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Nec ratio solis simplex et recta patescit
quo pacto aestivis e partibus aegocerotis
brumalis adeat flexus, atque inde revertens
cancri se ut vertat metas ad solstitialis,
Tunaque mensibus id spatium videatur obire
annua sol in quo consumit tempora cursu

non inquam simplex his rebus reddita causast.

Lucretius, De rerum natura V 614-620

And it is not clear nor simple how the sun moves from
the hot to the cold regions from solstice to
solstice, nor how the moon in a month covers the

s Journey that the sun covers in a year. There is not
a simple explanation at hand for this.

This work was supported by the Director, Office of Energy Research, Division
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the
U.S. Department of Energy under Contract DE-AC03-76SF00098.



iii

CONTENTS

1 INTRODUCTION

2 ROLE OF ENTRANCE CHANNEL ANGULAR MOMENTUM IN EXIT CHANNEL
DISTRIBUTIONS
2.1 Angular Distributions and the Classical Deflection Function
2.2 Width of the Angular Distributions: Quantal or Statistical

Fluctuations?

2.3 Angular Distributions as a Function of Mass Asymmetry
2.4 Rigid Rotation and Angular Momentum Fractionation Along the

Mass Asymmetry Coordinate

3 THE EXCITATION OF ANGULAR MOMENTUM BEARING MODES AND THE PARTITION

OF ANGULAR MOMENTUM BETEWEEN ORBITALFAND INTRINSIC

3.1 The Rotational Degrees of Freedom of the Dinuclear Complex

3.2 Angular Momentum Misalignment

3.3 Angular Distributions of Sequential Fission and of Sequential
Light Particle Emission

3.4 Gamma Ray Ahgu]ar Diétributioné

3.5 Experimental Spin Alignment From Gamma-Ray Angular Distributions

3.6 Experimental Data From Sequential Decay
3.6.1 Sequential Alpha Emission

3.6.2 Sequential Fission

4 MORE AMBITIOUS MODELS
4,1 Time Dependent Hartree-Fock Model
4.2 Coherent Surface Excitation Model

4,3 Transport Models

-10.

10

17
20

24

29
29
34

35
P
44
48
48
49

51
51
51
52



5 CONCLUSION

LITERATURE CITED

FIGURE CAPTIONS

FIGURES

iv

56

58

67

73



1 INTRODUCTION

Nuclear science, not unlike other human endeavors, has been both
developed and defined by the tools at its disposal. As late as the early
1970's most accelerators provided a limited range of projectiles, typically

3He and 4He. The picture of nuclear

protons, deuterons, tritons,
reactions painted by means of these projectiles was remarkably one-sided,
with hardly anyone noticing it. The extreme polarization that ensued can be
appreciated in ferms of the following modern classification. Two classes of
processes were unveiled and studied: On the one hand, the elastic and the
nearly elastic reactions involving elementary excitations of the target; on
the other, the complete amalgamation of the projectile and the target giving
rise to a fully equilibrated intermediate, or compound nucleus.

The former reactions were instrumental in defining the optical potential
and the shell-model picture. Spectroscopy was the vogue, and anything not
looking like a peak, and sharp at that, was inexorably discarded as annoying
"background." Barely saved from such a "subtracfipn" of background were some
bro;;'st;ﬁétures like the single particle "strength" and the giant dipole
resonance because of special interests and special projectiles, respectively.

The latter reactions, of a more democratic nature, determined the
application of statistical mechanics to nuclear physics. The cavalier
treatment of matrix elements, spectroscopic factors and the like, made
possible the recognftion and the treatment of particle evaporation spectra as
more or less continuous entities, as well as of statistical branching ratios

and excitation functions, but created a great chasm and an unsympathetic

atmosphere between the two areas.



0f a special interest in the second class of reactions was the process of
fission which, by involving the coherent motion of many particles at a time,
earned the scornful derision of the spectroscopists but sensitized the
compound nucleus observers to collective macroscopic effects. With hindsight,
one can argue that the polarization between spectroscopy and equilibrium
statistics was more in the mind of the practitioners than in the experimental
spectra. The presence of large cross sections in the intermediate inelas-
ticity range was well known (see for example: Kaufman & Wolfgang 1961, Galin
et al. 1970), but what is now the virgin field of "illuminated" spectro-
scopists hunting for resonances was then the wasteland of their conservative
forefathers.

The advent of heavy ion accelerators in the early seventies made
available a range of projectiles and energies leading to reactions in which
the complete fusion of the target and projectile was substantially depressed.
The room left behind by the failure to form a compound nucleus became occupied
by reactions with intermediate to complete inelasticities and with a variable .
amount of mass, charge, spin and jsospin transfer (Artukh et al. 1973, Moretto
et al. 1973, Kratz et al. 1974, Hanappe et al. 1974, Wolf et al. 1974). The
failure of two nuclei to fuse into a compound nucleus can be understood in
terms of the liquid drop model. The surface energy always favors fusion.
Coulomb and centrifugal forces oppose it. From a static point of view it is

possible to define the boundary of stability of (liquid drop) nuclei in terms

E E .
coulomb rotational
of two parameters, x = ,Y=7———, where E , E :
EEsurface ESurface coulomb surface

and E are defined for the spherical configuration and rigid rotation.

rotational
With increasing x and y, the disruptive forces increase and make the nucleus

progressively more unstable towards fission. The limits of stability
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(Swiatecki 1972, Cohen et al. 1974), corresponding to the fission barrier

going to zero, are shown in Figure 1.

Unfortunately statics is not sufficient to establish whether two

- colliding nuclei are going to fuse. Dynamics plays a vital role in the fusion

process. Early attempts (Bondorf et al. 1974, Tsang 1974, Gross & Kalinowski
1974) were made by treating the dynamics in a simplified fashion in terms of
two spherical nuclei under the action of conservative forces (Coulomb,
centrifugal and nuclear) and dissipative forces (radial and tangential
friction). The angular momentum dependent potentia]s increase with decreasing
internuclear distance. As the nuclei touch, the nuclear interaction
(proximity force) may lead to the appearance of a minimum which eventually
disappears (see Figure 2) with increasing orbital angular momentum. Fusion
criteria were then adopted on the basis of the presence of a minimum in the
relevant potential energy curve (Bass 1974) and also of a eritical distance:
(Lefort 1975, Glas & Mosel 1975). If a system can dynamically reach the
minimum, it will fuse. Tangential friction gives the additional possibility
of jumping from the entrance-channel ¢-wave potential energy curve to another
at a lower 2-wave due to angular momentum transfer from orbital rotation to
nuclear -spin. Thus, even if the entrance channel g-wave potential does not
have a pocket, the system may still fuse if friction brings it down to a
lower 2-wave potential with a pocket. These simple models have been extended
by Deubler_&~Dietrﬁch 1975, Birkelund et al. 1979, and Gross 1981.

A general theoreiica1 model of fusion and reseparation, which allows the .
two nuclei to deform, to form a neck and amalgamate, has been presented by
Swiatecki (1982). His approach explicitly considers the degrees of freedom

that allow two nuclei to fuse. Thus such a model provides the most suitable
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framework not only for the description of fusion but of reseparation as well.
Unfortunately the illustration of this model goes beyond the scope and Timits
of this work.

Even if the two nuclei do not manage to fuse, they do, of course,
interact. During the interaction phase, a variety of degrees of freedom is
called into play (Galin 1976, Moretto & Schmitt 1976 & 1981, Schroder &
Huizenga 1977, Lefort & Ngo 1979, Scott 1978, Volkov 1978, Nirenberg &
Weidenmiiller 1980). The coupling of the relative motion to the internal, or
collective nuclear deérees of freedom leads to energy dissipation, the most
manifest property of these reactions. In a similar manner, angular momentum
is transferred from orbital motion to nuclear spin. The exchange of matter
between the two fragments may lead to an evolution along the mass asymmetry
degree of freedom as well as to a redressing of a possible imbalance in the
neutron-to-proton ratio of the two fragments in contact.

These degrees of freedom, that are so intimately involved with the
nucleus-nucleus interaction, have been previously encountered in the fission
process. The attempt to study them in fission was not too successful due to
the inability of the experimenter to control the initial conditions of some
relevant variables. Rather, such conditions are statistically determined at
the fission saddle point, and thus very little variety can be observed. In
deep inelastic processes one has a broad choice of initial conditions for all
the relevant degrees of freedom. The collision energy can be varied greatly
and so can the entrance éhanne] angular momentum. The overall mass and charge
of the system is only limited by the availability of stable or nearly stable
isotopes (e.g. 238y + 248¢n heavier). The mass asymmetry can be easily

explored in its whole range from extreme asymmetry (p, a *+ nucleus) to



symmetry (Ca + Ca, Nb + Nb, Pb + Pb etc.). The equilibration of the.
neutron-to-proton ratio can be explored by exploiting either the variety of

40Ca, 48

isotopes available for a given atomic number Z (e.g. Ca,) or the
progressive increase of the neutron excess with Z, It is no wonder that so
many fission experts found the availability of such reactions a godsend and
proceeded in becoming experts in deep inelastic processes.

The experimental observations provided a very tantalizing picture of the
evolution of such degrees of freedom. While some modes seemed to relax all
the way to the equilibrium limit, others seemed to hardly evolve away from
their initial conditions. So it was soon apparent that energy was dissipated
with inelasticities covering the whole range from elastic energies to.Coulomb
energies (Artukh et al. 1973, Moretto et al. 1973, Hanappe et al. 1974, Wolf
et al. 1974). Yet, at every inelasticity the dissipated energy was divided
between the fragments proportionally to their mass as required by statistical
equilibrium (Eyal et al. 1978, Schmitt et al. 1978, Tamain et al. 1979,
Hilscher et al. 1979, Gould et.al. 1980). Similarly, the angular momentum was
found to be partitioned between orbital motion and fragment spin from pure
orbital motion all the way down to rigid rotation (Dyer et al. 1977, Glassel
et al. 1977, Natowitz et al. 1978). Also, while the neutron-to-proton ratio
was found to equilibrate rapidly (Gatty et al. 1975a & b, Jacmart et al. 1975,
Galin 1976), the mass asymmetry mode seemed to develop extremely slowly
(Moretto & Schmitt, 1976). Whatever the degree of relaxation happened to be
for a given mode, the mean value was observed to be accompanied by a
corresponding development of the width.

This state of affairs led naturally to the treatment of the time

evolution of the involved variables in terms of transport equations. The

earliest suggestions along this line were by Norenberg (1974, 1975, 1976) who
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described the energy dissipation in terms of a Fokker-Planck equation and by
Moretto and Sventek (1975) who treated the evolution of the mass asymmetry
degree of freedom by means of the Master equation. The two approaches are
related to one another and are suitable for the description of .the time
“evolution of distribution functions.

The Master Equation for a single variable describes the time evolution of

a population f(x,t) as follows:
U f(x,t) =j~dw[Ah,#)ﬂxut)—_Mx\xHTmtﬂ : 1.

where f 1is the time-derivative of f and AMx,x'), A(x',x) are the direct.
and inverse transition probabilities. The first term in the square bracket is
called a gain term while the second is the loss term. The simplicity of this
equation arises from the assumption that the transition probabilities are -

local in space and time-independent. Under these conditions the A's must - -

obey the relations required by microscopic reversibility:

Mx,x') = A(x,x')pX 2.
Mx',x) = A(x',x)pXI -3,
A(x,x') = A(x',x) ‘ 4,

where Py Py are the level densities at x,x'. This guarantees that

the system will approach equilibrium. In fact, for f = 0:



f(xl’t = oo)/f(x,t = oo) = DX./DX . ’ 5.

The Fokker-Planck equation can be simply derived from the Master
equation. If one sets x' = x *+ h and expands all the quantities in powers

of h about Ax one obtains:

2

F(x,t) = - 2w f) * 3

Q

(uzf) + .. 6.

J

X

Q

where Mysu, are the 1st and 2nd moments of the transition probabilities: -

u1=th(x,h)dh ; u2=fh2A(x,h_)dh . T,

The physics is of course contained in the A's or alternatively in MpsHg.
The justifications and the applications of these equations have been
widely discussed (Norenberg & Weidenmuller 1980). It may suffice here to
recall the two most general approaches. The first, introduced by Norenberg
(1975), calculates the transition probabilities in terms of shell model matrix
Ve]ements, while the second, employed by Randrup (1978) and Feldmeier (1982),
is based upon the one-body assumption following which the long nucleonic
mean-free path allows one to deal with the nucleons as independent particles.
In this framework mass, charge, energy and angular momentum are exchanged
and/or dissipated through the nucleon exchange between the interacting nuclei.
An even simpler approach to the description of heavy ion reactions is the
concept of conditional equilibrium (Moretto 1981). As discussed above,
certain degrees of freedom equilibrate very fast while others are very slow.

In this regime the former modes are essentially at equilibrium and smoothly



follow the evolution of the slow modes. These fast modes can be treated
within the framework of equilibrium statistical mechanics. The advantage of
this approach is the minimal amount of information needed to predict‘the
distribution of the variables under discussion. This approach has been
applied with success to the problem of energy partition between fragments
(Morrissey & Moretto 1981), to the distribution of charge at fixed mass
asymmetry (Gatty et al. 1975) and to the distribution of angular momentum
among the angular momentum bearing modes (Moretto & Schmitt 1980). The latter
problem will be discussed extensively later on.

So far we have attempted to paint in broad strokes the picture of the
field of heavy ion reactions. It may already be apparent that angular
momentum plays a very pervasive role in this class of reactions, starting from
the definition of the range in which these processes become dominant with
respect to fusion on one hand, and direct reactions on the other, and ending:
with detailed effects on most of the variables that have been explored so far.

In what follows we shall consider the role of éngular momentum both in
those modes whose excitation is associated with their ability to carry angular
momentum, as well as in other modes, like the mass asymmetry mode, which do
not carry angular momentum but whose effective potential energy is directly
affected by angular momentum through the associated rotational energy. . -

We shall begin by discussing thé effect of angular momentum on angular
distributions and we shall show how it is still possible to retain the concept
of a deflection function.in this class of reactions. We shall then proceed to
discuss how the entrance channel angular momentum is distributed or
fractionated along the mass asymmetry degree of freedom. In this way the

dependence of the angular distribution on mass asymmetry can be understood.



The introduction of the rotational degrees of freedom associated with the
dinuclear complex will allow us to discuss their thermal or statistical
excitation and tb calculate the 1st and 2nd moments of the angular moment um
associated with the fragments.

The resulting fragment éngular momentum misalignment due to fluctuations
is considered in its effects upon the angular distribution of the gamma rays,
alpha particles and fission fragments sequentially emitted by the primary deep
inelastic fragments. The experimental evidence on the first and second
moments of the fragment angular momentum is discussed in detail.

In the last section, Time Dependent Hartree-Fock, the excitation of
surface modes and transport models are discussed briefly. Finally the
spin-spin correlation is discussed theoretically and the results of dynamical

and equilibrium calculations are compared.



~10-

2 ROLE OF ENTRANCE CHANNEL ANGULAR MOMENTUM IN EXIT CHANNEL DISTRIBUTIONS

2.1 The Angular Distributions and the Classical Deflection Function

In general, the angular momentum plays an essential role in determining
the angular distributions of reaction products. 1In the case of complete
decoupling between entrance and exit channel (e.g. compound nucleus decay),
the magnitude of the orbital angular momentum carried by the emitted particle-
together with the total angular momentum determines, generally speaking, the
sharpness of the angular distribution. For instance, in compound nucleus
decay, evaporated neutrons -and protons which can carry little angular momentum
are nearly isotropic, while fission fragments which carry the lion's share of
angular momentum are strongly forward peaked, like 1/sine. In the case of
elastic scattering, such a decoupling does not exist, and a unique re]ation
can be established between the entrance channel angular momentum & (or the
impact parameter b) and the exit channel angle. e. This relation can be
obtained directly from energy and angular momentum conservation. From energy

conservation we have:

2
1 -2 L
mr® =E - V(r) - — 8.
2 2mr
From angular momentum conservation we have
L = mrzé . ' | S 9.

By eliminating the time, we obtain
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-1/2
g {2 22
de = - -——2- m £ - V(Y') —1 dr . 10.
mr 2mr

Setting w = b/r and the impact parameter b = 2(2mE)'1/2, one obtains the

deflection function 0.

b/rmin
O=m-2 Jf dw. X 11.
‘/1 - V(w)/E - w2
0
For the Coulomb potential, for instance
| 2,2,6° ' | '
0 = 2arctan |\ —5pp— . ‘ S Y8

The angular distribution is given by:

do b db

dQ = sin e(de 13.

The presence of energy dissipation and the ability of nuclei to pick up
angular momentum in the form of spin can also be dealt with within the framework
of classical mechanics. The most general formulation of the problem requires
the definition of a set of dynamical variables q,&, of the corfesponding

Lagrangian L(q,&) =T -V and of the Raleigh dissipation function

1 L] L] - . - : -
R =3 Zyuvquq“ where L is the dissipation tensor. The equation of

motion is then:

d sl alL aR . - 14.

g st _9-4+2°% _p

dt aq aq aq
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The simplest way to deal with such a problem is to consider the case of two
rigid spheres interacting through the Coulomb field and the short range
nuclear force. The friction tensor must be defined empirically or determined
from some microscopic model (Norenberg 1974). Such a simple formulation of
the problem allows one already to define the maximum angular momentum for
trapping with eventual compound nucleus formation, to determine the deflection
function for the non trapped orbits and, to establish the exit chann¢1‘
fragment spin. -

The transfer of angular momentum from the orbital motion to the fragments
rotation can divided into three regimes (Tsang 1974, Lefort & Ngo 1978).
Initially the two nuclei "slide" on top of each other and they are brought to
rest relative to one another by tangential friction. At this stage the nuclei
roll and are slowed down by "rolling" friction. When the nuclei stop rolling,
they stick, the orbital rotation and the nuclear rotation share the same '
angular velocity, and the dinuclear system rotates rigidiy. It is
interesting, but not too useful, to appreciate that, in absence of rolling

friction, one obtains the rolling 1imit, which, for spheres, implies the

following relation

, 5 v
2ro]h‘ng =7 Yinitial 15.

independent of mass asymmetry. The angular momentum of each nucleus is

defined by

—

—
—

~N

16.

A
p—

P
(A

where Ri and Ii are the nuclear radius and spin, respectively. The

rigid rotation limit on the other hand gives for the spin of one fragment:
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L 1. .
1,2 -Jl 4, + ol Initial 17.

where -%; and '92 are the moments of inertia, u is the reduced mass:
and d is the distance between centers of the fragments. For two touchihg

spheres the spin of one fragment goes from'-% 3 to

initial Linitial

as one goes from a symmetric system (A1 = A2) to a progressively more

asymmetric system. A completely fused system is of course made up of a single

nucleus and its angular momentum must be'equa1 to 2 Such a dependence

initial®
on mass asymmetry can be readily written down for two touching spheres:

2\ o2
. 5 MRy X
1 - M.M initial . 18.
FMRT + mR3) + Mi+52(R1 + Ry)

Thfs dependehce of the transferred spin on mass asymmetry has been frequently
used to verify rigid rotation (Glassel et al. 1977, Natowitz et al. 1978,
Babinet et al. 1980, Sobotka et al. 1981).

The -calculated deflection functions show two possible regimes: near-side
scattering and far-side scattering or orbiting. It is possible to verify such

predictions experimentally. A useful way to examine the experimental data is
2

to p]ot the doubly differential cross section gf%@ as contour lines in the

plane E,e. When this is done (Wilczynski 1973), as shown in Figure 3, one
notices that, rather than observing a unique relation between E and e, as
predicted by the classical models, one obtains a broad spread of energies for
a given angle and vice-versa. This means that the deflection function as well
as the energy loss are not well defined and that fluctuations, quantal or

statistical in hature, dominate the picture. Still at times it is possible to
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observe ridges which suggest that both regimes, near-side scattering and
orbiting can occur. For instance Figure 3a gives the djstinct impression that
the two ridges observed in the cross section do correspbnd td near side
scattering and far side scattering for the high energy and low energy branch,
respectively. Yet other reactions seem to indicate that near-side scattering’
alone is occurring. For this second class of reactions the angular
distribution is side-peaked at all energy losses (Figure 3b). These two
classes of reactions are qualitatively distinguished by the deflection
function which dives to negative angles in the former case and which remains
confined to positive angles in the latter.

It has been shown (Moretto & Schmitt 1976, Mathews et al. 1977) that the
product of the interaction time and of the angular velocity, which determines
the amount of forward swinging of the dinuclear system, is related to the
ratio of the c.m. energy and the Coulomb barrier E/B. Typically, for E/B >
1.5, one observes forward peaking in the angular distribution associated with
negative angle scattering and the corresponding two branches in the Wilczynski
diagram, while for E/B < 1.5 one observes side peaking in the angular
distribution or near-side scattering and only one branch in the Wilczynski.
diagram.

The definitive way to establish the above picture is to measure the
pb]arization.of the fragments spins. The polarization is defined as:

P=<T>=<2P(m) m/I> 19.
when I is the spin, m is its Z projection and P{m) 1is the distribution
of m values. If the spin transfer is induced by ordinary macroscopic
friction, then P is positive for far side scattering and negative for near

side scattering, as shown in Figure 4. The determination of the spin

E Rl
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. polarization can be made by measuring the circular polarization of the emitted
y rays. Experiments performed so far are in general agreement with the above
picture, provided one allows at times for some simultaneous near and far side
scattering due to fluctuations (Trautman et al. 1977 & 1981, Lauterbach et al.

58 160 are shown

1978). Some data obtained for the reaction Ni + 100 MeV
in Figure 5. For oxygen ejectiles one observes a large negative polarization
in the quasifelastic peak (near side scattering) evolving into a large
positive polarization in the deep ineléstic peak, as expected. Similar
results have been obtained with a different technique (Ishihara et al. 1978).
Two different techniques have been developed in order to obtain an
empirical deflection function. Wolschin (1979a)observed that the deflection

angle O 1is related to the rotation angle aAe by the relation

O initiar) = 7 - 85 ~ 8 - 20 20.
where 8, and 6, are the Coulomb angles in the entrance and exit
channel and li is the entrance—channel angular momentum. The above

equation can be written as

(2,) | 21.

where @C is the Rutherford deflection function and ON is the nuclear

part of the def]ection fuction. The latter is parametrized as

L.1%
n(ty) =8 6 T‘<§> s
gr '
where 37 s the grazing angle; 2 is the grazing angular momentum

C gr
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and 8,8 are two free parameters. The quantity & determines the deviation
of the actual grazing angle from the Coulomb grazing angle, while 8
detemines the depth of the deflection function. The two parameters & "and"
8 are fitted to the experimental gross angular distribution through the
relation

do _Zr Fop |90l | , | 23;

-1

E=E2 dSLl
Examples. of deflections functions extracted in this manner are shown in Figure
6.

Another approach is based on the assumption that the dependence between
entrance channel angular momentum and exit channel kinetic energy is monotonic:
(Schroder et al. 1978). Thus the reaction cross section can be divided up
into -energy bins and from the nearly triangular distribution of the cross
section with 2 one can assign an average angular momentum to each energy
bin. At the same time the angular distribution in each energy bin gives the
mos t probable angle to be associated with that angular momentum. The
combination of the two quantities defines an empirical deflection function, of
which an example is given in Figure 7.

It is clear that both approaches suffer from several basic criticisms.
Both methods not only do not allow for fluctuations but also assume that the
deflection function is independent of the mass of the actual fragments. The
second method leaves an ambiguity in the way one should set the energy win-
dows. In order to be correct one should be able to trace lines of constant
entrance channel angular momentum for the map of the cross section vs. energy

and atomic number. Unfortunately that would be equivalent to knowing the
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answer at the outsgt, so different approaches have been suggested. On the one
hand straight cuts have been used (Schroder & Huizenga 1977, Vandenbosch et
al. 1976), on the other lines parallel (Moretto & Schmitt 1976, Rudolf et al.
1979) to the Coulomb-1ike Tine of the peaks of the deep inelastic bump.
Neither afe justified by a theoretical simulation (Sventek & Moretto 1978).
Therefore the conclusions obtained in such a way are to be considered only

approiimate.

2.2 The Width of the Angular Distributions: Quantal or Statistical

Fluctuations?

‘;As’we'héve seen in the section above, the use of a classical Lagrangian
leads to the definition of an energy distribution function E = E(2) and of a
deflection function e = ©(1) which relate the entrance channel angular -
momentum % with the exit channel energy E and angle e. The two observables |
E,e can be correlated as can be seen in the so-called w11c;yﬁski diagrams.

2

. . 9 0
Experimentally the cross section 3o3E

the theoretical predictions, especially for small energy losses and for masses

shows at times ridgés that remind us of

near that of the entrance channel. However, even under the best conditions it
is apparent that ffuctuations substantially smear the angular distribution and |
under the worst wash out any indication of a deterministic trajectory.
Typically the experimental angular distributions vary from side-peaked to
forward peaked, frequently in the same reaction, as the system moves toward
ever more negative Q-values. Such a remarkable evolution is associated with a
proéressive increase in the interaction time on the onevhand; énd a
correspon&ing increase in the width of the orbital angular momen tum

distribution on the other. The width of the distribution can arise from two
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very different contributions, as was pointed out by Strutihsky (1973); We can
expect a diffractive contribution arising from the width of the R-paéket |
associated with the process, and a "dynamical“ contribution associated with_
the classical deflection function. The "diffractive" component can be

estimated from the indetermination principle:

1
%e,diff = Zo, - 24,

In other words, as one progressively narrows the 2-window, one observes a
broadening of the angular range covered by the angular distribution. In
particq]af, for a single f%-wave one expects to observe an angular distribution
spréad éut over an angular range of 2.

| A purely classical width of dynamical origin is associated with the

variation in scattering angle associated with the variation in &:

d

%@,dyn T dZ %

)

25.
In this case an increase in the width of the 2 distribution produces a

corresponding increase in the width of the angular distribution. The two

widths can be tombined in .quadrature:
, _
2 1 de 2
C)'9 = ——?— + <E§> UQ, . ‘ 26.

Which of the two terms dominates? It depends of course on the size of Ope A
calculation (Cassing & Friedrich 1980) performed with a purely classical
Fokker-Planck approach is unable to reproduce the width of the angular

distribution at small energy losses, as shown in Figure 8a. The deficiency of
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this approach is related to the predicted smallness of o, at small energy

2
losses. In this model the variance 02 is proportional to the temperature

T which in turn depends on the Q-value. Consequently oi tends to zero

for Q tending to zero. However the very smallness of oi at small energy
losses implies a large diffractive width., The inclusion of this quantal
effect improves the theoretical picture quite dramatically, as shown in Figure
8b, and makes it almost indistinguishable from experiment.

Interestingly enough, this is not the end of the story. A different
calculation (Feldmeier 1982) based upon a one-body diffusion model is quite
realistic even at small Q-values despite the absence of quantal fluctuations,
as shown in Figufe 9. The introduction of quantal fluctuations hardly changes
the picture, since the angular distributions are not appreciably broadened.
The reason for this apparently contradictory behavior lies in the large

dynamical o, predicted by the one-body diffusion model even for small Q

L

values. This large o, generates a large "dynamical" contribution to oé.

£

However, the same large o, implies a small "quantal" fluctuation. Therefore

L
the introduction of quantal effects changes the picture almost imperceptibly.
For 1arge'energy losses, thermal fluctuations are almost certainly
respohsib]e for a great part of the effect. At the very least, they are
simple to esfimate. One of the possible fluctuations is associated with the
angular momentum trade-off between orbital and intrinsic rotation (Moretto & '
Sobotké'1981). Given a total angular momentum I and a given orbital angular

momentum 2, the rotational energy for a dinucleus composed of two equal

touching spheres is:

~N

2
) 1 I 1 1 :
ER = —x + H - n where j* = ———Zud + m ’ 27.
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o being the moment of inertia of one of the two spheres, u the reduced méss of
the system, and d is the distance between the centers of the two spheres. The

statistical distribution in 2 at fixed I at a given temperature T is

D172 22 e 2 O
CP(R)de = (2 T)" " Cexp - [ — e 1T =1 28.
2T T 80°T

This distribution at fixed I has the following variance

o = Bt . | 29,

| Additional 2 fluctuations at fixed I can arise if the two fragments are

allowed to deform (Moretto & Sobotka 1981).

2.3 Angular Distributions as a Function of Mass Asymmetry

| One of the more complex and less understood problems in heavy ion -
collisions is the distribution or fractionation of the entrance channel.
angular momentum along the‘mass asymmetry coordinate. This distribution is
also ref]ected.in the angular distributions of the fragments as a function of
mass asymmetry, although in a very complex way. Experimentally the angular
distributions are seen to be either forward peaked (Moretto et al. 1975) or
side peaked (Hanappe et al. 1974). At times there is a smooth evolution from
side peaking to forward peaking in the same reaction (Artukh et al. 1973) as
one moves away from the entrance channel mass asymmetry or towards greater
energy dissipation. An example of this evolution is given in Figure 10 for the
reaction 620 MeV Kr + Au (Moretto et al. 1976). The angular distributions
evolve from side peaked near Z = 36 to forward peaked as one moves away,

either way, from Z = 36.
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A single approach employing the Fokker-Planck equation nicely illustrates
most of the important bhysics. For heavy systems and for asymmetries between

the Businaro-Gallone mountains, the mass asymmetry potential is approximately

parabolic for a broad range of angular momenta (Moretto & Schmitt 1976). Thus

one can readily make use of the analytical solution of the Fokker-Planck
equation in a parabolic potential (Moretto 1978) to calculate the chafge
distribution ¢(Z,t).

Both the mass asymmetry potential energy and the diffusion rate depend
upon the interpenetration of the fragments and their shapes. Furthermore,
calculations of the interaction time T require knoﬁledge of the dynamics.
In the absence of detailed information concerning the time evolution of the
system, we shall limit ourse]ves to an extremely simplistic approach which
nevertheless ciosely reflects the experimental data (Moretto 1978).

Let us first assume that the time-dependent curvature of the mass
asymmetry potential can be replaced by a time-independent quantity which
reflects the average shape of the system. Since we know that the mass
asymmetry potential for interpenetrating spheres can qua]itative]y explain
many of the experimental features, we shall make this assumption. The
curvature is then easily obtained from a parabolic fit to the ridge line
potential as calculated from the 1iquid drop model. The‘diffusion rate can be
estimated in terms of the nucleonic fluxes.

The radial potential can be written as

hZQZ ‘
V(D) = vprox * d +-20(£T : 30.

.9(2) being the appropriate moment of inertia.
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It is not very clear how much the fragments must interpenetrate before
the above equation breaks down. This makes it difficult to formulate the
dynamical problem. We shall just use the above potential to calculate the
average force FR(Q) at the interaction distance dinte From the
knowledge of the reduced mass u, the radial velocity Vo and the radial

force F, for each & value at the interaction radius, one can introduce

R
the following two ansatz for the interaction time 1 and the average

interpenetration x of the fragments:

2
2uv 1/2 2 1/2 ny
- 2 -
t(8) = % - 2[2“(EF B)] 1 - —5— . R =3 . 31.
R R Qmax R

In a more serious attempt to fit the experimental data one could resort to a
more detailed dynamical calculation. Obviously, it is a trivial matter to
substitute the above ansatz with more reliable expressions. The diffusion
along the asymmetry coordinate is then allowed to proceed with a form factor
dependent upon X(2) for a time T(2).

The tangential motion is treated assuming for the equation of motion the
simple form:

FT = uy(wo -w . ) 32.

rig

where g and “rig

are the two limiting orbital angular velocities
corresponding to siiding and sticking. The constant y 1is chosen to
approximately reproduce the mean kinetic energies as a function of angle,

assuming that all of the radial energy is lost.
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The interaction times calculated for the reaction Au + Kr at three
energies are shown in Figure 1la as a function of angular momentum. There is
good experimental evidence for the angular momentum dependence predicted by
our ansatz. It is interesting to notice the rather mild increase in the
average lifétime with increasing bombarding energy. The average deflection
function is also shown in Figure 1la. Notice the well-pronounced deep
inelastic rainbow (minimum in the deflection function, which yields a maximum
in the angular distribution),which moves from positive to negative angles as
the bombarding energy increases. The 600 MeV curve predicts a rainbow angle
of about 50° in excellent agreement with experiment. The movement of the
rainbow angle towards smaller and eventually negative angles results from the..
combination of three factors: (i) increasing lifetime, (ii) increasing
angular momentum, (iii) decreasing average moment of inertia due to the .
increasing average penetration.

At this point the cross section can be calculated as a function of exit.
channel asymmetry for each £ wave. Summing over & waves yields the
angle-integrated charge distribution. In figure (11b) the calculated.
angle-integrated Z distributions are compared with experiment for the
reaction Au + Kr at 620 MeV. The agreement is reasonable over more than two
orders of magnitude.

~ The angular distributions can be calculated from the angular deflections
of the fragments during the interaction and from their def]ectioh in the
Coulomb field. Angular distributions for the Kr + Au reaction are shown in
Figure 11c. . The theory nicely tracks the experiment in predicting
forward-peaked angular distributions at small Z values which develop into

side-peaked angular distributions close to the projectile. For Z values above
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the projectile, the angular distributions slowly lose their side peak and
become forward-peaked. The satisfactory agreement with both the Z
distribution and the angular distribution shows that the calculated dependence
of the interaction times and of the diffusion constant upon angular momentum
and radial velocity is reasonably good. Even better agreement should be .

expected with a more realistic treatment of the dynamics.

2.4 Rigid Rotation and Angular Momentum Fractionation Along the Mass

Asymmetry Coordinéte

It has been shown above that the limit of rigid rotation can be tested by
observing the dependence of either the spin of one fragment or of the sum of -
the moduli of the spins of both fragments upon mass asymmetry. Historically
this was the way in which rigid rotation was first demonstrated. Compound
nucleus studies (Diamond & Stephens 1980) have shown that, under optimal

circumstances, the spin of a nucleus can be inferred from the number of y rays

emitted in any given reaction (y-ray multiplicity). The reason for this lies =~

in the fact that the majority of the angular momentum is removed by stretched
E2 y-ray transitions, so that each E2 transition accounts for two units of

angular momentum. In general one obtains a relation of the form
I =2(M - a) 33.
where 1 1is the average angular momentum, MY is the measured average

y-ray multiplicity and a« 1is the number of "statistical" transitions that can

be inferred from the y-ray spectrum and that are weakly related to spin.
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The measurement of the MY associated with heavy ion reactions‘allows
one to -infer the sum of the moduli of the spins of both fragments. . Early . -
measurements of -MY as a function of energy loss (Figure 12a) depicted an
initial strong increaée across the quasielastic region followed by saturation
in.the deep inelastic region (Bock et al. 1977, 0Ilmi et al. 1978, Regimbart et
al. 1978). . At large energy losses, 0Imi et al. (1978) pointed out that the
spin transfer exceeded.the classical sticking 1imit (Figure 13), but were well
described by a diffusion model which included statistical -fluctuations of the
dissipated angular momentum (Wolschin & Norenberg 1978).

Measurement of MY as a function of the fragment mass or charge allows ' -
one to verify whether the 1imit of rigid rotation is in fact attained. Some -
measurementé (Glassel et al. 1977 and Natowitz et al. 1978) presented in -
Figure 14 show that, indeed, MY; increases rapidly with increasing mass -
asymmefry, or decreasing atomic number of the detected fragment, thus .
verifying the rigid rotation limit. However, measurements on heavier systems
(Figure 12b) show that MY is essentially constant with the atomic number
of oﬁe of the fragments (Bock et al. 1977, Aleonard et al. 1978, Olmi ét al.
1978, Gerschel et al. 1979, Christensgn et al. 1980). ‘

The lack of rise of the MY ‘with increasing asymmetry may, at first,
suggest that the rigid rotation limit is not established and that some
intermediate fe]axation stage is prevailing. Thjs is not easy to accept in
view of the extensive relaxation observed in the kinetic energy spectra away
from the entrance—channé] mass asymmetry. It is significant that the .
reaction§ exhibiting the rise of the MY typical of rigid rotation are
associated with a narrow angular momentum window, while the other reactions

are associated with a very broad angular momentum range. Therefore it is
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possible to explain the lack of rise of the MY and still retain the rigid
rotation 1imit if, as it is the case, the process is associjated with a broad ¢
window. In such casesarather more stringent condition. is required in order
to obtain the rise in MY signalling rigid rotation, namely that each 2
wave populates all mass asymmetries uniformly. This condition is not realized
even in the equilibrium 1imit and it should not be expected to occur in the
non equilibrium regime which is known to prevail for the mass asymmetry mode.
It is known from a variety of considerations that the interaction time
(Agassi et al. 1978, 1979), T, or the lifetime of the dinuclear system is a
decreasing function of the entrance-channel angular momentum as shown, for
instance in Figure 1la. The diffusion along the mass asymmetry coordinate can:
be characterized in terms of a gaussian whose centroid is drifting downhill on
the potential energy surface and simultaneously spreading. If we consider the
drift negligible, as can be observed in several circumstances, we can describe

the mass ‘distribution for a given 2 wave as given by a gaussian with a variance

012\ - cf\ (t(2)) . 34,

For a large %-wave we expect a narrow distribution while for a small
2-wave we expect a much broader distribution., Therefore a sample of the
angular momentum near the entrance channel asymmetry should show a
predominance of the high f-waves, while far from the entrance channel, at
greater asymmetries progressively lower g-waves should be sampled.

As a consequence the mean total angular momentum is expected to decrease
with increasing asymmetries. This decrease may well be sufficient to

compensate for the rise in spin imposed by rigid rotation, as the asymmetry
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jncreases. This ‘is quantitatively borne-out by diffusion calculations (Fjgure
12b) that include the angular momentum dependence of.the interaction time
(Regimbart et al. 1978, Wolschin & Norenberg 1978).

Angular momentum fractionation can occur not only due to the differential
spreading of -the various g-waves, but,can occur, in special cases, due to the
change in driving forces with increasing angular momentum. The total energy

of the system, including the rotational energy as a function of mass asymmetry

is given by
22
E(X,A,QI) = E(X,A)LD+W . 35.
The driving force is
S8 I BRI SR TFV 36.
X dx Zo(x)z dx
A, - A

If we define x = Kg—;—il and notice that~ﬂ(x) decreases monotonically in
1 2

going from 0 to 1, we see that that the centrifugal effect contributes a force
that tends always to restore the system to symmetry.

The combination of the 1iquid drop and centrifugal terms is illustrated
in Figure 15a where the potential energy is given as a function of mass
asymmetry for a number of f%-waves (Moretto 1982). The system chosen in the
figure is Ar + Tb and all the curves are normalized at the entrance channel
asymmetry. It is evident that it would be quite difficult for the high
2-waves to populate the greater asymmetries to the left of the entrance
channel asymmetry, while it would become progressively easier for the lower
2-waves. The experiment, shown in Fig. 15b,illustrates this effectively. The
gamma ray multiplicity, which seems to rise going from right to left, as

expected for rigid rotation (except for the sharp wedge at the entrance
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channel asymmetry due to incomplete angular momentum relaxation) actually
takes a steep plunge to the left of the entrance-channel mass asymmetry,
indicating that only low g-waves are feeding that region. The same figure
portrays a calculation (solid dots) that incorporates the physics discussed

above and that fits the experimental data satisfactorily (Moretto 1982).
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3 THE EXCITATION OF ANGULAR MOMENTUM BEARING MODES AND THE PARTITION OF-
ANGULAR MOMENTUM BETWEEN ORBITAL AND INTRINSIC

3.1 The Rotational Degrees of Freedom of the Dinuclear Complex

Many of the degrees of freedom of the dinuclear system can carry angular
momentum. If we simulate the dinuclear system with two equal touching spheres
(Moretto &_Schmitt 1980), these degrees of freedom can be easily identified
(Figure 16). Let us fix a reference frame with the x-axis coincident with the
line of centers and the y and z axes perpendicular to it. The two "bending"
modes correspond to a rotation of one fragment parallel to the y?pr Z axis
associated with an opposite rotation of the other fragment. The “twisting"
modes correspond to a rotation of one fragment about the x-axis associated:.
with an opposite rotation of the other fragment. The two "wriggling" modes
are rotations of both fragments parallel to the y'or z axis compensated by a
counter-rotation of the system és a whole about the same axis. Finally the
"tilting" mode describes the inclination angle of the total angular momentum
with respect to the x-axis.

The excitation of these modes may occur through a variety of mechanisms.
For instance one of the two wriggling modes can be excited by a coupling with
the relative motion mediated by tangential friction. Similarly
multipole-multipole Coulomb and nuclear interactions, as well as particle
exchange, can be responsible for this excitation. In general, since these
collective modes are not exactly normal but areyweakly coupled to the
intrinsic modes, they can be "thermally" excited.

As an example, let us consider the relaxation of one wriggling mode that
leads to the equilibration of the intrinsic rotation and the orbital

rotation. If the total angular momentum is I and the spin fragment is s, the
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energy for an arbitrary partition between orbital and intrinsic angular

momentum is

2 2 2
(I - 2s) 2s- [ 2 1y 2 21 |
E(s) = T g =Tz Ty -2 o2
, 2ur ur ur 2ur

The first term is the orbital and the second the intrinsic rotational energy,
d being the moment of inertia of one of the two equal spheres.

The partition function is given by

7. 2
1 « f exp [-E(s)/Tlds = "—"ri? exp | - I 1 - 38.
, 29 + ur _2T(2 + urt)

The average spin for both fragments is given by

2fs exp [-E(s)/T]ds 2D
" 2s = : Z = ) I=7I=21
uY‘*‘Zﬁ

39.

where IR'= I/7 1is the spin per fragment expected from rigid rotation. The

second moment 52 is given by

2 bt a1y
ST = > > > 40.
ur- + 2'0 (ur + 2‘0)
From this we obtain the standard deviation
02 _2wr’T 10 al
O =~ 2. .- = 77 . ‘

ur '*'20
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The result in Equation 39 is temperature independent, as one should have
expected from the fagt that Equation 37 iquuédratic in s. It could in fact
be obtained by solving the equation dE/ds = 0. This result corresponds to
the mechanical limit of rjgid rotation when the orbital and the intrinsic
angular velocities ére matched.

The result ih Equation 41 could have been obtainedva]so by appreciating
that the thermal fluctuations about the average in Equation'39 are controlled

by the second derivative of Equation 37 at the minimum, or oi_: T/b,

2
b = 3 E
3],

It is important to appreciate the meaning of Equation 41. The quantity 40?

where

represents the amount of angular-momentum trade-off allowed by the
temperature, between orbital and intrinsic rotation. |

In some instances, such as in y-ray multiplicity measurements, one is
interested in the average sum of the moduli of the fragment spins.‘ Thﬁs can

be obtained from

2[3| =f 21s| exp [-E(s)/Tlds/Z , 52.

which yield;
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1/2

2 2
— T 1
2|s| = 2 -—Jﬂeél——~— expl - +
a(ur® + 28 ) urzT(ur2 + 20)
1/2 v
+ 12 erf |1 [——3 , 43,
prc + 29 prT(ur + 2)
or, in dimens ionless form,
2|5 | = 2 1 exp [—x2] + x erf (x , 44,
J*T Ve
- -1/2 _ .2 2 ..
where x = IR(-P*T) and &* = urP/(ur® + 20). The above expression is
plotted in Figure 17. In the limit of large I, one recovers Equation 39:
- 291 2
2|s|=—2———=—1. 45.
urc + 29 /
For small I,
L Z'SJ e 2 (1+x% 46.
W1 Voo
to order x2, so for I = 0 one obtains
2 1/2
< T ur _ 5T
2[s| = 2‘/5_" <—2———> - 24/ F—. 47.
ur- +

The second moment, still given by Equation 40, can be rewritten as 452 =
2D*T + 415. Notice that the fragment angular momentum at zero total

angular momentum arises from the excitation of a collective mode (wriggling)
in which the two fragments spin in the same direction, while the system as a

whole rotates in the opposite direction in order to maintain I = 0.
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The overall statistical treatment of the angular momentum bearing modes
allows us to describe the angular momentum of one of two fragments in terms of

a tridimensional Gaussian distribution in the angular momentum components

IX’ Iy, IZ
12 12 (1, -Tzf |
P(I) « exp - ——, * _X_i + , 48,
~ 20X 20y 202
where Iz is the rigid rotation component:
1. = nill 1= 11 for two equal touching spheres; 49
, = ——— 1= % qual touching spheres; - .
1 ud™ + 2'91
2 2 2 1 7 6
; ‘°x = OTw +(”Ti = 7'0T+T5‘DT =—5--9T
2 .2 2 1 5 6
Oy = OB+ Ow = '2'~DT+-]7;-~°T = —7'°T
2 2 2 1 5 6
oy = op to = FI HFIT = 7',DT . | 50.

In the case of an asymmetric system one obtains qualitatively similar results
(Schmitt & Pacheco 1982). The dependence of the three variances as a function
of mass asyﬁmetry is given in Figure 18. The presence of angular momentum
fluctuations increases the average fragment spin over the value expected from
simple transfer. An example of the role of fluctuations (Wolschin & Norenberg

1978) is shown in Figure 19.



3.2 Angular Momentuvaisalignment

The prééence of fluctuating in-plane components in the fragment-angular. .
momentum leads to a misalignment of the fragment's spin which fluctuates with -
a given amplitude about the normal to the reaction plane. The angular
momentum alignment can be expressed quantitatively in terms of the polarization

P and the alignment PZZ which are given by
m
P = <3> = <§m_‘_ P(m) m/1> = <cos e > ) 51.

3

and PZZ ) =" <.I_(ﬁ [§ P(m)m2 - I(I+1)]>I §_2< >

52.

»—;\)’ SN
o} s

where P(m) is the probability distribution of a given projection. In terms of

the o's we can obtain

P = 1 . / 53.

Such misalignment is expected to affect the angular distributions of the
particles and y rays emitted by the fragments. It is rather straightforward
to incorporate the angular momentum fluctuations into general expressions for
the angU]ar distributions. We deal first with the angular distribution of
sequential a-particles and fission fragments and later with the gamma ray

angular distributions.
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3.3 Angular Distributions of Sequential Fission and of Sequential Light

Particle Emission

We have shown elsewhere (Moretto 1975) that the angular distribution of
fission fragments and of light particles emitted by a compound nucleus can be
treated within a single framework. The direction of emissidﬁ of a decayl
product (fission fraément, a-particle, etc.) is defined by the projection K of
the fragment angular momentum on the disintegration axis.  Simple statistical
mechanical considerations show that the distribution in K values is Gaussian.

Specifically for any given K the particle width can be written as |

(Moretto 1981):

‘ 2.2 2 ‘
I o hel 1 1 K™ YdK
I‘K dK = T exp - =7 <JI—'°—> exp <—- _—?>_I 54,
(o 2KO

where T° is an angular momentum independent quantity; T is the temperature;

2
0

KE = h'2(1/-0“ - 1/.Dl)°1T;.D”, le are the principal moments of inertia
of the decaying system, with particle and residual nucleus just in contact,
about an axis parallel and perpendicular to the disintegration axis,
respective]y;«-@C is the moment of inertia of the compound nucleus.
Similarly, the neutron decay width, integrated over all the neutron
emission directions is
2,2 ‘
o 70 1™ (1 1 :
FN = FN exp - —2—.].—- <J_N- - I;) . 55.
In this expression'ﬂN =-QR + uRZ, corresponding to-lh in Equation 54, 15
the sum of the moment of inertia of the residual nucleus after neutron decay

and the orbital moment of inertia of the neutron at the surface of the nucleus.
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Let us now express the particle decay width in terms of the emission
angle a measured with respect to the angular momentum direction. Since

K =1 cosa and dK = I d(cosa) = I d, we obtain:

| | 2.2 | 2 2.\
I 0 h™1 1 1 17cos a '
I'(a)d2 = T exp |- —+ ( - ) exp|- aQ . 56.
: I I 2|<02

If the angular momentum has an arbitrary orientation with respect to our

chosen frame of reference, defined by its components Ix, Iy,‘Iz; thé
angular distribution can be eagily rewritten by noticing that
K = Icosa=1en = Ixsin 6 cos ¢ + Iysin e sin ¢ + Izcos e , 57.

where n is a unit vector pointing along the direction of particle emission
with polar ang]es e, p. If the orientation of the angular momentumhig
controlled by the distribution in Equation 48, we can integrate over'tﬁé
distribdtion of orientations and obtain, dropping angular momenfum indepéndeﬁtu

factors (Broglia et al. 1979, Moretto et al. 1981):

2.2 2. 2
I hel 1 1 1 I%cos™e
I (e,0)dQ « exp]- ——————<-—— - = > exp (- ——— ] dQ 58.
[ 2T\ ‘Dc] S(e.4) < 252(9,¢)> A

where:

52(9,¢) = Kg + (oicoszé + oisinzb)sinze + ogcosze . 59.

In Equation 58 we have set IZ = 1, in other words we have averaged over the
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orientation but we have allowed the decay width to depend only upon the
average angular momentum set equal to its z component This expression should
then be cons1dered only as a high angu]ar momentum Timit (o] << 1).

The final angular distribution is obtained by 1ntegrat1on over the
fragment angular momentum distribution which is assumed to ref]ect the
entrance-channel angular momentum distribution through the rigid rotation

condition:

P _Imax L1 A. - o | -
g . - U
@ “/ adte | | %0

Im1'n

where we have assumed TT'a Iy- More precisely:

N

W(e,8) « 2—§exp -122952—9-3 dl 61.
25 S
Imin
or
2 2

We,$) = = min exp (-A )-I—m%exp (-A__) 62
7 f " ‘MS Amin A mmn Amax i ma x

If T, -O,Vthen

=

Cane ]

Ng

o
I

g-,lx [1-exp (A)] SR B
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where

- b -4) .
\n 1

The qdantity.bn is the moment of inertia of the nucleus after neutron
emission,J}L‘is the perpendicular moment of inertia of the critical shape for
the decay (e.g., saddle point). It is important to notice that the angular
moment um dependence of the particle/neutron competition or fission/neutron
competition is explicitly taken into account through 8.

The final ingredient necessary for an explicit calculation of the angular
distributions is the quantity Kg. This quantity can be expressed in

terms of the principal moments of inertia of the critical configuration for

the decay:

-1
2 1 1 1
K = — [ = - T=0 T. 65.
0 52 <~D” 'D-l) eff °

For fission.Jeff can be taken from liquid drop calculations (Cohen et al.
1974). For light particle emission, the calculation of Jeff can be worked
out trivially. Let m, M, A be the masses of the light, residual and total

nucleus. One obtains:

d 5/3 2
eff M 2 A R
r—=<n> [“?ﬁ <R+r> ] 0o
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where r and R are the radii of the light particle and residual nucleus,
respectively.

This result is adequate if m << M and if the éharge of the light bartic]e
is small. If the charge of the light particle is not negligible, one has to
consider the shape polarization induced on the heavy fragment at the "ridge
point," as discussed in Moretto (1975). Since the shape polarization affects
the asymptotic kinetic energy of the emitted particle as well, one can in
principle utilize the particle kinetic energy spectra.to verify that the shape
of the system at the ridge point and its principal moments of inertia have
been properly chosen. Again a more complete discussion on this point is
available in Moretto (1975).

Now we are in the position to calculate both in-plane and.out-of-plane
anisotropies (Moretto et al. 1981). The in-plane anisotropy is given by:

1/2

W(g = 90°) 0 X ' |
0 . 67.

f
80
]

Since in most cases KS is fairly large, or at least comparable with'oi or

oi, it is difficult to obtain a sizable in-plane anisotropy. Even by letting
o, = 0 one needs oi =3 Kg just to obtain an anisotropy of 2! The
out-of-plane anisotropy is somewhat more complicated. For a fixed angulaf

momentum I one has:

For the usual angular momentum distribution one obtains:
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] 2. 2 \?
W(e = 90°) 1 (% % 0 - 1
Wle = 0 Tlg o BAKE+ 2(2 + o)

69.

At ¢ = 90" the anisotropy is obtained from the above equation by interchanging

oy with. o'y.

3.4 Gamma Ray Angular Distributions

Fragments with large amounts of angular momentum are expected to dispose
of it mainly by stretched E2 decay (Diamond & Stephens 1980). The relative
amounts of dipole and quadrupole radiation depends mainly upon the ability of
the nucleus to remain a good rotor over the whole angular momentum range. If
the angular momentum of the fragment is aligned, the typical angular paltern
of the quadrupole radiation should be observed. Any misalignment should
decrease the shérpness of the angular distribution. If the distribution of
the angular momentum components Ix’ Iy IZ is statistical, it is
straightforward to derive analytical expression for the angular distributions

(Moretto et al. 1981).

. For a perfectly aligned system:

W(ia) = '% (1+ cosZu); We) = 5+ (1 - cos'a). | 70.

for El1 for E2
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If the angular momentum is not aligned with the z axis, one must express a in

terms of e, ¢ which define the direction of the angular momentum vector. In

particular:
I «n I._sine cos¢ + I sin e sing + I_cose ‘
CoOS a = = i . X 5 4% RBYL z 71.
[1+1+1]
X y z

For any given I, the angular distribution is obtained by integration over the

statistical distribution P(I) of the angular momentum components:

W(e,¢) =/N(a)P(I)dI . 72.
It is not possible to obtain exact analytical expression for the general
case. However, an expansion to order °§[T§’ °§/TE’ etc.
allows one to obtain expressions in closed form.
For the dipole decay:
02 02
W(e,d) = -% (1 + cosze) + % (sin29c052¢ - cosze):% + (sinzesin2¢—cosze):%
Iz Iz
73.
Notice that there is no dependence upon 05. In the case in which o, =
o, = 9 we obtain the simplified expression:
W(e,p) = 3 (1+ cosze) + 3 (sinze -2 cosze) 23 74
) =7 7 oselz - -
z

A weak in-plane anisotropy is possible:
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2,2 2 2
W(¢ =0° o 1+ °x/Iz = 1+ % ~ ¢ : R T
W(d = 90 o - 2,2 <2 * 75. o
=90 1+ °y/Iz IZ T
The out-of-plane anisotropy is:
2 52
o (1 - 6%/T2) .
ﬁ(go - 2 —2— = 2(1 - 2:5/T%) . 76.
\ (I + o /IZ) A
For the quadrupole decay we have:
02]
W(e,9) = -% (1- cos4e) -Ag (3 sinzecoszecoszﬁ - cos4e) :%—
‘ ‘Iz
. 02 :
+ (3 sinecosZesin’ - cos” ) :%— 77,
_ 12 ) ..
Again,vno dependence upon o§ is predicted. If one assumes o, = oy =g
as before, one obtains:
W(e) = -%(1 - cos49) —~% (3 sinzecosze -2 cos4e)02/I§ 78.
and
° 2
W(0 o . t :
Ww(ao) = 4 %? . 79.
z
For the in-plane anisotropy we have:
W(g =0° - , -
W6 =90 | 1 80-
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to order 02/33. This can be easily understood. The rms misalignment
is ~o/I, thus, at & = 90°:

W(90) = 1 - cos4<90° - %) = 1- 5 . 8l.
Thus, no second order term exists. This result shows that it is very
difficult to study anisotropies in the angular momentum misa]ignmént by
means of y-ray angular distribution. The range of validity of the above
expressions is rather Timited due to the low order expansion. In particular,
the equations should not be trusted for OZ/TE > 0.05. |

2 2 2

However, if we are willing to assume Oy =9y =0,=0 then

an exact result can be obtained., For the El1 distribution one obtafns:

W(e)., = §- [1+ cose + 82(1 - D(8))(1 - 3 cos’e)] . 82.

El
For the E2 distribution one obtains:

W(Q)EZ = -% [1 - coste - 2 82{.3 sinzecosze - 2 cos’e

|
Hlw

D(B)(sinze -4 cosze)sinze}

-3 34 {4cos4e + %- sin‘e - 12 sinzecosze} (1-0D (8))] .

83.

In these equations 8 = offz and D(8) =\/§—s FEW1/2 B) where
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2 2
F(x) = e‘x/ et dt 84.

is the Dawson's integral. One can verify immediately that both expressions
behave as expected in the limits of 8 = 0 and B8 = ». The anisotropy
W(0)/W(90°) tends to 1 when 8 tends to infinity both for E1l and E2
transitions, while it tends to O for E2 and to 2 for El1 when 8 = 0.

These resu]ts are graphically summarized in Figure 20 where the
anisotropy is plotted as a function of the fraction of El radiation for
various values of czlfg. The two extreme possibi]ities‘of stretched
and non-stretched E1 decay are considered. If one has a fairly good‘
experimental idea of the amount of E1 radiation to be expected from a.given
fragment and of its degree of stretching, the measurement of the anisotropy
yields directly the value of oz/fg, which 1s of course the most direct

information about the misalignment.

3.5 Experimental Spin Alignment From Gamma-Ray Angular Distributions

Discrete y-rays in coincidence with deep-inelastic fragments were
observed to have large anisotropies, indicating a high degree of spin
alignment with the normal to the reaction plane (Van Bibber et al. 1977,
Puchta et al. 1979, Puigh et al. 1980, Mouchaty et al. 1984). Because the
deep-inelastic reaction strength is typically spread over a large number of
final products, only low lying y-ray transitions have been observed at small
Q-values with modest statistics. These limitations and problems related to
doppler broadening and side feeding have given impetus to continuum y-ray

studies.
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Early attempts to observe continuum y-ray anisotropies due to fragment
spin alignment led to surprisingly small values of the alignment parameter
PZZ (Berlanger et al. 1976, Bock et al. 1977, Natowitz et al. 1978,

Lauterbach et al. 1978, Dayras et al. 1979 & 1980, Puchta et al. 1979, Aguer
et al. 1979, Namboodiri et al. 1979, Puigh et al. 1980). The failure to
observe substantial anisotropies was due to several causes. First, to the
_presence of sizeable amount of “statistical" isotropic El transitions; second
.to the possible presence of stretched M1 transitions under the E2 bump whose
angular distribtion is exactly out-of-phase with the stretchéd E2 transitions;
third to the integration over the deep inelastic part of the Q-value spectrum
where the fluctuations are dominant and tend to decrease the alignment
substantially. Once the above causes were understood, it was easy to choose
suitable conditions under which strong anisotropies could be observed. In
particular, it is important to maximize the number of stretched E2 transitions
Sy selecting reaction products that are mostly good rotors, namely located in
the region of the heavy rare earth nuclei.

An extensive study of the continuum y-ray anisotropy in heavy ion
reactions has been carried out for the reaction Ho + Ho at 8.5 MeV/A first
(Wozniak et al. 1980, McDonald et al. 1982) and extended (Pacheco et al. 1983)
to Ho + Yb, Sm, Ag always at the same energy. The Q-value spectrum was
divided into a series of energy bins for which the y-ray multiplicity, energy
spectra and anisotropy were measured.

The sum of the épins obtained from the y-ray multiplicity as a function
of Q-value is shown in Figure 21. As in other reactions (Bock et al. 1977,
Olmi et al. 1978, Regimbart et al. 1978, Puigh et al. 1980, Christensen et al.

1980), an increase in energy loss leads to an initially rapid transfer of
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angular momentum to the fragments, followed by a relatively slow decrease as
one moves towards the greatest inelasticies. These data (Figure 21), already
corrected for the angular momentum removed by neutrons, show that the
fragments can pick up as much as 35-40h of angular momentum each. Furtherhore
there is some evidence that, at least for large negative Q-values, rigid
rotation is obtained. The scaling of the Q-value in terms of the common
fragment temperature and of the spin.in terms of the maximum spin expected for
rigid rotation collapses all the data on a single curve (Figure 22). This
scaling suggests that rigid rotation is indeed reached.

‘The anisotropy of the y-rays (in the region of the y-ray spectrum
dominated by quadrupole radiation) as a function of Q-value is shown in Figure
23. In all cases, but more visibly for Ho + Yb, the anisotropy rises
initially with increasing energy dissipation to values as high as two, and -
then declines slowly with further energy dissipation.

‘Qualitatively, ‘the rise and fall of the y-ray anisotropy with. dncreasing
energy dissipation is easily understood if studied simultaneously with the-
spin transfer. For small energy dissipations there is a small. amount of
angular momentum transferred to the fragments which in turn can be easily
depolarized by in-plane components arising from detailed spectroscopic .
effects. As the energy dissipation increases, angular momentum is rapidly
transferred to the fragments. This transferred angular momentum is aligned
and is little perturbed by the in-plane thermal fluctuating components which

increase very slowly with excitation energy (02 « T « 01/2).

The
resulting strong alignment is manifested in the substantial rise of the y-ray

anisotropy.
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A further increase in the energy dissipation does not .increase the
transferred angular momentum but it increases the excitation energy and thus
the thermal fluctuations of the in-plane components. As a consequence the
total angular momentum becomes progressively more misaligned and the y-ray -
anisotropy decreases.

Of course there are additional sources of angular momentum misalignment,
1ike particle evaporation from the primary fragments, but it appears that the
main cause of angular momentum misalignment is the "thermal" excitation of the
angular momentum bearing modes. This is shown by Figure 24 where all the
sources of angular momentum misalignment have been included with the exception
of the thermal fluctuations. The calculated anisotropies clearly over
estimate the corresponding experimental values. On the other hand, the
inclusion of -thermal fluctuations provides us with a much improved picture,
almost coincident with the experimental data, as seen in Figure 25. It should
be pointed out that the calculation uses the experimental MY as an -input for
the fragment angular momentum and uses the theory only to calculate the o's.
In this way we can extend the use of the theory even in Q-value regions where
the full equilibrium limit has not beeen attained, since it is well known
that fluctuations tend to their equilibrium 1imit a great deal faster than the
average values.

From the above analysis one can calculate the alignment for each
individual fragment, although this decomposition is far less certain than the
calculation of the anisotropy. In Figure 25 the alignment PZZ is shown for
each of the two fragments. In general alignments as great as 0;7 are observed

with the greatest alignment being associated with the heavier partner.
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3.6 Experimental Data From Sequential Decay

3.6.1 Sequential Alpha Emission

Inspection of Equations 65, 67, 68 shows that if the o's .are
comparable or smaller than Kg, it is difficult to differentiate between
uncertainties in Kg which are intrinsic to the sequential emission
process and the angular momentum fluctuations arising from the deep inelastic
process. .In the case of alpha emission Kg is indeed quite large in
comparison with the o's. As a consequence, the only quantity that one can
hope to extract from angular distribution data is the spin of the emitting
fragment (Babinet et al. 1980, Kiihn et al. 1980, Sobotka et al. 198la & b).
In studies of the reaction Ar + Ni, Babinet et al. (1980) showed that the
alphas from the Ni-1ike fragment could be isolated, that their angular
distributions were peaked in-plane and that the resulting spins agreed with
the rigid rotation assumption (Figure 26). No account was taken of the
angular momentum fluctuations. In a subsequent experiment, Kr + Ag, the
out-of -plane angular distribution of the alpha particles was measured for a
broad range of Ag-like fragments (Sobotké et al. 198la & b). The angular
distributions are shown in Figure 27a. It is apparent that the anisotropy of
the alpha particles increases with increasing asymmetry, indicating an
increase of the Ag-like fragment spin with increasing atomic number. The fit
to the angular distributions is shown in the same figure and the resulting
spins are also shown in Figure 27c. The spin fluctuations were calculated on
the basis of the thermal model described above. The measured spins are in
excellent agreement with rigid rotation if one assumes that both fragments are
prolate spheroids touching by their tips with a ratio of major to minor axes
of c/a = 2. In this way it is also possible to reproduce the exit channel

kinetic energy distribution as shown in Figure 27b.
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From the scission configuration we can reconstruct the sum of the two
spins. This quantity can also be inferred from MY, which was measured
simultaneously in the experiment. -A comparison between the sum.of the spins
measured in both ways is shown in Figure 27c.  The agreement -implies that not
only the trends but also the absolute values of the spins measured with either
technique can be relied upon. Similar agreement has also been observed in
studies of heavier systems. (Sobotka et al. 1983).

3.6.2 Sequential Fission

In the case of fission the quantity Kﬁ is comparable or smaller
than the three o's so that sequential fission can provide information not only.
about the spin of one of the fragments, as in the case of the alpha emission,
but about the degree of alignment as well (Dyer et al. 1977, Wozniak et al.
1978). The first experiment (Dyer et al. 1977), performed for the reaction

86Kr'+ Bi, showed that the sticking 1imit had been achieved. The

610 MeV
out-of-plane anisotropy is quite strong as expected due to the exponential in
Equations 61 & 68. Many other systems (Dyer et al. 1979, Puigh et al. 1979,
Harrach et al. 1979, Le Brun et al. 1982, Morrissey et al. 1982a & b) have
been studied. Alignments comparable to those extracted from the y-ray work
have been obtained (see Figure 28).

The angular distributions of y rays and a particles are rather
insensitive to differences in the in-plane projections of the random spin
component. In contrast, the angular distributions of sequential fission
fragments are more sensitive to such differences in that they can produce a
substantial in-plane anisotropy. A complete measurement of the in-plane and

out-of-plane distributions is necessary for this purpose. The anisotropies

observed in-plane (Dyer et al. 1977 & 79, Puigh et al. 1979, Le Brun et al.
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1982, Morrissey et al. 1982a & b) are much weaker than out-of-plane ones as
suggested by Equation 67. However the measurement of in-plane anisotropies is
quite worthwhile since it provides a sensitive test.for the statistical

model. In particular, as the mass asymmetry increases, the tilting mode
becomes progressively softer, thus increasing oi with respect to

oi. The dependence of the three variances with mass asymmetry is shown

in Figure 18. Thus the statistical model makes the following prediction for
the in-plane angular distribution, namely the anisotropy is expected to be
small for symmetric exit channels and to become more pronounced for asymmetric
ones. Some data are shown in Figure 29. For very negative Q-values in the
very asymmetric 20Ne + 238U reaction, the prediction seems to hold; for

more symmetric systems smaller in-plane anisotropies have been observed (Dyer
et al. 1979, Puigh et al. 1979, Zisman et al. 1982, Le Brun et al. 1982).

More measurements are needed at intermediate mass asymmetries to determine

whether the statistical model is successful even in this rather fine point.
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4 MORE AMBITIOUS MODELS

4.1 Time-Dependent Hartree-Fock.- Model

The success of the self-consistent Hartree Fock approach in describing .
Tow-1ying nuclear stationary states prompted the attempt to adapt this kind of
- calculation to the time evolution of complex nuclear systems. The resulting
theory called Time Dependent Hartree Fock (Davies et al. 1978, Davies & Koonin
1981, Negele 1982) relies on the fact (or hope) that the complicated two body
reactions can be substituted by a time-dependent mean field on which the
nucleons move as free particles. This approach, while it cah‘be considered as
fundamental as any in nuclear physics, unfortunately produces. rather 1limited
predictions. One of its most serious limitations is its inability to produce
dispersions in the relevant variables of a magnitude comparable to experiment,
thus falling short of a qualitatively satisfying description, as shown in
Figure 9. On the other hand, it appears that the mean ehergy dissipation and
the mean angular momentum transfer are reproduced more or less adequately
(Figure 30). The generalization of this model to include two-body
interactions with the expected extensive thermalizations is not technically
obvious. Still the trained eye of the experimentalist can discern in the data

the extended degree of thermalization that the present calculations have not

had the ability to portray as yet.

4.2 Coherent Surface Excitation Model

A program was undertaken by the Copenhagen group to verify the extent to
which co]1ective‘modes, excited through the mutual interaction of the two

nuclei, could be responsible for energy and angular momentum transfer (Broglia
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et al., 1978, 1979, 1982). In this approach, the surface modes are computed in
the RPA appfoximation insofar as this strength distribution is concerned .
These modes are further described in terms of ‘equivalent damped osci]]atorg.
The resu]fs are mixed. Contrary to experiment, both fragments become loaded
with approximately edual‘amount of energy: g% ] ‘22

_ v 1
energy dissipation is inadequate by a factor of ~2. The introduction of

1/3
> " and the overall
particle exchange together with the surface modes provides an adequate amount
of energy dissipatfon and of angular momentum transfer as well. The latter
result does not prove much. In a regime in which the radial energy is rapidly
dissipated, the damping of the tangential energy goes hand in hand with
angular momentum transfer. The merit of this model is that of stressing the

role of collective modes and the important microscopic connection to standard .

nuclear theory.

4.3 Transport Models

We have already mentioned some phenomenological transport theories. -The
two theories that come close fo satisfying most requirements, like the:
incorporation of é sufficient number of degrees of freedom, including that of.
relative motion, and like the microscopic qualification of the diffusion
coefficients, are that pioneered by NGrenberg (1975 & 1978), Ayik et al.

(1978), Wolschin (1979a,b,c) and Li & Wolschin (1983) on the one hand, and those
based upon one body theory promoted by Randrup (1978, 1979, 1983) and
Feldmeier (1982) on the other. Their success has also been mixed. Most
prob]ems'regarding:the mass drift and the partition of the dissipated energy
have not reached a satisfaétory solution as yet. Also many of the successful

predictions of the second moments and, at times, the first moment of dynamical
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variables as well have been preempted in their significance by the fact that
the same quantities are predicted in the equilibrium 1imit. Thus no support
can come to these theories from the reproduction of the equilibrium 1imit.

Insofar as the angular momentum partition is concerned, we have seen that
the equilibrium statistical model does a good job in describing the
experiment. However some interesting theoretical results (Randrup 1981) have
been obtained that show distinct differences between the equilibrium and the
diffusion model in predicting the spin-spin correlation between the two |
fragments. |

In order to attain statistical equilibrium of the spin'distribution
during a reaction, the appropriate relaxation times should be sufficiently
short when compared with the reaction time. In the one body picture, the
primary excitations occur through the transfer of individual nuc1éohs between
the two reaction partners. A system of Fokker-Planck equations for the
resulting evolution of the mean values and covariances of the spin
distribution in the two nuclei can be derived.

. The long-time 1imit solution to the equations is given by rigid rotation
for the mean spin vectors, and by the statistical model for the variances and
covariances. For a symmetric collision, one can obtain analytic expressions
for the characteristic relaxation times for approach towards equilibrium
(Dpssing & Randrup 1984). One should note that a different convention has been
chosen in this work. The line of centers of the dinuclear system and the
orbital angular momentum have been chosen to be the z- and y-axes,
respectively. The relaxation times for the positive spin modes (in which the
fragments are rotating in the same sense, wriggling and tilting) are denoted

by t

4+ and t_, respectively. The relaxation times for the negative
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spin modes (in which the fragments are rotating in the opposite sense, bending
and twisting) are denoted by t_ . Figure 31 shows the relaxation times

165Ho with 165Ho. This theory

calculated for the collision of 1400 MeV
predicts (see Figure 31) that the wriggling modes (t,,) are strongly
excited and reach equilibrium in most cases, the negative modes ~(t__) get
partially excited; and the tilting mode (t+z) receives only little |
excitation. These conclusions are also valid for results obtained by solving
numerically the system of equations and performing the. necessary
transformations to the external coordinate system and to distributions not
gated by impact parameters, but by total kinetic energy loss.

Figure 32 shows variances and covariances of the spins §A and §B
of the projectile-like and target-like reaction products (for example

AB = <Sls\ sB> <SQ><S§ >). The left hand part of the figure shows the

%z = 4
result obtained with the Transfer Induced Transport theory, and the right hand

part shows the predictions of the statistical model for the same collision.

The principal variances o?? within one nucleus a11 increase steadily with

TKEL (except for a slight decrease of °¢¢' at the largest TKEL; this may be

an artifact of the upper bound imposed on TKEL by the calculation). The

covariance between the spins in the two nuclei along the normal direction,

AB
Iy >

for small TKEL, and due to the contributions from quite a wide range of 2

is always positive, due to the dominance of the positive wriggling mode

waves at large TKEL. The dependence of the relaxation times on g-wave, as

shown in Figure 31, is reflected in the dependence of the in-plane covari-
ances oAB ‘and oAB on TKEL. The larger in-plane component, oAB, first

. XX 44 XX
increases to substantial positive values for-sma]] TKEL, due to the very short

relaxation time for the wriggling mode, and for large TKEL, °QE decreases
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and finally becomes rather small due to the increasing excitation of the
negative in-plane bending mode. For large g-waves, the tilting relaxation

time, t,_ , -is smaller than the twisting relaxation time- t , and the

+z

smaller in-plane component of the covariance, oég, attains small positive
values for small TKEL. ‘With decreasing £ the twisting relaxation time

becomes smaller and the tilting time longer. Consequently, with increasing

AB
971

negative values.

TKEL, changes sign .and finally, for large TKEL, attains substantial

In contrast to this behavior, the dispersions calculated with the
statistical model grow roughly as the fourth root of the total kinetic energy
loss. For the-normal variances and covariances, °¢¢ and oé?, one should
not attach so much -significance to the difference between the two results,
since part of the result in the dynamical case comes from integration over
impact parameter at fixed TKEL. A similar integration in the statistical
model would diminish the difference between the two results. The in-plane
variances and covariances, on the other hand, can be directly compared, and
here the dynamical results display a much stronger anisotropy, and a quite
different characteriétic behavior as function of TKEL, as compared to the
statistical model result, which would be obtained in the dynamical
calculations if the relaxation times all were very short.

Thus, the nucleon exchange transport model. predicts strong correlations
between the two fragment spins. The detailed structure of such spin-spin
correlations can be probed in a fission-fission angular correlation
experiment. Most notably, the existence of covariances between the two
nuclear spins implies that the detection of -fission from one nucleus breaks

the reflection symmetry of the angular correlation of fission from the other

nucleus.
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5.  CONCLUSION

We tried to show how important the role of angular momentum is in deep
inelastic collisions. Angular momentum defines the range of existence of this
very process and its boundaries as well, with compléete fusion on one side and
direct reactions on the other. The angﬁ]ar distribution of the ensuing
products is controlled by angular momentum in'more than one way. On one hand
the interaction time is angular momentum dependent, and so is the angular
velocity. On the other, the orbital angular momentum that is dissipated, as
well-as’ the dissipated kinetic energy both depend on the angular momentum.
Furthermore, the d{fferént exit channel asymmetries are fed by different 2
waves. -All this contributes to making the angular distributions dependent on
just about any variable in the Hamiltonian. The relaxation of angu]&r '
momentum leads to the secular equiTibriUm of the system which can rotate like -
a rigid 'body. However, the presence of angular momentum bearing degrees of
freedom allows for fluctuations that can misalign the aligned component of the
fragment angular momentum. The excitation of these modes can be studied
through the angular distribution of particles and gamma rays emitted by the
fragments.

The present understanding of the role of angular momentum has
crystallized in a variety of theories ranging from conditional equilibrium
statistical theories, to assorted transport theories and including Time -
Dependent Hartree Fock. At this stage it may be premature to say if any given
theory satisfies all the details brought to light by experiment. -It is also
clear that, at this point one ought to broaden the discussion to the overall

field of heavy ion collisions. Such an extension is beyond the
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scope of this publication. We just ask forgiveness if our zeal in telling the
whole story has been stronger at times than our commitment to a part of it

albeit an important one.

This work was supported by the Director, Office of Energy Research, Division
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the
U.S. Department of Energy under Contract DE-ACO3-76SF00098.
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

~all products produced in the reaction 1130 MeV

A classification of rotating systems according to the rotational
parameter y and the fissility parameter x. With increasing angular
momentum, rotating systems first deform into a flat shape (below
Yf), then into a triaxial shape (beween YI and YII)’ and

finally the fission barrier vanishes along curve YII (Cohen et al.

+1974).

(a) Potential energies as a function of r/rO for various values of

n = Q/Qmax' (b) Schematic showing the trajectories in the

: bresence of weak (full curve), moderate (dotted curve) and strong

(broken curve) radial friction (Schroder & Huizenga 1977).

Contours of constant cross section for (a) potassium ions produced

40 232

Ar + Th (Wilczynski 1973) and (b)

136 209

in the reaction 388 MeV
Xe + Bi -
(Schroder et al. 1978).

Relation between the spin polarization and the sign of the
deflection angle in a frictional co]]isionv(DUnnwebef 1982).

(a) Particle spectra in coincidence with y rays, (b) circular
polarization of ‘the energy-integrated y radiation and (c) average
in-plane/out-of-plane intensity ratio of stretched quadrupole
transitions.(Lauterbach et al. 1978).

Mean deflection function for Xe + Bi and Kr + Er at two different

incident energies (Wolschin 1979).
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Fig. 8

Fig., 9

Fig. 10

Fig. 11

Fig., 12

Fig. 13
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The experimentally deduced deflection function as a function of the
angular momentum is compared to classical trajectory calculations,
using potential and friction form factors as indicated. No
deformations are taken into account (Wilcke et al. 1980).

Wilczynski plot calculated without (a) and with (b) quantal
fluctuations (Cassing & Friedrich 1980).

Wilczynski plot calculated from a one-body diffusion model without
quantal fluctuations (Feldmeier 1982).

Center-of-mass angular distributions for products (Z = 20 - 47) from

thé'reaction 620 MeV 86Kr +-197

Au (Moretto et al. 1976).
(a) Calculated deflection functions (A, 600 MeV; B, 800 MeV; C, 1000
MeV) and interaction times (D, 1000 MeV; E, 800 MeV; F, 600 MeV) for

the reaction 86Kr + 197Au at three bombarding energies. For the

86Kr + 197Au reaction, (b) calculated (full curves) and

620 MeV
experimental (points), angle-integrated charge distributions and (c)
C.M. angular distributions for selected atomic numbers. The bhroken
curves are to guide the eye (Moretto 1978).

(a) MY vs. total kinetic energy (TKE) for the reactions 618 MeV
86Kr + 107"109Ag, 165Ho, 197Au. (b) MY vs. atomic number

for the reactions Kr + Ag and Kr + Ho. The full and open symbols
are data for a TKE gate on the deep inelastic and quasielastic
reactions, respectively. The full curves are diffusion model
calculations (Regimbart et al. 1978).

Internal spin of the fragments as a function of the entrance channel

angular momentum. The straight line indicates the sticking limit of

two spheres for the Kr - Er exit channel (0Imi et al. 1978).
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Fig. 14

Fig. 15

Fig. 16

Fig. 17
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y-ray multiplicity vs. atomic number for the reactions 175 MeV
20Ne:+ Ag (open circles) and 237 MeV-4OAr + 89.Yb (filled .

circles) {(Glassel et al.. 1977, Natowitz et al. 1978). .

(a) Potential energy vs. mass asymmetry (Z) for various f-waves. for .

0pp + 159Tb. (b) y-ray multiplicity data

the system 340 MeV
(diamonds) as a function of mass asymmetry for the same system. The
solid dots represent a diffusion model calculation using the
potential energy:surfaces in (a). | |

(left) Schematic illustrating the twisting mode and the
doubly-degenerate bending modes for a two equal spheres model. In
each case the spin vectors of the fragments (symbolized by arrows)
are of equal length but point in opposite directions.: (right)

Schematic iTlustrating the tilting mode and the doubly-degenerate

wriggling modes for the equal spheres model. The short arrows .

‘represent ‘the spin vectors of the fragments. The Tong arrows

- originating at the point of tangency of the two spheres-represent

the orbital angular momentum vectors (Moretto & Schmitt 1980).

Total spin of the fragments arising from wriggling as a function of
the spin arising from rigid rotation alone plotted in dimensionless.
form. The upper solid curve shows thé result for both wriggling.
modes while the lower solid curve corresponds to the excitation of -a
sing]e~wrigg1ing mode. Tﬁe limiting behavior for both small and
large values of x are indicated in both. cases (Moretto & Schmitt

1980).



Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24
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The variances of the normal modes of a dinuclear complex are shown
as a function of mass asymmetry of the complex. The variances are

shown in dimensionless units after division by J& T, the moment

ym
of inertia of a mass-symmetric spherical fragment times the
temperature Morrissey et al. 1982)

The total angular momentum Itot(zl) as a function of fragment

atomic number and corresponding MY data (0OImi et al. 1978) for
166

86Kr (5.99 MeV/nucleon) + Er. The solid curveAincludes
statistical fluctuations and the dashed curve does not. _
Calculated y-ray anisotropies for mixtures of stretched E1 and E2
transitions as a function of the fraction of E1 radiation for |
various values of ozlfi (Moretto 1981).

Sum of the spin magnitudes (I1 + 12) as a function of Qéva1ue

for three reaction systems (Pacheco et al. 1983).

The sum of the spins in reduced units as a function of temperature.
The angular momentum axis has been scaled according to the rigid
rotation limit (Pacheco et al. 1983).

y-ray anisotropy as a function of Q-value, for heavy ions detected
near the grazing angle. Error bars for the three systems are‘

165, , 176

similar and are only shown for Yb (Pacheco et a]!

1983).

Comparison between the experimental anistropies (open symbols) and a
calculation (solid symbols) that does not include the effect of the

thermal fluctuations (Pacheco et al. 1983).
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Fig. 25

Fig. 26

Fig. 27

Fig. 28
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(1eft) Comparison between experimental (circles) anisotropies of
y-rays (EY = 0.80 - 0.95 MeV) and a calculation based on the
equilibrium statistical model (squares) as a functioh of Q-value.
Lines are drawn through the calculated points to guide the eye.
(right) Alignment parameter PZZ as a function of Q-value, for each
of the two deep-inelastic fragments in the three reactions (Pacheco
et al. 1983).

Experimental intrinsic spins of the individual fragments compared
with the results of calculations for the sticking limit for rigid
bodies (Babinet et al. 1980).

(a) Alpha particle angular distributions (points) as a function of
out-offplane angle for several Z-bins. Each bin is 3Z units wide
and is labeled by the median Z-value. These distributions are
expressed in units of differential multiplicity and the solid curves
are fits to the data. |

(b) Center;of—mass energies as a function of the charge of the light

fragment. The curves are calculations for two equally deformed

spheroids separated by 1 fm and are labelled by the ratio of axes.

{c) Plotted are: the spin of the heavy ion fragment extracted from

the a-particle distributions (solid circles), the sum of the spins
calculated from the a-particle data (squares), and MY data (openv
circles). The size_of the solid symbols indicates the statistical
error only (Sobotka et al. 1981).

Dependence of the angular momentum J transferred to the heavy
fragment and the alignment PZZ of the transferred ahgu]ar

momentum on Q-value (Puigh et al. 1979),



Fig. 29

Fig. 30

Fig. 31

Fig. 32

]2~

In-plane angular distributions of sequential fission fragments from

20 238

the ““Ne + U system for several different Q-values (Morrissey

et al. 1983). R ,
v §4Kr_+ 208

Quantitative summary of TDHF results for the 494Me Pb

reaction (Davies et al. 1978).

Calculated local relaxation times for the reaction_1400 MeV 165Ho +

165Ho for various values of the total angular momentum 2. The
relaxation times for thé two positive perpendicular modes
(wriggling) are denoted t_, , while the one of the positive
longitudinal mode (tilting) is denoted T;Z. The relaxation time
for the three negative modes (bending and twisting) is denoted t _
(Dpssing & Randrup 1984).

The spin dispersions along the principal directions as functions of
the incurred energy loss TKEL, as calculated with the Transfer
Induced Transport theory (left) and the statistical model (right)

165, 4 165

for the reaction 1400 MeV ~-H Ho by integrating over all

2-values (Dfssing & Randrup 1984).
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