular fraction. This shows how much
of the tissue activity is due to blood.
~ """ suppresses plotting of the input function; this
should be used when plotting input function fits.

timescale .
‘L' for log time x axis, 'T' for linear time axis,
'S' for sample number axis.

spool "ty - yes, spool plot immediately
"N" - no, make PLOTFIT.LST but dont spool yet.
"XXX" - use XXX instead of LPP

"XXX/YY" - use XXX and use /YY flag too. For example,
answering "N" is the same as answering "LPP/-SP"

ymax maximum Y value for plot (Défau]t - max data value)

plotsize _
x, y size in inches for plot (Default "8,8.5")

If any of the first four arguments are not given, they are prompted
for,

The fit rate constants are printed at the top of the plot.

FILES

plotfit.par temporary parameter file for PLT.
plotfit.plt temporary graphics file between PLT and LPP.
plotfit.lst output listing (autodeleted if spool = "Y")

97

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

w8 Chsd

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

