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Abstract 

THE EFFECT OF DEFORMABILITY ON FLUID FLOW THROUGH A FRACTURED-POROUS MEDIUM, 

Chin-Fu Tsang, J. Noorishad and P. A. Witherspoon 

Earth Sciences Division 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720 

A permeable geologic medium containing interstitial fluids generally undergoes deformation as the 

fluid pressure changes. Depending on the nature of the medium, the strain ranges from infinitesimal 

to' finite quantities. This response is the result of a coupled hydraulic-mechanical phenomenon which 

can basically be formulated in the generalized three-dimensional theory of consolidation. In the 

field of hydrogeology one is concerned with the fluid flow part of this coupled process. Dealing 

mainly with media of little deformability, traditional hydrogeology accounts for medium deformabi­

lity as far as it affects the volume of pore spaces, through the introduction of a coefficient of 

specific storage in the fluid flow equation. This treatment can be justified on the basis of a one­

dimensional effective stress law and the assumption of homogeneity of the total stress field 

throughout the medium. Under such assumptions the changes in permeability that can significantly 

affect the fluid flow in highly deformable media can be easily dealt with. Quasi-linearized treatment 

of a combination of one-dimensional consolidation theory and multidimensional fluid flow method is 

often used. 

However, when the homogeneity assumption of the total stress field is no longer valid, one has to 

resort to more rigorous fully coupled approaches. The inherent anisotropy and inhomogeneity of fractured 

rocks in regard to both deformational and fluid properties create the need for application of such 

techniques. 

The present paper uses a numerical model called ROCMAS (Nooriahad et al., 1982; Noorishad et al., 

1984) which was developed to calculate fluid flow through a deformable fractured-porous medium. The 

code employs the Finite Element Method baaed on a variational approach. It has been verified against 

a number of simple analytic solutions. In this work, the code is used to address the role·of medium 

deformability in continuous and pulse testing techniques. The errors that may result because of 

application of traditional fluid flow methods are discussed. It is found that low pressure continuous 

well testing or pulse testing procedures can reduce such errors. 

INTRODUCTION 

A permeable geologic medium containing interstitial fluids generally undergoes deformation as the 

fluid pressure changes. Depending on the nature of the medium, the strain ranges from infinitesimal 

to finite quantities. This response is the result of a coupled hydraulic-mechanical phenomenon • 

In the field of hydrogeology one is concerned with the fluid flow part of this coupled process. 

Dealing mainly with media of little deformability, traditional hydrogeology accounts for medium 

deformability as far as it affects the volume of pore spaces through the introduction of a coefficient 

of specific storage in the fluid flow equation (Dewist, 1966). This treatment can be justified on the 

basis of a one-dU&ensional effective stress law and the assumption of homogeneity of the total stress 

field throughout the medium. Under such assumptions the changes in permeability that can significantly 
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affect the fluid flow in highly deformable media can be easily dealt with. Quasi-linearized treatment 

of a combination of the one-dimensional consolidation theory and multidimensional fluid flow method is 

often used (Narasimhan, 1977). However, the assumptions are not valid when rapid variations of 

pressure field are taking place or when the medilml possesses strong nonlinearity and anisotropy with 

regard to different deformation moduli and fluid flow properties (Snow, 1968; Noorishad, 1971; Gale, 

1975). In such situations one needs to resort to more rigorous coupled hydromechanical analyses. 

Development of the general theory of consolidation by Biot (1941) has provided the basis on which more 

realistic attempts of predicting fluid flow behavior of deformable media have been made. In the 

following, the numerical code ROCHAS (Noorishad et al., 1982), which was developed on the basis of 

Biot's formulation, is used to demonstrate the more realistic fluid flow behavior of fractured porous 

media. It is shown how deformability affects the response of a saturated rock that is subject to 

injection or pumping. An attempt is made. to discuss ways of reducing errors in fractured rock 

parameter estimation. 

FIELD EQUATIONS OF COUPLED HYDROKECHANICAL PHENOMENA 

Field equations originally formulated by Boit (1941) in his general theory of consolidation form the 

basis for the hydromechanical analysis of the fractured porous media (Ayatollahi et al., 1983). These 

relationships for the isotropic continuum portions of the medium include the stress-strain equation, 

the fluid flow law, and the law of static equilibrium which are given as follows: 

where 

Tij • 2Ueij + A6ij6k.tek1 + a6ijP 

1 1 
~ • + a6ijeij + H P • +ae + H P 

a~ k 
~ • 9. . (9p + P.e.g9z) 
<>t n.e. 

Tij • solid stress tensor 

eij • solid strain tensor 

e • bulk dilatation equals ell + ez2 + e33 

P • fluid pressure 

6ij • Kronecker delta function 

a • Biot's coupling coefficient 

H • Biot's storativity coefficient 

~ • fluid volume strain 

k • intrinsic permeability tensor of porous parts 

ll.e, • liquid dynamic viscosity 

P.e. • fluid mass density 

Ps • average porous solid density 

fi • body force .components 

U,A • Lame's elasticity constants 

(1) 

(2) 

(3) 

Similarly for the fracture portion of the medium, the corresponding field equations are 

i,j,k. 1,2 

(4) 

• 

(. 
• 

• 
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~ • 7 .!. (P + p gz) at n .t 
(5) 

• 0 (6) 

Equation (4) is the stress-strain relationship in which ti stands for normal and tangential stress; _, 
Cjk are the components of fracture moduli (stiffness) matrix, Uk represents the average net 

tangential or transversal deformation, and 2b is the initial fracture aperture. Coefficient a 

and K are equivalent Biot constants for fractures and k is the fracture permeability. Equation 

(5) represents the fracture fluid flow law and Equation (6) balances the forces across the upper and 

lower faces of the fractures. 

The above field equations for the porous solid and the fracture, along with initial and boundary 

conditions, completely define the mixed initial boundary value problem of fluid flow in deformable 

fractured porous rocks (Noorishad et al., 1982). 

SOLUTION APPROACH 

The complexity of the phenomenon of fluid flow in deformable fractured rocks make it practically 

impossible to obtain analytical solutions except for simple problems involving linear isotropic 

porous media. Extension of the existing variational finite element method for linear elastic 

porous media (Gbaboussi and Wilson, 1971) by Ayatollabi et al. (1983) and its generalization 

by Noorishad et al. (1982) provide the numerical formation of the problem as follows: 

K U + C P • F -- -- -
~ +!! + 1*!!!. -l*g, 

where 

K • structural stiffness matrix of the fractured media 

£ • coupling matrix 

E • storativity matrix 

H • fluid conductivity matrix 

F • nodal force vector 

S • nodal flow vector 

(7) 

In above equation! and! represent the nodal displacement and pressure vectors, 1* stands for time 

integration and T denotes matrix transpose operations. 

A predictor corrector scheme is used to obtain the time marching solution of Equation (7). The 

development of the above equations and the details of the solution are explained in Noorishad et al. 

(1982). The result is the numerical code ROCMAS, which is used for the computations described below. 

APPLICATION TO CONTINUOUS FLUID INJECTION PROBLEMS 

The problea considered here, as sketched in Figure 1, is that of a horizontal fracture in a low 

permeability, rigid rock (e.g., granite) located at a depth of 100 meters. A 0.05-m-radius well 

intersects the fracture at ita center. It is assumed that the fracture encounters a region of high 

permeability capable of maintaining a constant head at a radial distance of 150m from the well. The 

rock has a density of 2600 kg/m3. The hydrologic system is at ground level hydrostatic equilibrium 

before fluid injection takes place. Other system properties are shown in Table 1. To simulate this 

problem by a two-dimensional model certain assumptions have to be made. The _overburden is replaced by 
• 
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a 10 m slab of rock with a load on its upper surface equal to the remaining 90 m of overburden. Due 

to the very small deformations involved not much accuracy is lost by ignoring the tangential tractions 

which might be mobilized at the top of the modeled slab. To ensure static equilibrium, corresponding 

in situ stress and initial pressures are input into the model. The problem is assumed to have axial 

symmetry, and its outer boundary is restricted to vertical movement only. The fracture is modeled by 

a joint element (Goodman et al., 1968) with initial stiffness of Ks • 0.5 GPa/m, Kn • 1.6 GPa/m 

and assumed to have a linear behavior in the load-deformation range under consideration. To represent 

the rock rigidity, the Young's modulus is assumed to have a value of 70 GPa. The rock is of suffi­

ciently low permeability (lo-20 m2), such that under the hydraulic conditions and the time periods 

considered the flow into the rock itself would be confined to the 10 m slab of the model. 

Constant Head Injection 

Steady state analysis: The system is pressurized by injection under 50 m of constant differential 

head. Note that the injection head is less than one quarter of the overburden stress on the fracture. 

The calculated steady state pressure profile in the fracture is plotted in Figure 2. The resulting 

steady state flow rate is 0.381 m3/sec. 

Table 1. Data Used for Various Analyses of Fracture Injection Problem. 

Material Property Problem 1, 3 Problem 2 

Fluid 

Mass density, p
1 

Compressibility, 8p 

Dynamic viscosity, n
1 

9.80 x 102 kg/m3 

5.13 x 10-1 GPa-1 

2.80 x lo-4 N-sec/m2 

9.8 x 102 kg/m3 

5.13 x lo-1 GPa-1 

2.8 x 10-4 N-sec/m2 

Rock 

Young's modulus, Es 

Poisson's ratio, ~s 

Mass density, ps 

Porosity, e 

Intrinsic Permea-
bility, k 

Biot's constant,* M 

Biot's coupling 
constant, a 

Initial normal stiff­
ness, Kn 

Initial tangential 
stiffness, Ks 

70.0 GPa, 0.7 GPa 

0.25 

2.5 x 103 kg/m3 

0.15 

lo-20 m2 
1.47 GPa, 14.0 GPa 

1.0, 0.0* 

1.60 GPa/m 

0.50 GPa/m 

0.0 

2.45 GPa 

0.25 

2.45 x 103 kg/m3 

0.15 

10-12 m2 

1.47 GPa 
14.0 GPa 

1.0 
o.o 

1.60 GPa/m 

0.50 GPa/m 

0.0 

Fractures 

Cohesion, C
0 

Friction angle, 6 

Initial aperture,** b 
Porosity, e 

30. 

10-4 • 
0.50 

30. 

1 X 1o-3 -1 X 10-4 m 

0.15 

Biot's constant,* M 1.47 GPa, 14.0.CPa 1.47 GPa 
14.0 GPa 

Biot's constant, a 1.0,0.0 1.0 
0.0 

* In this case M is the reciprocal ot the specific coefficient of storage of 

the porous·medium. 

** At every stage of computation calculated fracture apertures of the preceeding 

interactions determine fracture perm~ability. 
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In a second set of computations, the calculated flow rate is used to simulate a constant flow rate 

injection problem. The results of this run plot precisely on the pressure profile curve of Figure 2 

ss expected, thus adding confidence to the soundness of the steady-state algorithm. 

Transient analysis: To simulate the transient behavior of the system in the above problem, the 

coupled finite element technique (Noorished et al., 1982) is used. The resulting values of the well 

flow rates are plotted in Figure 3. The curve exhibits an initial exponential decline lasting about 

10 seconds followed by a slow rise continuing for about 1000 seconds until a steady state trend of 

much longer duration takes over. The early time behavior follows the familiar pattern of the.constant 

injection head fluid flow problem. To delineate this behavior, comparison needs to be made between 

fluid flow equations of the coupled (hydromechanical) problem and that of the equivalent non-deformable 

problem. In the coupled theory, the flow equation as expressed in Equation {2) or Equation (6) is of 

the following form: 

a P V • k • V (P + p gz) • -- (- ae + -) 
1 at M 

(8) 

Assuming solid grains are incompressible, the Biot coefficient M can be replaced by inverse products 

of porosity & and fluid compressibility Bp, resulting in the following representation of the above 

equation: 

a V • k · V (P + p gz) • -- (- ae + &B P) 
t at p 

(9) 

Under the condition of uniform total stresses in the fluid flow region, such as those assumed in the one 

dimensional theory of consolidation, it is possible to write: 

T'•-P (10) 

where -r' is the effective normal stress in the fracture. Using the definition of compressibility one 

easily finds 

Br • - e/P. (11) 

Notice that -r', P and e are incremental in nature and represent deviations from the initial state. 

Therefore, using e from Equation (11) in Equation (9) yields 

V • k • VP • !_ (B + &B ) P at r p 
(12) 

which is the same as the familiar fluid flow equation with (Br + &Bp) representing the constant 

specific storage parameter Ss· Thus, under these conditions, the fluid flow behavior of a de­

formable porous elastic continuum may be compared with uncoupled fluid flow analysis, based on con­

ventional fluid flow equation. The traditional approach has also been employed for analysis of fluid 

flow behavior of nonlinear material, such aa fractured rocks, by using an equivalent specific storage 

for fractures defined as ssf • l/(2bKu) (e.g. Snow, 1968). Such extensions of the concept of 

specific storage may be valid only for extensively fractured rocks with frictionless fractures. 

However, the combination of anisotropy and nonlinearity normally associated with fractures and 

the consequent pressure-coupled total stress field iuvalidate such an approach to fluid flow problems 

in most fractured rocks. To demonstrate this point, the problem under consideration is solved 

in an uncoupled manner (i.e., fluid flow analysis alone) using an equivalent storage value of ssf • 

l/(2bKu) • 0.06 MPa-1 (neglecting ttie much, much n~aller fluid compressibility contribution). The 

results, checked also with Jacob-Lohman's (1951) analytic solution, are much higher than the coupled 

analysis curve, indicating the need for a much smaller specific storage value in the uncoupled analysis. 

With some trial and error, using a specific storage of 2.0 GPa-1, an uncoupled solution, closely 

reproducing the coupled curve, is obtained (Fig. 3, Curve C). These investigations point to the fact 
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that although the fracture tends to behave like an equivalent porous material in regard to fluid flow 

in the very early period, its storage is not represented by l/(2b·Ku), but rather by the overall 

deformation behavior of the rock-fracture system. This porous medium-like behavior is rapidly violated 

in later time by the effects of deformation on the intrinsic fracture permeability, necessitating a 

coupled stress-flow analysis of such problems. Consequently, the early behavior of the coupled 

results (Fig. 3, Curve B) displaying the same general pattern as the simple fluid flow solution can 

only be attributed to the fact that fracture permeability does not change much during the early 

period. However, as the pressure front expands into the fracture, the rock deforms. The increase in 

flow due to fracture deformation counteracts the normal transient flow decrease. These two effects 

are balanced at about 10 seconds, after which the fracture deformation effect dominates until the 

pressure front reaches the boundary and steady flow is achieved. This part of the transient flow rate 

behavior, which is exaggerated in the log scale, lasts almost 1000 seconds. Final steady state 

behavior of the model is marked by a small but consistent oscillation about a constant value of about 

0.381 x lo-3 m3/sec. The steady state flow rate obtained earlier closely approximates the fluid 

results of the transient analysis. 

The above transient analysis has been repeated for a much softer rock, with Young's modulus of 0.7 

GPa. The same general behavior, though much less striking, is shown in Figure 3, Curve A. 

Constant flow rate injection 

A transient wellbore pressure analysis for a constant flow rate injection test has been made using the 

same system geometries as described above for the constant head case. The analyses are made using a 

flow rate of 0.381 x lo-3 m3/sec, and both deformable and non-deformable conditions are applied 

for the fracture. In the latter case, a storage coefficient of 2.0 GPa-1 (as in the earlier problem) 

is used. The transient pressure curves are shown in Figure 4. As with the transient flow rate case, 

the results of the conventional fluid flow and the coupled stress and fluid flow analysis follow the 

same pattern for the very early behavior but deviate as the pressure front advances radially in the 

fracture. In the deformable fracture, the increase in permeability with time is accompanied by 

decreasing wellbore pressure until steady flow is finally reached. 

APPLICATION TO CONTINUOUS PUMPING PROBLEM 

In this example an axisymmetric reservoir around a pumping well is assumed with a horizontal 

fracture at a depth of 320 m. Fluid is assumed to be confined in this aquifer at a piezometric head 

of 160 m. The aquifer depth and the piezometric head define the geostatic in situ stress distribution 

and the initial pressure in the aquifer. Therefore, the initial pressure distribution at every point 

of the aquifer is approximately P0 • (1.5 - O.Olz) MPa, and the initial stress distribution is (8 -

0.025z) MPa for the vertical component and one-third of that for the horizontal components, where z 

denotes the elevations measured from the aquifer center and the number 0.025 MPa approximates the 

overburden pressure per meter of depth. To keep the model in equilibrium in the initial state, in 

addition to gravity loading, one has to use an upper boundary pressure distribution of about 0.025(320 

- Ztop> MPa, with Ztop denoting the elevation of the top of the aquifer. Calculations of the above 

values and other inputs used in this analysis are also based on the data given in Table 1. 

Figure 5 shows the finite element mesh used to model the aquifer. Due to early-time sensitivity of 

the response, greater mesh refinement is required near the pumping well and near the fracture end 

zone. At large radial distances a coarser meeh is adequate and provides a fair degree of accuracy. 

Flow is assumed to be taken out of the fracture from the pumping well at the symmetry axis. 

~/ 
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The following cases of fluid flow problems where the fracture is assumed to be undeformable (uncoupled 

problems) are analyzed with this mesh. If uniform flux from the aquifer into the fracture is assumed, 

the case corresponds to an analytic solution derived by Gringarten and Ramey (1974) which can then be 

used to verify the model as shown in Fig. 6. The agreement is very good. The same problem, with no 

assumption about the flux, is also solved in two ways. In the first case, an infinite conductivity 

fracture, simulated by a 1 mm aperture, serves as a large conduit for fluid flow from the aquifer to 

the well. The results of this case, being more realistic than the case with constant flux, are 

plotted in Fig. 6. In the second caae, the solution for the most realistic case, that of finite 

fracture conductivity, is considered. The dimensionless plot of pressure and time quantities, as 

shown in Fig. 6, exhibits quite different behavior from those of the former cases--although late-time 

behavior follows the same general trend. 

Having performed the traditional fluid flow analyses discussed above, the finite fracture con­

ductivity case is solved in a coupled manner through stress-fluid flow analysis. Figure 7 shows the 

results of this coupled analysis along with those of the uncoupled analysis taken from Fig. 6. The 

response is significantly different for the coupled analysis.. The increase of effective stresses due 

to pressure drops caused by fluid withdrawal tends to close the fracture. The degree of closing 

depends on the fracture compressibility. An average compressibility was used for the fracture in this 

analysis by assigning 1.6 GPa/m to the fracture stiffness value. 

In some practical cases, propping of induced fractures with incompressible grains is normally done. 

Analysis of such data seema to call for much higher stiffness values and implies justification of the 

fracture undeformability assumption. However, it is thought that fracture deformability is governed 

by the degree of compressibility of its void spaces. Therefore, in·view of the effect of fracture 

deformability shown in Fig. 7, controlled experiments for .the study of fracture propping in different 

rock types are necessary. 

To provide a better understanding of the fracture deformability effect, the ratio of pressure drop 

along the fracture over the pressure drop in the well at different relative distances from the well 

are plotted in Figure 8. The pronounced effect of the fracture deformability is observed in comparison 

to a similar plot for the uncoupled analysis. It may be noted again that the traditional fluid flow 

equation of groundwater, also used in our uncoupled analysis, accounts to some degree for the medium 

deformability through the concept of specific storage. Such representation can only be valid for 

isotropic media under uniform total stress conditions. However, in the problems discussed here, the 

difference between the coupled and uncoupled analyses are mainly due to the deformability of the 

fracture and its consequent drastic permeability changes. 

APPLICATION TO PULSE FLUID INJECTION PROBLEM 

Pulse testing is a well-known procedure in hydrogeology that is used to obtain hydraulic properties of 

tight formations (Bredehoeft, et al. 1980) and fractured rocks (Wang et al., 1977). In the light of the 

discussed role of rock deformability effects, and the complexity of the coupled modeling which may be 

required for ita analysis, the idea of aquifer testing by short pressure pulses, rather than continued 

pressurization, becomes very appealing. The reason lies in the fact that in a pulse test the spread of 

a diminishing pressure front may not be large enough to overcome the rigidity of the rock. If this is 

true, the deformation will not play a significant role in the fluid flow response of the rocks. To test 

this idea, the hypothetical model for the first example (Fig. 1 and Table 1) was simulated for a 

pressure pulse test. The test was performed in both coupled hydromechanical analysis and uncoupled 
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simple fluid flow analysis. Figure 9 shows results that are superposed on the constant pressure injection 

response of the same system in wnich the end of the fracture is assumed to be closed. The initial 

vertical offsets in all curves are not of any importance because better selection of the rather 

arbitrary value of the fracture specific storage in the uncoupled analysis (i.e., fluid flow only), can 

eliminate this difference. As may be observed, there is signifi~ant difference in the behavior of the 

closed boundary system for the constant pressure injection test, as was the case of open far-end boundary 

system (figure 5). However, the coupled and uncoupled pulses'cause very similar behavior of the model. 

This confirms the observations made earlier that •.pressure pulse with magnitude one-fourth that of 

the overburden pressure, exerted on a .5 m packed-off section of 0.05 m well radius, does not 

lead to any appreciable deformation in the fracture. The implication is that the in situ hydraulic 

properties of the fractures can be obtained with the traditional fluid flow pulse testing analysis 

methods without any concern for deformability effects. This conclusion is significant for hydraulic 

testing of tight fractured formations. 

CONCLUSION 

The primary conclusion of this work is that pressure dependence of rock permeability due to fracture 

deformation may have a major effect on the fluid flow behavior of fractured porous systems. In well 

testing simulations, the inclusion of fracture deformability results in drastic changes in the 

form of transient flow rate or pressure curves that may invalidate uae of conventional well test type 

curves. The deformation of the fracture depends on the state of the effective stress tensor in the 

rock rather than the pressure alone. The deformation of the fracture--and the accompanying deviations 

from nondeformable behavior----occurs when the pressure front from the injection, or depression front 

from pumping, has advanced some distance from the well. 

Furthermore, using an approximate reformulation of the flow equation in the coupled method, an explana­

tion for early-time behavior of the flow rate in the constant head injection problem is presented. An 

important conclusion of this attempt ia that fluid flow analysis of fractured rocks cannot be generally 

performed by employing the conventional methods which use the concept of specific storage. The con­

cept of fracture specific storage, based on its deformation moduli (Snow, 1968), is not realistic 

even under favorable conditions. 

The secondary conclusion ia that traditional fluid flow approaches for well test analysis are most 

likely to be valid when testing ia at low pressure, say, on the order of 10 percent of the overburden 

(Snow, 1979), or when pressure pulse testing techniques are used. 

Mixed and geometrically ca.plex boundary conditions and variable rock properties will certainly 

alter the detailed behavior of pressure and fluid flow rate presented in this paper. Nonetheless, it 

is hoped that coupled hydromechanical studies may provide good insight into such rock behavior, 

and suggest optimal well teat methods. 
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FIGURE CAPTIONS 

Fig. 1. Schematic geometry of the model used in injection problem • 

Fig. 2. Steady state pressure distribution along the fracture for injection at constant head of 50 m 

and injection rate of 3.8 x 1o-3m3/sec. 

Fig. 3. Transient well flow rate versus time for (a) deformable fracture overlain by soft rock (E • 0.7 

GPa), (b) deformable fracture overlain by rigid rock (E • 70 GPa) and (c) nondeformable 

fracture. 

Fig. 4. Transient well pressure versus time for (a) nondeformable fracture and (b) deformable 

fracture overlain by rigid rock (E • 70 GPa). 
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Fig. 1. Schematic geometry of the model used in injection problem. 
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rock (E = 0.7 GPa). 
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