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ABSTRACT 

The present status of elastic pp and pp scattering in the high 

energy domain is reviewed, with emphasis on the forward and near for

ward regions. The experimental techniques for measuring CTtot, p and 

B are discussed, emphasizing the importance of the Coulomb region. 

The impact parameter representat.ion is exploited to give simple didactic 

demonstrations of important rigorous theorems based on analyticity, and 

to illuminate the significance of the slope parameter, B, and the curvature 

parameter, C. Models of elastic scattering are discussed and a criterion 

for the onset of "asymptopia" is given. A critique of dispersion relations 

is presented. Simple anal:rtic functions are used to fit simultaneously the 

real and imaginary parts of forward scattering amplitudes for both pp and 

pp, obtained from experimental data for CTtot and p. It is found that a good 

fit can be obtained using only 5 parameters (with a cross section rising 

as lolf s ), over the energy range 5 < .j8 < 62 Ge V. The possibilities 

that: a) the cross section rises only as logs, b) the cross section rises 

only locally as log2 .s, and eventually goes to a constant value, and c) the 

cross sect.ion difference between pp and pp does not vanish as s -+ oo, 

are examined critically. The nuclear slope parameters B are also fitted 

in a model-independent fashion. Examination of the fits reveals a new 

regularity of tht> pp and pp systems. Predictions of all of the elastic scat

tering parameters are made at ultra-high energies, and are compared to 

the available SPS collider measurements. 

- i -



Table of Contents 

I. Introduction 

IT. Kinematics and Conventions 

ill. Review of Experimental Results for o tot, p and B 

A. Theoretical Formulation of Elastic Hadronic Scattering in the Presence . 

of the Coulomb Field 

B. Measurements of Otot· p and B from Elastic Scattering 

IV. Theoretical Discussion 

A. Unitarity 

B. Geometrical Picture: The Impact Parameter Representation for Two

Body Scattering 

1. Impact Parameter Representation 

2. The Slope Parameter, B, and the Mac Dowell-Martin Bound 

3. The Curvature Parameter C 

4. Models of Elastic Scattering 

C. Energy Dependence of Cross Sections and Slopes in Models, and the 

Approach to "Asymptopia" 

D. Analyticity ·'· 

E. Integral Dispersion Relations 

F. Differential Dispersion Relations 

G. Use of Simple Analytic Functions to Fit the Forward Amplitude 

- ii -

c: 

1. Even Amplitudes 

2. Conventional Odd Amplitudes 

3. Unconventional Odd Amplitudes- The Odderons 

B. Asymptotic Behavior 

1. The Original Pomeranchuk Theorem 

2. The Froissart Bound 

3. The Revised Pomeranchuck Theorem 

4. The Fischer Theorem 

5. The Cornille-1\·lart.in Bound and a New Corollary 

6. If the Total Cross Section Grows as lotf s 

V. Analysis oft= 0 Amplitudes 

A. Conventional Amplitudes 

B. Can a logs Rise Fit the Dat.a? 

C. Odderon Amplitudes 

D. Summary of Amplitude Analysis 

\1. Slope Analysis of Nearly-Forward Elastic Scattering Data 

\11. A Regularity of the pp and pp Systems 

\111. Conclusion5 

Acknowledgments 

References 

- iii -

..:-



·~ 

I. INTRODUCTION 

The advent. of pp collider physics at the CERN ISR and SPS 

during the last three years has extended the maximum pp center of mass 

energy from .jS"' 20 GeV to .jS = 540 GeV. Experimental groups at 

the SPS have measured CTtot• the total cross section, and B, the nuclear 

slope parameter, at the highest available energy, ..;8 = 540 GeV. In the 

energy range 30 < .jS < 62 GeV, experimental groups at the ISR have 

made precision measurements of these quantities for both pp and pp, with 

the same apparatus used for comparison of pp and pp. Moreover, new ISR 

measurements of elastic scattering in the Coulomb interference region have 

made possible accurate determinations of p, the ratio of the real to the 

imaginary portion of the forward nuclear scattering amplitude, for both 

pp and pp. The latter data, taken together with earlier results, enable us 

to make a critical comparison of pp and pp elastic scattering parameters 

in the high energy domain from .jS = 5 GeV to .jS = 62 GeV, and 

allow theoretical extrapolations to higher energies. As we shall show, the 

agreement between these predictions and the new SPS results at .jS = 

540 GeV gives some confidence in further extrapolation to the energy 

regions of ..;8 = 2 TeV (the Tevatron collider, scheduled for 1986) and 

..;8 = 40 TeV (the proposed SSC). 

We will deal exclusively with pp and pp collisions, reviewing 

the relevant experimental results for elast.ie scattering and total cross 

section measurements for center of mass energies greater than 5 GeV, with 

emphasis on the new data for .jS greater than 30 GeV. In particular, we 

will concern ourselves with the analysis of elastic scattering in the low ltl 
region, -t < 0.02l GeV/c)2

, where tis the 4-momentum transfer squared. 

A brief description will recall to the reader the experimental t.echniques 
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and problems associated with these high energy measurements. 

The principles of analyticity and unitarity are truly fundamental 

to our understanding of particle physics. A requirement of analyticity is 

that the forward scattering amplitudes for pp and pp elastic nuclear scat

tering come from the same analytic function. Further, unitarity provides 

a relation - the optical theorem - between the total cross section and 

the imaginary portion of the forward scattering amplitude. The existence 

of the new pp and pp data now makes possible a critical confrontation 

of the consequences of anal:yticity with accurate experimental data over a 

wide energy range. 

We will review the consequences of anal~ikity for forward elastic 

scattering amplitudes. The presentation will be didactic in nature, and 

will only assume a general understanding of elementary scattering theory 

from non-relativistic quantum mechanics. The appropriate relativisitc 

generalizations will be made. Rigorous theorems following from analyticity, 

inrluding the Froissa.nt bound, generalizations of the Pomera.nchuk theorem 

for rising cross sections, the Cornille and Martin bounds and the Fisc.her 

theorem, will be discussed. Using the impact parameter representation, 

these theorems will either be proved heuristically or be illustrated by 

simple examples. Their applicability and utility will be critically ap

praised. 

Elastic scattering will be discussed in terms of an impact para

met.er representation. Using this physical picture, we will provide heuristic 

derivations of many of the important theorems relating to ela.stir scat.t.er

ing that are based on analyticity and unitarity. \\'e express the slope 

parameter, B, (=d/dt(Iog(dcrnfdt))) and the curYature parameter. C, (= 
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~d2fdt2(log(dcrnfdt))) in impact. space. Models of elastic scattering are 

dicussed and it. b shown that C = 0 is a convenient criterion for the onset 

of "asymptopia", defined as the energy domain where di1ferent.ial elastic 

scattering cross section approaches that of a sharp disk. 

A model free analysis will be made of the experimental quantities 

Cltot, p and B. Traditionally, the requirements of anal)i.icity haw been 

compared with experimental data by means of dispersion relations. We 

·will demonstrate how the same ends can be achieved more transparently 

and easily through direct use of simple analytic functions. The success of 

our fits is an experimental confirmation of the principles of anabi.icity. 

The comprehensive fit to pp and pp scattering reveals an unexpected 

regularity between the two systems over the full energy domain considered. 

- s-
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II. KINEMATICS AND CONVENTIONS 

"'p consider elast.ic pp or pp scatt.Pring with the initia14-momenta 

Pt and P2 and the final 4-momenta p3 and p4 • The c .m. energy squared 

is 

8 =(PI + P2f = 4(k2 + m2), (2.1) 

where m is the proton mass and k is the c.m. momentum. In terms of 

the lab momentum p and lab energy E = Jp2 + m2, we have 

8 = 2(m2 +mE). 

The 4-momentum transfer squared is 

t =(PI- P3f 

= -4k2sin2 8/2, 

(2.2) 

(2.3) 

(2.4) 

where e is the c.m. scattering angle. The third Mandelstam variable is 

u = (Pt- P4f, (2.5) 

and we have 

8+ t+u =4m2
• (2.6) 
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We shall use elastic scattering amplitudes with several different 

normalizations. For .fcm. t.hc c .m. scatt.ering amplitude. 

da ---- -If 2 
dflcm - cml , (2.7) 

d(f 7r 2 

dt = k2ifcml • (2.8) 

47r 
CTtot =kim fcm(B = 0). (2.9) 

The lab scattering amplitude will be denoted simply by f. It satisfies 

....!!!:_ = 1/12
' 

dfltab 

d(f = .!!.,_1!12 
dt p:.!. ·' 

. 4iT 
CTtot = -Jmf(BL = 0), 

p 

(2.10) 

(2.11) 

(2.12) 

where BL is the lab scattering angle. The lab scattering amplitude is 

related to the usual Lorentz invariant amplitudE:' .M by 

.M = -8rrJi{~)! 
= -8rrm.f, (2.13) 

- 5-
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, .... ~ 

1 
CTtot = ---Im.M(t = 0) 

2pm 

1 
= ---Im.M(t = 0). 

2k..(S 
(2.14) 

As a final normalization, we- introduce F with the properties 

da = IFI:.a 
dt ' 

(2.15) 

CTtot = 4#Im F(t = 0). (2.16) 

The normalizations for these elastic scattering amplitudes are related by 

') 1 PI __ ,. F=--.M. 
f = k em - ,j1i 8rrm (2.17) 

The context will dictate which of these amplit.udes is most convenient. to 

use. 
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III. REVIEW OF EXPERIMENTAL RESULTS 
FOR a tot, p, and B 

Prior to presenting an overview of the experimental pp and pp 

results for CTtot, p and B, we review briefly the theory of elastic hadronic 

scattering in the presence of a Coulomb field. This review will help us put 

into perspective measurements of elastic scattering made at small ltl and 

will remind the reader of both the types of experimental measurements 

and the actual physical quantities which must be measured to extract the 

parameters atot. p, and B. 

A. Theoretical Formulation of Elastic Hadronic Scattering 
in the Presence of the Coulomb Field 

For the moment, we consider separately the effects of either a 

Coulombic or a hadronic field, alone. We will later combine these fields 

to act simultaneously. In the presence of only a Coulomb field, we have 

the familiar Rutherford scattering cross section for pp (pp ). which is 

dac -(±)aG (t) 

I 
2 12 

dO em= 2ksin2 (0/2) ' 
(3.1) 

where o is the fine-structure constant ~ 1/137, the upper sign is for pp, 

the lower sign is for pp, and G2(t) is the proton's electromagnetic form 

fact.or squared. It is readily shown that 

da 1r da 
-=--' dt k2 dOcm 

(3.2) 

and we can rewrite Eq. (3.1) as 

- 7-
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dcr., I dt = 1r -(±)G2(t) 2a 12 
It I 

(3.3) 

Experiment has shown that we can adequately parametrize the 

nuclear (hadronic) elastic scattering cross section in the smallltl region as 

dan = (dCTn) eBt, 
dt dt t=D 

(3.4) 

i.e., if we plot log( dCT n f dt) vs. t, we get a straight line of slope B, for the 

small ltl region. Now, we write Eq. (3.4), at t = 0, as (see Eq. (2.7)) 

( dCTn) 1r (dan ) 
dt t=D = k2 dO em U=O 

= ; IRefcm(O) + ilmfcm(O)I2
• 

(3.5) 

Introducing p = Refcm(O)/ lmfcm(O), we rewrite Eq. (3.5) as 

(
dan) = 1r I (p + i)/ m.fcm(O) 1

2 

dt t=D k 

= 1rl (p +£>a tot 1
2

, 
41r . 

(3.6) 

where the last step used the optiral theorem Eq. (2.9). Thus, we can now 

write the elastic hadronic scattering cross section as a function of t as 

drr11 

1 
(if = 1r ( p + i) a tot eBt/212 

41r . (3.7) 
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It is ronveniE'nt at this point to introduce the invariant scattering amplitudes 

of Eq~. (2.15) and (2.16), 

Fe=-(± )2oG
2
(t)y'i 

ltl ' 

and 

Fn = (p + i)atore81
/2 

4y'i ' 

so that the invariant differential cross sections are 

and 

dac = 1Fcl2, 
dt 

dan = 1Fnl2. 
dt 

(3.8a) 

(3.8b) 

(3.9a) 

(3.9b) 

The above results treat the case of only one interaction at a time. 

However, the simultaneous presence of both the nuclear and the Coulomb 

fields, although coherent, does not allow us simply to superimpose the 

amplitudes Fe and Fn. Instead, we must introduce a phase factor o·¢(t) 

into the Coulomb amplitude, such that t.he complet.e elastic differential 

cross sections is given by 

- 9-
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dcr = dcrr + dCTrn + dcrn 
dt dt dt dt 

= IFceicl'q>(t) + Fnl2 (3.10) 

= 7ri-(±)G2(t)2o eia¢(t) + (p + i)CTtot eBt/21
2 

ltl 411" ' 

where we assume tacitly that p varies negligibly over the very small t

region of interest. The phase factor o¢(t) reflects the distortion of the purE' 

amplitudes Fe and Fn due to the simultaneous presence of both hadronic 

and Coulombic scattering. This is perhaps most simply understood if we 

use the languagE' of Feynman diagrams, in which Fe corresponds to sum

ming all diagrams in which only photons are present and Fn corresponds 

to summing all diagrams in which only hadronic exchanges are present. 

However, when both fields are turned on, there are new diagrams possible 

w hirh have both photons and hadronic exchanges present in the same 

diagram, which are not accounted for in Fe and Fn. This gives rise to 

the phase o¢(t). This phase was first investigated by Bethe (1958), and 

later by West and Yennie (1968), using a Q.E.D. calculation of Feynman 

diagrams. Most recently, the phase was recalculated by Cahn (1982b), 

using an eikonal approach, with the result 

if>(t) = - (±{')'+Jog( B~t!) +Jog( 1 + B~2) 

+ (~)lo (il1) + ~] A2 g ,\2 A2 ' 

(3.11) 

whPre ~t = 0.577 ... is Euler's constant, B i> the slope parameter, 
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A 2 ( = O.il ( Ge VIc )2 ) appears in the dipole fit to the proton ·s electromag

net if form factor, and th!' upper sign is for pp and the lower sign for pp. 

In the low Jtl region of interest, the numerical values given by Cahn agree 

very closely with those given by West and Yennie. In the t region near 

the interference maximum of Eq. (3.10), the value of ¢(t) is very slowly 

varying and is ~ 2. Thus, a¢ is « 1, as also is Btl2, while G2(t) is 

~ 1. We can now simplify the interference (cross) term of d(J I dt, defined 

as dcrcnldt in Eq. (3.10), to be 

d(Jcn dt ~ 2(p+ a¢)FcFn 

~ -(± )(p + a1>)(a(Jtot) 
ltl ' 

(3.12) 

with the upper sign for pp and the lower sign for pp and where Fn is 

evaluatt'd at t = 0. The importance of this term is clearly maximal when 

IFcl = IFni, i.e. when dcrcldt = d(Jnldt. If p + a¢ is positive, the 

interference is destructive for pp and constructive for pp . A typical value 

for Jo:¢1 in Eq. {3.12) is ~ 0.02. Thus, the presence of the interference 

cross section d(J en I dt allows one to measure the quantity p+a¢. Assuming 

that we know (Jt 0 t, the interference term allows the evaluation of p, the 

ratio Refcm(Oll lmfcm(O). Therefore, the Coulomb amplitude serves as a 

standard against which the phase of the hadronic amplitude is measured. 

Inspection of Eq. (3.10) indicates that the interference term is of maximum 

significance when 

-11-
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ltl
. ,..._, 8rra _ 0.071 

· tnt """' -- - --- , 
(Jtot (Jtot(mb) 

for t in ( Ge VI d. (3.13) 

We notE' that thE' differt'nt.ial elastic scattering cross section given 

by Eq. (3.10) dividE'~ up naturally into three distinct t regions. Region 

1 is for Jtl « ltlint. where the Coulomb scattering dominates, and d(Jidt 

goes as 1lt2 • Region 3 is where Jtl > ltlint, where the nuclear scatter

ing predominat.es, and dcrldt goes as eBt. Region 2 is where t ~ tint, 

which is the interference region between the Coulombic and the hadronic 

amplitudes. 

For a colliding beam experiment, where It I = (k0)2
, it is useful 

to define the interference angle Oint as 

0.--~ 1nt- - · (3.14) 

Table 3.1 gives ltlint and Oint for pp as a function of the energy, ..fs, for 

typical colliding beam accelerators. For example, at. the ISR, for Js = 

30.7 GeV (corresponding t.o each beam having k ~ 15 GeVIc), we find 

ltlint = 0.0017 ( GeVIrf2, and hence, Oint= v'0.0017I15 = 2.7 mrad. 

However, when we get up to the Tevatron collider energy, v's = 2 TeY, 

where we expect (Jtot ~ 100mb, we find that Jtlir~t = O.ooo73 ( GeVIc)2 

and that Oint = 0.027 mrad, a very small angle, indeed. At a distance 

of 100 meters from the interaction region, it corresponds to a transverse 

displacement of only 3.7 mm. This illustrates the difficulty of penetrating 

into the Coulomb interference region, Jet alone the Coulomb region, as we 

go t.o higher energy colliders. Clearly, the experimental problems become 

extremely severe for the proposed SSC collider, at Js = 40 TeV, where 

B:nt is only about 0.001 mrad. 

- 12 -
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B. Measurement of CTtot, p, and B from Elastic Scattering 

ThE:' mE:'asured quantity in an E:'Xpl'riment is a counting rate, not a 

cro~s Sl'ction. For examplr, in an elastic scattering diffE:'rential cross sertion 

E:'Xperiment., thE:' quantity measured is A.N( t), the number of counts/sec/ A.t 

in a ~t interval around t, corrected for background and any inefficiencies, 

such as azimuthal coverage, deadtime, etc. This rate must be normalized 

to get dcr / dt, and thus we write 

·~ A.N(t) = L(da) 
dt ' 

(3.15) 

where Lis the normalization factor (for colliding beams, Lis the luminosity). 

If we can get deeply into the Coulomb region, i.e., in Region 1 where 

It! « !tlint. thE:'n dafdt is for all prartical purposes given by dcrcfdt ~ 

4 7i( o.ftf. Thus, dcr / dt is a known cross SE:'ction, which allows thE:' ex

periment.er to measure L directly from Eq. (3.15). To take a concretE:' ex

ample, if thE:' experiment is carried out at the ISR at .js = 23.5 GeV and 

the experiment is capable of achieving a minimum It! of 0.000:35 ( Ge V f c )2
, 

then the value of da / dt at this t is ~ 96% Coulombic. Thus, the data are 

easily and acrurately normalized, provided that the t scale is well deter

mined. \Ve note the vital role the known Coulomb cross section plays in 

this type of measurement. If the normalization factor L is known, the total 

cross section CTtot is determined by plotting the counting rates A.N(t) in the 

nuclear region (Region 3) on a log.lN(t) vs. t plot. and fitting a straight 

line in ordE:'r to obtain A.N(O), the hadronic counting rate at. 

t = 0. From Eqs. (3.4), (3.6) and (3.15), knowing the normalization L, we 

find 

- 13 -
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CTtot(l + p2)
1
1
2 

= 4 (
dcrn) 

7r d:f t=O 

(3.16) 

= 4t /1r( A.~(O)). 

Thus, this technique, in which L is separately evaluated, measures the 

quantity aton/1 + p2. The p value can be evaluated from the Coulomb 

interference term in Region 2; see Eqs. (3.10), (3.12). Of course, there are 

alternative ways of measuring the luminosity, without using the Coulomb 

technique, such as the Van der Meer (1968) met.hod of sweeping beams 

through each other, etc. In all cases, a direct measurement. of L, along with 

a measurement of A.N(O), yields the result in Eq. (3.16), i.e., CTtotV1 + p2 • 

To demonstrate the power of Coulomb normalization and to il

lustrate the quality of the available data, we show in Fig. 3.1 an ex

perimental plot of log( do/ dt) tiS. It! for pp elastic scattering at .js = 

23.5 GeY, taken in 1982 at the ISR by the 1'\orthwestern-Louvain group 

(Block, 1983b). There are ~ 106 events used to determine the elastic 

differential cross section. The minimum !tl obtained in the experiment 

i~ ~ 0.00025 ( GeVfcf, well below the value (see Table 3.1) of !tlint = 

0.0017( GeY/r)2
• Thus, this experiment probed deeply into the Coulomb 

region (Region 1) and therefore also easily pre-bed Region 2, the inter

ference region. The fitted curve used t.he parametrization of Eq. (3.10). 

The p value extracted wasp= -0.006±0.010, using Coulomb normaliza

tion. The quality of the fit. was quite satisfactory, giving a x2 fd . .f. ~ 1.2 

for 93 degrees of freedom. A plot. of log (dcrfdt) tiS. It! for pp elastic 

scat-tering at v'S = 52.8 GeV, taken by the 1\orthwestern-Lounin group 
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(Amo5 et ai., 1983a ;Block, 1983b) at thE' ISR in 1982, is shown in Fig. 

3.2. Thig spE'ctrum coni-aim ~ 105 E'Yents. BE'eausE' of thE' higher beam 

momentum. the miminum It! is~ 0.0010( GeV/c)2
, comparE'd to tint= 

0.0016 ( GE'V/d for this energy, and hence, the Coulomb region is only 

slightly penetrated. The parametrization of Eq. (3.10) was used to ob

tain the fitted curve. In this case, the measured quantities were Otot, 

p and B, with the values Otot = 43.2 ± 0.4 mb, p = 0.13 ± 0.02 and 

B = 13.0 ± 0.5 ( GE'V/c)-2
• The quality of the fit was good, yielding 

x2 /d.f. = 0.59, for 117 degrees of frp.edom. 

Another method for determining the cross section is the so called 

"luminosity free" method, in which one simultaneously measures N 101 , the 

total count.ing rate due to any interaction, along with the elastic scattering 

intercept rate, ~N(O). \Ve write 

Ntot = LOtot, (3.17a) 

and 

(da,) 
~N(O) = L dt t=O. (3.17b) 

From Eq. (3.16) and (3.17b), we find Land ~ubstitute it into Eq. (3.17a) 

to obtain 

atot(l + p2) = 161i~,V(O) 
Ntot · 

(3.18) 

We see from Eq. (3.18) that the measured quantity from the "luminosity 
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frE'e" tE'chnique ic; O"tot(1 + p2 ), in contrast to the direct measurement of 

L whirl1 yields O"totV1 + p2 • In both cases, the measurements require 

~!Y(O), the extrapolated hadronic counting rate at t = 0, which is found 

by measurements in Region 3, the pure nuclear region. We note that a 

knowledge of pis needed in both cases in order to ext.ract Otot· However, 

these measurements onl;\· depend weakly on p, since for p as large as 0.2, 

1 + p2 is only 1.04, a 4% effect in one case and a 2% effect in the other. 

Thus, even a very inaccurate knowledge of p yields a relatively accurate 

value of a tot. 

The value of the nuclear slope B is found by plotting the unnor

malized curve, log(~.N(t)) vs. t, in the purely hadronic region (Region 3) 

and extracting the slope of this straight. line. Thus the measurement of B 

does not require a knowledge of the normalization L. 

Experiment shows that in the region of It! >~ 0.10 ( GeV/c)2
, 

the parametrization (Eq. (3.4)) of an exponential in Bt fails and a "break" 

in the slope occurs, with the slope getting smaller in the higher 1 t! region. 

The experimental elast.ic differential cross section data can be parametrized 

over this larger It! region as 

da, = (dan) exp(Bt + Ct2 ), 
dt dt t=O 

(3.19) 

where the curvature C is ~ 5 ( Ge Y I c )-4
• Thus if we define a t dependent 

slope 

lo- · ( d da,) 
B(to) = dt g dt t=to 

(3.20) 
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we obtain B(lo) = B- 2Citol· If the experimental i range is limited to 

ltl < 0.02( GeV/c)2
, we have a mean ltol of~ 0.01 ( GeVJd. Sim·e a 

typi<·al value of B is~ 12 ( GeV Jc)2
, we get B(t = 0.01 ( GeY/c)-2

) ~ 

0.993 B. where B = B(O). Thus, the difference between B and the 

measured value B(t0 ) is negligible below ltl ~ 0.02 ( GeV Jcr 

The total elastic scattering cross section Uel is defined as 

f~00 (dCJn/dt)dt. With the parametrization used in Eq. (3.4) and the . 

result.s of Eq. ( 3.6), it is easily shown that 

1 (d<Jn) 
<Jet = B "'dt t=O 

(l~ot(1 + p2) (3.21) 

16rrB 

This result will be giwn a special name. We will define Eet as 

- (3.22) 

If the parametrization (Eq. (3.4)) were valid over the entire t range, then 

t7et would be Eet· We note that the value of Eet is the number often given 

in the literature as the experimental value of Uet· From Eq. (3.22), we 

find that the ratio of Eel/Utot is 

t7tot H51r B 
(3.23) 

a result that will be used later. 
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C. An Overview of Experimental Results 

Measurements of elast.ic scattering have had a rich history at 

the BrookhaYE'n AG S ( FolE'y et al., 196i ), Serpukhov, (Denisov et aL 

19i1a, 19i1b), CERN PS (Belletini et al., 1965), Fermilab (Bartenev et al .. 

19i2, 19i3a, 19i3b, Carroll et al., 1974, Fajardo et al., 1981), CERN ISR 

(Amaldi et al., 19i1, Barbiellini et al., 19i2, Holder et al.,1971,Amaldi and 

Schubert, 1980, Favart et al., 1981, Amos et al., 1983a, 1983b, Carboni et 

al., 1982a, 1982b) and the CERN SPS (UA4 Collaboration, 1982a, 1982b. 

UAI Collaboration, I983)collider. There is now an approved experiment 

for the Tevatron collider, to be carried out in 1986. Indeed, plans are cur

rently in progress to try to measure the elast.ic scattering at the proposed 

sse in the 1990's. 

The utilization of p beams have made possible accurate com

parisons of the pp system with the pp system up to .j8 = 62.8 GeV, using 

colliding beams. The colliding beam experiments all use "Roman Pots" 

named by the CERl\"-Rome (Amaldi et al., 1973a) group which first used 

them. The Roman Pots are re-entrant bellows in the vacuum chambers 

used to get the counters (or drift. chambers) close to the beams. This is 

done so that t.he minimum angle of detection, Bm;n, is small compared to 

B;nt, t.he Coulomb interference angle, to maximize Coulomb effects and to 

measure the interference term proportional t.o p + a:¢. 

Before the advent of the ISR collider (""' 19il ), the available pp 

data appeared to have u(pp) leveling off with increasing energy to a Yalue 

of ~ 40 mb. The anti-proton cross sections available in this era werE' 

higher than the pp cross sections, and CJ(pp) appeared to be falling with 

increasing energy and approaching CJ(pp). Thus, it was assumed at this 
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timr that thf' two cross sections were approaching a eommon eonstant 

,·alur of ~ 40mb, as JS ..... oo. The nuclear slope paramf't.ers B(pp) 

"·f'r<' larger than B(pp). The B(pp) were increasing with Js (diffrartive 

shrinkage), whereas the B(pp) were slightly decreasing with increasing /S, 
and it appeared that both were going to a common value. The values of 

B(pp) at the top energy were~ 12 ( GeV/c)-2
• 

When the ISR was turned on in 1971, one of the first. experiments 

done was an elastic scattering measurement of o-(pp) for t.he CERN-Rome 

group (Amaldi et al., 1971), using the VanderMeer method of luminosity 

determination and a measurement of o-(pp) by the Pisa-Stony Brook group 

(Amendolia, et al., 1973 a,b) using total counting rate and luminosity. 

These early measurements showed that the pp cross section was rising 

with energy, and indeed, had a rise that could be fitted with a log2 s/ s0 

term, where .so is a scale constant. These measurement.s were confirmed 

later when t.he Fermilab aceelerator and the SPS came into operation. 

The value for the ant.i-proton cross section was still dropping at thE' 

highest available energy (JS ~ 10 GeV). With the introduction of a 

p beam into the ISR, in 1982, experiments on pp scattering were done 

both by the 1\'orthwestern-Louvain group (Favart et al., 1982, Amos et al., 

1983a, 1983b) using elastic scattering and Coulomb normalization, and 

by the Pisa-Stony Brook (Carboni, et al., 1982a, 1982b)group, using total 

counting rate and Van der Meer luminosity. The Northwestern-Louvain 

. group measured CTt0 t, p and B for pp, while the Pisa-St.ony Brook group 

measured CTtot· These results eonclusively showed that the value of cr(pp) 

at. Js = 52.8 GeV was rising from its low energy value and that o-(pp) 

appeared to be approaching o-(pp). The p nlues, as well as the slope 

parameters B al~o st.>emed to be approaching one another. 
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Shown in Fig. 3.3 are thf' currently availablE' expE-rimental cross 

S('('tion data in thr energ,r interval 5 < Js < 62 GE'Y for both pp and 

pp. In Fig. 3.4 are shown the p data, and Fig. 3.5 shows the B data. We 

ohsene that cr(pp) falls from the value of ~ 50mb at Js = 5 GeV to a 

minimum of~ 41.5mb at J8 ~ 20 GeY and rises to~ 44mb at ..;s ~ 
62 GeY. The cross section o-(pp) starts at ~ 39.6mb at Js = 5 GeY, 

goes through a very shallow minimum of~ 39mb at J8 near 12 GeV 

and elimbs to ~ 43.5mb at Js = 62 GeY. The p(pp) Yalres ri~e from 

~ 0.27 at v'S = 5 GeV, going through ZE'ro at v'S = 23 GeV, and reach 

about 0.10 at J8 = 62 GeV. The p(pp) values are about zero in the 

energy region 10 < Js < 20 GeV, and rise to ~ 0.10 at Js = 53 GE>Y. 

The slope parameter data show that. B(pp) is rising, going from about 

9.5 ( GeV/c)-2 at ..;8 = 5 GeV to 12.5 ( GeV/c)-2 at Js = 62 GeV. ThE' 

values for B(pp) stay relatively constant at low v'S, around 12 ( GeY/c)-2
, 

and rise to about 12.5 ( GeY /c)-2 at Js =53 GeV. 

The ratio of the "total" elastic scattering cross section to the 

total eross section, R = EetfCTtot, is relatively fiat in the ISR energy 

region, being~ 0.18. It. appears to have fallen slightly from its low energy 

value. As we will show later, it is expected to rise as high as ..;B. 

The dominant experimental problems for the future; at high 

energy will be: 

(1) to see if the current trends of ~CTtot. tip and t:J.B going t.o 

zero (for t:J. = [(pp)- (pp)] ) continue as we go to very high 

s; 

( 2) to verify that the cross section cr tot. w hie h currently rises as 

I 2 I t· h' . . og s s0 , con ,mues t IS nse as we mcrease .s; 

- :~0-

w.c 



~~ 

(3) to find out if B also increases as log2 s as we go up in s; 

( 4) to determine whether R = l:c~ (<:rtot keeps increasing and find 

out its asymptotk constant valur, i e., t.o drterminr whet her 

the pp system is a gray disc (R < 0.5) or a black disc (R = 

0.5), or indeed, if 1 > R > 0.5. 

These are important questions. The answers bE.'come more difficult 

at high Js, and the required measurements pose a real challenge to tomor

row's experimentalists. 
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IV. THEORETICAL DISCUSSION 

A. Unitarity 

In the next two sections, it is convenient to work· in the center 

of mass frame. For elastic scattering, unitarity is embodied in the optical 

theorem, 

411" . . 
<:Ytot = ylmfcmlt = 0). ( 4.1) 

Writing an expansion in terms of LE.'gendre polynomials gives the standard 

partial wave expansion for spinless particles (for our purpose of examining 

the nearly forward region, we can ignore spin) 

fcm(S, t) = ~ :E(2/ + 1IPL(COS O)at(k), 
1=0 

( 4.2) 

where e is the c.m. scattering angle. Comparing coefficients in 

J da j 1T 2 411" 
CTtot = dt- = dt-2 1fcml = -!mf(t = 0), 

dt k k 
(4.3) 

we find for purely elastic scattering 

1ma1 =!mar +Reaf. (4.4) 

so the amplitude for each partial wave lies on the Argand circle Fig. (4.1) 
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( 1)2 1 Jma,-- +Rear=-. 
2 4 

(4.5) 

If there is inelasticity, the amplitude lies inside the Argand circle (Fig. 

4.1). Such an amplitude can be represented as 

e2i6, _ 1 
Ut = 2i (4.6) 

where 61 is purely real if there is only ela~tic scattering and !m61 > 0 if 

there is inelasticity. 

A more complete formalism is needed to express the full content 

of unitarit.y in the inelastic case. For this purpose we employ the conven

tional Lorentz invariant amplitude Itt which is related to the S-matrix 

by 

(p'1J4 .. . p~ I }t( IPt P2) 
S = 1- i(27T)

4
6

4
(Pt + P2- L:i~)(2EI)(2E2 )Ili(2E~)' (4.i) 

where Pt(Ed and p2(E2 ) are the initial momenta (energies), the primes 

indicate final momenta and energies, and I is the unit matrix. The states 

are normalized with 

{PIIP) = (2r.)a6a(p- p'), (4.8) 

so completeness is expressed by 

- 2!3 -

n (/ d3 I) Pi I I I I I I 
f = L II (27T)3 IP1P2" ·PnHP1P2· · ·Pnl• 

n '=1 · · 
(4.9) 

or symbolically, 

I= Lin>< nl. · ( 4.10) 
n 

Unitarity is the statement 

sts = 1. (4.11) 

Evaluated between two-body states IPtP2) and IPaP4), Eq. (4.11) gives 

(P3P41- iltt + i1tttiPtP2) = 21m(PaP41MIPIP:!) 

. = -(27T)
4 ~ ig [! (2:;:;EJ6

4
(Pt + P2- L:j=lpj) 

{P3P411tt tIP~~·. ·P~HP1t p~ .. ·P~IMPtP2)· (4.12) 

\Ve recognize the usual n-body phase space 

. 4 ~ Tin [/ d3~ ]64( + ~n I ) d.n = (21T) ~ .. (21r)a2E1 P1 P2- £Ji=tPi ' 
n t=l ' 

(4.13) 

which relat.es the cross section to the amplitude squared: 
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1 2 
don = _ I.M I d~n. 

'2£12£2 X fiux fartor 
(4.14) 

The flux factor ("the relative wlority of the incoming particles ") multi

plied by 2£12£2 is simply 4k..;8 where k is, as always, the c.m. momentum 

in the initial state. Thus specializing to forward scattering with P1 = P2· 

P3 = p4, we find with .M(t = 0) . (PlP21.MIPIP2), 

2Im.M(t = 0) . -4k.jtLan = -4kVSLTtot, (4.15) 
n 

or 

1 
Gtot =- --_lm.M(t = 0). 

2k.js . 
(4.16) 

In this proof of the optical theorem, we see how a sum over 

physical intermediate states is central to exploiting the formal statement 

of unitarity, Eq. (4.11). 

B. Geometrical Picture 

1. Impact Parameter Representation 

Elastic pp scattering is described by five amplit.udes, but in the 

Yery forward direction, which is our concern, it suffices to imagine that 

there is a single amplitude, just as one has for spinless particles. For 

this amplitude we will be able to develop a geometrical picture based on 

impact parameter space, the two dimensional physical space perpendicular 

to the beam direction. (See Jackson, 19i3, for an earlier account of some 
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of thi~ material.) Throughout, we consid!.'r only hadronic scattering and 

ignore the Coulomb effects which are important only at very smallltl. The 

stan dare! partial wave expanc;ion for the scattering am pJit.ude giwn in Eq. 

(4.2) is 

1 "'' 
!cm(s,t) = k ~)2!+ 1)Pt(cos8)at(k), 

1=0 

where, as in Eq. (4.6), 

a
1
(k) = exp(2i6tl- 1 

2i ' 

and 6r is the phase shift in the flh partial wave. If the scattering is purely 

elastic, 6r is real. If there is inelasticity, 1 m6t > 0. From Eq. ( 4.1) it 

follows that the contribution of the f-h partial wave to the total cross 

section is bounded: 

Gt -~ 41T(2f + 1) ( 4.li) 

Since the bound is a decreasing function of the energy, it follows 

that. an increasing number of partial waves must contribute to the high 

energy amplitude. It is thus sensible to convert the discrete sum, Eq. (4.2), 

into an integral. 

A classical description of the scattering would introduce the im

pact. parameter, b, which is related to the angular momentum by bk = 

l + ~· The extra 1/2 is thrown in for convenience and in recognition 

of its appearance in the WKB approximation. To convert Eq.(4.2) to an 

integral, we replace L:1 ..... f dl-+ fk db and ac(k)-+ a(b, s). We need also 

to express Pc(cos8) in terms of /J and q, where q2 = -t = 4k2 sin2 (8/2). 
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For large f, we have (Erd~lyi,1953) 

Pdcos B)-+ Jo((2f + 1) sin B /2). (4.18) 

Wit.h these replacements, Eq.(4.2) becomes 

fcm(b, t) = 2k 100 

bdbJo(qb)a(b, s), ( 4.19) 

or, using the integral representation of Jo (Abramowitz and Stegun, 1964, 

p. 360) 

1 1211" 
Jo(z) =- d¢exp(izcos¢), 

2rr o · 
(4.20) 

it is simply 

k f 2 . fcm(s, t) = 7r d b exp(1.q · b)a(b, s), (4.21a) 

where d2 b = b dbdrjJ. The Fourier transform can be inverted to give 

1 f . a(b, s) = -, d2 qexp(-tq · b)fcm(s, t). (4.21b) 
4 rr,; 

With our normalization, we have, using Eq. (4.21a), 

(Jel = ~ f dtifcml2 = : 2 f d2 qifcml
2 = 4 J d2 bla(b,s)l

2
, (4.22) 

and 

CTtot = 4
; Imfcm(s,O) = 4 j d2b Im a.(b,s). (4.23) 

The amplitude u(b, s) is given in impact parameter space which is perpen

dicular to the beam direction and thus is the same in the lab and c.m. 

systems. It.s form is still that. of Eq. ( 4.6). Therefore it. lies in the usual 
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Argand plot, shown in Fig. 4.1. Elast.ir scattering corresponds to o being 

real. If there is inela:o-t ir sr.attering as well, then b has a positive imaginary 

part and atb, s) lies inside the Argand circle. 

Equation ( 4.21a) has a simple physical interpretation. The func

tion a(b, s) can be viewed as a distribution of sources of waves which 

produce an interference pattern. EquiYalent.ly, it can be viewed as the 

distribution of an absorber which produces a diffraction pattern when 

plane waves are incident on it. There is a clear analogy with diffraction 

in optics (for an extensive review of this analogy, see Amaldi, Jacob, 

and 1\latthiae (1976)). Total absorption corresponds to /m o = oc or 

a( b, s) = 1:;2. Thus a black disk of radius R gives a total cross sect. ion 

(see Eq.(4.23)) 2rrR2 and an elastic cross section (see Eq. (4.22)) rrR2 • 

For a Gaussian shape in impact parameter space, the elastic scattering 

amplitude is a Gaussian in momentum transfer. In particular, if the 

scattering amplitude is f = (ikcrtot/4rr)exp(-Bq2 /2), so that B is the 

nuclear slope parameter, the impact parameter space representation is 

a= (iCTt 0 tf8r;B)exp(-b'2j2B) = (2iCTet/(Jt0 t)exp(-b2 /2B). Note that 

ia(b = O)l = 2cred(Jt0 t = 2'£,tfcrtot· The connection between a(b = 0) 

and CTel/CTtot is more general. Suppose that the scattering amplitude is 

f = (k/4rr)(i + p)CTtotg(q2 /A2 ) where pis independent of q2 and g is some 

function of a single variable, u = q2 /A 2 • Then it is easy to show that 

cr,1 J~::.o dug(u) 
a(b = 0) = (1 + p2 )CTtot J

0
"" dug2(u) 

(4.24) 

Thus for scattering amplitudes of this generic form, a(b = 0) is given by 

CTct/(1 + p2 )cr101 times a pure number which depends on the shape of g, 
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but not on the actual value of the parameter, A2 . 

2. The Slope Parameter Band the Mac Dowell- Martin Bound 

l.Tsing the impact. parameter amplitude .. we can obtain a physical 

picture of the slope parameter, 

d ( dcr) B(s.t)=dt lndt' 

which we often evaluate at zero momentum transfer 

B = B(s) = B(s,t = 0). 

Beginning with 

!em......, I d2 bexp(iq·b)a(b,.s), 

we expand about q = 0 to find 

f,.m ""' I d2 ba(b, s)[1 + iq · b- ~(q. b)2 
•.• ]. 

This yields a general expression for B, 

B= Ref dbba(b,s) I dbb:a*(b,s) 

2II dbba(b, s)! 

Thus, if the phasE' of a(b, .s) is indE-pE-ndent of b, we have 

- ~~9 -

(4.25a) 

( 4.25b) 

(4.26) 

(4.27) 

(4.28) 

'<: 

B = I db b3 a{b, s) = I ~b b2 a(b, s) 

2I dbba(l1,s) 2I d2ba(b,s) · 
(4.29) 

This shows t.hat B measures the size of the proton. More precisely, B is 

one-half the average value of the impact parameter squared as weighted 

by a. 

Let us suppose that the phase of a(b, s) is independent of b, 

so that R.e a(b, s)f Im a(b, s) = p. Then we can write 

(4.30) 

Combining Eqs. ( 4.22), ( 4.23), and ( 4.29), we find 

(4.31) 
CT tot 

Eel _ CTtot _ 1 [Jbdbla(b,s)IJ2 

CTtot - 16rrB- J1 + p2 I dbb 3 ia(b,s)l · 
( 4.32) 

As an example, suppose a(b, s) is purely imaginary and constant, 

with a= iA/2, where 0 <A~ 2, forb< Rand zero forb > R. Then 

CTet/CTtot = Eet/CTtot = A./2. A perfectly black disk has A = 1. The 

equality of CTe 1 and Ect is characteristic. In fact, the Mac Dowell- Martin 

(Mac Dowell and Martin, 1964) bound states that 

CTel > ~ 
Ert- 9" 
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We ran demonstrate this using the impart parameter representation as

suming that a(b) is purely imaginary. Then IE'tting a'= Jma, 

(Ttot = 4 I d2 ba1
, (4.34a) 

(Tel= 4 I d2 b a1
2, (4.34b) 

(TtotB = 2 I d2 bb2a1
, (4.34c) 

and 

~ = 2trJ ~b a'2 J ~b b2a' 
Eel (f d2b a')3 

(4.35) 

Now to minimize (Je1/'Ee1 we consider varying the form of a' by 6a1. Then 

at the minimum 

6 (Jel = 0 
Eel 

= [I d2b 2a16a1 I d2b b2 a1 I d2
b a'+ I d2 b a12 I d2

b b
2

6a
1 I d2

b a' 

-3 I d2 ba12 I d2 bb2a' I d2b6a'](l d2 ba1
)-

4
. (4.36) 

Since this is true for arbitrary 6a', the coefficient of J d2b 6a1 must vanish 

and 
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2a
1 

/ d
2

bb
2

a
1 I d2ba

1 
+b2 I d2ba

12 I d2
/1a

1
- 3 I d2ba12 I d2 bb2 a1 = 0. 

(4.37) 

Thus a' is of the form 

a'= C1- C2 b2
, (4.38) 

where C 1 and C2 are positive constants, as seen in Eq. (4.37). Now a1 

cannot be negative, since Jma ~ 0, so a' vanishes outside some radius R 

and we write 

This gives 

and 

a'= A[l- (b/R)2
], 

a' =0, 

(Jtot = 211"AR2
, 

4" 2 2 (Tel= -A R 
3 ' 

B=!R2 

6 ' 

~ - 37rA2R2 
'""'el-2 ' 
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b$ R 

b > 0. 

( 4.39a) 

(4.39b) 

(4.40a) 

( 4.40b) 

(4.40c) 

(4.40d) 



O"et 8 
Er~ = 9 (4.41) 

Our success in deriving the proper result, while using the ap

proximation of the impact parameter representation rather than the fully 

correct discrete partial wave series, is easy to understand. Since the min

imum is achieved with a form which in fact requires many partial waves, 

there is no loss in treating the partial wave sum as an integral. 

For most reasonable shapes of a, the ratio O"et/Eet is actually 

quite near unity. Thus it is difficult to distinguish between models on 

the basis of this ratio. For example, if a . ....., 1- (b/bo)n and vanishes for 
) 

b > bo, we find for the ratio values between 8/9 for n = 2 and 0.91 for 

n = 5. For the form a""" [1- (b/b0 )]n the minimum value is about 0.89 

(just slightly greater than 8/9) when n = 0.6-0.7 and the ratio increases 

so that for n = 4, it is 1.07. Putting a Gaussian form in Eqs.(4.32) gives 

a ratio of exactly 1, just as the black disk gave. 

The relationship between the impact parameter amplitude, a, 

and the differential cross section can be illustrated with some simple 

examples. For definiteness, we shall fix the paramet.ers in each model 

so that they produce O"tot = 43mb and B = 13 GeY ;c-2
• These are 

characteristic of the values found at the ISR. 

The simplest model has a constant value for a inside some radius 

R. and zero outside it. Since the forward elastic scattering amplitude at 

high energies is mostly imaginary, we take 

1.A a= -t • 2 ' (4.42) 
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with A. real. Thus A. = 1 correponds to a purely black disk. From Eqs. 

(4.2~) and (4.23) we find, 

O"tot = 21rR2 A., 

O"et = 1iR2 A 2 

' 

and from Eq. (4.22) and (4.19) or (4.21 ), 

dO" I [R 12 dt = 1iA2 lo b dbJo(qb) 

= 7i"42 R41 J1~~R) 12 

3. The Curvature Parameter, C 

( 4.43) 

( 4.44) 

(4.45) 

As discussed in Section m, the t-dependence of the elastic differential 

cross section is described at small t by 

from 

dcrn = (dO"n) exp(Bt+Ct2···) 
dt dt t=O 

B2 =(dcrn) [l+Bt+(2+C)t2 ... J. 
dt t=O 

(4.46) 

If we take a t.o be purely imaginary, we can easily compute C 
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fern""' I d2 b exp(iq · b)a(b) 

12 122 144 
""' d b (1- -q b + -q b · · ·)a(b). 

4 6-1 
( 4.4i) 

By noting that 

dcrn ""' (I d2b af +!I d2b b2a I d2b a 
dt 2 

+_!_t2(1 d2b b2aP + ..!..t2 I d2b a I d2b b4 a + .. · 
16 32 ' 

( 4.48) 

we find that 

C = _!_f d2
b b

4 a _ _!_(f d2
b b

2 a)2 

32 J d2b a 16 J d2b a 
( 4.49) 

Thus B is certainly positive, while C may be positive, negative or zero. 

4. Models of Elastic Scattering 

In Fig. 4.2, the profile for the disk and several shapes to be 

considered subsequently are shown. The corresponding differential cross 

sections are shown in Fig. 4.3 for the values of the parameters which giw 

C!tot =43mb and B = 13(GeV /c)-2 • For the sharp disk, R = 1.42/ and 

A.= 0.34. It is easy to verify that for the sharp disk we have CfedCftot = 

A/2 = C!t 0 t/l67rB, that. is, Eet = C!et· The value of C is negative: C = 

-R4 /192. 
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Ball and Zarhariasen {19i2) de,•eloped a model by solving the 

multipE>ripheral equation for diffrarf.ive sc.attering. The result was an 

elastic scattering amplitude 

fcm(s, t) = iKRgp !t(qRo ln8/so) 
qRo 

(4.50) 

By comparison with the amplitude used in Eq. (4.45) we see that this 

model corresponds to a uniformily gray disk of growing radius R = 

Roln(s/so) and amplitude A.= K[ln(s/8 0)]- 1 • The total cross section 

grows as Ins. the elastic cross section is const.ant and B increases as 

ln2 (s/so). 

A softer profile is given by 

a= iA[l- (b/Rl2
], 

a=O, 

b ~ R 

b > R. 

(4.5la) 

(4.5lb) 

This is the shape that saturates the MacDoweli-Martin bound, aed'Eet = 

8/9. For our chosen total cross section and slope, the appropriate parameters 

are R = l.i 4 f, and A= 0.226. The differential cross section, 

da = 41rA2R4 ,4Jt(qR) _ 2Jo(qR)I
2 

dt q3R3 q2R2 
( 4.52) 

is shown in Fig.4.3. 

As a further example. consider a Gaussian profile, 
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a= ~iAexp(-(b/R)2 ) (4.53) 

which gives CTtot = 211"AR2 , CTel = TrA .. 2 R 2 /2, and B = R 2 /2. Thus, as for 

the sharp disk, :Ee1 = CTel· Of course, C = 0 for the Gaussian form. The 

appropriate parameters are R = 1.00 f, and A. = 0.68. The differential 

cross section is compared to that for the previous examples in Fig. 4.3. 

More realistic examples of the impact parameter amplitude, a(b, s) 

can be found among the models which have been proposed for elastic scat

tering. The Chou-Yang (Chou and Yang, 1968, 1983; Durand and Lipes, 

1968) model postulates that the elastic scattering is the shadow of the ab

sorption resulting from the passage of one hadronic mass distribution 

through another. The transverse distribution of the matter is assumed 

to have the same shape as the charge distribution as measured by the 

electromagnetic form factor. This assumption leaves only the strength of 

the absorption to be fixed, and this can be done by requiring that the total 

cross section as calculated in the model agree with experiment. Thus the 

only energy dependence is that which comes implicitly through the energy 

dependence of the total cross section. If the absorption at an impact 

parameter b is 0( b), then one writes 

a(b, s) = ;i(e2
i
6

- I)= ~(1- e-0
). (4.54) 

If a dipole electromagnetic form factor is used, 

2 )2 
G(q2) = (A2 ~ q2 ' (4.55) 
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then 0 is a function of x = Ab: 

1 3 0 =A-x Ka(x). 
8 

(4.56) 

Here K 3 is a modified Bessel function and the constant A is selected so 

that the amplitude, Eq. (4.54), yields the correct value for the total cross 

section. The normalization in Eq. ( 4.56) is chosen so that as x -+ 0, 0 -+ 

A. For large x, 0 -+ cx512 e-x where c is a constant. In Fig. 4.2 the 

profile, afi, is displayed as a function of impact parameter, with A= 1.35 

and A = 0.845GeV /c, which give the same total cross section and slope 

parameter as before. The value of A obtained in the fit is in remarkably 

good agreement with the value A2 = 0.71(GeV/c)2 deduced from the 

electromagnetic form factor. The resulting differential cross section in 

shown in Fig. 4.3. 

The model of Cheng, Walker and Wu (Cheng, Walker, and Wu, 

19i3; Bourrely, Soffer and Wu, 1983) is based on field theoretic st.udies 

which showed that at high energies, the dominant exchanges give amplitudes 

nrying as s1+£. Multiple exchanges produce an eikonalized amplitude. 

As a phenomenological form, Cheng, Walker, and Wu used in Eq. (4.54) 

0 = f(Eci1rf2 )c exp( -}..Jb2 + b~} (4.5i) 

where f, c, ).., and bo are parameters. The phase associated with the energy 

dependence will be discussed later. The constant c is small and plays the 

role of<. 

The sign of the curvature, C,for the four displayed models is 
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apparent in Fig. 4.3. The Gaussian form with C = 0 is a st.raight linE' on 

the ~emi-log plot. The sharp disk and the parabolic form which saturates 

the MacDowpll-Martin bound both fall below the Gaus~ian, and thus have 

negatiw values of C. The Chou-Yang has a positive values of C for the 

given parameters. The measured value of Cis~ 4 (GeY /c)-4 • Roughly 

speaking, a positive value of C requires a broader tail than the Gaussian 

distribution has. 

where 

From Eq. ( 4.49) we see that the condition that C be positive is 

(b4
) > 2(b2 )!:!' 

(bn) = I cf2b bna 
I d2 b a 

(4.58) 

(4.59) 

It is easy to see that a "' [1- ( b/ R)P] gives a negative C for every p > 0. 

while a"" [1- (b/R)]P gives a positive C for p > 4. If we consider shapes 

of the form a ,......, exp[-(b/ R)P] then, if p > 2, the curvature Cis positive, 

while if p < 2, C is negative. In Fig. 4.3 we see that among the curves 

with diffraction minima, those with negative C tend to have the minima 

at smaller values oft, since the differential cross section turns down sooner 

than for curves with positive C. 

C. Energy Dependence of Cross Sections and Slopes in Models, 
and the Approach to "Asymptopia" 

While our primary concern is with model independent analysis, 

it is worthwhile to consider what the simple models discussed above have 
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to say about the energy dependence of the tot.al cross section, elastic cross 

section, and slope of the elastic peak. 

First we considl'r the geometric model. The fundamental as

sumption of the model is that the only dimensionful parameter is the 

total cross section. It follows that (Jel/(Jt 0 t and Eed(Jtot must be energy 

independent. While this model is successful in treating the ISR data, it 

cannot contend with the energy dependence of these quantities observed 

in going from the ISR to the SPS Collider. 

Next we consider a generic Chou-Yang model with 

a(b,s) = ~i(l- exp(-AO(b))), (4.60) 

where 0 is some generalization of the specific form of Chou and Yang. 

Then A measures the strength of the hadronic interaction and n measures 

the hadronic overlap density at a separation b. \Ve take 0 to be indepen

dent of the energy. The parameter A must be chosen to reproduce the 

total cross section. Now if the cross section increases indefinitely, so does 

A. The cross section is roughly 21rR2 , where R is the value of bat which 

O(b) ~ 1/A. If n falls exponentially with b, R,......, lnA. Thus we obtain a 

cross section growing as ln2 s if A varies as a power of s. The amplitude 

is, for large A, nearly i/2 forb < R, and nearly zero forb > R. We see, 

then, that for this class of models, asymptotically the profile approximates 

a black disk with growing radius. 

The ratio of (Jed(Jt 0 t, which asymptotically will be 1/2 in these 

models, is only 0.22 at the SPS Collider, so we are not yet at the asymptotic 

st.at.e of the black disk. The ratios 
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X= cr,z!crtct (4.61a) 

and 

Y = 'EctfCTtot {4.61b) 

are shown as functions of the total cross section in Fig. 4.4, where we 

have fixed the Chou-Yang model to have A = 0.845 GeV and varied 

the remaining parameter, A. The behavior is not too different from the 

observed rhanges between the ISR and the SPS Collider. 

For models which become gray or black disks asymptotically, the 

curvature parameter, C, must eventually become negative, as it is for the 

sharp disk. In Fig. 4.5 we show the behavior of C in the Chou-Yang model 

as a function of t.he total cross section. We not.e that C which is positive at 

the ISR is indeed positive in the model at the appropriate cross section of 

about 40mb. However, in the model, C becomes negative when the cross 

section reaches about 100 mb. Thus we expect that the value of C will 

change sign around the energy region of the Tevatron Collider. For this 

reason, it is important for experimenters to measure directly the energy 

dependence of C in going from the ISR to the Tevatron. The prediction 

that it will change sign is more general than the Chou-Yang model. It is 

the consequence of the nucleon-nucleon profile becoming more and more 

that of a disk. 

In Fig. 4.4, we see that the curves for X and Y cross when 

CTtot :::::! 85mb. A Gaussian shape has C = 0 and X= Y. Not surprisingly, 

we find in Figs. 4.4 and 4.5 t.hat. X = Y near C = 0. Of course, 
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asymptotically, the model becomes that of a black disk and X eventually 

bPcorn<>~ E'qual to Y again. 

While we art> concprned primarily with wr:r low momentum trans

fPr, it is instrurtivP to USP the Chou-Yang model to make some predictions 

at larger momentum transfer (Block and Cahn, 1984). As stressed above, 

the Chou-Yang model has no intrinsic energy dependence. It acquire~ 

energy dependence through the variable A of Eq.( 4.56) which is adjusted al 

a given energy to reproduce the correct total cross section. Once A is deter· 

mined, there are no remaining free parameters. In the next Section W€ 

shall make predict.ions for the total cross section as a function of the center 

of mass energy. Anticipating these results, we can use the cross section at 

each of several energies to fix the model and thus predict the differential 

cross section. We show in Fig. 4.6 the impact parameter amplitude at 

several energit>s, and for comparison, a gray disk with the same total cross 

section. The cross sPction is taken from the the fits of Section V. The slope 

paramPt.er, B. is then determinPd in t.he Chou-Yang modPl. The gray disk 

has been chosen to reproduce the samE' values of CTtot and B. In Fig. 4.i we 

display the differential cross sect.ions generated by these impact parameter 

distributions. If the amplitudes are taken to be purely imaginary, there 

are sharp diffraction minima, in fact, zeroes. To obtain more realis

tic results, we have incorporated small imaginary parts by the prescrip

tion of Martin (1973). If f is the purely imaginary amplitude and we 

wish to give it a real part so that a particular value of pis achieved, we use 

dcrn = (!!._)(lfl:! + ·21d(tf)l2) 
dt k2 • p dt . (4.62a) 

4(.) -- -



For the sharp gray di~k with a= iA/2 inside a radius R, this yields 

dan = 1TA2R4[(J!(qR))2 + P\Jo(qR)l2l· 
dt qR 4 

( 4.62b) 

Figure 4.7 shows that at the SSC (40 TeV), the differential cross 

sect.ion for elastic scattering is likely to be indistinguishable from that 

of a black disc. The location of the first minimum moves in rapidly for 

the Chou-Yang model until it is nearly as close in as in the gray disk 

model. The general arguments above demonstrate that this must happen 

eventually. Bence we define "asymptopia" as the energy domain where the 

elastic differential cross section is essentially indistinguishable from that 

of a sharp disk. ·what the numerical study reveals is that the coalescence 

of the models with the sharp disk will take place with the sse machine 

presently being designed. 

At. the ISR and SPS Collider, the observed values of C are posi

tive. Figure 4.7 shows that C should be negative at the SSC, accord

ing to the Chou-Yang model. A quantitative indicat.or of the onset of 

"asymptopia" is the energy at which C = 0 and our fits indicate that this 

occurs very close to the energy of the Tevatron Collider. This progression 

can be viewed in Fig. 4.6, where the profile of nucleon-nucleon system 

is seen to develop a characteristic "flat-top", starting at the Tevatron 

Collider energy. 

We shall find in Section v!, that when our fit to the experimental 

values of the slope is extrapolated to very high energie~, the values of B 

thus obtained are in substantial agreement with those cakulated from 

the Chou-Yang model. using Eq. (4.62a). In conrlusion, we have used a 
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model-free analysis of t = 0 and very small ltl data at. lower energies to 

predict the parameters needed to fix differential elastic scattering cross 

st-ctions at very large ..;-;;and at. large -t. We consider this much more 

reliable than using the dip structure at. large -t of dcrnfdt (at low v'Sl 
to determine the energy dependences of the total cross section and the {I 

values, which are either undefined or ill-defined in most models of elastic 

scattering cross sections. 

D. Analyticity 

The physical amplitude for elastic scatt.ering. j, is definf>d for 

s ~ 4m2 and -4m2 ~ t ~ 0. It is possible to show that f( s, 0 is 

really the limit of a more general function in which s and t may take on 

complex values. ( See Eden (1967) for a comprehensive introduction and 

:Martin and Cheung (1970) for a thorough treatment. See also, Jackson 

(1960,1973).) In part.icula.r, if we fix t = 0, then f(s, t = 0) is the limit of 

an analytic function 7 according to 

/pp(,~, t = O) = lim 7(s + i£, t = 0), 
£-0 

(4.63) 

where f -+ 0 from positiw values. Not only is the pp amplitude a limit 

of an analytic function, the pp forward amplitude is another limit of the 

same anal:rtic function. The principle of crossing states that to go from 

the pp amplitude to the pp amplitude we merely replace p2 by -p4 and 

vice versa. This is equivalent to interchanging u and s. The pp amplitude 

is obtained from 7 by 
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fpp(s, t = 0) = lim J(-s +4m2
- ir, t = 0), 

(-40 . 

(4.64) 

again with f > 0. Now, fort= 0, u = -s +4m2 so we see that the pp 

amplitude is found by evaluating J using u as the variable, rather than 

s. This symmetry is dearer if we use as a variable 

E = (s- u)f4m. ( 4.65) 

For t = 0, E is the lab energy for pp scattering. The pp to pp interchange 

reverses the sign of E. More precisely, the physical amplitude, !em, at t = 

0, is the limit of an analytic function, J, of a complex variable E, with cuts 

on the real axis. The physical amplitude for pp srattering, fcm(E, t = 0). 

is the limit of J(E + if, t = 0) as f -+ 0 from positive values. The pp 

amplitude at t = 0 is obtained as the limit of J(-E- if, t = 0), again 

as f ..... 0 from positive values (i.e., from below). See Fig. 4.8. 

Unitarity rela.t.es the imaginary part of the elastic srattering 

amplitude to a sum over all physical states with the same energy. £. 

See Eq. (4.12). It. is possible to show that when we continue the elastic · 

amplitude in the complex variable E, the imaginary part of the elastk 

amplitude for E next to the real axis vanishes if there is no physical 

state with energy E which communicates hadronically with pp or 

pp . Since pp communicates with the 1T 1i channel (and the channel 

with a single 7T) there is an "unphysical region" on the real axis where 

1m J =j:. 0, even though there is no physical elast.ic scattering at this 

energy. (Actually, this rt>gion can be probed slightly by studying pp atoms 

whose binding energy reduces the mass below 2m.) 

From these considerations we con<·lude that the cut structurt> of 
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the forward elastir scattering amplitude is as follows. The right hand cut 

begins at threshold, E = m. The single pion pole occurs when u = m~, 
that is, when E = m- m;/(2m). The two pion cut begins when u = 

4 m;, that is, when E = m- 2m~/ m. Between the left. hand cut and the 

right hand cut, except at the pion pole, the amplitude is real on the real 

axis. 

A funrtion like J which is real on a segment of the real axis is 

called real analytic. The Schwarz reflection principle states (Titchmarsh, 

1939, p. 155) that if J is real analytic, then J(z*) = J*(z). Thus if J has 

a cut on the real axis, its imaginary part changes sign in going from one 

side of the cut to the other, but the real part. is the same on both sides. 

In other words, the discontinuity arross the cut is imaginary. 

The Schwarz reflection principle .is quite easy to prove. Suppose 

J(z) is anal)i.ic in some region and that this region inrludes a finite 

segment. (howewr small) of the real axis. ~ow define a function g(.:) 

by g(z) = J*(z*). We can show that g is in fact. an analytic function 

of z: 7 has a power series expansion J(z) = a0 + a1 z + a2 z2 + · · · so 

g(z) = a~ +a~ z + a;z2 + · · ·. Clearly the two series have the same 

radius of convergence, so g is analytic. Moreover, by construction J and 

g coincide for values of z on the real axis. However, by the principle of 

anal)i,ic continuation, the function is uniquely determined by its values on 

a segment so g and J are the same. Thus g*(.::) = J*(z) and g*(z) = 
J(z*), so J*(z) = 7(z*), as we wished to show. 

In practice, we shall use real analytic functions which have a 

simple cut structure. The left hand cut will begin at E = - m, just as 

the right hand cut begins at. E = m. Ignoring the unphysical region of 
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the pion pole and t.he two pion cut i~ permissible, since we are interested 

in t.he high energy region, which is far from these singularities. 

It is very useful to definP two amplitude~ which are combinations 

of the pp and pp elastic amplitudes: 

1 
!± = 2(/pp ± /pp). (4.66) 

The amplitude f+ is even under E-+ -E, while f- is odd. 

Consider, as an example, a prototypical function possessing the 

analyticity properties of scattering amplitude, 

B-(EI = (m + Ef'- (m- E)0
• (4.6i) 

This function has branch points at ±m. We can take the branch cuts to 

extend from 1n to infinity and from - m to negative infinity along the real 

axis. We define the function so that it is real along the real axis between 

- m and m. This is the behavior appropriate to a forward scattering 

amplitude. See Fig.4.8. 

Just above the right hand cut, 

g_(E) = (E +mY"- (E- n1.)<l' exp{-iJTa), (4.68) 

and forE> m, 

B-(E) ~ 2isin(r.o'f2)1El0 exp(-ir.o/2), ( 4.69) 
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.. 

w bile just below the left hand rut 

B-(E) = {-E- m)'Y exp(-i1Tcx)- {-E + m)a, (4.70) 

and for-E> m, 

g_(E) = -2isin(1Ta/2JIEI<l' exp(-irra/2). (4.71) 

The phases are explained in Fig. 4.9. If B- were the rontinuation of 

the pp amplitude, Eqs. (4.68) and (4.69) would give the pp amplitude and 

Eqs. ( 4.70) and (4.71) would give the pp amplitude. Clearly the amplitude 

is odd. It has all the properties we want for odd part of the forward scat

tering amplitude. Just below threshold, it is purely real. The thresholds 

are in the correct place if we ignore the unphysical cuts (as we shall do 

henceforth). From this example, we infer that odd amplitudes whieb be

have asymptotically as E·:. haw the phase i exp(- irra/2). This inferenre 

is made rigorous by the PhragmEm-Lindelof theorem (Titrhmarsh, 1939). 

The corresponding analysis for even amplitudes sh?ws that their phase is 

exp(-iJTa)/2), if their power behavior is E 0
• 

Of course, not all amplitudes need have power law behaYior. An 

example of an even function of a different sort is 

B+(E) = ~lln((m +E)/ Eo)+ ln((m- E)/ Eo)], ( 4.i2) 

which bas the same cut structure as bPfore and which we can define so 

that it is real on the real axis between the two branch points. We then find 

that above the right hand cut (and below the left hand cut), forE> m, 
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B+(E) = ln(p/Eo)- i;, (4.73) 

wherl' pis thl' laboratory moml'ntum. 

Anot.hl'r useful l'ven function is 

9+ = V(m + E)(m- E). (4.74) 

A hove the right hand cut, we define this function so it is precisely - ip. 

Asymptotically, this is just -iE, in agreement with our general result for 

even functions with power law behavior. 
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We ronrlude this section with an illustrative list of simple analytic 

funrt.ions together wit.h their asymptotic behavior. It is from thesl' forms 

that Wl' shalll'ventually build our scattering amplitude. 

Gl'neral Form 

9 + = ( m + E)01 + ( m - EYx 

9+ = -/(m + E)(m- E) 

9+ = ~[Iog((m- E)/Eo) 

+log(( m +E)/ Eo)] 

9- = ( m + E)0
' - ( m - EY:' 

High Energy Form above 

Right Hand Cut 

E 01 exp(- irro/2)2 cos( r.o./2) 

-iE 

logE/m- irr/2 

iE" exp(-ir.a:/2)2 sin(r.a:/2) 

From this table we can recognize the traditional forms for Reggl' 

behavior. A forward amplitude varying as E 01 contributes to the total 

cross section as E 01
-

1 • If the amplitude is even (the pomeron, f,A2 ), 

the phase of the amplitude is exp(- £rra:/2). Thus for the mual pomeron 

with u ~ 1, the phase is - i. For odd amplitudes (p, w ), the phase is 

i exp( -ir.a:/2). 

E. Integral Dispersion Relations 

The traditional means of testing analyt.irity of the srat.tering 

amplitude to is use Cauchy's theorem to obtain a dispersion relation, that 

is,a relation between the real and imaginary parts of the amplitude. (See 

Jackson, 1960, and Eden, 1967, for a more complete discussion) Let 1(£) 
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be 1 be anal~·t.ir continuation of .f(E. t = 0), so 1 is analytic in the cut E 

plane. Then we <·an write 

1(EJ = ~ f dE' 1(£') 
211"! "'" n 1 

(4.75) 

where the coumerclocJ...,.,·ise <'ontour does not cross the cuts or encircle 

any poles. (As explained above we ignore "unphysical singularities~ like 

the single pion pole and two pion cut.. Because we are only interested in 

high energies, these have little influence on our answers.) \Ve choose a 

contour which passes just above and just below the cuts on the real axis. 

as shown in Fig. 4.8. If t.he contribution from the semicircular contours 

at oo vanish, we have 

1(E) = ~[ [oo dE' 1(E' +£f)- 1(E'- iE) 
2rrz .fm E' _ E 

+1-m dEi 1(E' +if)- 11E' - iE)] 
-oo E'- E · 

( 4.76) 

If 1 = 1+ is even, so 1(E' + iE) = 1(-E'- it:), 

1 100 

1 . [ 1 1 ] 1+(E) =- dE'1rn1+(E + u) E'- E + E' + E ' 
1f m 

(4.77) 

while if 1 = 1- is odd, 

00 [ 1 1 ] 1_(£) = .!_1 dE'1m1_(E' + iE) E'- E- E' + E . 
·Ti m 

(4.78) 
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The integrands have singularities atE' = ±E which just. produce 

the identity 1 m1 = 1 m1. The real part. of 1 is found as a principal value 

integral. Thus 

. . 1 1 2£ 1 10C· [ I ] 
R.ef+(E) = P; m dE E'2 _ E2 1mf+(E ). (4.79) 

. 1 1oo '[ 2E ] ') R.ef-(E) = P; rn dE E'2 _ E2 Imf-(E . (4.80) 

If the integrals (4.79) or (4.80) do not converge because of the 

behavior of f as E - oo, or because of the contributions from the semi

circles at infinity, we must modify the approach slightly. Consider the 

odd funct.ion g_ = 1+/E. If we insert this in Eq. (4.78) and take notice 

of the pole at E = 0, we find 

11"" 2£2 R.ef+(E) = Ref+(O) + P- dE' E' E', E2 1mf+(E'). 
1f m ( ~- ) 

(4.81) 

(Here the amplitude at f+(O) really is the analytic continuation, 1+(0), of 

the physical amplitude.) This is called a singly subtracted dispersion rela

tion, and the first term on the right hand side is called a subtraction con

stant. Clearly the subtracted dispersion relation has better convergence 

properties than the unsubtracted relation. On the other hand, there is an 

additional constant to be determined. If we try the same trick for the odd 

amplitude 9 + = 1- f E. we find that we just reproduce the unsubtracted 

relation (4.80). Instead we must use 9- = 1-/E2 . Wit.h care exercised 

at the pole at E = 0, we find the doubly subtracted dispersion relation 

for the odd amplitude 
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. I · 1 roo I 2E3 
( ') ( ) Ref-(E) = ER.ef _(0) +;: Jm dE ,.,,.), ,.,,., ..,,Jmf_ E , 4.82 

where f~(O) denotes d1-/dE, the analyt.ic continuation, atE= 0. We 

see that here the subtraction results in a term linear in E. If the odd 

amplitude grows as fast. as E, it is t.his doubly subtracted dispersion 

relation which must be used. 

The importance of these dispersion relations is that both Ref and 

lmf can be measured for the forward direction. The latter is measured 

through the optical theorem . The former is obtained by measuring the 

interference between the hadronic and Coulombir amplitudes at very small 

ltl, which yields p, the ratio of the real to the imaginary part of the forward 

amplitude. 

The dispersion relations above may be combined to give relations 

for the real part of the pp and pp amplitudes in terms of the measured 

cross sections. \Ve expect the total cross sections not to grow faster than a 

power of logs, so the even dispersion relation requires a single subtraction. 

If the difference of the cross sections falls as a power of s, the odd dispersion 

relation needs no subtraction. We then combine Eqs. (4.80) and (4.81) 

and the optical theorem to find (note that !pp(O) = fpp(O)) 

. . E roo dE' '[app(E') a,ip(E')] 4 83) 
Re.fpp(E) = Refpp(O) + p 41T2 Jm E' p E'- E- E 1 + E ' ( . 

. . E roo dE' '[apfi(E')- Clpp(E')]· 4.84) 
Refpp(E) = Refpp(O) + p 4JT2 Jm E' p E'- E E' + E ( 
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If the difference of the l.'ros~ sect.iom does not decrease to zero 

at. large E, we must use the twire subtracted odd dispersion relation, 

Eq.( 4.82). The result is 

dR.efpp 
R.efpp(E) = R.efpp(O) + E -'"" (0) + 

I 

1 roo dE' E2 
[ 1 1 ] 

p 41T2 lm e;2P' E'- Eapfi + E1 + Eapp' 

( 4.85) 

. dRefpp 
Refpp(E) = Refpp(O) + E J,., {0) + 

1 roo dE' E
2 

'[ 1 1 ] 
p 41T2 lm ~p E'- EaPP + E' + Eapfi. 

(4.86) 

Note that dfpp(O)/dE = -dfpp(O)/dE, where more properly we should 

write d1 /dE, and that fpp(O) = !pp(O). 

On occasion, some care must be taken with the cont.ours at 

infinity which we casually ignored above. Consider for example the analytic 

function E itself. This is manifestly odd and has no imaginary part. The 

dispersion integral along the real axis, even unsubtracted, certainly con

verges, since it. is identically zero. The unsubt.racted dispersion relation , 

Eq. (4.80), would then say E = 0. The problem is that the contribu

tion from the contour at infinity cannot. be ignored. The t.wice sub

tracted dispersion relation, Eq. (4.82), correctly gives the identity E =E. 

We review briefly some applications of dispersion relations to pp 

and pp scattering. The first. use of a dispersion relation for analyzing pp 
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and pp elastic seattering was made by P. Soding (1964). He introduced a 

singly-subtracted dispersion relation, taking into account the unphysical 

region by a sum over poles. Experimental cross sections were inserted into 

the relation for JS < 4.7 GeV, and asymptotic power laws were used to 

parametrize the data for higher energies. He calculated p values for both 

pp and pp scattering. At that time, experimental data only for JS ~ 
6 GeV were available. 

The next use of dispersion relations, by Amaldi et al. (1977), 

occured after the ISR data had shown that the pp cross sections were 

rising. The data then available included pp cross sections and p values up 

to Js < 62 GeV and pp cross sections up to Js......, 15 GeY. They used 

the singly-subtracted relations Eqs ( 4.83), (4.84). Contributions from pole 

terms and the unphyscal region were neglected. The authors did not use 

experimental cross sections directly, but rather chose to parametrize them 

by 

CJpp = Bt + CtE-"1 + B2ln'Y .s- C2E-"2
, (4.87) 

and 

CJp;; = Bt + CtE-''1 + B2ln'Y s + C2 E-v2 , (4.88) 

where E is in Gev and s is in GeV2. These forms were then inserted into 

the dispersion relations. 

From a x2 fit made simultaneously to the data for CJpp' CJpji, and 

Ppp. for the high energy region 5 < Js < 62GeY, the parameters Bt, C1. 
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l .. t, B2. "f, C2 and 112 , as well as the ~ubtract.ion comt.anL were extracted. 

Hmwwr, there were several other parameters fitted t-hat considerably 

smooth<'d their results (and incidentally lowen•d the ); 2 per degree of 

freedom substantially), by allowing the normalizations of various data 

sets. ·inrluding the p values, to be varied within the range allowed by 

the systematic errors. In addition, in the forms ( 4.87) and ( 4.88) they 

arbitrarily chose as a scale for s the value 1 GeV2 • A more proper 

procedure would be to use the form log'7(s/ so) and fit both "f and so. That 

the fit found by Amaldi et al. is successful is probably fortuitous. The 

authors also did not. fit the p(pp) data that then existed. Since the time 

this work was published, precise experimental measurements of CJ and p 

for the pp system have been made at high Js. These new measurements 

now allow one to pin down accurately the choice of parameters. 

Dispersion relations were applied to the pp and pp system by 

Del Prete (1983) who considered the possibility that the difference of the 

cross sections grew asymptotically as Ins. As demonstrated a bow, in such 

an instance the twice subtracted dispersion relations are required, since 

the integrals in Eqs. (4.83) and (4.84) are divergent. Del Prete claimed 

to haw used the singly subtracted dispersion relations of Soding, which 

do not converge for growing cross section differences. Presumably, the 

reported finite results quoted are artifacts of the numerical integration 

scheme employed. 
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F. Differential Dispersion Relations 

The integral dispersion relations require extensive numerical work 

for their evaluation. At low energies where the cross sections are rapidly 

varying near resonances, this is an unavoidable problem. At higher energies, 

the cross sect.ions are smooth and this can be exploited by assuming that 

the cross sections are well described by a simple function. This was the ap

proach of Bronzan and co-workers (Bronzan, 1973; Bronzan, Kane and 

Sukhat.me, 1974; Jackson, 1973) who obtained and utilized "differential 

dispersion relations". Before we can derive these approximat.e relations, we 

need a different sort of integral dispersion relation, one which gives the im

aginary part as an integral over the real part. These relations were first 

employed by \V. Gilbert ( 1957). These "rewrse" dispersion relation can be 

obt.ained by exploiting the even function 

9+(E) = (m2 _ £2)-I/'2, (4.89) 

where 9+ is defined to be real on the real axis for-m < E < m. This 

is just the reciprocal of the funrt.ion given in Eq. (4.74). Thus above the 

right hand cut, 9+ = -1:IE2 - m2 l-112
. Now if 1+ is the analytic 

continuation an even amplit.ude, f+, we can construct the even function 

JI+(E) = 9+(E)1+(E). (4.90) 

Ignoring the possible need for subtractions, we have t.he usual dispersion 

relation 
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R.eJI+(E) = p roo dE'2E' ImJI+(E' +if) 
7r J m £12 _ £2 • ( 4.91) 

or, for E just above the right hand cut, 

. p {. 00 

1 2E' R.ef+(E') f E2 - m2 

Imf+lE) = -- dE E'2 _ £2 V £'2 _ m2' 7r.m 
(4.92) 

ForE~ m, this gives the approximate relation 

Imf+(El = -~ loo dE'2ER.ef+(E') 
7r • m f;'_/2 _ -~ • 

(4.93) 

This looks like the dispersion relation for 1-, except that the 

real and imaginary parts are interchanged and a minus sign is introduced. 

From Eqs. (4.80) and (4.93), we can deriYe the differential dis

persion relations. These are approximate relations which arE' much easier 

to employ than true dispersion relations, since they involve only deriva

tives. The differential dispersion relations can be obtained from the odd 

dispersion relation: 

R.ef_(E)= p roo dE'2E'Imf_(E') 
7r Jm £12 _ E~ · 

Now let E' = mexp(~ + r1 ), E = mE>xp(~ ), and expand 

Imf_(~ + 17) = L ~7Jn Jm.f~l(~). 
n. 

'Tl 

- 58 -

( 4.94) 

(4.95) 



Now of coursE> we cannot really do this because there are singularities 

along thE' real axis, but we ignore t.ht>se nict>tit>s and assume E ~ m, to 

writr 

Ref_f~) =.!.foe dTJ . 2exp(2~ + TJ) L _!_Tin Imf'!}:)(r). 
· · 1r -oo exp(2~ + 217)- exp(20 n! . n 

(4.96) 

Only the odd terms contribute. Let X be the operator /J / {}~. 

Formally, 

1 jro sinh TJX 
Ref-(~)=- dTJ . h Imf_(n. 

IT -oo Sill TJ 
(4.97) 

We treat. t.he defini~e integral as if X were a real number lXI < 1, so that 

the integral above converges, and we find (Grad&hteyn and Ryzhik, 1965, 

p.344) 

or 

'IT X 
Ref-(~)= (tan -2-)Im/-(~). 

Ref-(~)= (tan 'IT: )Imf-(~). 
2u~ 

(4.98) 

(4.99) 

A similar treatment of the Gilbert dispersion relation, Eq. (4.90), gives 

. 'ITa ( 
Imf+(~) =-(tan 28~ )Ref+ d. (4.100) 
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The above relations are tractable only when we make a fit to the 

data u~ing a simple function. For example, if f = aEOi, the relations can 

be evaluated exactly. For the odd amplitude we find 

7rCt 
ReA= tan 2 ImA, (4.101) 

i.e. ~4 = -iexp(- i7rn/2)IAI, as already established in the table in Section 

C abovt>. Similar results are obtained for an even funct.ion behaving as 

a power and for a logarithmic function. So far nothing new has been 

achieved. If more complicated functions are used, it is hard to evaluate the 

power series in the differential operator, and the series must be truncated 

to give an approximation. This prompts the question, why not just use the 

simple analytic forms themselves and by-pass the differential dispersion 

relations! 

G. Use of Simple Analytic Functions to Fit 

the Forward Amplitude 

We shall circumwnt all the difficulties of dispersion relations and 

differential dispersion relations by the direct use of analytic functions to 

fit the forward pp and pp scattering amplitude. This technique was first 

employed by Bourrely and Fischer (1973). Since that time, the quality 

and extent of the of the data have improved enormously, especially for 

pp . Thus, significantly better results can now be obtained. 

1. Even Amplitudes 

The form we have chosen for the even amplitude is 
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[ 
t'l(ln2mp/so- i'ff/2)

2 
] + c' +Regge term, 

4rrf+ = -ip A+ 1 + a(ln2mpfso- ir./2)2 (4.102) 

where the Regge term [shown in Eq.(5.2a) wit.h coefficient C] gives a 

decreasing contribution to the cross section at high energies and where, 

as usual, p = ..J E2 - m2. For a = 0, the form is quite simple at high 

energies, where s ~ 2mE, and gives (neglect.ing the falling Regge term) 

a+ =A+ f3(log2s/so- 1r
2 /4), (4.103) 

which saturates the form of t.he Froissart bound discussed in the next 

section. The form is similar to that used by Amaldi, et al. (1977) except 

that s0 is left. properly as a free parameter. Permitting the parameter 

a to take on small positive values allows for a deviation from this form. 

h1deed, asym pt.otically the form gives a const.ant cross section, a+ ( oo) = 

A.+ !3 /a. The constant C' is permitted by the requirements of analyticity 

for the even amplitude and corresponds to a portion of the subtraction 

constant in t.he usual dispersion relation treatment. The parameter C' is 

unimportant in the region of interest since it lacks the factor of p present 

in the dominant terms. 'Ve shall also see that very fine fits are obtained 

with a = 0. hl fact., adequate fits are obtained even without the Regge 

term. This is possible since the log2 sf so simulates the falling Regge piece 

for s < so. Thus we find just three parameters, A (in mb), f3 (in mb), 

and .s 0(in GeV2 ). are needed to parameterize the even amplitude . The 

parameter a is useful, however, for it will provide a means of estimating 

how nearly the data conforms. to an idealized behavior with Froissart 

bound form. 
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2. Conventional Odd Amplitudes 

The odd amplitude is known to be dominated by a piece with 

the approximate behaviour r}12 (that is, aPP- aPP ......_ .s- 112). We write 

in the high energy limit 

4r.f_ = Dsll'exp[£1r(l- a)/2]. (4.104) 

where the power, a, and the magnitude, D, of the amplitude are taken as 

parameters. 

3. Unconventional Odd Amplitudes - The Odderons 

While the forms given above are quite adequate to describe all the 

high energy data, we shall want to consider some less conwntional forms 

for the odd amplitude. If atot,...., log2 s, the fastest growt.h allowed by the 

Froissart. bound, then .:la may grow as fast as logs (see next section). We 

consider three prototypical odd amplitudes: 

f~ = f(O)E, 

Jf!.J = f(l)E(log2mp/so- i'ff/2), 

f~l = f! 2lE(log2mpfs0 - irr/2)2
, 

(4.105a) 

( 4.105b) 

(4.105c) 

where the E's are real constants. ·we shall refer to the amplitudes in 

Eqs.( 4.105) as odderon-0, odderon-1 and odderon-2, respectively (Lukaszuk 

and Nicolescu, 19i3; Kang and Nicolescu, 1975;Joynson et al., 1975). The 

full odd amplit.ude is given by the sum off_ from Eq.( 4.104) and one of 
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the terms from Eq. (4.105). Odderon-0 affects the p values but not 

the <'fo~s ~-t'ction!", being entire!)· real. Odderon-1 gives a constant rross 

section difference, while odderon-2 gives a cross section difference grow

ing as logs. In a later section, we analyze the existing data to det.er

mine to what extent an odd amplitudes of the above type can be excluded. 

H. Asymptotic Behavior: 
"Pomeranchuk Theorems" and the Froissart Bound 

1. The Original Pomeranchuk Theorem 

When the highest energy data available came from Serpukhov. it 

seemed that the pp total cross section was becoming constant. In such rir

cumstances, the original Pomeranchuk theorem would apply (Pomeranchuk, 

1958). This theorem states that if pp and pp (or more generally, ab and ab) 

cross sections become constant asymptotically and if the ratio of the 

real to the imaginary part of the forward scattering amplitude increases 

less rapidly than logs, the two cross sections become equal asymptotically. 

It is easy to understand this result by considering a class of 

examples. If pp and pp cross sections become constant, then f+ ""' -iE. 

Iff- grows slower than this, then surely the difference cross section falls 

with E. Suppose then that f- grows asymptotically as EOog(s/so)

£rr/2)f3. Certainly j3 cannot be greater than one. If j3 = 1, the differenre 

cross section is asymptotically a non-zero constant, but the ratio of the 

real to the imaginary part grows as logs, violating the conditions of the 

theorem. If ;_'I< 1, the real part over the imaginary part grows as (log.s).fl, 

that is, less rapidly than logs, but then the cross sertion difference goes 

as (log.s)8 - 1 , that is, it falls to zero. Thm, we SE'e that the Pomeranrhuk 
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theorem holds for amplitudes of this class. 

2. The Froissart Bound 

Since the early operation of the ISR it has been known that the 

pp total cross section starts rising after attaining a minimum of about 38 

mb. The rate of the rise was found to be about as Ioi s. The fundamental 

result of Froissart. (refined by Martin) states that this is the fastest rate 

which is permissible asymptotically. We present here a derivation of the 

Froissart bound based on two fundamental results which we take as given 

(Martin and Cheung, 19i0 and references therein): 

i. The scattering amplitude f grows no faster than s2 • 

ii. For fixed s (i.e. k2 ), the amplitude is analytic in the region lq1 2 < 
4m;. 

We use (ii) and evaluate fat q = 2im1r using Eq.(4.21). Thus, 

f = 'f I d2bexp(£q ·b) a(b, s) 
1i 

= ~~ bdbd¢exp(2m1rbcos¢J)a(b,s) 

= 2p I bdb/0 {2m1rb) a(b, s) < Cs2
• (4.106) 

\Ve seek to maximize the cross section, subject to this constraint. Clearly 

it is best to make a(b, s) purely imaginary. Since the Bessel function Io(z) 

is an increasing function of z, it is best to keep all the contributions at 

the lowest possible value of b in order to minimize the above integral. For 

these reasons, we take a(b, s) = i for b < be and a(b. s) = 0 for b > be. 

Thus we have 
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rb· 
f=2pij

0 
dbblo(2mrrbl 

= ip!J:,h(2mrrbc) 
2m; 

< Cs2
• (4.10i) 

Now using the asymptotic expression In(z) -+ exp(z)/~ for large z, 

we see that 

(2mrrbc )1/
2 exp(2mrrbc) < constant X s. 

Thus since 2mrrbc > 1, 

1 
be~ -[log(sfso)- loglog(s/so)J, 

2mrr 

where s0 is an unknown scale. 

(4.108a) 

(4.108b) 

Now using Eq.(4.23), we find, neglecting the slowly varying term 

loglog(s/s0 ), 

C!tot = 4/ d2blm a(b,s) = 411'b~ 

= -;oog(s/so))2 ~60mb (log(s/s0 ))2 • 
mrr 

( 4.109) 

It should be not.ed t.hat the form for a(b, s) which saturat.es the bound 

is a peculiar one. First, a cuts off sharply. We shall see that this is a 

rather general feature of all profiles which lead to lois growth of the 

total cross section. In addition, where a is non-zero, it is equal to 1:. 
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Thu~ the scattering is purely elast.ir. It. is more common in models to 

find a totally black disc, with a = i/2. In addition, the a chosen above 

extend~ as far in impart parameter space as allowed by analyticity. If it 

extended a distance growing as logs but with a lesser coefficient, a smaller 

cross section proportional to the square of t.his coefficient would result. In 

particular, a black disk wit.h radius approximately bc/i would give a cross 

section growing as 0.6 mb log2s, the value we shall find from the data 

analysis of the next Sect.ion. 

3. The Revised Pomeranchuk Theorem 

Now that. cross sections are seen t.o rise with increasing energy, 

we need a revised Pomeranrhuk theorem. Suppose the pp and pp cross 

sections grow as (logs)"~. Then we can show that the difference of the cross 

sections cannot grow faster than (logs )h/2) (Eden, 1966; Kinoshita, 1966). 

The proof goes as follows. Referring to Fig .I a, we see that since 

the amplitude a(b) must lie in the Argand circle (we drop the indication 

of the energy at which the amplitude is eYaluated), 

IRe a(b)l
2 $ Im a( b). (4.110) 

As we saw in the demonstration of the Froissart bound, the 

impact parameters that contribute significantly to scattering must lie 

within some value be which grows as logs. Thus we ran approximate the 

scattering amplitude, Eq. (4.21) as 

f(q=O)= ~~ d2ba(b)~ 2p lb. bdba(b). (4.111) 

It follows that 
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!Ref(O)! ~ 2plibe bdb Re a(b)l 

{be 
$ 2p lo bdb!Re a(b)l 

{be 
$ 2p Jo bdb[lm a(b)]112

• ( 4.112) 

Next we apply the Cauchy-Schwartz inequality t.o (4.112) to obtain 

[ 

be ]1/2[ be ]1/2 
!Ref(O)! $ 2p fo bdblm a(b) 1 bdb. 

< 2 (CTtot )!/2(~b2)1/2 
- p 81T 2 c 

$ constant · s · (logs/ so yr/:<(logs /so). (4.113) 

Now the generic form for the odd amplitude is 

!-,...., s(logsfso- i1rj2)'l'. ( 4.114) 

Comparing Eqs. (4.113) and (4.114), we find that. 

11 :57/2+1. ( 4.115) 

Thus the difference of the cross sections goes as 
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~(J ,..._. (logsfsoP'-l $constant X ilogsjs0 f112 , (4.116) 

as we wished to show. 

4. The Fischer Theorem 

·we see that. growing cross section differences are allowed. Is there 

any way other than just looking at the existing data for cross section 

differences to infer whether the cross sections are going to approach each 

other eventually? There is a theorem, due to Fischer and co-workers 

(Fischer et al., 19i8; Fischer, 1981), which states, in part, that if above 

some energy, the signs of lmf!!_t and Ref!!_t remain the same, then the 

difference of the cross sections tends to zero. (However, if the difference 

of the cross sections tends to zero, no conclusion can be drawn about the 

relative sign.) Clearly this theorem is satisfied by the amplitude f- of Eq. 

(4.104), for 0 < a < 1. The addition of an odderon-1 or an odderon-2 

amplitude leads to opposite signs for Jmf~t and Ref~t in the limit. of 

high s. This is, of course, in accord with the Fischer theorem, since these 

terms lead to non-vanishing cross section differences. 

It seems then, that by looking at high energy data for signs of the 

real and imaginary parts of the odd amplitude, we might predict whether 

or not the cross section difference will ultimately go to zero. The problem 

is that at. any finite energy, the contribution of one of the odderon terms 

might still be too small to have changed the sign of one or the other part 

of the amplitude. That change could occur farther out in energy. We shall 

see an example of this among our fits where the cross-over point occurs 

near .jS = 100GeV, while the data extend only to .jS = 62GeV. 
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5. The Cornille-:\1artin Theorem and a New Corollary 

\\'e haw seen that. as s -+ oo, crpy;{crpp -+ 1, whether or not 

crpp- op1,- 0. Similarly, Cornille and Martin (1972a, b, r; 1974) have 

proved that inside the forward diffraction peak (suitably defined), 

d~;"fi (s, t) j d~;P (s, t)-+ 1, (4.117) 

even though the difference of the cross sections at fixed t may not go to 

zero. \Ve will illustrate this theorem by an example. Suppose the cross 

section goes as Iog2 s and t.hat there is an odderon-2. Then both f+IP and 

f-!P go as (logs/so- irr/2)2 at t = 0. We can imagine that the behavior 

is similar for t :j= 0. The odd and even amplitudes, however, are out of 

phase by 1r /2. The result is that 

If+ +f-1
2 

If+- f-1" - 1, 
(4.118) 

so the differential cross section ratio goes to unity as required by the 

Cornille-Martin theorem, although the difference of the differential cross 

sections grows as log2 s. A particular consequence of this theorem is that 

the ratio of the slope parameters goes to unity, i.e. 

Bpp/Bpp-+ 1. (4.119) 

It. is not the case that the ratio of the p parameters goes to unity. 

Using the relation between the differential cross section in the forward 
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direction and the tot.al rross section, we derive a new corollary: the ratio 

of t.he squares of the p values goes to unity, i.e., 

(Ppp/ Ppp )2 
-+ 1. (4.120) 

Indeed, for odderon-2, the two p values go to non-zero numbers which are 

negatives of ear h other. 

6. If the Total Cross Section Grows as log2 s 

For the cross section to grow as lois, there must be contributions 

to 1 ma( b, s) for values of b with a range varying as logs. Let us define 

1 
be= -

2
-Iog(s/so), 
tll.r. 

(4.121) 

a(x,s) = a.(b = xbc,s), (4.122) 

where so is fixed. Now from Eq.(4.103) 

fooo dxs~a(x, s) < Cs. (4.123) 

This means that for x > 1, a(x, s) must fall to zero with increas

ing s. However, there must be some region x < 1 where 7i remains finite 

so that the cross section will truly grow as Ioi s, giving a contribution 

(see Eq. (4.23)) 
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'U= 4rrb~ fooo xdx!m7i(x,s). ( 4.124) 

Thus the pi ere of a( b, s) which gives rise to the Ioi s cross sertion 

is most simply obtained by an a which is ind~pendent of s and which 

vanishes for x > 1. This excludes, for example, a Gaussian shape in 

impact parameter space 

a(b, s) = Aexp(-cb2 //?;). (4.125) 

w hie h has an infinitely long tail. If there is a piece of the impact parameter 

distribution which has a Gaussian distribution. it cannot contribute a 

piece to the total cross section which grows as Ioi .s. From the ansatz that 

a(x, s) is independent of s, we can obtain a heuristic proof of the theorem 

of Au berson, Kinoshita, and Martin ( 19il) that if the cross section grows 

as lois, then the amplitude is of the form 

f"' islog2 sF(tlog2 .s), ( 4.126) 

where F is an entire function (of its argument tlois) of order one-half. 

(That. is, F(z) is analytic everywhere in the finite plane and as lzl-+ oo, 

IFI is bounded by cexp(r'lzl 1
/

2 with c and c' positive constants). Now Eq. 

(4.19) becomes a finite integral: 

f....., sb~ fo
1 

xdxa(x,,~)Jo(Qbr:r). (4.12i) 
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The theorem follows from the observation that the integral is 

owr a finite range and that the Bessel function is an entire function. 

Asyrn ptotirally, for com plrx argument, the Bessel funrtion J0 ( z) is bounded 

by an exponential , expl: I· Thus the integral is bounded by exp( c1 qb,) ,...., 

exp( c1 J- tlog2 s ). 

From the representation of Eq. (87), we can derive results for the 

slope parameter at t = 0. It is clear from t.he MacDowell-Mart.in bound 

that if the total rross section grows as fast as log2 s, so must B, since the 

elastic cross section cannot grow faster than log2 s. The same result can 

be obtained by expanding Eq. ( 4.126) in powers of tlog2 s 

f....., £slog2 s[a + btlois + · · ·], ( 4.128) 

so that 

B(s,O),...., log2 s, (4.129) 

in agreement with our expectations. If instead of taking t = 0, we fix 

t :F 0 and let logs increase, we have the exponential bound referred to 

above. From the definition, Eq. (4.24) we find 

B(s, t) < dd 2c'itl 1
/

2 Iogs 
t 

< r.''Iogs, (4.130) 

where c" = c't-112 at. fixt'd t. Thus tJ' becomes Yery large for very small t. 
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This non-uniform behavior was discovered by Martin (Martin, 1982). As a 

pranical matter. it still st>ems reasonable w use tht' form for B(s,O) even 

at non-zero nlut's oft since the other form, Eq. (4.130) is derived on the 

assumption that jtpog2s, or equivalently jtjlr10t, is large. In particular, if 

the differential cross section had diffraction minima, the limit with t fixed 

would correspond to measuring the slope outside the diffraction minimum. 

While the form of the amplitude given by Auberson, Kinoshita, 

and :f\fartin is a powerful means of examining high energy behavior when 

the cross section grows as log2 s, it should be noted that the assumption 

of this particular energy dependence is critical. If the cross section grows 

as logu s, the proof fails. \\'e are unaware of any weaker form of the 

theorem which pertains to such circumstances. 
I 

- 7!3-

V. ANALYSIS OF t=O AMPLITUDES 
A. Conventional Amplitudes 

We define 1 as the analytic continuation of the forward scattering 

amplitude into the complex E plane, where E is the complex energy (E 

is the pp laboratory energy if E is real and ~ m, the nucleon mass). The 

1 's are real analytic functions having cut.s on the real axis from +m to 

oo and from - m to - oo. \\re choose the normalizations such, for fits 

w it.hout odderons, 

41T1+ =- ..J<m + E)(m- E) 

{
A+ f3 {[log(2m(m +E)/so)+ log(2m(m- E)/so)]/2}2 

1 + a{[log(2m(m +E)/ s0 ) + log(2m(m- E)/ s0 )]/2}2 

+ ~ . ,c .. ~·· [[2m(m + E)]"-1 
+ [2m(m- E)]"-1 

]}, 

(S.la) 

and 

411'1- =- ..J<m+E)(m-E) 

x 2coseo/2J[[2m(m + E)t-1- [2m(m- E)]'~-1 ]. (S.Ib) 

where .4., {3, s0 , a, C, /1, D, and a are real constants to be fitt-ed by the 

dat.a. Clearly, 1+(E) = 1+(-E) and 1-(E) = -1-(-E), i.e., 1+ is 

an even amplit-ude and 1- is an odd amplitudt'. To find the scatt.ering 

amplit.ud{'s for pp scattering, f+ and f-, we evaluate 1+(E +it) and 
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1-(E + ic), in the limit of real E and f ...... 0 (for the pp amplitudes. we 

could eYaluat.e t.he 1's at-E- if, or, correspondingly, use the appropriate 

s~·mmetry propPrties of the 1's). We obtain, 

4iT f = i{A + ,B[log(2mp/s0)- iTr/2]2 

p + l+a[log(2mpfs0 )-i7r/2]2 

+ c[(l2m)(E- m))11-
1 ei"(I-11)/2 

(((2m)(E + m))il-
1

- ((2m)(E- m))11
-

1 
)]} 

+ 2sintrJi/2 ' 

(5.2a) 

and 

4; !- = n{((2m)(E- m))ll'-lei"(t-a)/2 

+/(2m)(E + m))cx-l ~ ((2m}(E- m))a-l} 
2eos;raf2 

(5.2b) 

The optical theorem relates the cross sections cr+ and a- to the above 

by 

and 

4ro f a+= -Im + 
p 
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(5.3a) 

- 4tr1 r a =- m,_, 
p 

(5.3b) 

where pis the laboratory momentum. Hence, the imaginary portions of 

(5.2a} and (5.2b) give the appropriate cross sections a+ and a-, from 

whir h we form 

a(pj)} = (o:+ +a-) · (5.4a) 

and 

(T(pp} = (cr+- cr-) 
2 . (5.4b) 

The formulae (5.2a) and (5.2b} simplify greatly in the limit of E > m, 

where sis given by s ~ 2mE ~ 2mp. Using the notation 7 for the limit 

of f as E -+ oo, we obtain 

4r.y + = i{A+ ,8 . log[( sf so)- irr/2]
2 

+ Csll-Ieir.(I-p)/2} 
P 1 + a[log(sfso)- iTr/2]2 

(5.5a) 

and 

4iT- . { . . } p f- = D sc.-le'"ll-a)/2 , (5.5b) 

forms discussed in Section IV.F. If we put a = 0 in (5.5a), we find by 

inspection of the real and imaginary parts of (5.5a) and (5.5b), the very 

simple and useful formulae. 
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cr(pp) =A+ ,8[loi"sf.so- :
2

] 

+ Csin( rr; )s''-1 + Dcos( rr
2
a )s(z-l, 

(5.6a) 

[ ,, rr2] 
cr(pp) =A+ ,8 log-sf so- 4 

+ Csin(1T;)s"-1
- Dcos(1T;)s<>-l, 

(5.6b) 

( ) _ {3rrlogsfs 0 - Ccos(rrp/2)s1'-1 + Dsin(rro/2) 
P PP - cr(pp) , (5.6c) 

. _) _ ,8r.logsfs0 """"' Ccos(rrJt/2)s1•-l- Dsin(rret/2) 
p(pp - cr(pp) . (5.6d) 

We have essentially used the forms (5.6a-d) in our earlier work (Block and 

Cahn, 1982a) where we introduced only the coefficients A., ,8, s0 , D, a and 

a. We interpret the even amplitude Cs"-t as an even Regge exchange 

term, with the odd amplitude Ds01
-

1 as an odd Regge exchange term. 

The term in ;3 gives the loi" s rising eros~ section, and A corresponds to 

a constant cross section. It. will turn out that the coefficients using (5.5a

b), i.e., using (5.6a-d), are nearly identical to those obtained using the 

kinematically correct equations (5.2a-b). The only important difference 

is that (5.2a-b) give an improYed x2 for the fit. This is because the low 

energy kinematics (the cut structure in E) is treated correctly in (5.2a-b) 

for .;8"' 5 GeV, whNe they are of importance. For .;8 > 10 GeV, the 
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rE>sults using either (5.2a-b) or (5.5a-b) are numerirally indistinguishable. 

Howewr, the introduction of an even Regge amplitude as an alternate 

description of the date is a departure from our earlier treatment. The 

log2 sfs0 t.erm in the even amplitude, for s < s0 , simulates this term in 

the cross sect-ion. We ha\·e fixed the power Jl to be 0.5, since we expect it 

to be about the same as a, which turns out to be "' 0.5. 

Clearly, setting a= 0 in (5.2a) gives rise to a cross section which 

continues to rise indefinitely as loi" s /so. The introduction of a non-zero 

a in (5.2a) gives us a functional form which will have the cross section rise 

locally as log2 sfs0 (in the energy region 5 < ..(8 < 62 GeV), if a<: 1. 

However, as s - oo, i.e .• at a very high energy, the cross section will 

flatten out and tend to a constant value, A+ (,8/ a), for positive a. Thus, 

we model the case where the Froissart bound is not truly saturated (it 

rises as lois/so only locally), and eventually, the cross section rise stops, 

going to a constant. cross section at oo. \Ve consider this extreme case a 

measure of the possible error due to extrapolation beyond the region of 

the fit, 5 < ..js < 62 GeV. 

The fits were made using seven different types of experimental 

quantities cr(pp), cr(pp), il.p, il.cr, Pat" p(pp) a.nd p(pp), along with their 

associated experimental errors (we define ll.cr = cr(pp) - cr(pp), il.p = 
p(pp)- p(pp) and Pat• = [p(pp) + p(pp)]/2). The x2 was minimized using 

the seven quantities and their quoted errors. No attempt was made to 

adjust any of the data systematically. (For some related fits, see Gauron 

and Nicolescu, 1983). The sources of the data used in the fits are given in 

Table 5.1. 

In our earlier work. we had included in f + a real constant term 
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(whirh of courst> dol's not contribut~ to 0'). Sinrl' its efft>et on thl' p valut> 

i~ through the real portion off+, its rontrihut.ion is proportional to the 

constant term diYided by p, and its rontrihution is vanishingly small in 

our energy region of int.erest. Thus, its influence is negligible and We haw 

neglected it in our present. work. 

The results of our various fits are summarized in Table 5.2. For 

the cases where C = a = 0 (Fit # 1), we get an excellent reproduction of 

the data using 5 parameters, A., (3, so~ D and 0', wit.h a x2 fd.f. (x2 /degree 

of freedom) of l.lifor 76 degrees offreE:'dom:· We obtain A.= 41.74±0.04, 

• ,B = 0.66 ± O.Dl, s0 . ·333 ± 8, D::::: -39.4 ± 1.6 and a_: 0.48 ± O.Dl. 

If we introdure the even Reggeon (the term in C), we get, for a = 0, 

Fit #2, which has a x2 /d.f. = 1.15 for 75 degrees of freedom. We find 

A= 41.30 ± 0.28, ,B = 0.62 ± 0.03, so= 294 ± 28, D = -40.5 ± 1.8, 

0' = 0.47 ± 0.01 and C = 8.3 ± 5.1, using 11 =· 0.5 . .Again, this fit is in 

excellent. agreement with the data. The units are surh that 0' is in mb if 

E, m, p and ..js are in GeY The introduction of a =f:. 0 results in Fits #3 

and #4. The x2 /d.f. is not changed significantly, and we find very small 

positive values of a, which are between 2 and 2.5 standard deviations from 

zero. Clearly, had we found negative a and lal <t: 1, we could not have 

used the fit for extrapolation, since cr --+ A+ ((3/ a) as s --+ oo. We find 

cr --+ 156mb for Fit #3 and cr --+ 113 mh for Fit #4. All of the above 

fits are plotted in Figs. 5.1(a) and 5.1(b) for C = 0, and in Figs. 5.2(a) 

and 5.2lb )'for C =f:. 0' (the even Regge term). It is clear that these fits 

reproduce the observe<J. data in the energy region 5 < ..jS < 62 GeY. Also 

appended to the cross section curves is the recent experimental value for 

O'(pp) at the SPS collioer at ..js = 540 GeY (UA4-Collaboration, 1982b, 

UA1-Collaboration, 1983), which we have correct.ed for a p value of 0.20. 
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Our predirtions .. are in very good agreement with this measurement. We 

n~mark parE-nthetically that for a = 0, the curves are essentially the same 

'for ..js > 10 Ge\r, if we use the simple formulae Eqs. (5.6a)- (5.6d). 

We find (Figs. 5.1(a) and 5.2(a); also see Table 7.1) that if the 

cross sections_. keep rising as log2 s /so, at the Tevatron Collide~ ( ..jS = 

2 TeV), O"i = 98.3± 1.2mb and 0'2 :...._ 95.9± i.9mb, where the subscripts 

refer to the fit number and the errors are those generated by the fit ( # 1 

without an even Regge term, #2 with an even Regge term, with both 

having a.= 0). At the proposed SSC Collider (..js = 40 TeV), we predict 
. . 

0'1 = 196.4 ± 3.1 mb and 0'2 = 188.8 ± 5.6 mb. The p values predicted 

a.t. the Tevimon Collider are p1 = 0.198 ± 0.002 and p2 = 0.193 ± 0.004, 

whereas at the SSC, they are P1 = 0.163±0.001, and P2 = 0.160±0.002. 

Again the errors represent the uncertainties in the fit given the functional 

forms assumed. 

}<'or the fits with a =f:. 0, the'predict.i()ns at . ..js = 540 GeV are 

·era = 65.1 ± 2.4 mb and· 0'4 = 61.6 ± 2.4 mb, and 'p3 ._ 0.-14 .± 0.03 

and p4 = 0.11 ± 0.02. the cross section predictions at this.energy for 

a. =I= 0 are too close to the values predicted by the a = 0 fits for the 

present"' 10% cross section measurement to distinguish. At JS- 2 TeY, 

the situation is more fa'vorable and we' predict. the (a =f:. 0) values O'a = 

80.0 ± 6.8 mb and cr4 = 72.2 ± 5.4 mb , with the corresponding values 

p3 = 0.11 ± 0 .. 03 and p4 =·0.08 ± 0.02. Thus, measurements of cr and p 
' 

for pp at the Tevatron collider should easily distinguish between the cases 

of a =f:. 0 and a. = 0, i.e., whether or not the cross section keeps rising 

as log2 s. At .J.s = 40 TeV (the SSC), the a =f:. 0 predictions are· 0'3 = 

107.8 ±20.1mb and 0'4 = 89.0 ± 12.8mb, along with Pa = 0.05 ± 0.02 . 

and P4 = 0.04 ± 0.01. 
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At the present time, the measurements of cr(pp) at the SPS 

Collider are not sufficient.ly accurate to distinguish between the cases of 

a = 0 and a :j:. 0. The only evidence bearing on whether t.he cross sections 

continue to rise as log2 s / s0 is preli~inary cosmic ray data, where the cross 

sections for p-air collisions are reduced to a lower limit on the pp cross 

section at a mean energy of 10 TeV. The lower limit is shown in Figs. 5.1(a) 

and 5.2(a), and is evidence in favor of the cross sections continuing to rise 

logarithmically. In this regard, the value of the log2 s / s0 coefficient is /3 "" 
0.6 rob. This is to be contrasted with the Froissart-1\fartin bound which 

says that cr must. rise less rapidly than ( 1r / m; )toi s / Su ""' 60 Ioi s I so rob, 

where m~~' is the pion mass. Thus, our value of ~ is only "" 1% of the 

saturation coefficient. Hence, it is not appropriate to say that we have 

"saturated the Froissart~Martin bound", in spite of the fact that the cross 

section. seems to rise as log2 s/so. 

B. Can a logs Rise Fit the Data? 

To verify the form of the rise, we have tt>sted the fit using an 

even amplitude that would cause the cross section to rise only as logs/so. 

i.e., we illtroduce the amplitude f+, via 

41T { [ -P f+ = A+ ,B[Iog2mpfso- i7r/2] + C (2m(E- m))"-1 ei11'(1-Pl/2 

+ {2m{E + m))11
-

1
- (2m(E- m)l"-

1
]} 

2~n~~/2 ' 

(5.7) 

with Jl = 0.5 and 47rf-/p being given by Eq. (5.2b ). This was a t.est 

to see how well the data could be reproduced utilizing a logs/ so t.erm, 
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a~ contrasted to a Io.fsfso tt>rm. The fit was very poor, giving rise to 

a x2 fd.f. = i.2 for i6 degrees of freedom. The predicted cr at the SPS 

collidE>r was much too low. Even if we emplored 11 = 0.6, the ;x2 / d.f. was 

4. L equally unsatisfactory. Fundamentally, one could not use a logs/ so 

term and simultaneously reproduce both the cross sections and the p values 

in the energy region 5 < ..(S < 62 GeV. Thus, we conclude that fitting 

all available data in this energy domain requires the presence of a term 

varying essentially as log2 sfs0 , and that just a logs/so t.erm (or, indeed, 

any lower power) is ruled out. 

C. Odderon Amplitudes 

Up to this point, we have concerned ourselves with fitting the 

data using the odd amplitude f- given by Eq. (5.2b). This amplitude; 

in the limit of s -+ oo, has ~cr -+ 0 and ~p -+ 0. The form of Eq. 

J5.2b) is suggested by an odd Regge exchange term. However, the require

ments of analyticity are compatible with odd amplitudes (the "odderons") 

which give ~cr -+ non-zero constant or even ~cr -+ logs/ s 0 , as s -+ oo . 

(Lukaszuk and Nicolescu, 1973; Kang and Nicolescu, 19i5;Joynson et al., 

19i5) See Section IV.H. To test for the presence of these odderon terms, 

we introduce three types of odderon amplitudes J(j}, where j = 0, 1, or 

2, via 

4rrf~) = -f(OlE, (5.8a) 

4rrj<.!_l = -f(1lE[tog(2mp)- irr] 
so 2 ' 

(5.8b) 

4rrf!:_l = -f(
2lE[log(

2
:P) _ i;r. (5.8c) 
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WhE're the f's are real constants. We form a new odd amplitude rew,(j) = 

JD 1d + jUl, where the old odd amplitude is given by Eq. ( 5.2b ). The 

results of the~e fits are summarized in Table 5.3. All fits with odderons 

used a = 0. Fit.s #5 and #6 used odderon 0 U = 0), #7 and #8 used 

odderon 1 (j = 1) and #9 and #10 used odderon 2 U = 2), for the cases 

of C = 0 and C =j:. 0, respectively. We note from Eqs. (5.8a)- (5.8c) that 

odderon 0 gives ~cr -+ 0, odderon 1 gives ~0' -+ or /2 and odderon 2 gives 

~a -+ tlog.s/_so, as s -+ oo. All of the odderon fits give a satisfactory 

x2 , with the 1., 2 /d.f. ranging between 1.08 and 1.11. The coeflicient.s f(JJ 

are all small and negative, being about 2 to 2.5 standard deviat.ions from 

zero. For Fits #5, 7 and 9, which correspond to C = 0, we find c(o) = 

-0.29 ± 0.12 mb, <(1) = -0.12 ± 0.04 mb and <(2) = -0.04 ± 0.02 mb. 

The results for odderon 2 (with C = 0) from Fit #9 are plotted in Figs. 

5.3(a) and 5.3(bJ. We see the crossover of t:J.a from positive to negative 

values at ,fS"" 80 GeV in Fig. 5.3(a). The inost striking feature of this 

fit is the separation t:J.p. The p value for pp rises to about 0.23, whereas 

the pp value only goes to 0.15. 

It is very difficult to rule out the presence of the odderon terms 

given only the existing data. Although the odderon amplitudes are very 

small (in comparison with the constant amplitude A, they are < 1 %), 

they of course dominate the odd amplitude as s -+ oo. The data do not 

require adding the presence of odderons, but they also do not rule out the 

presence of these terms at a 2 standard deviation level. If the odderons are 

as large as in our fits, comparisons of a(pp) and cr(pp) at ,fS > 500 GeV 

would easily confirm this. Vers. precise p comparisons would be required 

to rule out odderon 0. The curves for fits #5 (odderon 0, C = 0) and #7 

(odderon 1, C = 1) are shown in Figs. 5.4(a) and 5.4(b), and Figs. 5.5(a) 
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and 5.5(b), respectively. 

Thl.' results of thl.' odderon fit.s illustrate that the Fischer theorem 

rumt be applil.'d with carl.'. In thl.' region in which data now exist, Re/'!!11
' 

and !mf~1JJ have the same sign. For the fits with odderon 1 or 2, at high 

energies t.he imaginary part changes sign, since t.he t.erm in f is negative 

and dominat.l.'s the odd amplitude, causing ~a to change sign and become 

negative. Thus, for sufficiently high energy (just beyond the range of 

existing data), both the real and the imaginary portions of f'::.!.w have 

opposite signs, as required by the Fischer theorem, since t:J.a does not 

go to zero as s -+ oo. However, a premature application of the Fischer 

theorem at existing energies leads one to the false conclusion that the 

cross sections become asymptotically equal, since at t.hese energies, both 

the real and imaginary portions of the odd amplitude have the same sign. 

D. Summary of Amplitude Analysis 

·we summarize this section with the following conclusions: 

( 1) All of the cross sections and p values for pp and pp above 

,fS = 5 GeV can be simply and very satisfactorily parametrized 

with 6 (or even 5) coefficients, using Eqs. (5.2a)- (5.2b) or 

using Eqs. (5.1a)- (5.Ib). Above .f8 = 10 GeV, the simple 

formulae Eqs. (5.6a)- (5.6d) are sufficient. 

(2) Measurements of O'tot and p for pp at the Tevatron collider 

( .Js = 2 Te V) are necessary t.o decide whether the cross 

section continues to rise as log2 s/s0 , i.e., a= 0, or whether 

the cross section flattens out. If the cross section continues 

to rise, we predict cross sections of about 100mb at '1/'s = 

2 TI.'V and 200mb at .f8 = 40 TeV. On the other hand, in 
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the fit with a =F 0, they are predicted to be only 70 mb and 

90mb, respectively (for fit #4), a wry large experimentally 

accessible difference. Further, the p value is 0.20 for a. = 0 

whereas p is 0.08 for a =F 0 (fit #4) at .,fi = 2 TeV, again a 

very large effect.. 

(3) The measured coefficient {3 of the log2 sf s0 term for the rising 

cross section is only 1 % of the Froissart-1-fartin bound of ~ 

60mb for the coefficient. 

(4) The existing p and CTtot data for pp and pp in the energy 

region 5 < .,fi < 62 GeV require a log2 sf s0 term. A term 

only n.rying as logs/so (or a lower power) is not sufficient. 

(5) The odderoli amplitudes are within 2 to 2.5 standard devia

tions of zero, i.e., they are compatible with zero, and are at 

most about 1 % a.s strong as the constant even amplitude. 
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VI. SLOPE ANALYSIS OF NEARLY-FORWARD ELASTIC 
SCATTERING DATA 

The near-forward hadronic amplitude for pp and pp elastic scat

tering is reflected in three experimentally determined parameters, the total 

cross section CTtot. the p value and the nuclear slope parameter B, defined 

as 

d (d(jn) B(s)= -d log - at t=O. 
t dt 

(6.1) 

In the preceding section, we analyzed t = 0 data in the energy 

domain 5 < ..js < 62 GeV, in order to extract forward hadronic elastic 

scattering amplitudes f + and f _. We found that we could get an excellent 

parametrizat-ion of the data using either a 5-parameter fit (fit # 1 of Table 

5.1) or a 6-parameter fit (fit #2 of Table 5.1), both of which had a log2 sf so 

behavior as s ..... co. \Ve recall that fit # 2 used an even Regge exchange 

term Csll-l, with Jl = 0.5, whereas fit #1 had C = 0. Both fits used 

a= f = 0. 

In this section, we will use the results of fits# 1 and #2 to obt.ain 

the s dependence of the nuclear slope parameters B for pp and pp elastic 

scattering, using experimental data in the near-forward direction (defined 

as the small ltl region, ltl < 0.02( GeV /c)2
). We write the invariant 

hadronic elastic differential scattering cross section as 

dcrn 1T'If+g+(t, s) ± f_g_(t, s)l
2 

dt = p2 
(6.2) 

w hPre p is thP laboratory momentum. We have assumPd real. exponPntial 
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~form factors" in Eq. (6.2), with g+(t,s) = exp(B+t/2) being the form 

factor for the even amplitude and g_(t,s) = exp(B-f/2) being the form 

factor fort he odd amplitude. Since we are concerned only with very small 

it!, the assumption of an exponential form is the practical equivalent. of 

replacing e8112 by 1 + Bt /2. We rewrite Eq. (6.2) as 

d;;• =; { [Ref+exp(B+t/2) ± Ref_exp(B+tj2)f 

+ [/mf+exp(B+t/2) ± /mf-exp(B-t/2)]
2 
}• 

(6.3) 

with the + sign for pp and the - sign for pp. In the limit of s - oo and 

p - oo, we can simplify Eq. ( 6.1 ), using Eq. (6.3 ), to become 

a-
8(8) = B+(s) ± a+ ~B(s), (6.4) 

with the+ sign for pp and the- sign for pp, defining ~B(.s) = B-(s)

B+(s ). We have assumed in Eq. (6.4) that the ratio of the odd to even 

cross sections a- ja+ < 1 (a- and a+ are defined in Eq. (5.4)). 

In our analysis we will include slope data in the high energy 

region 5 < y's < 62 GeV, and only those data measured in the very low 

I tl region, I ti "" 0.02( Ge V / c )2 , so that we can reasonably approximate 

the definition of B made in Eq. (6.1). 

In order to determine the form of the s dependence of B+(s), 

we observe t.hat. as s - oo, B(pp) = B(pp) = B+, since M- /p - 0. 

The high energy elastic scattering is known to be diffract.ive, with an 
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approximately exponential slope B. Further, at high energies, p is known 

to be small. Thus, setting p = 0, we approximate ae1, the total elastic 

seattering cross section, as l:et. i.e., 

1 (dan) 
ad ~ Let = B+ dt t=O 

(6.5) 
~---'-

where we have used the optical theorem in Eq. (6.5) and atot is the total 

cross section. We rewrit.e Eq. (6.5) as 

ael atot 
--~---
atot 16nB+ 

(6.6a) 

Since aetfatot must be less than 1, we must. require that B grow with s 

at. least. as rapidly as the total cross section atot, i.e., that. B+(.s) must 

grow as log2 s. since atot grows as log2 s (Born and Zachariasen, 1973). ·we 

therefore parametrize the even slope as 

B+(s) = c+ + D+Jog.s + E+lois, (6.6b) 

where s is measured in GeV2 . The odd amplitude is a Hegge exchange 

term, DsOt-l, so we choose for the odd slope the normal Regge behavior 

B-(.s) = c- + D-log.s, (6.7) 
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whPrP sis in GPV 2 • We pmphasizP the import.ance at high energies of the 

tE'rm in lois in Eq. (6.6). It is essential for the slope parameter at t = 0 

to follow thP trend of the total cross section for large 8. This term has 

not bPPn included in a recent analysi~ of Burq et al., and its absPnce has 

seriously distorted their slope predictions for highs. In particular, if one 

plots B vs. logs, a positiw curvature similar to that measured for CTtot is 

expected, and not a straight line, at large s. 

The measurements of B in the energy range 5 < .js < 62 Ge V 

do not form a smooth set in s, unlike the situation for p and CTt 0 t, where 

there is a good agreement between various experimental groups. Indeed, 

the slope situation is quite confused, and even after corrections for curva

ture, many groups quote inconsistent values at the same energies. 

It is a Solomonic task to decide which results are correct and 

should be included, and which results are false and should be excluded 

from our analysis. We were guided in our judgment by t.he principle that 

the slope data should roughly resemble the shapP of the total cross section 

curve as a function of s. and thus have positive curyature. Using this 

principle to choose bet-ween conflicting sets of data, we chose to fit the 

data from the sources displayed in Table 6.1. The data have been fitt.ed in 

a x2 minimization program using the experimental data for B(pp), B(pp) 

and .!lB, along with their associated errors. No attempt has been made 

to adjust the data for systematic errors between various data sets. 
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The results for fit #1 are, in (GeV/c)-2 : 

c+ = 10.9o ± o.5s, 

D+ = -0.08 ± 0.19, 

E+ = 0.043 ± 0.016, 

c- = 23.27 ± 1.6, 

n- = o.93 ± 0.11, 

with x2
/ d.f. = 1.51 for 52 degrees of freedom. 

The results for fit #2 are: 

c+ = 10.94 ± 0.45, 

n+ = -o.o9 ± o.15, 

E+ = 0.043 ± 0.013, 

c- = 2:3.30 ± 1.4, 

n- = o.94 ± o.13, 

with x2 /d.f. = 1.51 for 52 degrees of freedom. The correlated errors for 

fit. #2 are given in Table 6.2. 

The results of these fits are essentially indistinguishable. Fig. 

6.1 is a plot of our fit #2 for the slopes B(pp) and B(pp) vs . ..;8, where 

only data in the energy interval 5 < ..;8 < 62 GeV have been used in 

the fitting. We have also plotted in Fig. 6.1 the recent SPS measurement 

for B(pp) at .js = 540 GeV for comparison with our prediction. The 
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agreement is within errors. Our prediction at ._Is= 540 GeV for fit #2 

is B(pp) = 16.66 ± 0.59 ( GeV /c)-2
, where the error in the prediction is 

due to the uncertainties in the fitt.ing parameters. 

Our prediction for B(pp) at the Tevatron collider hiS= 2 TeV) 

is 19.53 ± 1.41 ( GeV/c)-2
, and at the SSC (,js = 40 TeV) is 28.34 ± 

3.81 ( GeV/c)-2 • 

\\
7e can now determine the total elastic scattering cross sections 

~:el as a function of s, for both pp and pp elastic scattering. If we consider 

a non-zero p value, Eq. (6.5) is modified to become 

Ec~ = CJ;ot(I + p2 )/16rrB, (6.8) 

and 

Eei/CJtot = O'tot(1 + p2 )/16rrB. (6.9) 

We plot the ratio of "£etfCJtot vs. s for both thE' pp and pp systems (for 

Fit #2) in Fig. 6.2. The ratio for pp at ,jS = 3 GeV is 0.27 ± 0.06 and 

is about. 0.17 ± 0.003 in the ISR range. The pp ratio at ,jS = 3 GeV 

is 0.24 ± 0.06, is about 0.17 ± 0.003 in the ISR range, and goes up to 

0.22 ± 0.008 at the SPS collidE'r ( ,jS = 540 GeV). The measured ratio at 

thE' SPS is 0.21 ± 0.01, in good agreE-ment with our prediction. It is easy 

to show, using Eqs. (6a)- (6d) and (6.6), that. asymptotically, the ratio 

Eetf(Ttot- P/16r.E+ as s- oo. (6.10) 
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Thus, at. infinit.e energy, (using Table 1 in Eq. (6.10)), the ratio 'f.et/CJtot = 

0.7 4 ± 0.23. Indeed, this result is also consist£>nt with the black disk 

prediction of 0.5. \\'e remark that even at as large an energy as ,js = 

500 TeY, the rat.io has only grown to 0.44. 
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VII. A REGULARITY OF THE pp AND pp SYSTEMS 

We notice from Fig. 6.2 that for all s,, the ratios "£ttfatot are 

snprisingly close t.o being the same for both the pp and the pp system, 

in spite of the fact that at. tlie lower energies, the total cross sections, p 

values and nuclear slopes B are very different. An even more suprising 

regularity is seen when we examine the quantity A, defined as 

A= CJtot y(l + p2) 

161rB 

_ Lei 

CJtotV(1 + p2J 
(7.1) 

which is proportional to the magnitude of the impact parameter amplitude 

at zero impact parameter. The ratio 

A(pp) 
R = A(pp)' (7.2) 

is plotted n. 8 in Fig. 6.3. This ratio is compatible with 1, within 

the errors of our fitting procedure. For example, the error in R at .;8 = 

3 GeV is ±0.040, at .,js = GeV is ±0.025, at .,js = 10 GeV is ±0.010, at 

v's = 52.8 GeV is ±0.001 and essentially goes to zero for .f8 < 62.5 GeV. 

The above errors take into account the correlation errors of fit #2 for the 

forward scattering amplitudes, as well as the slope fit. It. is of course not 

surprising that R = 1 for the high energy data, where tl.atot, tl.p and 

ti.B -+ 0 as 8 -+ oo. \\'hat is important is that at the lowest energies, 

(3 < .,js < 15 GeV), where the total cross sections and nuclear slopes are 

very different (up to "' 35%). the ratio R is compatible with 1, within 
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fitting errors of< 2.5%. This result implies that at all s, the magnitude of 

the impact parameter amplitudt> is the same for pp and pp elastic collisions 

:11 zero impar1 parameter. At large impa('t parameters and low energies 

they diwrge, since the slope parameters B (which determine the shape 

of the impart parameter represent.ation) are very different. It remains a 

fundamental problem for any model of elastic pp and pp scat.tering at high 

energies to explain this newly-observed regularity. 
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VIII. CONCLUSIONS 

Elastic pp and pp scat.t.ering are of renewed interest since the ac

quisition of high quality pp data from the ISR. Those data demonstrated 

that the total cross section for pp scattering exhibits the same rising 

trend first observed for pp scattering at the ISR. Measurements ,at very 

small t have determinedJhe ratio 9f the real to the imaginary part of the 

scattering amplitude in the same. energy regime. 

Just as the ISR program was concluding, a new and dramatic 

chapter in elastic scattering was beginning with the SPS collider. The 

enormous jump in energy was a great challenge to our ability to extrapo

late from the ISR and lower energy data. Indeed the extrapolation indi

cated that the SPS total cross sections should be more than 50% higher 

than the minimum pp cross section of ~ 39 mb. Predictions for the 

slope parameter were not as easy to make since the low energy data were 

inconsistent. 

The extrapolations of the cross section were not just curve fitting 

because analyticity connects the cross section with the real part of the 

forward amplitude. Indeed the simultaneous fitting of the a tot and p data 

with analytic functions is impressive evidence for analyticity. 

Not only are the analytic fits quite successful, but their form is 

very provocative. The data cannot be fitted successfully with a log(sls0 ) 

rise, but are well fitted by a Ioi( s I so) rise. Thus, the total cross sec

tion seems to saturate the form of the Froissart-Martin bound- atot ,.._,, 

log2 s I s0 - although with a coefficient about 1% as large as that allowed 

in principle. If we surmise that asymptotically the elastic scattering will 

- 95 -

be described by a black disk, we find that its radius is only about 117 

as large as allowed by the Froissart-Martin bound. W'hy? If quantum 

chromodynamicl' is indeed the correct theory of hadronic interactions. it 

should be able to explain this fundamental result. High energy nucleon

nucleon scattering poses a long-term challenge to the theoretical com

munity. 

Does the loi( s I s0 ) growth of the total cross section persist 

indefinitely? Only further experimentation can tell. It is possible, however, 

to quantify the issue. By introducing the parameter a we have allowed for 

deviations from the log2 s form. Roughly, the increasing part of the total 

cross section varies as 

log2 slso (8.1) 
1 + alog2 slso · 

Here a is a small positive quantity. The smaller it is, the closer 

the form is to the Fro iss art behavior. The value of a can be translated 

into an energy scale at which there is departure from the log2 s form 

by considering the curvature of the cross section as a function of logs. 

The curvature is positive near the minimum of the cross section, but is 

eventually negative as the cross section approaches its constant asymptotic 

value. We define Str as the value of s at the transition where the curvature 

is zero. It is easy to see that 

y'S";; = Fo e11 ,f12a - (8.2) 

The values obtained in Fit #3 give 
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,-_ 865+4400 G V v .Str - -450 e , 

While from Fit #4 we find 

r::- +500 
y <>tr = 400 GeV -150 . 

(8.3) 

(8.4) 

The introduction of .j8t; is analogous to the introduction of a scale parameter 

in QED to measure the departure from an idealized theory of point par

ticles. The analogy here is that the idealized theory is a( .s - oo) "' 

log2 (.sfs0 ), and .jS"t; gives a measure of the lowest energy needed t.o ob

serve a meaningful departure from it. The numbers in Eqs. (8.4) and (8.5) 

indicate it may be possible at the SPS and Tevatron Colliders to see devia

tions from the Ioi sf .so behavior. 

The ISR data showed that the pp and pp total cross sections 

continue to approach each other as the energy increases, in conformity 

with the usual description which has the difference of the cross sections 

varying as s·-l/2 • There is no fundamental reason for this, especially if 

the total cross sections increase as a power of logs. To make a precise 

conclusion about the difference cross section, we have considered a class 

of odd amplitudes, odderons, which only contribute significantly at high 

energies. "\\-nen we add odderon terms to our fits, we find that these 

amplitudes are typically about a 2.5 standard deviation effect from zero, 

and are ~ 1% as strong as the dominant even amplitude. The behaYior 

of odderon 2 from our Fit #9 is most intriguing. It predicts a substantial 

difference between p(pp) and p(pp) at .jS > ITeV, with p(pp) ~ 0.22 

and p(pp) ~ 0.10, an easily measured effect if one had both pp and pp 
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collisions available at these energies. At .js = 40 TeV, this fit gives 

CT(pp)- a(pp) ~ 5mb. Strikingly, the pp cross section climbs above the 

pp cross section at .jS ~ lOOGeV and remains above it. The presence 

of odderon terms cannot be completely ruled out at present energies and 

only ultra-high energy comparisons between pp and pp collisions will be 

able to shed any light on t.his interesting and mysterious possibility. 

In this regard, one should note that the asymptotic theorems, 

such as that. due to Fischer, should be applied with caution. It. is always 

tempting to imagine that the behavior at the highest energy for which 

there are measurements represents the asymptotic pattern. However, we 

have seen that fits can be made to the present data in which at slightly 

higher energies the pp total cross section exceeds that of pp and in which 

the difference cross section does not go to zero but instead increases at 

higher energies. Such is the case in our Fits #i-10. These fits show that at 

energies as low as .jS = IOOGeV, surprising results might appear. To find 

such effects, we need direct pp vs. pp comparisons at the same energies. 

The nuclear slope, B, is of interest in its own right. Our predic

tions here are less firm because of the poorer quality or the data, but 

we are guided by the reliable fits for the forward amplitudes and by the 

principle that B must grow as fast as Ioi s if the total cross section does. 

Failure to include such behavior must eventually be incompatible with 

measurement, if indeed the cross section continues to increase as log2 s. 

The slope measurement can be combined with the total cross section to 

give :Eet· In all reasonable models, a e1 ~ :Ect. The energy behavior of 

the ratio :EetfC1tot is of spt>cial interest. In many models, asymptotically 

the proton becomes a black disk and the ratio tends to one-half. Our fits 

indicat.t> that a substantial increase from the value ~ 0.18 characterist.ic 
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of tht> ISR t>nergy r~nge is to be anticipated. This is confirmed by early 

SPS numbers. 

An examination of our 6-paraml'ter fit to the expt>rimental data 

shows that 

R = [CJtotv"l+P2] /[IJtotv"l+P2] 
I6nB _ I6rrB 

PP PP 

is nt:>arly unity within the errors of the fit, for the entire energy region 

3 < .JS < 62 GeV. This of course is not surprising in the high energy 

region. What is import.ant is that at the lowest energies (3 < ../s < 
5 Gt:>V), where the total cross sections and nurlear slopes are very different 

for pp and pp, the ratio R is compatible with 1, within fitting errors of 

less than 2.5%. This suggests that for all energies considered, a(O), the 

impact parameter amplitude at zero separation, is the sa.me for pp and 

pp. This new regularity remains as an important problem to be explained 

by models of nucleon-nucleon scattering. 

The data from the SPS collider have confirmed the extrapolations 

from the lowt:>r energy dat.a. The total cross section is increasing rapidly 

as is tht:> slope parametl'r. Still much remains to be determined. More 

precise measurements at the SPS collider will be invaluable. Even more 

exciting are the prospects for measurements of the cross section and p 

at the Tevatron collider. These measurements should help enormously in 

deciding whether we have begun a continuing log2 s climb which would 

make the total cross section at the Superconducting Super Collider (at 

40 TeV) about 200 mb, or whether we are just being misled by a local 

tendt>ncy which will flatt.t:>n out and give a cross section at tht:> sse which 
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is substantially smaller. 

For a widt> class of models that have total cross sections increas

ing with .s, the nucleon-nucleon profilt> in impact parameter space even

tually beromes that of a sharp disk. We regard the energy domain in which 

this happens as "asymptopia". In "asymptopia", the value of the curva

ture parameter, C, must be negative, sincl' it is that of a disk. Expt>riment 

show C to be positive at the ISR and SPS Collider energies. Using our 

predictl'd CJtot and p to fix the Chou-Yang mode, we show that thl' Chou

Yang and sharp disk models give elastic scattering distributions which are 

nearly indistinguishabl: at .JS = 40 TeV, the SSC energy; in particular, 

the value of C for the Chou-Yang model has become quite negative. We 

have defined the onset of "asymptopia" as the energy at which C = 0, 

and have shown that this will occur near the Tevatron Collider enl'rgy, 

.JS = 2 TeV. These forthcoming machines should finally give us our first 

experimental glimpse of "'asymptopia". 
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Table 3.1. Values of tmin and Bmin for t.he Coulomb interference 

region for pp elastic scattering. See Eq. (3.13) and (3.14). 

..[8 Accelerator ltlmin Bmin 
(GeV) (GeV/c)2 (mrad) 

23.5 ISR 0.0017 3.6 

30.7 ISR 0.0017 2.7 

52.8 ISR 0.0016 1.5 

62.5 ISR 0.0016 1.3 

540 SPS 0.0010 0.12 

2000 Tevatron o:ooo73 0.027 

40000 sse 0.00037 0.00097 

~-·-- --
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Table 5.1 Sources for the data used in the tlts for a and p for pp 

and pp 

Reference Data Accelerator 

Foley et al., 1967 a(pp ), p(pp) AGS 

Denisov et al., 19ila,b a(pp ), a(pp) Serpukhov 

Bartenev et al., 19i3b p(pp) FNAL 

Carroll et al., 197 4 a(pp ), a(pp) FNAL 

Fajardo et al., 1981 p(pp) FNAL 

Amaldi and Schubert, 1980 a(pp ), p(pp) ISR 

Amos Pt al., 1983a,b .1a, .1p, Pav ISR 

-- --------------
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Table 5.2. Results of fits to total eross sections and p values. 

See Eqs. (5.1) - (5.6). The parameters A, {3, and f are in mb, s0 is in 

GeV2 , o,f.l and a are dimensionless, Cis in mb Ge"\f2(l-p) and Dis in 

mb GeV2(l-o) . 
. • '~ 

Fit #1 #2 #3 #4 
A 41.74 41.30 41.70 41.11 

±0.04 ±0.28 ±0.04 ±0.23 

!3 0.66 0.62 0.64 0.59 
±0.01 ±0.03 ±0.02 ±0.02 

so 338.5 293.6 332.7 275.1 
±7.7 ±28 ±7.9 ±22 

c 8.4 10.9 
±5.1 ±4.1 

It 0.5 0.5 
D -39.37 -40.51 -39.20 -41.32 

±1.6 ±1.8 ±1.5 ±1.9 
(l: 0.48 0.47 0.48 0.46 

±0.01 ±0.01 ±0.01 ±0.01 
a 0.0056 0.0082 

±0.003 ±0.003 
x2 /d.f 1.165 1.146 1.127 1.058 
d.f 76 75 75 74 
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TablE' 5.3. Results of fits to total cross sections and p values 

including oddProns .. SPe Eqs. (5.1)- (5.6). The parameters .4, {3, and care 

in mb, so is in GeV2 , a, Jl and a are dimensionless, C is in mb Gev"2(l-pl 

and Dis in mh Ge\r2(l-O'). Fits #5 and #6 correspond to odderon 0, fits 

#7 and #8 to odderon 1 and fits #9 and #10 to odderon 2. 

Fit #5 #6 #7 #8 #9 #10 
A 41.73 41.51 41.70 41.61 41.66 41.36 

±0.04 ±0.30 ±0.04 ±0.29 ±0.05 ±0.26 
{3 0.68 0.65 0.67 0.66 0.65 0.62 

±0.02 ±0.03 ±0.01 ±0.04 ±0.01 ±0.03 

so 340.4 317.4 345.8 336.0 350.3 316.1 
±0.5 ±31 ±8.1 ±33 ±9.6 ±30 

c 4.3 1.7 6.0 
±5.6 ±5.7 5.0 

Jl 0.5 0.5 0.5 
D -42.07 -42.31 -41.35 -41.47 -35.34 -36.70 

±2.2 ±2.2 ±1.7 ±1.8 ±2.1 ±2.4 
a 0.46 0.45 0.48 0.48 0.50 0.49 

±0.02 ±0.02 ±0.01 ±0.01 ±0.02 ±0.02 
f -0.29 -0.25 -0.12 -0.11 -0.04 -0.04 

±0.12 ±0.13 ±0.04 ±0.04 ±0.02 ±0.02' 
x.2 /d.f 1.105 1.112 1.059 1.072 1.089 1.084 

d . .f. 75 74 75 74 75 i4 
--- -
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TabiP 6.1 Sources for the data used in the fits for the slope 

paramE't.er. 

Reference Data Used Accelerator 

Foley et al., 1963 B(pp) AGS 

Belletini E't al., 1965 B(pp) CERN-PS 

Amaldi et al., 1971 B(pp) ISR 

Chernev et al., i 971 B(pp) Serpukhov 

Holder et al., 1971 B(pp) ISR 

Barbiellini et al., 1972 B(pp) ISR 

Bartenev et al., 1972a,b B(pp) FNAL 

Antipov et aL, 1973 B(pp) Serpukhov 

Ayres et aL, 1977 . B(pp) FNAL 

Baksay et al., 1978 B(pp) ISR 

Fajardo et al., 1981 AB FNAL 

Northwestern-Louvain Coli .. 1982 B(pp ), B(pp ) ISR 

- 110 -

' 

' 



Tablt> 6.2 The Prror squared matrix for slope Fit #2. 

c+ n+ E+ c- n-
' 

c+ 1.9·10 1 -6.7 ·10 2 5.5. 10 3 -1.1. 10-1 4.8. 10 2 

n+ 2.3. 10 2 -1.9. 10 3 5.7 ·10-2 -1.8. 10 2 

E+ 1.7. 10-4 -5.5. 10-3 1.5. 10-3 

c- 1.9. 10-0 -1.3 ·10 1 

n- 1.7. 10 2 
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Table 7.1. Predictions for CTtot,P, and Bat high energies. The 

predictions are t.he samt> for pp and pp since, no odderons are included. 

Both fit # 1 and # 2 have cross sections growing as log2 s. 

Fit ,fS u p B 'E.tfu 
(T~V) (mb) (GeV/c)-2 

#I .540 (SPS) 70.37±0.62 0.200±0.002 16.65±0.74 0.227 

#2 .540 (SPS) 69.32±0.89 0.194±0.005 16.66±0.59 0.223 

#1 2.00(Tent.ron 98.30± 1.17 0.198±0.002 19.53±1.41 0.270 

#" 2.00(Te,-atron 95.93±1.87 0.193±0.004 19.57± 1.12 0.263 

#I 20.0 169.46±2.51 O.li2±0.001 26.03±3.15 0.347 

#2 20.0 163.39±4.55 0.168±0.00~ 26.13±2.50 0.332 

#I 40.0 (SSC) 196.38±3.10 0.163±0.001 28.34±3.81 0.368 

#:. 40.0 (SSC) 188.84±5.6C 0.160±0.002 28.47±3.03 0.352 

#I 100.0 235.87±3.8S 0.152±0.001 31.64±4.78 0.394 

#2 100.0 226.15±7.H 0.149±0.00~ 31.81±3.79 0.376 

#I 500.0 316.00±5.4{ 0.134±0.00C 38.14±6.75 0.436 -

#2 500.0 301.75± 10. 4 0.133±0.00 I 38.39± 5.35 0.413 
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FIGURE CAPTIONS 
Chapter ill 

Fig. 3.1 An experimental plot of datotfdt vs. ltl for pp elastic scat

tering at ..[i = 23.5 GeV. The fitted curve used the parametriza

tion of Eq. (3.10). The data were taken at the ISR by the 

Northwestern-Louvain (R211) group. 

Fig. 3.2 An experimental plot of datotfdt vs. ltl for pp elastic scat

tering at ..js = 52.8 GeV. The fitted rurve used the parametriza

tion of Eq. (3.10). The data were taken at the ISR by the 

Northwest.ern-Lom"llin (R211) group. 

Fig. 3.3 Survey of experimental data for total cross sections atot. in 

mb, for both pp and pp interactions in the energy inten·al 

5 < ..[i < 62 GeV. The pp points are indicated with an "x" 

and the pp points with an "o". 

Fig. 3.4 Survey of experimental data for p = Refn(O)/Imfn(O) for 

both pp and pp interactions in the energy interval 5 < ..jS < 
62 GeV. The pp points are indicated with an "x" and the 

pp points with an "o". 

Fig. 3.5 Survey of experimental data for B, the nuclear slope parameter, 

in ( GeV /c)-2
, for both pp and pp elastic scatt.ering, in the t 

region ltl < 0.02( GeV/d and in the energy inten"lll 5 < 
..[i < 62 GeV. The pp points are indicated with an "x" and 

the pp points with an "o". 
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Chapter IV 

Fig. 4.1 The Argand circle. The partial wave amplitude, at, or the 

impart parameter amplitude, a(b), must lie on or insider the 

cirrle of radius 1/2. If R.e6 =OR and lm6 = 61, the central 

angle is 26R and the length from the center of the circle to 

the amplitude point is (I/2)exp(-26I). 

Fig. 4.2 A semi-log plot of various profiles, Ima(b), each of which 

gives atot =43mb and B = 13 (GeV/c)2 • The gray disc 

is shown as dot-dash. The parabolic form, Eq. (4.39), is 

shown as the dotted curve. The Gaussian shape gives the 

solid curve. The dashed line is the Chou-Yang model. 

Fig. 4.3 A semi-log plot of the differential elastic cross cross sections 

for the shapes shown in Fig. 4.2. The dot-dash curve is for 

the gray disc, the dotted for the parabolic shape, the solid 

for the Gaussian and the dashed for the Chou-Yang model. 

Fig. 4.4 The functions X= cretfatot (solid curve) andY = 'Eet/CTtot 

(dashed curve) in the Chou-Yang model, as a function of CTtot· 

Fig. 4.5 The quadratic slope parameter, C, in the Chou-Yang model, 

as a function of atot· 

Fig. 4.6 A plot of the impact parameter amplitude a(b) vs. b, in 

fermis, for the Chou-Yang model (solid cun·e) and the sharp 

disk (dashed curve); for energy ,fS = 540 GeV in (a), ..jS = 

2 TeV in (b) and ..jS = 40 TeV in (c). 

Fig. 4.7 A plot of dcrn/dt, the elastic differential scattering cross sec

tion, for both t.he C'hou·.Yang model and the sharp disk, 
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using the impact paramet.er amplitudes show in Fig. 4.6 .. 

The dotted curves (for p = 0) and the dash-dotted curves 

(for non-zero p) are the Chou-Yang predictions, whereas the 

dashed curves (for p = 0) and the solid curves (for non-zero 

p) are the predictions for the sharp disk. The energies are 

(a) ..js = 540 GeV, (b) ..jS = 2 TeV, (c) ..;s = 40 TeV. 

Fig. 4.8 The complex E plane. The physical pp amplitude is obtained 

as the limit of the analytic function 1 approaching the right 

hand cut from above. The physical pp amplitude is obtained 

by approaching the left hand cut from below. The unphysi

cal cut is not shown. The integral dispersion relations are 

obtaned by integrating along the indicated contour (if one 

ignores the unphysical cut and pole). The contours are really 

closed by infinite semi-circles above and below the real axis. 

Fig. 4.9 Definition of the cut structure for 9- of Eq. ( 4.64). 9- is 

made well-defined by specifying that 9- = lm- Ela- eitJa-

lm + Eia e-i4>a. See Eqs. (4.67)- (4.71). For the pp amplitude, 

1} ..... 0, ¢ ..... 'IT. 

Chapter V 

Fig. 5.l(a) The total cross sect.ions CTtot, in rob, for pp and pp, as a 

function of ..js, in GeV. Below ..jS = 100 GeV, the upper 

curve corresponds to pp and the lower to pp , using the fit 

#l (C, a = 0). Above this energy, the difference in cross 

sections is too small to be visible. The upper curve above 

this energy corresponds to the Froissart. bound form, with 
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a = 0 ( C = 0, fit # 1 ), w bile the lower curve is the best 

fit for a rf 0 (C = 0, fit #3). The experimental data used 

in the fit were in the energy interval 5 ·< .js < 62 GeV. 

The experimental SPS pp cross section at ..jS = 540 Ge V is 

appended for comparison, as is the cosmic ray lower limit for 

the pp cross section. To guide the reader, the energies of the 

Tevatron collider and the SSC are shown. 

Fig. 5.l(b) The p values for pp and pp. Below ..js = 40 GeV, the upper 

curve is for pp and the lower for pp, using fit #l (a, C, f = 

0). Above this energy, the curves split, with t.he lower of 

each pair corresponding to a rf 0 ( C = 0, from fit #3) and 

the upper to a = 0 ( C = 0, from fit # 1 ). At very high 

energies, the differences between pp and pp disappear and 

the two a = 0 curws (fit # 1) coalesce, as do the two a rf 0 

curves (fit #3). 

Fig. 5.2(a) Total cross sections Otot for pp and pp, as a function of vfs. 
The legend is the same as for Fig. 5.l(a), except that the 

even Regge coefficient C (C rf 0) is fitted. The fit used for 

a = 0 is fit #2 and the fit used for a rf 0 is fit #4. 

Fig. 5.2(b) The p values for pp and pp, as a function of ..;8. The legend 

is the same as for Fig. 5.l(b), except that the even Regge 

coefficient C is fitted. The fit used for a = 0 is fit # 2 and 

the fit used for a rf 0 is fit #4. 

Fig. 5.3(a) The total cross sect.ions CTt01 , in rob, for pp and pp, as a 

function of ..;8, in GeV. The solid curve is for pp and the 

dased curve is for pp . The fit utilizE's oclderon 2 ( C = 0. 
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from fit #9). Tht> data utilized in t.he fit are in the energy 

interval 5 < v's < 62 GeV. The SPS experimental rross 

section at v's = 540 GeV is appended for romparison. 

Fig. 5.3(b) The p values for pp and pp, as a function of v's. The legend 

is the same as that for Fig. 5.3(a). 

Fig. 5.4(a) Total cross sections for CTtot for pp and pp, as a function of 

v'S. The legend is the same as that for Fig. 5.3(a), except 

that the odderon 0 was used (C = 0, from fit #5). 

Fig. 5.4(b) The p values for pp and pp, as a function of ,[8. The legend 

is the same as that for Fig. 5.3(b), except that odderon 0 

was used (C = 0, from fit #5). 

Fig. 5.5(a) Total cross sections CTtot for pp and pp, as a function of v'S. 
The legend is the same as that for Fig. 5.3(a), except. that 

odderon 1 was used (C = 0, from fit. #i). 

Fig. 5.5(b) The p values for pp and pp, as a function of v'S. The legend 

is the same as that for Fig. 5.3(b), except that odderon 1 

was used (C = 0, from fit #7). 

Chapter vl 

Fig. 6.1 Nuclear slope parameters B for pp and pp elastic scattering, 

evaluated at ltl = 0.02( GeV/c)2
. The solid curve is for pp 

and the dashed curve for pp. The data used in the fit were in 

the energy interval 5 < v'8 < 62 GeV. The four ~B values 

of Ref. 3 were used in the fit, but are not shown in the figure. 

The experimental SPS pp slope value at v'8 = 540 GeY is 
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appended for comparison. To guide the reader, the energies 

of the Tevatron collider and t.he SSC are shown. 

Fig. 6.2 The ratio of 'f:.etfCTtot• for pjl and pp, as a function of ,[8. 

The solid curve is for pp and the dashed curve for pp. The 

curve was computed using fit #2 (a, f = 0, C ::/:- 0). 

Fig. 6.3 The ratio R = A.(pp)/A.(pp), as a function of v'S, where 

A.= CTtot J(l + p2 )/1671"8. 
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