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EFFECTS OF FRACTURE ROUGHNESS ON FLUID FLOW THROUGH A SINGLE DEFORMABLE FRACTURE

Y. W. Tsang and P.A. Witherspoon
Earth Sciences Division, Lawrence Berkeley Laboratory-
University of California, Berkeley, California 94720

ABSTRACT

The cubic law for fluid flow through a single fracture commonly employed in simulations of fluid flow
through a fractured medium assumes the smooth parallel-plate idealization of each fracture. This
paper summarizes results of our theoretical investigations on the effects of fracture surface roughness

on fluid flow through a single deformable fracture.

A rough fracture may be ‘envisioned as a collection of voids which deform as the fracture closes under
stress. Mathematically, the collection of voids can be defined in terms of an aperture density
distribution. We constructed a theory to relate the geomeirical characteristics of the fracture to
its mechanical properties so that an aperture density distribution for the fracture may be derived
from fracture stress-strain measurements. A review of available fracture roughness profiles showed
that  the sperture density distributions of real fractures may take on various shapes: sharply peaked,
broad and flat, skewed and peaked toward the large apertures or toward the small apertures. The
different shapes give rise to qualitatively different variations of flow rate with normal stress

applied to the fracture.

Calculations were first carried out for flow with no tortuosity; then the effect of path tortuosity
and connectivity on fluid flow rate were investigated. Our calculations show that for fractures with
aperture distribution that is sharply peaked toward the large apertures, the effect of tortuosity is
minimal and the fracture remains hydraulically open though its mechanical properties may approach that
of an intact rock. On the other hand; when the aperture distribution is dominated by small apetthtes
and wvhen the contact area of the fracture surfaces is above 30Z, the effect of tortuosity may depress
the fluid flow rate by two or three more orders of magnitude from that predicted by the parallel-plate
idealization of the fracture. Thus the applicability of a parallel-plate mean aperture to the
description of flow behavior in a rough fracture is limited. Generally, both the aperture distribution
and the spatial disttibuti‘on of these apertures in the fracture are needed to predict the fluid ‘

movement in a single deformable fracture.

INTRODUCTION

The movement of fluids through fractured rock masses, and how factors such as stresses affect such
movement 18 of fundamental importance in understanding many earth processes. The recovery of petroleum
from fractured reservoirs is a matter of great economic importance. The advent of the problem -of
isolation of nuclear and toxic wastes in geological formations has introduced a new challenge of seeking
out low permeability rock masses wvhere the fluid movement is as close to zero as possible. In all the
above, the essential bﬁildins-block for the understanding of the fluid through the fractured medium is
the physical lav vhich governs the flow through one single fracture.




The simplest idealization of a rock fracture is a pair of smooth, parallel plates separated by a
uniform distance. The analytic solution to the problem of steady laminar flow of a viscous imcompres-—
sible fluid through a pair of parallel plates has been given by many vworkers [for example, Boussinesq,
1868; Snow, 1965; and Bear, 1972]. The fluid flow rate per unit pressure head difference is propor-
tional to the cube of the parallel plate separation, that is:

9 . 3 5%}
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The proportionality constant, C, contains information on the flow field dimensions and fluid properties.
1f the fracture is represented mathematically by an aperture density distribution, n(b), shere n(b)db
gives the probability of finding apei‘tures with values between b and (b+db); then the idealized
parallel-plate fracture has a n(b) in the form of a delta fraction peaked at b,. For a rough
fracture where the apertures range over different values, the aperture density distribution takes on
shapes other than that of a delta function; t!;e actual shape of the n(b) is governed by the roughness
characteristics of the f:aciure in question. Figure 1 shows schematically the difference in n(b) for
a pair of parallel plates and a fracture where roughness is present. Equation (1), wvhen applied to
flow through a fracture, has often been referred to as the cubic law. Without exception, the state-of-
the-art mathematical nodeiing of flow through a fractured medium (Wang et al, 1983) utilizes this
simple parallel-plate 1dealizaf.ion of a fracture, assuming that a parallel-plate equivalent aperture

by can be assigned to the rock fracture.

However, a real fracture in rock masses has rough-walled surfaces, and unlike parallel plates, portions
. of the fracture may be closed while the rest remains open when the fracture is subject to stress. It
is not clear that a physical law which governs the fluid flow vthrough a pair of smooth, parallel
plates should be valid for flow‘through realistic, rough-walled fracture. Indeed, evidences of
deviation from the so~called cubic law are found in laboratory experiments of flow in fracture at
elevated stress (Engelder and Scholz, 1981; Gale, 1982).

In this paper, we will present the results of our theoretical study on the effect of fracture roughness
on the physical law governing the fluid flow in a linglé fracture. Since the fracture roughness is
characterized mathematically by the aperture distribution, n(d), we will first discuss a theory shich
allows one to deduce n(b) from the rather accessible stress-strain msurﬁents. Then we present our
-calculations on how the fracture roughness affect the fluid flow through both the aspects of the
non~-uniform apertures in the fracture and the flow path tortuosity.

GEOMETRICAL CHARACTERIZATION OF FRACTURE ROUGHNESS FROM ELASTIC MEASUREMENTS

We have developed a theory (Tsang and Witherspoon, 1981), from which the mathematical aperture density
distribution for a fracture may be deduced from stress-strain measurements. In our approach, we
consider a single fracture to be composed of a collection of voids with lengths 2d;, defined

as the distance between two adjacent areas vhere the fracture surfaces come into contact. When the
normal ntreu.(°) across the fracture is increased, more areas of the fracture surface come in contact,
leading to a decrease in the aversge crack length. Fig. 2 illustrate the deformation of the voids in

a fracture as a function of stress.

Walsh (1965) derived an expression for the effective modulus, Ep¢f, of rock containing a number of

voids oriented normal to the direction of loading. As shown in Figure 3, E.¢f is given by:
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where the half void length cubed, d3, and the small volume of rock, u = O8x8yAz, immediately

surrounding each void have been averaged over all the voids in the sample and where E is the intrinsic
modulus of the rock containing no voids. Equation (2) describes a system of sparse voids where the

perturbation of the stress field due to the presence of one void does not influence conditions in the
néar field of another void, therefore the modulus E of the intact rock appear in the strain energy

associated with the cracks (the last term in (2)). However, as shown in Figure 2, a fracture is more
accurately represented by a large number of voids in close proximity so that the property of the rock
medium in which the voids are situated is better represented by the effective modulus of the fractured

rock. We therefore make a plausibility argument and propose that (2) may be modified to:

1 .1, s 3)
Eots E Eggg<v> .

For a spatially random number of voidé, M, in a fracture of total area A,

<2ay®omz A )
and

° <ud>=Abz/M . (5)

Equations (3), (4), (5) yield the approximation:

eff L <d> |
. - 1 - 2z (6)

where 4Z is the thickness around the horizontal fracture over which E,¢¢ is applicable. Values of E

and E,¢f may be obtained from the slope of stress-strain data from intact and fractured specimens of

the same rock type. Equation (6) gives the physical picture as follows: initially, at small stresses,
the average crack length is large and comparable to AZ, hence E.¢¢/E<<1 and the mechanical property

of the rock with the single fracture is very soft. Under increasing losd, the deformation of the
voids causes & decrease in the average crack length which results in a gradusgl increase of the
effective modulus with increasing normal stress according to (6). The average crack length 2<d>
continues to decrease as the voids deform under stress until the term ¥<d>/AZ becomes negligibly small
compared to 1, at which point the jointed rock will exhibit an effective modulus identical to that of
the intact rock. If the voids are assumed to be randomly distributed over the fracture surface, and

if the places where the fracture comes into contact has a constant area, .2. then the number of contact

areas, N., varies inversely as the average crack length, i.e.,

-1 . )
Nc a <> o))

Furthermore, when a fracture closes by 0b from the applied stress, those fractures which have values
less than 4b at zero applied stress will become zero, therefore the areas of contact may be related to

the fracture aperture distribution n(b) at zero applied stress by

' A 8b (8)
N, (Bb) = 55 ) T ak) o,



and the aperture distribution function, n(b), can be obtained from the derivative of N. (4b). It is
evident from (6)-(8) that the aperture density distribution may be derived from the elastic properties
of the fracture. However, due to the proportionality relation in (7), N. and therefore n(b) can

only be determined to within some constant multiplier. But if the contact area as a fraction of the

total fracture area is known to be @ at a specified stress and deformation 8b, that is,

Ab
Jo a(b) db

w - - » (9)
/, o) db

then the constant multiplier can be determined without ambiguity. Therefore (6) - (9) give the
prescription to derive from stress-strain wmeasurements which are generally more experimentally
accessible, the geometrical characteristics of the fracture which are less experimentally accessible.
Given n(b), the effect of fracture roughness may be incorporated into the fluid flow law. Nenzil and

Tracy (1981) proposed a modified cubic law for flow through a rough fracture:

Q. © 3 . 3
an c ]o b~ n(b)db = ¢ <b™> . (10)

Eq. (10) corresponds to a physical situation where the apertures of the fracture vary only in the
direction normal to the externally imposed hydraulic head, resulting in fluid movemeat along parallel

flow paths involving no tortuosity.

COMPARISON OF NON-TORTUOUS FLOW MODEL WITH DATA

Here we shall consider the application of the above theory to specific cases where experimental
measurements are available. 1Iwai (1976) performed laboratory investigations on the mechanical and
hydrological properties of tension fractures in samples of basalt, granite and marble 15 cm in diameter.
The normal displacement across the fracture and the change in flow conductivity through the fracture

are measured as a function of stress during loading and unloading under normal stresses up to 20 MPa.

Making use of (6) - (9), the mathematical aperture distribution for the rough fracture under gzero
stress is deduced. With applied stress, the fracture closes and all apertures smaller than the
fracture closure 4b will become zero. The new aperture distribution f(b') may be expressed in terms

of the distribution at zero stress n(b),
£(b') = a(b-4d) . (11)

Equipped with the aperture distributions, the flow as a function of stress is predicted using (10) and
compared with experimental data. The theoretical and experimental relationships between flow per unit
head and normal stress are compared in Figure 4 for ome cycle of loading and unloading on the granite
sample. The agreement is good snd no curve fitting using adjustable parameters is involved. Recall

that the value of W, the fractional contact srea, is required in the derivation of aperture distribution,
n(b), from the stress-displacement data. Iwai (i976) estimated w for both the granite and basalt

samples to be between 10 to 202 at the maxizu appiied stress of 20 MPa. The value 153 was chosen in
the calculations involved in Figure‘b. Fifaire 5 shows the effect of the value for w on the theoretical

prediction of flow in the basalt sampir.
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Since no curve fitting is involved in the handling of the flow data, the good agreement of our theory
with experiment such as those shown in Figures 4 and 5 testify to the fact that in spite of several
simplifying assumptions, the 'void' model which ailow us to start with stress-strain properties of a
fracture to arrive at an aperture distribution which characterize the rough fracture,vprobably contain
the essential physics that govern the deformation mechanism in a fractured rock. Our work differs

from other works which deal with the flow through a rough fracture (Walsh, 1981; Gangi, 1978) in that

we deduce the sperture density distribution from the stress-stain measurements and the other works assume
some form of aperture distribution. Our nppréach of using a collection of voids to characterize the
fracture and treating the displacement with stress as the deformation of voids allows the deduction

the sperture distribution without actual geometrical measurements.

EFFECT OF TORTUOSITY ON FLUID FLOW

The good agreement, as presented in the previous section, between actual flow measurements and
theoretical predictions based on the flow model of (10) where the effect of tortuosity is not included,
seems to indicate that the tortuosity of flow paths, which must be present in flow in a real rock
fracture, plays a negligible role in affecting the fluid flow rate. However, a systematic study
specifically directed at the effect of tortuosity on flow through a fracture show that it is a strong
function of the roughness characteristics of the fracture, and for certain aperture distributiomns, the

effect of tortuoisty can be significant.

To calculate quantitatively the effect of tortuosity and commectivity of flow paths on the fluid flow
rate, we modeled the variation of fracture apertures by electrical resistances. The method of electrical
analog to study groundwater movement in a porous medium is an established technique (for example:

Luthin, 1953; Fatt, 1956; Bouwer and Little, 1959). The governing equations for the fluid flow and
electrical current are identical, giving rise to one to one correspondence between: (a) the fluid flow
rate, Q, and the electrical current, i, (b) the hydraulic head, h, and the electrical potential,

V, and (c) the hydraulic comductivity and the electrical conductivity. Parsons (1966) had also applied
the technique to an idealized fractured medium, that is, & multiple fracture system. The following
study is an application of this numerical technique to the problem of fluid flow through a single
fracture with rough surfaces. The applicability of the electrical analog method to the study of flow

in a single fracture has been demonstrated in a laboratory study by Sundaram and Frink (1983).

In our calculation, the variation of apertures b in the rough fracture is modeled by K electrical
resistors with different resistance values placed on & two-dimensional grid, as shown in Fig. 6a. The
resistances take on values 1/b3 with the b's obeying the aperture distribution n(b), of the fracture.
With applied stress and subsequent fracture closure &b, the resistors take on the values 1/(b - ap)3.
It is clear that as fracture contact area increases vith aspplied stress, more and more of these

resistances become infinite and thus impassable to the electric current.

The grid size, N, is determined by the size of the asperities in the fracture and the rock sample
size. 'In correlating the resistance R to l/b3. We have assumed that the fracture roughness is such
that there exists a typical asperity size, 8, which is defined as the length over which the aperture
of the fracture remains essentially constant; then a fracture of cross-sectional area A may be repre-
sented by a grid consisting of N = A/a? resistors. The electrical analog of a flow situstion
described by Equation (10), where tortuosity is absent and fluid movement is along flow paths parallel
to the hydraulic head, is a set of resistors coanected in parallel, as shown in Fig. 6b. The re-
sistances take on values 1/(b-~8b)3 consistent u:th a given aperture distribution, n(b), as described

earlier. The current through such a set ot rv:ieicTs ir parallel is uniquely determined by the



given n(b), that is, assignment of the same set of resistance values governed by a given n(b) to

different positions in the parallel network gives identical calculated current value.

However, when the resistors are placed in a two-dimensional grid as shown in Fig. 6a, the current

will vary according to the different spatial placement of the resistance values. The spread in the
current values with respect to the different spstial placement of resistances, and the discrepancy
between these values and the current value through the same set of resistors all connected in parallel,
is then a measure of the effect of tortuosity om the flow rate. For our study, we calculated
numerically for a specified n(b), (1) the electrical current, {, through resistances all connected in
parallel, (2) the average current, ;, for eight to sixteen random spatial realizations of the

same set of resistances on a two-dimensional grid (that is, if the addresss of the resistors are
labeled from 1 through N as shown in Figure 6a, then the different spatial arrangement of the‘resistora
can be obtained by assigning the same set of N resistance values corresponding to N(b) in random

order to the N addresses), and (3) the standard deviation, 6§ , for the currents of the different

spatial realizations.

Of the aperture distributions used for this syatennfic study, some were derived from measurements,
others were hypothetic‘l analytical functions. Gentier (1983) had measured the roughness profiles of
the surfaces of a natural granite fracture, 12 cm in diameter. The measurements were taken from both
the top and bottom of the fracture along ten traces, of which five were in one direction, and the
other five in the orthogonal direction. A typical profilometer trace is shown in Fig. 7. The spacing
between the top and bottom traces gives the aperture b. Note that the y scale is 12.5 times that of
the x scale so that the variation of b is greatly exiggerated. The aperture data for all the ten
traces measured were collécﬁively plotted in Figure 8. Note that n(b) takes on a skewed shape, with
the long tail toward the large apertures. When the fracture closes by 4b as a result of applied
stress, all the aﬁertureu smaller than 4b become zero. Mathematically, a new aperture distribution is
obtsined by truncating the original n(b) (wvhen the fracture surfaces are in point contact under zero
applied normal stress) by 4b and translating the remaining plot to the origin as in Equatiom (11). Om
Figure 8, truncation of the original n(b) corresponding to fractional contact area, w, of 15, 25 and
352 are marked. Apart from these n(b)'s that were derived from direct measurements, analytic forms of

o(b) were also used in this study.

By reviewing (Tsang & Witherspoon, 1983) over svailable fracture roughness profiles in sandstone and
limestone (Bandis, et al., 1981), we have found that the aperture distribution of a very well-matched
fracture (i.e., very little lateral misalignment between identical top and bottom fracture halves)

takes on a sharply peaked shape; the aperture distribution of an ill-mated fracture is broad and flat.
Therefore a Gaussian function was one of the hypothetical snalytic functions assumed for the aperature
distribution. Two sets with the same mean aperture, b,, but with the width parameter differing by

an order of magnitude were used to simulate the well-matched fracture (narrow width) and the ill-matched

fracture (broad width).

Another analytical function chosen for n(b) was:

-8(b ~b)
(b, = be .. 12)

n(b) =
B -$b

-be ™
m

The distribution is normalized so that the integration of n{b) from b = 0 to the maximum aperture by
is 1. The distribution for two values <7 ke wilth parameter 1/: asre shown in Figure 9. Swmall values
of the width parameter correspond to & pearrsd Sictrizuszicn: the distribution flattens out as the

vidth parameter increases. Note that these c.:.riduzions 2re skewed, with the peak near the large

AT



4

aperture end. The aperture distributions derived from stress-strain measurements in granite and
basalt samples, (which we discused earlier in the section on flow without tortuosity) resemble the

narrov and peaked aperture distribution in Figure 9.

Currents through sets of electrical resistances whose values are determined by the above three
aperture distributions were calculated. The same electrical voltage of 10 volts was assumed for all
the calculations, regardless of the spatial arrangement of the resistors or the aperture density
distribution. Figure 10 displays the calculated results for the n(b) (shown in Figure 8) derived from
fracture surface roughness measurements. The horizontal axis is for N, the number of resistors used
to represent the given n(b). The points on the three lower curves denote average current i and the
vertical bars denote one standard deviation §. The points on the upper three curves are the calcu-
lated currents through a set of resistors connected all in parallel, the electrical analog of fluid

flov in the absence of tortuosity. These results show the following:

(a) When the resistors are placed on a two-dimensional grid, the total number of resistors N does not
seem to pla& a crucial role in affecting the average current {. therefore, a relatively small number
of resistors may be used to model flow through a single fracture. In fact, aperture profiles from

fracture surface profiles such as the one shown in Fig. 7 confirms that the variation of b along such

a trace may be represented by a finite number of resistors.

(b) The avérage current through a two-dimension grid of resistors is about one order of magnitude

smaller than the current through the same set of resistors connected in parallel when the n(b) used

corresponds to a fractional contact area of 15X. The reduction of the average current through

the two-dimensional grid increases with increasing fracture contact area, giving rise to about two

orders of magnitude discrepancy when the fractional contact area is 352.

(c) The spread in values of curreat (6/1) arising from different spatial placement of the same set of

resistance values increases with increasing fracture closure and contact area.

The observations (a) ~ (c) also apply to the calculations for the Gaussian aperture distribution and

the skewed distribution (Figure 9). Our analysis show that small apertures play a key role in depressing
fluid flow when one moves from a flow geometry which excludes tortuosity to the actual two-dimensional
flow in a rough fracture. Hence the influence of tortuosity is largest when the fracture roughness
consists of a large fraction of small apertures, that is, when the aperture distribution is skewved and
peaked at small apertures (similar to thet in Figure 8 at zero applied stress). Conversely, the
influence of tortuosity is smallest when the distribution is sharply peaked at large apertures with a
long tail in the small apertures such ‘as that shown in FPig. 9. When the fracture is subject to
increasing normal stress, the fraction of zero apertures invarisbly becomes large regardless of the

shape of the aperture distribution at zero stress and the effect of tortuoisty of flow paths become

important.

The effect of tortuosity and connectivity of flow paths may be considered negligible when the average
current derived from a two-dimensional grid of resistors differs cnly slightly from that of a ome-~
dimensional array of resistors in parallel, end when the spread cof the current values due to different
spatial variation of apertures is emall. For fractures with sharrly peaked sperture distributions
(characteristic of very well-matched fra:t:res), tne above concitions are met for contact area of less
than 142 if the distribution is Gaussian, and for contact grea up :tc 251 if the distribution is skewed
toward the large aperture. This might scccunt for the verv prod ss-eezc~t with data for granite

and basalt which we obtained earlier wiir: o :iow mezel whici neclectis turtuosity was used. The



contact area there at the maximum applied stress of 20 MPa was ‘between 10-20Z, and the aperture
distribution derived from those stress—strain data resembled that of the peaked skewed distribution as

shown in Figure 9.

" In cases where the effect of tortuosity and connectivity of flow paths is small, prediction of fluid
flow through the rough fracture only requires the input of the aperture demsity distribution, which
can be obtained from the stress—strain measurements of the fracture, as we showed earlier. Where the
effect of tortuosity and conmnectivity is not negligible, then the knowledge of the actual spatial
arrangement of the apertures is needed. Short of knowing the actual spatial arrangement of the
apertures, the approach used in this investigation, which is to calculate a statistical average of the
currents for different random spatial placement of the same set of apertures can still provide an

estimate of the range of flow rates within which an actual measurement may fall.

CONCLUSION

Our investigation show that only at low applied stress, when the fracture is essentially open, is the
parallel-plate approximation for a fracture adequate in the description of fluid flow through it. As
the contact area between the fracture surfaces increases with stress, the roughness in the fracture

surface cease to be mere perturbation on a mean parallel-plate aperture, rather, the aperture distri-
bution is needed. We have shown that the stress strain measurements of the jointed rock afford a way

to deduce the aperture distribution.

In addition to this effect of variable apertures, when the contact area of the fracture surface is
greater than 30X, the fluid flow rate can be two or more orders of magnitude smaller than that predicted
.‘by a flow model which does not include tortuosity. Measurements by Bandis et al., (1983) on models of
many sandstone and limestone samples show that the contact area is approximately in the range of

40-70% at an applied stress of 30 MPa.

The conclusion that tortuosity depresses fluid flow in a single fracture may appear to be intuitively
obvious, yet its impact on the results of numerical modeling in the field of fracture hydrology is
"non-trivial. Parallel-plate idealization of each rock fracture, the standard assumption in the
state-of-the-art numerical modeling of permeability for a fractured medium [Wang et al, 1983], implies
that both the fracture roughness and flow tortuosity play no role in affecting the fluid movement .

Our results call attention to Ehe fact that perhaps the several orders of magnitude correction in flow
rate due to roughness and tortuosity should not be overlooked. The field experiment of Abelin et al
(1983) on a single fracture showed that the equivalent fracture aperture derived from the constant
head permeability messurement was many orders of magnitude smaller than that derived from the tracer
migration measurement. The equivalent spertures derived from these two different measurements should
be identical if the parallel-plate description of the fracture were valid. However, if roughness were
present, then the permeability measurement would be controlled by the small apertures and therefore
greatly affected by tortuosity, whereas the tracer test would measure the 'volumetric’ flow and not
affected by tortuosity. These field data therefore support our claim that the equivalent parallel-

plate aperture alone is not sufficient in the description of fluid flow in s single fracture.
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NOTATION
a typical asperity size, L
A fracture cross-section area, 12
b fracture aperture, L
by maximum apefture, L
by aperture at peak of aperture distributiom, L
d crack length, L
c constant in cubic flow law, (LT)~!
E Young's modulus for rock, M/LT2
Eeffv effective Young's modulus for jointed rock M/Lt?
i average curreant (ampere)
h hydralic head, i
n(b)db aperture distribution (dimensionless)
f(b')db’ aperture distribution (dimensionless)
N total number of resistors on the two-dimensional grid
N. number of areas of contact in fracture
fluid flow rate, L3/1
volume enclosing one crack, 13
b fracture closure, L
B inverse width parameter in the skewed distribution of fracture
aperture, it
° - standard deviation of current (ampere)
c stress normal to fracture M/LT?
w fractional contact area
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Figure 1. Schematic aperture distributions for an

idealized smooth fracture and a rough
fracture.
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Figure 3. Typical geometry of a flat elliptic
crack in rock block under stress.
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Figure 6. Electrical circuit equivalent of

two-dimensional fluid flow (a) when
tortuosity is present and (b) when
tortuosity is absent.
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Figure 7. Surface roughness profiles of a granite
fracture.
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Figure 9. Skewed aperture distributions.
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