
•

LBL-17413 Rev.

Lawrence Berkeley Laboratory
Rt:cr:-~tv

UNIVERSITY OF CALIFORNIA BFPk'r-/[~Y/REf','CEE:O

Computing Division
LIBF?AHy DO· ' ,.,1'10

CUM£NTs SEc -
liON

To be presented at the Second International Congress
and Exhibition on Computer Security (IFIP/Sec'84),
Toronto, Ontario, Canada, September 10-12, 1984;
and to be published in the Proceedings

LOWER LEVEL INFERENCE CONTROL IN STATISTICAL
DATABASE SYSTEMS

D.L. Lipton and H.K.T. Wong

May 1984

TWO-WEEK LOAN COPY ...

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

("_ d-

-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..

LBL.-17413

LOWER LEVEL INFERENCE CONTROL IN STATISTICAL DATABASE SYSTEMS

David L. Lipton
Harry K. T. Wong

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94704, U.S.A

San Francisco State University
San Francisco, California 94132, U.S.A.

ABSTRACT

An inference is the process of transforming unclassified data
values into confidential information. Previous research has studied
the use of statistical aggregates to deduce individual data values.

Other types of inference are possible. Obscure correlations may
be possible from an "expert" knowledge of the population. Inferences
may be formed from "obvious" facts about the world. "Expert" users
of a database management system may infer data values from variables
in the system performance.

As a counter-measure, system management must consider these
variables and correlations while formulating system security policy .

Rsssa.rch. supportsct by U.S. DOEund&r contract No. DE-AC03-76SF00098

1. MOTIVATION

An inference is a process which transforms unclassified data values into protected
data values.

Historically, the study of the inference problem in statistical database management
systems, has been limited to threats which use statistical aggregates to identify individual
record values. As a simple example, consider the following problem. A population data
base consists of four individual records.

Figure 1
Example of a Small Statistical Database

NAME SEX PROFESSION

Dalton F EE
Jones M Programmer
Rankin M EE
Smith F Programmer

Let the salary attribute column be suppressed.

Release the following aggregate statistics:

SUM (Salary I Sex= all, Profession= all)= 100
MEAN (Salary I Sex = Male) = 19
MEAN (Sal~ry I Profession = Programmer) = 23

SALARY

36
20

·- 18
26

By linear programming, Dalton's salary must be in the range [16,46]. Aggregates on addi
tional attributes may be used to reduce this range further. A comprehensive survey of
statistical inference methods and counter-measures is presented in [7].

This paper will identify several other types of inferences which may be formed in sta
tistical database systems. Users who possess some pre knowledge of characteristics of a
population, may know that a strong correlation exists between the value of a released
attribute and the value of a suppressed attribute. [22] Similarly, such correlations (or
FUNCTIONAL DEPENDENCIES) may be apparent from "common knowledge". A third class
of threats are possible from "expert" users of a database system. who form inferences
from performance variations at the user interface.

Because these inferences require some preknowledge, they may be formed by a class
of "expert" users at a lower level than that which is possible by the naive user of the data- c/
base system.

The most important counter-measures to these threats are to expand the definition
of "DATA OBJECTS" which are logically known to the database system. Database designers
should become aware that uncontrolled access to these classes of data objects, is a secu
rity risk.

-2-

Section 2 -will provide a theory for the lower level inference problem. Section 3 will
illustrate applications of this theory to threats from unlimited access to database docu
mentation in a menu-driven system. Section 4 will discuss applications to threats which
are caused by unrecognized variable behavior at the user interface level. Section 5 will
suggest some design principles for database management systems, to prevent user
written programs from generating inferences by covert information flow.

2. PARTITIONING A DATABASE BY SECURITY CLASS

This section will introduce a theory of how data objects may be assigned to PARTI
TIONS (or mutually exclusive groups), as a function of security class. FUNCTIONAL DEPEN
DENCIES (or correlations) between objects of different groups may exist. [4] One type of
functional dependency (the EQUIVALENCE PATII) may allow users to infer the existence
and value of objects in a partition to which access privileges have not been granted. [22]
This section will present a series of transformations to optimize the partitioning scheme.
The inference control problem will be reduced to the more manageable problem of regu
lating access to these newly-identified classes of data objects.

Consider a simplified READ-ONLY database. Let there be only two security classes:
RELEASED and SUPPRESSED. [30] Each ATOMIC (or logically indivisible) data object is
assigned to exactly one of these security classes. The assignment may be a function of
both the general data object definition and the value of a specific instance. [29]

. Let k1 be a data object which is recorded (or "logically known") in the data object dic
tionary and in the security subsystem files .

..
Let uibe a data object which is not so recorded (or "logically unknown").

NOTE: The data objects k1 and ui need not be logically indivisible. They may be vec
tors, matrices, trees, or networks of data objects whose meaning is semantically valid to
the database system.

Let FD1 be the description of a functional dependency which maps data object ki to a
unique data object ki.

FDi: ki => ki

Let ::::> be a functional dependency which is known to the system security manager.

Let -> be a functional dependency which is unknown to the system security
manager .

. ~ Let the functions released(ki) and suppressed{ki) represent the partition in which a
data object ki is currently located.

The following series of transformations will eliminate all EQUIVALENCE PATHS (or
instances where the value of a suppressed data object may be determined from released
data objects). Additional transformations will illustrate ways to minimize DATA LOSS (or
non-confidential data which must be suppressed to protect confidential data).

Suppose that the unknown data object ui is in the released partition of the data
object space. Suppose that a functional dependency exists from ui to the suppressed data
object ki. This unsafe case may be represented as:
{i) released(ui) --> suppressed(kj)

-3-

If the data object ui is identified and cataloged in the files of the access control mechan

ism as ki, then the following unsafe case is created:
(ii) released(ki) --> suppressed(ki)

If an unknown functional dependency --> is identified by the system security
manager, then the unsafe case

(iii) released(ki) ~ suppressed(kj}
is generated.

At this point, the space of data objects in the database may be repartitioned as

either the safe case
(iv) released(ki) ~ released{kj)
or as the safe case
{v) suppresse~(ki) ~ suppressed(kj)·

Thus, the data object space has been repartitioned such that no EQUIVALENCE PATHS

remain.

The following example will illustrate this process. It will also informally introduce
some inference techniques which will be discussed in later sections.

Consider the record definition for a small personnel database:
<NAME, SOC_SEC_NO, MARITAL_sTAT, DWELLING_TYP, CAR_YALUE, OCCUPATION, SALARY>

A specific application requires an EXTERNAL VIEW of this record in which the following
attributes must be suppressed: NAME, SOC_SEC_NO, DWELLING_J'YP, and SALARY. The sys
tem security manager must release as much information as possible without compromis
ing the security of any suppressed data.

By statistical analysis of similar populations, it is discovered that a strong correla
tion exists as follows:

CAR_V ALUE --> SALARY
However, this analysis reveals that the "intuitively obvious" correlations:

OCCUPATION---> SALARY
OCCUPATION-> CAR_VALUE

are both much weaker for similar populations. Therefore, only CAR_VALUE need be
suppressed at the attribute definition level.

It is also discovered that a strong correlation exists for
{MARITAL....STAT =single)-> (DWELLINGJYP =apartment)

However, there are no dependencies observed between other values for MARITAL_STAT
with any specific value for the suppressed attribute DWElJ.JNG_TYP. Therefore, suppress
all attribute instance values for (MARITAL_STAT = single).

From "common knowledge", a user lists four possible values in the attribute domain
for MARITAL_STAT:

MARITAL_STAT E: ~single, married, divorced, widowed~
By observing that no instances of (MARITAL_STAT = single) appear, the user may conclude
that many of the suppressed instances have this value. As a counter-measure, the
released attribute value with the lowest frequency must also be suppressed. Such a meas
ure prevents inference and minimizes data loss. [26]

-4-

Until this point, it has been assumed that functional dependencies exist only between
atomic data objects. It has also been assumed that any suppression may be performed if
it is logically necessary. Two exceptions to this case will be presented.
1. If the WORK FACTOR required for a user to compute the INFERENCE ~ in expression (iii)
is of exponential complexity, then no repartitioning need occur. As an example, consider

the case
(vi) released(< k 1, ... ,kn >) ~ suppressed(FD1)
where FD1 may either be an encryption algorithm or an authentication test. In this latter

'J example, the released vector of data objects, may be a request for authentication and an
enciphered record of the user's response. As further suppressions would be impossible,
the major counter-measure is to increase the complexity of the inference. [19] [11]

. •

\.J

2. If the released data object ki is composed of several functionally independent data
objects which are logically known to the database system:

ki = < kil• ... ,kin >

then system security policy need only suppress a "sufficient" number of ki
1

E: kio such that

the functional dependency ~ may not be computed. Symbolically, this repartitioning
transforms the unsafe case
(vii) released(<k1 ,ki, ki+l• ... ,kn>) ~ suppressed(kn+I)
to the safe case

(viii) max(i)

[released(<k1, ... ,ki>) and suppressed(<ki+ 1, ... ,kn>)] ~ suppressed(kn+I)

and

not [released(<k~o ki>) => suppressed(kn+I)]

for some 0 ~ i < n. The problem of maximizing the number i of disclosed variables has
been shown to be NP-Complete. [31]

Without loss of generality, the class of cases where the dependent data object is a
vector of attributes without any functional dependencies between them:

(ix) k1 ~ < k2 ,kn >
may be treated as a separate case for each attribute ki where 2 ~ i ~ n. (Note that addi
tional constraints should be introduced if any dependencies exist between elements in the
dependentvecto~}

The inverse of case (iv),
(x} suppressed(ki) ~ released(ki)
is safe if the functional dependency => is not reversible .

Thus, these transformations have reduced the inference threat to an access control
problem. To insure that an access control subsystem is adequate to prevent security vio
lations, the following assumptions must be valid:
1. All data objects in a database must be listed in the data object dictionary and in the
access control subsystem file.
2. All functional dependencies between data objects must be known to system security
management.
3. No suppressed data object is functionally dependent on a released data object. (All
EQUIVALENCE PATHS have been eliminated.) [22]

-5-

Subsequent sections will suggest methods for identifying and cataloging unknown
data objects ui and unknown functional dependencies ->. Optimal suppression mechan
isms will be presented to minimize the amount of unclassified data which has been falsely
suppressed.

The theory of secure partitioning is sufficiently general to transform a wide range of
known inference problems into access control problems. Some examples are presented
to further illustrate its flexibility.

3. DOCUMENTATION

This section will present a survey of several types of inferences which may be formed
from documentation in a menu-driven statistical database. This class of inferences is a
function of data definitions and of the specific population represented in the database.
Therefore, no security counter~measures may be implemented by the vendor of the data
base management system product. [17]

Counter-measures require that system security managers become "experts" on the
population represented. This may require statistical analysis of databases of similar
populations. System management may use expert systems to find new functional depen
dencies which are implied by record definitions. Additionally, system management should
monitor any outside knowledge which specific users may have about populations or indivi-.
dual records.

Currently, there is a trend in the design of large statistical database systems to pro
vide the user with as much documentation as possible about the population represented . ..
Although such documentation (or METADATA) may be required for user-friendly on-line
support, it also introduces a security problem. The secure design principle of LEAST
PRIVILEGE requires that users be restricted to access requests within their NEED-TO
KNOW requirements. [25]

As an example, consider the SUBJECT statistical database system which was designed
for public presentation of data from the 1980 U.S. Census. [2] This is a menu-driven sys
tem in which the user must specify the following type of access path to read a statistical
aggregate value:
FILE_CATEGORY, FILE_NAME, ATTRIBUTE_j)OMAINJ, DOMAIN_V ALUE_of_biTRIB.J)OMJ, ...
ATTRIBUTE.J)OMAIN_p, DOMAIN_J ALUE_pf_j\'ITRIBJ)OM_p, AGGREGATEJ'UNCTION_NAME
Extensive narrative documentation is provided for every node at every level. Several
access paths may be possible to descend through the hierarchy to any node.

At each node level, it is possible in SUBJECT to read a narrative text tile which con
tains information about all subtrees beneath a given node.

There is a browse function in SUBJECT which allows a user to randomly move up and
down through levels of a menu.

Unlimited access to database documentation has been shown to create several new
types of inference threats:

1. TYPE-R INFERENCES - "Obvious" functional dependencies between objects in different
populations, or between attributes in a single record instance. [3]

-6-

u

1\.J

EXAMPLE: There may be a functional dependency between the major businesses in an area
and the most probable occupations of the area's population.

2. TYPE-S INFERENCES- Functional dependencies based upon knowledge of the hierarchi
cal structure of the database. [3] This is a superset of the JOIN DEPENDENCIES in a rela
tional database context. [5]

EXAMPLE:
COUNT{Male Programmers)= COUNT{Male Programmers over 30)
User Preknowledge: John Smith is a male programmer
Therefore, John Smith is over 30.

3. EQUIVALENCE PATHS - Users may have "expert" knowledge of a specific population.
This may include knowledge of functional dependencies which exist in real data; but were
not known to the formulators of system security policy. [22]

EXAMPLE: Pine Bluff, Arkansas has won the National Bowling Conference 25 times in the
last 30 years. Therefore, an abnormally large percentage of the population has been
operated on for dislocated shoulders. This inference may be formed without any
knowledge of record instances of the form:

< NAME, ADDRESS E: Pine_}3luti,Ark, NO_SHOULDER_OPERNS > 0 >

4. Users may form new statistical aggregate values by further analysis on individual
records of the database system1.

Sever~ counter-measures to these threats are possible. Documentation for the data
base should be partitioned by NEED-TO-KNOW requirements. System security manage
ment should become aware of new functional dependencies which exist in real data. Sta
tistical analysis and expert systems should be used to discover these new relationships.

Two types of documentation objects will be studied in this paper: NARRATIVE TEXT
FILES and MENUS OF CHILD NODES. Appropriate security mechanisms will be presented
for each type.

Documentation data objects for the database should be grouped into COMPARTMENTS
by the access control subsystem. [17] These compartments should be based upon the
users' NEED-TO-KNOW. [6] ·Within each compartment, a security clearance level may be
assigned for the minimum read access privilege. As an additional constraint, an explicit
access privilege grant may be required. In the latter case, the security class of the user
and the data object become merely integrity constraints to determine if a grant should
be issued. [18]

NARRATNE DOCUMENTATION FILES should be segmented. Each partition should not
discuss more than one child node in the menu. This prevents inferences which are based
on the knowledge of nodes which are suppressed for a given user.

Compartments in unstructured text need not be separate paragraphs. Small. con
tiguous strings of text in a file may have different security values. Consider the security
oriented text processor proposed in the following example. [17]

-7-

This example will describe a text processor which allows database designers to
prevent access to classified clauses in a sentence. A separate version of the sentence
need not be stored for each security clearance leveL

Assume that when a new computer account is issued, the user is assigned a vector of
maximum read access levels for each NEED-TO-KNOW compartment:

< army_max_read.Jevel, navy_max_read.Jevel, air.Jorce_max_read.Jevel >
Each element in this vector is a non-negative integer. [6] [18]

The following code listing represents a text file "big_pine_2". The text of this file is
one highly classified sentence from a Defense Department database:

"The combat forces deployed in the operation included 5, 182 men of the 10 1st airborne
rangers, the battleship New Jersey, and six A-7 reconnaissance aircraft."

The assembler-like language of this text processor, sanitizes clauses of the sentence
by the user's clearance level. The result is a syntactically correct natural language text
from which no inference of the suppressed clauses may be formed.

To understand the programming language used in this example, a brief introduction
is provided.

The BEGIN and END Operators

Each block of text must be. framed by a pair of operators <BEGIN,END>. The operand·
for each is text..Jype=text_name. To simplify this example, the only two text_types which
will be used are "FILE" and "SENTENCE".

The COMPARTMENT Operator

Each clause within a sentence is assigned a COMPARTMENT (or topic designation)
regarding the type of information it contains. The operands may be literals or logical
expressions of literals. In this example, literals include "army", "navy", and "air.Jorce".
The operand "ANY" is the logical INCLUSIVE-OR of all literal operand values.

The SECJ.EVEL Operator

Each clause within a sentence must be assigned a minimum read clearance level for
the compartments designated. If the user's security class is lower than this level, then
the clause is suppressed. The operand of SEC_LEVEL is a non-negative integer. The
highest values represent more sensitive information.

The TEXT Operator

The operand of TEXT is a literal string of printable ASCII characters which is sur
rounded by double quotes.

The CONCATENATION Operator

Suppressed text should appear invisible to lower level users. This operator inserts
natural language conjunctions in text as appropriate for syntactic correctness. Examples
of such conjunctions are "and", "or", comma(.), and semi-colon(;).

The Null or Continuation Operator (•)

When operands or comments use extra lines, the asterisk indicates this to the assem
bler.

-8-

!)

\,1

Corrunent Fields

The semi-colon(;) must be the leftmost character of the comment field on every line.

Thus, the text file "big_pine_2" would be represented in this language as follows.

LABEL OPERATOR OPERAND COMMENTS

big_pine_? BEGIN FILE="big_pine_2"
sent_l BEGIN SENTENCE="sent_l"
clauseJ COMPARTMENT ANY

*
*
*
*
*
*
clause_2

*
*
clause_3

*
*
*
*
clause_4

*
*
*
clause_;)

*
*
clause_6

*
*
clause_?

*
*
*
*

SEC_l.EVEL

*
*
*
TEXT

*
COMPARTMENT
SEC_l.EVEL
TEXT
COMPARTMENT
SEC.J,.EVEL
TEXT

1

*
*
*

;Allow read access for any user
;who has a read access maximum
;clearance level of at least 1
;in any NEED-TO-KNOW compartment

"The combat forces deployed
in the operation included"
army
2

"5,182 men of"
army
1 ;SECJ,.EVEL=2 > SEC.J.,EVEL= 1
"the 10 1st airborne rangers"

,. CONCATENATION ",","and" ;link clauses to form

* * ;coherent natural language text
COMPARTMENT
SEC.J,.EVEL
TEXT
CONCATENATION
COMPARTMENT
SECJ,EVEL
TEXT
COMPARTMENT
SEC.J,.EVEL
TEXT
COMPARTMENT
SEC.J,.EVEL
TEXT
END
END

ANY
1
"the battleship New Jersey"
'',","and"

air_jorce
4
"six"

air _force
3
"A-7''
air_jorce

2
"reconnaissance aircraft"

SENTENCE="sent.J"
FILE="big_pine_2"

If useri wishes to read this file. the owner or administrator of "big_pine_2" must issue
the command

PERMIT READ ACCESS ON big_pine_2 TO useri
to update the access control subsystem files. [28], [18], [20]

-9-

At run-time, the user types the command
PRINT bi!W>ine_2

The following three cases illustrate the system's response as a function of the user's

security class.
1. A user whose security vector is < 1, 3, 3, > will receive the text string:

"The combat forces deployed in the operation included the 101st airborne rangers, the
battleship New Jersey, and A-7 reconnaissance aircraft."

2. A user whose clearance vector is < 0, 0, 1 >will receive:

"The combat forces deployed in the operation included the battleship New Jersey."

3. A user whose clearance vector is < 0, 0, 0 >will receive the message
"REQUEST DENIED".

This simple example of a security-oriented text processor, illustrates the power of a
SANITIZER which is implemented below th~ level of expert systems. 50 distinct security
class vectors are recognized for the file "big_pine_2". 12 possible combinations of clauses
may be generated at run-time. These values are clearly a combinatorial function of the
file length. Thus, the efficiency of not storing all gradients of sanitized text is realized for
larger files. [17]

In a menu-driven, hierarchical database system, MENU ENTRIES should also be selec
tively suppressed by the user's NEED-TO-KNOW.

i

The following HIERARCHY OF ACCESS FUNCTIONS to an arbitrary menu entry, ranks
access requests by increasing security clearance level. [17]
1. Suppress information about the existence of this node in its parent's narrative docu
mentation file.
2. Suppress printing of this node in a menu of its parent's children.
3. Print this node, but suppress its narrative documentation file.
4. Allow only queries which do not disaggregate this node.
5. Allow printing of the node's menu of children.
6. Allow queries which disaggregate the node by reading aggregates about proper subsets
of its children.

Several types of MENU ENTRY NODES are used in the SUBJECT database management
system: groups of files, file names, lists of attributes in a file record, lists of values for an
attribute domain, and aggregate statistics for a given value of an attribute. [2] Because
this hierarchy of access functions is sufficiently general, it may be used for any of these
node types.

Linear access hierarchies have been shown to be less realistic representations of the
world, than partially ordered lattices of vectors of access privileges. [7] In most cases,
users may not be implicitly trusted with all of the access privileges which are ranked
below the highest function which they have been granted. However, the total ordering
described above represents grants of successively greater knowledge about a subset of a
given database. [17]

-19.,.

v

Another inference control technique, is the PARTIAL SUPPRESSION OF MENU
ENTRIES. SUPPRESSION and AGGREGATION techniques may be successful if they do not
force illogical ranges or illogical data distributions. [17] To motivate the need for a
variety of node suppression mechanisms, figure- 2 illustrates some classifications of attri
bute domc:ilns taken fr~m Wiederhold. [27]

The following six; menu entry suppression techniques may be implemented for
appropriate types of attribute domains.

1. SUPPRESS ANY NON-ENUMERABLE CATEGORY NODE. This technique is possible for a
domain of unrelated category names, if a count aggregate may not be logically formed at
the parent node level. As an example, consider a domain which is a collection of files
about logically unrelated topics. [17] (This domain is NON-ENUMERABLE because the user
is unable to infer a complete list of all elements in the domain, if presented with any sub
set of the domain element menu list.)

2. SUPPRESS LOW FREQUENCY NODES. This is possible for a domain of elments which are
NON-ENUMERABLE and cannot be ranked in an absolute linear ordering by magnitude
(such as a list of surnames). Each menu entry in the list represents a set of individual
records which have the given property. The QUERY SET SIZE THRESHOLD RULE is used to
suppress groups which contain less than k elements or less that L% of the total number L:
of elements in the database. [8] [33] [34] A formal statement is:

IF 3~ MAX{k,I.J:.) s group_size ~ MIN(f.-k, {1-L)L:) ~ L:-3
THEN process a query about this group
ELSE ~inference violation! suppress this group;

where k is the MINIMUM GROUP SIZE about which information may be disclosed,
L is the minimum fraction of database records per query set in the range 0 ~ L < 0. 5,
L is the NUMBER OF INDIVlDUAL RECORDS in the database, or some local subset thereof.
(EXMJPLE: L may be the population of the United States, of a state, of a city, or of a
census tract.)

The upper bound for GROUP-SIZE prevents inferences about small, excluded subsets.

The set of records in GROUP-SIZE may either be homogeneous, or may be the dis
junction of all released sets.

The absolute bounds of 3 and L - 3 have been chosen because:
If k = 0, then a "NEGATIVE DISCLOSURE" will occur. (The knowledge that a set is empty

\.' may be useful to an imputer.) [32]
If k = 1, then an individual record is uniquely identified. [26]
If k = 2, then a user who has preknowledge of one of the individual records, may ask
queries which reveal additional information about the other individual. [7]

Thus, the number k is fixed by public law or system policy as an arbitrary value
which is believed to be the maximum number of records about which an individual may
possess knowledge.

-11-

Figure 2
TYPES OF ATTRIBUTE DOMAINS

after [Wiederhold-1977 l

SORTABILITY MEASURABILITY VALUE/ RANGE/ SAMPLE
OOMAINS

SUPPRESSION
MECHANISM

FOR
DISAGffiEGATE

SUBSET

CHOICES BOUNDING

==
ranked metric

ranked metric

ranked metric

ranked metric

ranked ordinal

continuous
I inear

cent inuous
I inear
scale

integer

integer

knol-ln
finite

human
1-1eight

not net
assignable personal

J.~eal th
~+ or -~

knoJ.~n

fini te
human
age

upper number
bound of books
not read

assignable

rolling up
(or comb i n i ng
attribute
values together)

l.roll ing up
2.suppression of

extreme values

rolling up

1. ro I I i ng up
2.suppression of

extreme upper
values

------- friendli- l.roll ing up
ness 2.suppression of

entire attribute
--------------------~---
unranked nominal

unranked nominal

unranked nominal

unranked existential

non- logical file
enumerable dis- (category)

aggregation
impossible

non- logical surname
enumerable dis-

aggregation
possible

suppression of any
value possible

suppression of low
frequency values

enumerable ------- hair color not possible;

sex

-12-

must suppress entire
attribute

not possib I e;
must suppress entire

attribute

,y

!I

"'·

3. SUPPRESS NODES AT END(S) OF THE SORT. Possible for an ordered domain if the
end(s} of the range are not "commonly known". [17]

However, the major limitation of partial suppression techniques, is that a user may
infer the existence and magnitude of a suppressed. node if

COUNTINDIVID..REcs(PARENT_NODE) - COUNTINDMD..REcs(RELEASED_CHILDREN) > 0

If the description of the suppressed node is obvious in such a case, then one of the follow
ing mechanisms is appropriate:

4. FALSE SUPPRESSION. If only one menu entry node violates the QUERY SET SIZE THRES
HOLD RULE, then suppress the two lowest frequency nodes. [26]

5. ROLLING UP (or INCREASING PARTITION GRANULARITY). In this technique, several simi
lar domain elements are DISJOINED {or INCLUSIVELY ORed) into one menu entry. [24]
EXAMPLE: Compress a list of the 50 states of the U.S. into the following list of states and
regional aggregates of states to suppress small aggregates for less populous states.
state = ~California, Northwest, Southwest, Texas, Rocky Mountains, Mississippi Valley, New
York, East Coastj

6. PROHIBIT DISAGGREGATION. If unreasonable disjunctions of elementary sets imply low
elementary set values, then suppress the entry menu. Allow only queries which do not
disaggrega.te the menu's parent node.
EXAMPLES:
hairsolor = ~[black, red, bald], [brown], [blond]~
human_age = ~[0-5], [6-80], [81-100], [100+]~

At a higher level of control. system security managers should identify new functional
dependencies which exist in real data. Such correlations may not be verified by the
INTEGRITY ANALYSIS mechanism when new records are inserted into a file.

Some general techniques for finding these functional dependencies or EQUIVALENCE
PATHS include:

1. System security managers should analyze databases of similar populations to find such
dependencies. [17]
2. System managers should recognize "obvious" functional dependencies when partition
ing database objects by security class. [3]
3. Users should be denied access to subsets of the database about which they have some
prior knowledge. [3]
EXAMPLE: A user may not read census data about the census tract in which he lives.

To reduce the complexity of finding new functional dependencies in real data: [17]

1. The system security management may randomly select a small subset of the record
instance population of a database. Correlations found in this subset may be assumed

-13-

valid for the entire database.

2. Accept correlations within a given confidence interval. Although a relationship in real

data may not be valid for all record instances, it may be useful to an imputer.

Chin and Ozsoyoglu [3] have suggested that a theorem-prover be used to find infer
ences which are based on "well-known" facts. If feasible, expert systems should be

developed and implemented as a required database design tool.

In conclusion, threats from uncontrolled read access to database documentation are

dependent on the specific population represented. This class of inference control
mechanisms cannot be implemented by the vendors of a database management system

for all installations. Similarly, only measures to control the "obvious" functional depen

dencies may be implemented at the record definition level. The characteristics of each
local population must be evaluated individually. [17]

4. USERINTERFACE

The terminal interface provides several variables which may assist "expert" users to

form inferences about real data and about security subsystem data.

This category of threats has traditionally been associated with the COVERT INFORMA

TION FLOW problem. [16] Trojan Horse procedures and other user-written routines may

cause the fiow of data or analogs of data to a user interface. However, this section will
present a unified approach to some unintentional design weaknesses in statistical data-·
base systems, which cause covert fiow. Section 5 will present some database design prin

ciples to block the implementation of such user-written procedures at run-time.

The m~st sensitive data value that may be inferred through the user interface, is a
bound for the size of a set of homogeneous records. A user may know that several queries

were rejected because the group-size parameters were outside of the range imposed by

the QUERY SET SIZE THRESHOLD RULE. [17] This information allows the user to form a

GENERAL TRACKER to isolate additional "small" subsets of records. [10]

The values of other sensitive parameters may also be inferred through the user inter
face. These include legitimate system user names, and verifications of the existence of a

data object.

Therefore, inference control at the user interface, should attempt to conceal the
QUERY FAILURE POINT. [17] As the query is being processed, il may fail for any of the fol
lowing reasons:

1. Invalid user name at log-in
2. Invalid authentication parameters submitted at log-in

3. Syntax error in the query language statement
4. Invalid data object name referenced

5. Invalid access function referenced
6. Access privilege request has not been granted to this user

7. Invalid authentication parameters submitted for this access request
8. Flow policy violation

9. Statistical aggregate requested has not been pre-computed in a partitioned database

10. Statistical inference control violation detected

-14-

v

To reduce system processing costs, a user should know that an on-line terminal ses
sion was unsuccessful because of an improper log-in protocol sequence. (However, no
failure reason need be given for a hatched query submitted by an operator.) Similarly,
on-line documentation should be provided by the database management system vendor,
to assist in the formation of syntactically correct query statements.

An interactive user terminal interface provides four variables which allow "expert"
users to form inferences:
1. On-line turnaround time [23]

v 2. Accounting statistics [16]
3. The error message received [27]
4. The failure point of an interactive protocol sequence [17]

The PERTURBATION and SUPPRESSION of these variables may be controlled through
the front-end of a database management system.

The user may gain valuable information from the ON-LINE TURN-AROUND TIME.
Morris and Thompson [23] observed this phenomenon when the log-in protocol

< user_pame, literal_password >
was submitted to an early version of the UNIX operating system. The turn-around time
was much faster for an invalid user name than for a valid user name and an invalid literal
password.

To delay (or PERTURB) the on-line turn-around time, the system may execute a pro
cedure of the form:

delay := 1Q6 • (expected..Jurnaround...lime - f(queryJailure_J)aint));
j := 0;
FOR i := 1 TO delay DO
j := j + 1 /i;

where f is a monotonically increasing
FAILURE....F.EASON_SEQUENCE.....NUMBER, and need not be linear.

function of the

ACCOUNTING DATA may be used to read analogs of privileged information which are
intentionally caused by COVERT FLOW. [16] However, several other types of inferences
m3.y be obtained from performance statistics:
1. Query failure point
2. Magnitude of a data object
3. The size of a set of records in a secondary storage data structure

As a counter-measure, end users who do not pay for computing resources, should
either receive perturbed accounting statistics, or should not receive any such parame
ters.

A single error message "REQUEST DENIED" should be issued for all query failure rea
. sons. Otherwise, a user may determine if the failure was caused by a non-existent data
object, a non-existent access privilege grant, or a statistical inference violation2• [27]

Therefore, the following interactive sequence should be completed for all users for all
queries. [17] Appropriate time delays should be induced between system prompts. This

-15-

may be construed as suppression of the query failure point.

System: User name? [Log-in only]
User: My_name. [Log-in only]
System: Literalpassword? [Log-in only]
User: !Jy_J>assword. [Log-in only]
System: Response e: t" WELCOME', "REQUEST DENIED'~ [Log-in only]

System: Query text?
User: !Jy...JJuery.
System: Transform <a1 •... ,an>

User: fuser(a 1, ... ,an, current..Jime}
System: Query_answer E: Unformation_flequested, "REQUEST DENIED'~

The cost of inference controls at the user interface is justified by the PRINCIPLE OF
INVISIBILITY: "Inaccessible data objects should be indistinguishable from non-existent
data objects." [12]

Therefore, all· four interface variables should behave in a time-independent and
query-independent manner. The performance of the user-interface should be monitored
and perturbed by a security subsystem at this level. Vendors of database management
systems should produce products which provide protection at this level. [17],[18]

5. THE CONFINEMENT PROBLEM

COVERT FLOW is a generic term for information which flows from a privileged state
through channels which are "not intended for information transfer". [16] The transmis
sion may be of actual data values or of analogs. The processes of converting data to ana
logs and analogs to data, have been referred to as INFERENCES. [7] This section will
briefly suggest ways in which improved software engineering practices may reduce the
threat of covert flow in database management systems.

Techniques for covert flow by analog include reading the program status word, print
ing a variable number of carriage returns, and varying the system load as a boolean
sequence over time. A Trojan Horse procedure may substitute analogs of protected
values in place of accounting statistics. [16] These transmission channels should be
regarded as data objects. Access to them should be controlled by system security policy.

The accepted counter-measures to covert fiow, include program certification at
compile-time, auditing, suppression of accounting data, increasing the band-width of the
data paths, and periodic validation of the object module image in main memory.

In a database management system, user programs may attempt to generate analogs
by unauthorized access to files or to functional units of the DBMS. To reduce the oppor
tunities for this type of intruder, the following design principles should be implemented:
[17]

1. Require that a main driver procedure access all DBMS functional units at a maximum
distance of one subroutine call. This decreases the probability that implicit EXECUTE

-16-

access grants will cause procedures to execute in an inappropriate sequence3.

2. Require that, when possible, absolute branch addresses should be substituted for sub
routine call and return instructions. This measure also reduces the threat of implicit
EXECUTE access grants to untrustworthy procedures.

3. Database functional units should be required to SCRUB (or set to zero) all registers,
variable storage blocks in main memory, and temporary disk files, when control is relin
quished. This sanitization technique prevents covert flow through STORAGE CHANNELS.
[13], [16]

The ultimate solution to the confinement problem, is a dedicated database machine.
[21] However, the secure database kernel is a reasonable alternative for a multi-user sys
tem. [18]

6. CONCLUSIONS

An inference is the process of transforming unclassified data values into confidential
data values. Most previous research in inference control has studied the use of statistical
aggregates to deduce individual records.

However, several other types of inference are also possible. Unknown functional
dependencies may be apparent to users who have "expert" knowledge about the charac
teristics of a population. Some correlations between attributes may be concluded from
"commonly-known" facts about the world. Database . security managers have ignored·
these "obvious" relationships. Similarly, within a single record structure, different popu
lations may have extremely different characteristics. To counter this threat, security
managers ,should use random sampling of databases of similar populations, as well as
expert systems. [17]

"Expert" users of the DATABASE SYSTEM may form inferences from the variable per
formance of the user interface. Users may observe on-line turn-around time, accounting
statistics, the error message received, and the point at which an interactive protocol
aborts. One may obtain information such as the frequency of attribute values, and a
negative verification of the existence of a data object.

At the back-end of a database system, covert flow of inferences may be induced by
Trojan Horse procedures and other user-written procedures. As a counter-measure,
improved software engineering practices will reduce opportunities to bypass functional
units of the database system.

Most current implementations of security subsystems in database management sys
tems, are weak and inflexible. [20] The original authorization control mechanisms have
frequently been down-graded or eliminated to improve time and space complexity. [14],
[15], [20]

The term "DATA OBJECT" has been narrowly defined to include only real data records
in a database managementsystem. [5]

The security of the DATABASE and the security of the DATABASE MANAGEMENT SYS
TEM must be recognized as separate but related problems. [17]

-17-

Thus by broadening definitions and re-evaluating the cost of protection against the
cost of compromise, database designers may reduce the threats caused by lower level
inferences. [17]

ACKNOWLEDGEMENTS

The authors wish to thank Zbigniew Michalewicz for a draft of his paper [22] which
provided the original motivation for studying lower level inference control. Arie Shoshani
was helpful in suggesting improvements for the final revision. Virginia Sventek provided
assistance with graphics in the preparation of the final revision.

-18-

"

,0

FOOTNOTES

1. However, individual records are usually not physically present in statisti
cal database systems such as SUBJECT. Aggregates have been precomputed,
and the individual record tapes have been destroyed. [10] Thus, algorithms for
inference by performing relational algebraic operations on individual records
(such as proposed by Denning, Denning, and Schwartz [9]) are not possible.
Furthermore, most users do not possess the extensive preknowledge of individu
als in a population. Thus, it is difficult to form inferences about arbitrary small
subsets of individual records. [B]

2. However, if a query fails because of a syntax error or a system crash,
then the user should know the exact reason.

3. This principle reduces the fiexibility of C.J.Date's [5] model of three
layers of design independence in a commercial database system. Logically, Date
implies that EXTERNAL VIEWS call the CONCEPTUAL LEVEL as a subroutine.
Similarly, the CONCEPTUAL LEVEL calls the PHYSICAL LEVEL. The implementa
tion of a driver at one level. requires a programming group which reports
directly to the project manager. This unit of a database design project would
serve as an interface for communication between the EXTERNAL, CONCEPTUAL,
and PHYSICAL programming teams. Brooks [1] notes that the communications
paths between functional units in a system, will resemble the communication
paths between individuals in a programming project.

-19-:-

BIBLIOGRAPHY

[1] Brooks, F., The Mythical Man-Month (Second Edition) (Addison-Wesley, Red
ding, Massachusetts, 1982).

[2] Chan, P. and Shoshani, A., SUBJECT: A Directory Driven System for Large
Statistical Databases, in: Wong, H.K.T. (ed.) An LBL Perspective on Statisti
cal Database Management {Lawrence Berkeley Laboratory, University of
California, Berkeley, California, 1982).

[3] Chin, F.Y. and Ozsoyoglu, G., Statistical Database Design, ACM Trans. on
Database Systems 6(1) (March 1981) 113-139.

[4] Codd, E.F., Further Normalization of the Database Relational Model, in:
Courant Computer Science Symposia Series 6, Database Systems
(Prentice-Hall, Englewood Cliffs, New Jersey, 1972).

[5] Date, C.J., An Introduction to Database Systems (Second and Third Editions)
(Addison-Wesley, Redding, Massachusetts, 1977 and 1981).

[6] Denning, D.E., A Lattice Model for Secure Information Flow, Communications
of the ACM, 19(5) (May 1976}.

[7] Denning, D.E., Cryptography and Data Security, (Addison-Wesley, Redding,
Massachusetts, 1982).

[8] Denning, D.E., A Security Model for the Statistical Database Problem, in:
Hammond, R and McCarthy, J.T. (eds.), Proceedings of the Second Interna
tional Workshop on Statistical Database Management (Lawrence Berkeley
Laboratory, University of California, Berkeley, California, 1983).

[9] Denning, D.E., Denning, P.J. and Schwartz, M.D., The Tracker: A Threat to
Statistical Database Security, ACM Trans. on Database Systems 4(1) (March
1979}.

[10] Denning, D.E. and Schlorer, J., A Fast Procedure for Finding a Tracker in a
Statistical Database, ACM Trans. on Database Systems, 5(1) (March 1980).

[11] Earnest, L., Private communication to Hoffman, L., in: Hoffman, 1., Comput
ers and Privacy: A Survey, ACM Computing Surveys, 1(2), (June 1969) 92.

[12] Fernandez, E., Summers, RC. and Woods, C., Database Security and
Integrity, (Addison-Wesley, Redding, Massachusetts, 1981).

[13] Gold, B., Linde, R, Schaeffer, M. and Scheid, J., Final Report- Periods Pro
cessing vs KVM/370, Technical Report, System Development Corporation
(May 1977), referenced in: Jones, A.K., Protection Mechanisms and the
Enforcement of Security Policy, in: Bayer, R, Graham, RM. and Seegmuller,
G., Operating Systems: An Advanced Course, (Springer-Verlag, New York,
1979).

[14] Graham, G.S. and Denning, P.J., Protection: Principles and Practices, in:
AFIPS Conference Proceedings, Spring Joint Computer Conference (AFIPS
Press, Arlington, Virginia, 1972).

[15] Lampson, B.W., Protection, in: Proceedings of the Fifth Princeton Sympo
sium on Information Sciences and Systems {Department of Computer Sci
ence, Princeton University, Princeton, New Jersey, 1971}. Reprinted in ACM
Operating System Review, 8(1), (January 1974).

-20-

i/

[16] Lampson, B.W., A Note on the Confinement Problem, Communications of the
ACM, 16(10) (October 1973) 613-615.

[17] Lipton, D.L. and Wong, H.K.T., Lower Level Inferences: Security Threats from
Objects Logically Unknown to a Statistical Database, Unpublished Technical
Report in Progress, Lawrence Berkeley Laboratory, University of California,
Berkeley, California (1984).

[18] Lipton, D.L. and Wong, H.K.T., A Secure Kernel for a Database System Using
,, Flow Control for Grant Integrity, Unpublished Technical Report in Progress,

Lawrence Berkeley Laboratory, University of California; Berkeley, California
(1984).

,I ..

[19] Lipton, D.L. and Wong, H.K.T., Authentication by Keyless Hash Transforma
tion, Paper submitted to the 1984 Conference of the International Associa
tion for Cryptological Research (CRYPT0'84) for consideration of presenta
tion, Lawrence Berkeley Laboratory, University of California, Berkeley, Cali
fornia (May 1984).

[20] Lipton, D.L. and Wong, H.K.T., Security of Database Management Systems: A
Feature Analysis of Several Commercially Available Products, Unpublished
Technical Report in Progress, Lawrence Berkeley Laboratory, University of
California, Berkeley, California {1984).

[21] Lipton, D.L. and Wong, H.K.T., A Database Perspective on Computer Security,
Unpublished Technical Report in Progress, Lawrence Berkeley Laboratory,
University of California, Berkeley, California {1984).

[22] Michalewicz, Z., Functional Dependencies in Statistical Databases, Technical
Report, Department of Computer Science, Victoria University of Wellington,
New Z~aland (1983).

[23] Morris, R and Thompson, K., Password Security: A Case History, Technical
Report, Bell Laboratories, Murray Hill, New Jersey (April 1978).

[24] Olsson, 1., Protection of Output and Stored Data in Statistical Databases, in:
ADB-Information 4 (Statistica Centralbyran, Stockholm, Sweden, 1975),
referenced in: Denning, D.E., Cryptography and Data Security, (Addison
Wesley, Redding, Massachusetts, 1982).

[25] Saltzer, J.M. and Schroeder, M.D., The Protection of Information in Com
puter Systems, Proceedings of the IEEE, 63(9) {September 1975) 1278-1308.

[26] Schlorer, J., Identification and Retrieval of Personal Records from a Statisti
cal Data Bank, Methods of Information in Medicine, 14(1) (1975).

[27] United States Department of Labor, Employment and Training Administra
tion; Computing Division, Lawrence Berkeley Laboratory, University of Cali
fornia; and National Technical Information Service, U.S. Department of
Commerce, Report 3: Social Indicators for Planning and Evaluation, 1980
Census of Population, Technical Report LBL-15850, Lawrence Berkeley
Laboratory, University of California, Berkeley, California {April 1982).

[28] Wiederhold, G., Database Design (McGraw-Hill, New York, 1977).

[29] Woodfill. J., Segal, P., Ranstrom, J., Meyer, M. and Allman, A., INGRES Version
7 Reference Manual, Memorandum No. UCB/ERL M81/61, Electronics
Research Laboratory, College of Engineering, University of California,
Berkeley, California (August 27, 1981).

-21-

[30] Yu, C.T. and Chin, F.Y., A Study on the Protection of Statistical Databases,
in: Proceedings of the ACM SIGMOD International Conference on the Manage
ment of Data (Association for Computing Machinery, New York, 1977).

[31] Chin, F.Y. and Ozsoyoglu, G., Auditing and Inference Control in Statistical
Databases, Technical Report, University of California, San Diego, California
(December 1980), referenced in: Denning, D.E., Cryptography and Data
Security (Addison-Wesley, Redding, Massachusetts, 1982).

[32] Dalenius, T., Toward a Methodology for Statistical Disclosure Control, Statis
tisk Tidskrift, 15 (1977) 429-444, referenced in Denning, D. E., Cryptography
and Data Security (Addison-Wesley, Redding, Massachusetts, 1982).

[33] Hoffman, L.J. and Miller, W.F., Getting a Personal Dossier from a Statistical
Data Bank, Datamation 16(5) (May 1970) 74-75.

[34] Cox, L.H., Suppression Methodology and Statistical Disclosure Control, Jour
nal of the American Statistical Association, 75(330) (June 1980) 377-385.

-22-

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

~ ..w;;:

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

....... -:-:-~·

