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The gauge structure of anomalies and the related currents is 

analysed in detaiL We construct the covariant forms for both the 

currents and the anomalies for general gauge theories in even-

dimensional space-time, The results are then extended to determine the 

structure of gravitational anomalies, These can a! ways be interpreted as 

anomalies for local Lorentz transformations. 
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1. Introduction 

The gauge principle is used as the fundamental basis for present 

theories of all known forces, from electromagnetism to gravitation. 

Anomalies [1-5] result when gauge invariance cannot be maintained in 

the quantum theory. A complete understanding of anomalies is essential 

for the full application of these theories to physical problems. 

The anomaly is usually defined as the gauge variation of the 

connected vacuum functional in the presence of external gauge fields. 

When an anomaly occurs, this variation does not vanish and the vacuum 

functional is not gauge invariant. The gauge currents are no longer 

covariantly conserved but have the anomalies as their divergence. As a 

consequence of its definition the anomaly satisfies certain consistency 

conditions [6] which restricts its functional form. For the non-singlet, 

non-abelian, chiral anomaly, the consistency conditions imply that the 

anomaly cannot have a covariant expression. Similarly, the anomaly 

implies that the non-singlet gauge currents cannot have covariant 

transformation properties. 

However, a number of authors [7-9] have recently presented 'explicit 

calculations of the non singlet anomaly and have obtained covariant 

results. The same situation occurs for the case of gravitational 

anomalies. In the work by Alvarez-Gaume and Wi.tten [10] they are 

presented in covariant form, while the gravitational consistency 

conditions would imply that they should have a non-covariant form. 

In this paper, we clarify the situation by showing that both the 

covariant and the non-covariant anomalies can be correct forms for the 

covariant divergence of different currents. For the gravitational 

anomalies, the two forms correspond to different energy momentum tensors. 
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We shall use the term "consistent" anomaly to refer to the covariant 

divergence of the current J~ obtained by varying the vacuum functional 

with respect to the external gauge potential. The "covariant" anomaly 

is obtained by modifying the current by adding to it a local function 

of the gauge potential. The resulting current J~ is determined so as 

to be covariant under local gauge transformations, which implies that 

its covariant divergence is also covariant. The consistent anomaly has 

fundamental significance, since it reflects directly the gauge 

dependence of the vacuum functional. The related covariant anomaly, 

on the other hand, is distinguished by its simple gauge transformation 

properties and the the covariant current may have significance when 

used to construct gauge invariant couplings to other fields. As shown 

in this paper, it is always possible to construct the covariant forms 

of the current and of the anomaly from the knowledge of the consistent 

anomaly. Hence the anomaly cancellation conditions are the same for 

either form. We note that our ability to modify the form of the 

anomaly by changing the definition of the local currents is different 

from the ambiguity in the form of the anomaly arising from the 

addition of local functions of the gauge potential to the vacuum 

functional [3). 

Let us illustrate the situation by the case of non-abelian gauge 

anomalies in two space-time dimensions. The consistent anomaly is 

known to beFl 

'J),_ 1 r- ::: c 2,... A-,\ ~)..y. ( 1.1) 

where c is a certain constant and a matrix notation has been used for 

both the current and the gauge potential. The right hand side satisfies 

the consistency condition [6) but is non-covariant. The current J~ also 
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transforms non-covariantly. We now define a new current 

,v 

Jf- J~" + c A" l.>..r (1. 2) = 

Its covariant divergence is 

,y ) 

]),._ Jfl = c 'df' A>. E. f' _,_ ;;,... (c A>. E>.~'-) 

+ c [A,..} A>.] c>..r _ 
(1. 3) 

c Fft>. E.).~ 
) 

where 

~ >.. == 'dt A>. - 'J .A A tc + [A 14 , A;. l ( 1.4) 

is the Yang-Mills field strength. The right hand side of (1.3) is now 

covariant. The current J~ may also be shown to be covariant, but it 

cannot be obtained from the variation of a vacuum functional with 

respect to the gauge field A~, since the covariant anomaly does not 

satisfy the consistency condition. Observe that the linearized right 

hand side of (1.3) is twice the right hand side of (1.1) (this factor 

becomes 1 + v/2 in v dimensions and may be considered as a Bose 

symmetry factor for the linearized anomaly). We emphasize the care 

which is needed in interpreting the linearized calculations. 

In this paper we discuss various aspects of the gauge structure of 

anomalies and their currents. In Chapter 2 we study the gauge depen-

dence of the currents and their anomalies and apply conventional methods 

to construct the covariant currents and anomalies for four-dimensional 

gauge theories. In Chapter 3 we discuss the structure of the consistent 

anomaly in arbitrary even space-time dimensions and give also the 

explicit expressions for the covariant currents and the covariant 

• l £( 
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anomalies. This is done by using the compact notation of exterior 

differential forms and the techniques described in Refs. [11-16]. The 

needed results are collected and, in part, rederived in Appendix A. 

Our results are generalized to include gravitational anomalies in 

Chapter 4. A theory with spinor fields in curved space must be 

formulated so that it is covariant under general coordinate transforma

tions (which we shall call Einstein transformations) as well as under 

local Lorentz transformations. Local Lorentz invariance of the 

connected vacuum functional is usually assumed and the gravitational 

anomalies are taken to be anomalies of the Einstein transformations. 

In Chapter 5 we shall formulate the consistency conditions for the 

combined Einstein and Lorentz anomalies [13] and we shall find the 

form of these anomalies. We also show that the Einstein anomalies can 

always be transformed into Lorentz anomalies (and vice versa) by adding 

local corrections to the vacuum functional. Hence it is always possible 

to define the vacuum functional so that all gravitational anomalies are 

indeed violations of local Lorentz invariance alone. This appears to 

us a preferred canonical form for the gravitational anomalies. The 

treatment of gravitational anomalies in Chapters 4 and 5 relates their 

structure to that of gauge anomalies. 

Throughout this paper the anomalies will be expressed in terms of 

symmetric invariant polynomials which shall not be further specified. 

The particular polynomial appropriate to each situations depends on 

the spin of the particles propagating in the loops of the vacuum 

functional and can be determined by an explicit perturbation calculation, 

as done in the paper by Alvarez-Gaume and Witten [10] for the 

gravitational anomaly. The correct polynomial can also be determined 

directly from the appropriate index theorem. This approach will be 

"-

-6-

discussed in a subsequent paper by Alvarez, Singer and Zumino.[17) 
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2. Gauge Structure of Currents and Anomalies in Four Dimensions 

The consistent anomaly is determined by the gauge dependence of 

the vacuum functional defined in presence of external gauge fields 

Aua(x). The vacuum functional W[A] may be considered as a non-local 

function of these gauge fields. Under infinitesimal gauge transforma-

tions the gauge potentials transform according to 

4 

rr; A-r (JJ,.A)Q.=- (?,.!1 +[A,.,A] r· 
(2. I) 

T FA 
1\ r" ([ ~v 1 1\ J ) "- ) 

where A a is the .infinitesimal gauge parameter. The gauge dependence of 

the vacuum functional defines the anomaly 

~ W[A]"' Jb 
= JJx 

5;\v' 
~A a r 

Cl. 

rr;., Ar 

Jfo. (x) ( D
14 

!\ )o. 

=- JJ1 ])r-Jr~(x)!\"(x) 

= Jrlx 1\a{x) ({.,.(A) 

( 2. 2) 

) 

where G (A) is the anomaly and the current Jua(x) is defined as the 
a 

functional derivative of the vacuum functional. 

The consistency condition follows from considering the commutator 

of two gauge transformations on the vacuum functional 

(~~~-~~ )W[A] ~A,/1'] \N[A] (2. 3) 

Using (2.2) this implies 

.. 
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S .ix ( ;\'"" ~ G~- It ~, Co. ) :: J d.x [A; A'] a Go. (2.4) 

The consistent anomaly must obey this consistency condition (2.4). 

The consistent anomaly also determines the gauge dependence of the 

basic non-abelian current Ju a· Naively, this current would be expected 

to transform covariantly under gauge transformations. The effect of 

the anomalies can be determined by evaluating in two ways the 

commutator of a gauge variation and the variation which defines the 

current 

( $B ~ - 7";_ ~) W [A] I (2.5") 

where 6 is defined by 

a 

~Ar 
B 0. 

r (2.() 

and 

.1' \.v' [.A]= f,/x ~ ~ 'j Ar• = JdxJ'". (x) B,. '{x). 
,.. 

(2.7) 

The commutator may be evaluated directly 

~ ~- ~ ~ == s[B} "J (2.5') 

Applying this operator to the vacuum functional we obtain 

(dB ~ - ~ J"13 ) W [A] 

- Jotx iCSa~ )II"- (7;; yr. )13/] 
(2. 'I) 

_ f dx Jl'. (C.BJ,]r 

This gives immediately the gauge transformation properties of the 

~ 
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non-abelian current 

j .~x(~ rt.) B/ =+h« A, T'J). B,. • + J tlx{f.a G.) A•. (t.lo) 

The first term on the right hand side of (2.10) gives the usual 

transformation property of the current while the second term is 

dictated by the consistent anomaly. The basic current J~ a will only be 

covariant if the anomaly vanishes. 

We shall now demonstrate the existence of a covariant non-abelian 

current J~a and compute its covariant divergence. This result was 

obtained independently by Paranjape and Goldstone [18] and can also be 

inferred from some work by Niemi and Semenoff[19]. In subsequent 

chapters we shall generalize these results to gauge and gravitational 

anomalies in higher dimensional space times. 

To construct the covariant non-abelian current we must find a 

local polynomial in the gauge potential, X~a(A), with an anomalous 

gauge transformation property opposite to that of the basic current 

J dx ( ~ X rc ~ ) B.- tl = -}tx ([A, X"] 1 Br ~-J cl x (~ C ,_) /\" . (2 ·") 

The covariant current is then given by 

J"'a = rr 0. + X"'D. (A) I 
(2.12.) 

since (2.10 and (2.11) imply 

'!;_ 'jr A =-([A, yr n (2.13} 

It is not obvious that an appropriate local expression X11 (A) can always 
a 

be found. 

In four dimensions, the consistent non-abelian anomaly for spin 

one-half fermions is well known [3-4]: 

'~ 
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c,.·(x) =-tir• ~ ~·r .. r. {>..• ?r(Av ?>A.- +fA, A, A.)}, (M} 

where Tr is the trace over Fermi multiplets and ;Ia is the gauge 

coupling matrix. The equation (2.11) for X11a becomes 

Jo~~ [ r,: :<~ .. + ([ t\,X'J).. j13/ =-Jax(~E C:.} 11• 
_ .:__ Ja. ~llfl" ') A 4 1> I, - 48 TT'2. X E of' 1\ Dv 

T., [ (A.. A,+ r., A.) F,.-
(2./f"} 

i\4 A1 Ar A,. - A, A._A1 A,.- A..A1 A, A,. 1 · 
From the three possible terms for the polynomial x11 we find the unique 

a 
result 

Xfl -
A- 4f ff'l. E.}'Yf'tr" 

7i< fA. ( Av F;..- + P, .. A,- A. A,ll ... ) 1 . (2.1~) 
By applying a group transformation to (2.16) we can reproduce ~2.15). 

.We may now compute the covariant anomaly Ca , by a direct 

evaluation of the covariant divergence of the current 
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N 

GC4. 
-- IV -] rr - r CA. 

fA . -
Ca. - Pr X o. 3. Chiral Anomalies in Higher Dimensions 

£fVfr ~ f Ao_ ~v ~r }. (2.17) I -3.2. Tf"' 

Following the nota.tion of Refs., [11,12] we now descr'ibe t-he 

Yang-Mills field strength by means of the Lie-algebra ·valued· 2-form 

We observe that the covariant anomaly may be expressed solely in terms F=dA+A'l. (3 .I) 
of a product of field strengths as expected by covariance. The 

where d denotes exterior differentiation, and 
linearized form of the consistent anomaly (2.14) and of the covariant 

anomaly (2.17) are the same except that the covariant anomaly is three A-::: Ar dxr ().2) 
times larger. is the gauge potential 1-form. Explicitly 

We emphasize the need for a complete specification of the structure 

of the anomalous currents before the gauge anomalies can be properly 

F = ~ F,, olx !A dx, Ffiv ==~fA" -'dvA14 + [.4/",Av] (3,3) 
J 

(the differentials dx~ anticommute). Let 
interpreted. The consistent anomaly is directly related to the gauge 

dependence of the vacuum functional. It. is appropriate for the study 
-"'D(F. F. ·--· T I; 2.1 ~) (3.4-) 

of anomaly cancellation between fermion multiplets but also for the 
be a symmetric invariant polynomial of degree n in the Lie-algebra 

derivation of physical consequences of anomalous non-dynamical currents 
valued variables F1 , ... Fn. For compact notation, if some of the Fi's 

such as the flavor chiral currents in QCD [6] [20,21]. The covariant 
are equal, say F4 = F

5 
= ... Fn = F, we shall write (3.4) as 

current, on the other hand, has a simple gauge structure and may have "P (F. F F: F~- 3 
) 

,, 2.) 3; I 
( 3.)) 

physical significance when coupled to other external non-gauge fields. 

Since the covariant anomaly is directly related to the consistent 
Using the Bianchi identities for the field strength, 

anomaly, it may also be used to study anomaly cancellation. In the df:::FA-AF / (3.£) 
above discussion we have focussed on the ambiguities in defining 

appropriate non-abelian currents. There is also the ambiguity in 
one shows easily that 

defining the vacuum functional, as one is always free to modify the d f ( F~) 0 (_3. 7) 
vacuum functional by adding local polynomials in the gauge fields. 

This freedom is exploited when we use the functional for gauging 
Actually one can write 

dynamically different anomaly free subgroups. "])( F')l) ::: ol C-J
2
,_

1 
(A) F) 

J (3.f) 

where the (2n-l)-form is given by 

<; ~-
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I 

t<.~t,.-o (A, F):: 'h. J dt 1' (A, ~ ~-·) (3. q) 
0 

with 

~:::. tcLA+tl.A\.== tF+~l--t-)Aoz,. (3.1o) 

The consistent non-singlet anomaly is obtained as follows. Introduce 

an odd (anticommuting) Lie-algebra valued element v and an 

infinitesimal gauge transformation ~ 

j' ,A :::: -1Jv- ==- dv-- [A, v 1 
1 F:: fv- tr F 
JV"=_.,.,. 

which satisfies 
c 

·:('':d:!+Jd ==d
1

=0. 

(3./1) 

(J./2.) 

;fis the generator of a Becchi-Rouet-Stora transformation[22], If we 

introduce 

.ll -== A -r 11" ("3.13) 

and a corresponding field strength 

T = (d + f) If. + A "L 
(_3. I Lj.) 

we find easily that 

T- F (3.ll) 

Therefore 

'"· 
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( d + 1) w1,._ 1 (A + 11"1 F) = 'P ( F'") 
( 3.16) 

=:-ol cv2.,._, {A, F) 

Let us expand in powers of v 

) 
o I ..2.l1-1 

tJ1"'_
1
(A+lT,F ::CJ2"_ 1 +c.J.zt~-2. +··· +W0 1 (3.17) 

where the superscript indicates the power of v and the subscript the 

degree of the form. Equation (3.16) implies a set of relations 

J C.V.z')l-1 o + J CV.2t1-2. I = 0 

,., l 2.. 
u C.V.z.,_ 2. + d cJ2 , _ 3 ::::: 0 

(3.11) 

-1 2n- 2 ol 2.t~- I 
e) WI + CJ0 :::: 0 

..., 2t~-1 

a/ CVD ::::.0 

The consistent anomaly is given by the integral of w2n_2
1. The 

consistency condition, which can be written as 

:f I CJJ·-.. ' == 0 
(3. 1'/) 

I 

follows from the second of (2.19), the second terms integrates to zero. 

One can derive a convenient explicit formula for the anomaly [11] 

J c.J271-2. I _ ,(,.-•) I ~t (' -t J J-rc d u:. A, F.,_.) . 
0 

(3. '2l>) 

In the gauge transformation (3.11) the infinitesimal parameter 

is odd (anticommuting) and transforms like a Faddeyev-Popov ghost. 

If one prefers, one can rewrite the consistency condition in terms of 
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gauge transformations TA with even (commuting) infinitesimal parameter A 

rr:A =J)/\ = otA+[A,/\] 

~F::: [F,A] 
(3.21 ) 

and T11 does not operate on the parameter itself. The anomaly, with A 

replaced for v , is a linear functional of A . Denoting it with 

!t·G[A,F] (the dot indicates integration as well as summation over 

internal symmetry indices), it satisfies the consistency condition 

~ A· G - ~' A· G = [11, A' J. C 1 (}.2l) 

which is equivalent to (3 .19). This is the form used in Section 2; it 

follows from the definition 

7;. W [A]= 1\·G (3. 23) 

and justifies the above construction. If we define the current 

(n-1)-form (which is dual to the usual current vector JU) 

J= 'jYL 
rA 

(3.23) can be written as 

! 

1\·])J :=: /\· (c-11 +fA, Jj):::: 1\ · C: 

(remember that J is odd). 

(3. 24) 

(?.2r) 

How does J transform under gauge transformations? As explained in 

Section 2 we evaluate in two ways the commutator 

l S 'f,;- ~ cf) W [A] (3.1.6) 

where o is defined by 

( 
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S"IT==E ) ~F= ])B ~dB+~A, E} ( 3.t7) 
Here, the increment B is odd and the operation 8 is even. 

Since 

~ = J)l\, [_ == fotiJ +[A) A]) I£ 
~A Ll JA } (3.2.1} 

the commutator equals 

(B~A] · ~~ ~ [B, A] .J (3,2'1} 

On the other hand, using (3.23), and again (3.24), the commutator 

equals 

S0·C:)-~ ~·T). 

Equating (3.29) with (3.30) we obtain 

~(:B.J)==- [B,/\]·1+ $(1\·C) 

==- J5.[/\ 1 T] +J'(Il·C) 

(3, 30) 

(!.~I} 

The first term in the right hand side would be the covariant transfer-

mation law appropriate to the adjoint representation. When there is an 

anomaly the second term shows that J does not transform covariantly. 

In (3.31) B is taken not to change under the gauge transformation 

generated by Tit . If instead we stipulate that B transforms according 

to the adjoint representation 

~] := [13 J 1\ J (].32.) 
/ 

(3.31) becomes simply 

~ 
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rr;_ (13 ·T }= s (A· c) . 

Together with (3.32) and 

c~.33 J 
Now, it is very easy to solve (3.38) in general. 

relation, explained in Appendix A, 

J ::=. d .e + .t d. 
/ 

We use the 

(3.4 f) 

~" = 0 / 
(}. '34 ) 

where o is defined by (3.27), (3.39), d is the exterior differentia-

tion, and the odd operations t is given by 
(3.33) completely specifies the transformation law of the current J in 

terms of the anomaly A·G[A,F], -lA -:.o) -tF == 13 I -(,'IT::O • c~.4- 2 J 
Is it possible to find a local (v -1)-form X such that the new 

current 
Applying (3.41) to W2. I we find 

?1-~ 

AI 

J J+X (3. 3f") J' U-).2.'11- 2. I = d c .f.. C.V.2YI-2. I ) + ..e oL c.JJ.orJ-Z. I 
0.4-3) 

transforms covariantly? This means 
:. d (f. w.z.,-2.' )- .f 1 CJltt-1 o ) 

~(B·T)==o (}. "3 () where we have used (3.18). Now, the operators t and j anticommute 

and therefore we must require .(,'J-+-'Jl ::::0. (3. 4J,.) 

rr; (B·X) = - s( ll·C) (3.37) Upon integration over (compactified) space-time, the first term in the 

right hand side of (3.43) vanishes and we obtain finally 

parameter v , instead of A 

This equation for X can be rewritten in terms of the anticommuting 

1(B.X) I 

- a J w,._,_ (v,A)F); ( 3,3f} 

g I c.J2)1- 2.. I 1 J e c.>,._,. 
Clearly we can drop the superscript zero in the right hand side. 

(3 .4-1) 

Comparing with the equation for X, (3.38), we see that it is solved by 
with 

Sv=o (j."S'f) 13·X = Jew •. _, (S'.4-~) 

Here we have used the fact that the anomaly is given by 
The explicit formula (3.9) for w2n-l can be used to find an explicit 

-u. c; [.4, F 1 :: r->,._ .. . c v-, A, F). (3.40) 
formula for X, since the operator ~ is easy to apply and, from (3.10), 

.tfe' ::t-B. (!.47) 
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One finds easily ( 

:8 · X = "'C"'-') f;r t J 'P {B ,It, F. •-•) (3.41} 

For instance, for an internal symmetry such as SU(N) in four dimensions, 

we start from 

"P(F 3 )=c 7;. F 1 {_3.4-tt} 

(where cis a known constant). Then 

VJ ~ = c '17r. (F 2. A - .!. FA 3 + J_ A r ) 
2 /0 

( s. !;o} 

and, applying £ directly, 

.l(..)r = c 1;. B (FA -t-AF- ~ fF) 

7it 13 {dA A + A dA 4--} A 1) ) =C 

(}.~I j 

which gives 

X ==- c (dA It +It d/l + f A J) ~.s-z) 

Alternatively one can use (3.48) with exactly the same result 

rg B X = 6 c 5~ B 11 (J... F - j_, A~ l 
~ /2. J J 

(3.[.!) 

where STr is the totally symmetrized trace (See Ref. [11)). 

Since the current J = J +X transforms covariantly, its covariant 

divergence must also be covariant. In order to compute it we need 

DX = dX + {A,X}. The simplest way to obtain this is to observe 

that, integrating by parts, 

'lf', 'D X ::: J) IT • X (3.£"4) 

(: 

-20-

(remember that v is odd)_. and it would seem that the right hand side 

can be obtained directly from (3.48) just by making the substitution 

13 ::::: 1) '\}" . (3. s-s-) 

Strictly speaking this is not allowed since both B and v are odd and 

so is the operation D. To be precise we must first rewrite (3.48) as 

C. X= .. (•-') f~t-t f P( c, If, F..,_,) 
1 

0 

(~.r6) 

where Cis even. Actually (3.56) follows from (3.48), and vice-versa. 

Now we can set correctly, in (3.56), 

c -:::: ])v-
I 

(3.fl7) 

which gives 

J)v. X"' "'l~-1) BH Jr{otv+[A, v} / A J r=t-•). (].rf) 

We also know that 

v-.:vr ~:P~T.J"' <>~(><- i) f:t-(1-U rP{dv, A) ~ w>) I (H1) 

where we have used the explicit form (3,20) for the anomaly. Adding 

(3.58) and (3.59) we obtain 

v-.JJJ=,(.,-i)[d~ JP{clv+tfll,v-] 1 11, f[,~-'} 

.. c"'-') [dr J -p ( v; dA -1-t[A,A}, Ff: ,_,)"" 

,. 
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' ~ { .u- it J r c ~ r-; ,._, } 

"" It'( 1lj F ,.-1) 
(j. (0) 

In going from the first to the second form of this expression we have 

used the invariance of the symmetric polynomial P. The last expression 

(3.60) shows the covariant form of the anomaly. This result should be 

compared with (3.59) or equivalently 

v· ':P T -= f c.J2,-21 ( v; A J F) (3.61} 

Now, it is clearly 

cv2-n-• (A J F)-= 'P {A J F '"-') .,_. -· (s.&z) 

where the dots denote higher non linear terms. This implies that 

tv 2.11-2. I ( v; A J F)-:: -p ( ,..) F It-I)+--. (3. (]) 

Therefore the leading (least non linear) term in (3.60) is n times 

larger than the leading term in (3.61). The relation between nand 

the dimension v of space time is 

V+2 - 1 'n,. • (3.(/j ) 

As mentioned in the introduction, this factor can be understood 

diagrammatically as a result of Bose symmetrization. 

... 
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4. Purely Gravitational Anomalies 

Infinitesimal Einstein transformations are specified in terms of 

infinitesimal parameters ~~(x) and operate on tensors as Lie deriva-

tives. For instance, on a scalar field A(x) 

-? EI A == 'f'~ A --'dxJl / J ?, 

while on the metric tensor ~I'" {x) 

£'1 'fA"== ~).J,l ,,., + ~,."f).3J.v + 'dv 'F).;r>. 
= :Dr 'Tv + J>, "f r . 

They satisfy the commutation relations 

[ E!l 'E~ J z. E [r,} r:,).J J 

where 

( [r,) :r,. J ) ,. -:::: r; d;. f/- 'I/?; 1: _ 

(4.1) 

(4.Z.) 

(4,3) 

( 4-.4) 

If the connected vacuum functional in an external gravitational field 

W[g ] is not Einstein invariant 
~v 

eJ w :::: H1 J 

the anomaly Ht; must satisfy the consistency condition 

E-r H~ - f~ J-/I" = 
I S2. J3- I 

11. 
[ 'f2., r, 1 

which is the analogue of (2.4). 

(4.~) 

( 4-. () 

It is not difficult to find a solution of the consistency 

condition (4.6) in terms of the form w 1 2n-2 (v, A, F) which gives 

the anomaly in the case of gauge theories. In differential geometry the 

Levi-Civita connection rA~P plays the role of gauge potential and the 

Riemann tensor RVA~P the role of field strength. If we introduce 
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the 1-forms 

( r J f r 
r f d ). 
Af X / 

(4. 7) 

the Riemann tensor is given by the 2-form$ 

( R )r f:::: {cl. r + r 2. )f f-:::. ± R v). r f dx y dx ,\I (4-.f) 

with 

1?. t r- r. f (' f r. tr r f r 6'"[ t 
v>.. f =fly >.r -d,~, v r + Vf' '>. (1' - l;.r v.r' . 

( 4-. '1) 

Under an infinitesimal Einstein transformation the connection transforms 

as 

t ,., r cr ,..., f . n ~.,.. r r 
jl).f" -S do-IJ.r +_,,AS rr 

( Lj., lO) 
s-,...,r r.s- r f 

+ ~rr '>-ir - ).~ dr! - ~ ?,.. r . 

The last three terms have exactly the form of a gauge transformation 

with infinitesimal gauge parameter 

1\ f ...;.... . r') '?f ; 'r - - e~r s . J 
( 4. II) 

while the first two terms have the form of a Lie derivative of r P 
A~ 

treated as a vector with lower index A and ignoring the other two 

indices ~ and p In terms of the 1-form (4.7) we can write 

Err 4 r + ~ r I (4.. 12) 

where 

~r ])I\ J.l\ + [r, /\] (4.13) 

( 
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is a gauge transformation with infinitesimal parameter (4.11). In 

(4.12) the Lie derivative is defined as usual on forms, to operate only 

on those indices which are saturated with differentials, so that it 

corresponds to only the first two terms in C4.10). The well known 

formula applies 

J 1 = di'! + iFd. / 
(4. 14) 

where i~ 
c, 

is the (odd) inner product operator, for instance 

i~ ( r;~" f dx>.} == r f ~). 
).. fA- ~ (4.11) 

In general, for a form of higher degree, i~ substitutes the vector 

~~ for each differential (one after the other), for instance 

. "'0 Vol>. 0 v A 'D d.\/ ). 1J VI >. 
LJ 1\vA olx X = r;..vJ! Jx - 1'-y). X S = .2. !Cv). '!' ocX,~ 

( 4. 16} 
1<,>. :=-'R.).v 

The effect of an Einstein transformation on the Riemann curvature 

2-form is given by 

£1 7G == ~ R + 7;_ R. 1 (lt-,17) 

where now 

'f:'R A [R 1 A]. c 4. 18) 

In a space-time of v dimensions a v -form has ma::dmal 

degree and its differential vanishes. Therefore (4.14) becomes 

~ cuv =- d {t! c.J)I) { 4. l'l) 

and the integral vanishes (with suitable boundary conditions) 

r· 
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o<r J cJv = [ol(t}c.lv} == 0 . (4. 1,1)) 

In the dual description, more familiar to physicists, a v-form 

corresponds to a density;/) 1 ( 4 .19) corresponds to 

o(; ~ = dr (I~" :tJ) .)' (4.2J) 

and (4.20) corresponds to 

of) J lJ olx = I dr ( s~' ~) ol X == 0. ( 4-,2..2.) 

The relation between Einstein and gauge transformations expressed 

by (4.12) and (4.17) shows that one can reduce the problem of finding 

consistent Einstein anomalies to that of finding consistent gauge 

anomalies. Indeed the gauge anomaly, in the form (3.40), immediately 

gives a consistent Einstein anomaly in the form 

H - 1\·C[r 1?.] ==-I~ f/{ r "(r R.) I - , r ~..tr , " {/-.25) 

with the same function G[f,R]. Indeed 

E1 H, = (a(~+~),\·~ -=-J'dfr:;>) (r/'CI)-r T. 1\·C (4.24) 
I 2. ~I I ''I I 

so that 

E f, li},- Er, lir, = J ( r,1 d;. -.,};- r: )/dr~') C/ + [ll ,, 11,} ~ . cq,zr) 
Finally, using (4.11), the right hand side of (4.25) becomes equal to 

- fc:>r(lz."'d~ r,y- J/'d,l f,_v )Cvr == Hta..)~,-r,.;~z. (4-. 2() 

Observe that the consistent gravitational anomaly given by (4.23) 

does not depend explicitly on the metric, but only on the connection 

(and through it on the metric) even though the connected vacuum 

functional W[g ] cannot be expressed in terms of the connection 
~v 

(_ 
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alone. For instance, in two dimensions, up to a known numerical factor, 

the consistent gravitational anomaly is 

H
1 

oc - J?f -rr ;;vr;.,.f ey). d'x 
1 

(4,2'1) 

which corresponds to the non-abelian anomaly [see (1.1)] 

A·C c< J n ( 1\ dv AA) ~ y). J2.x . {4- ,2f) 

In higher dimensions the consistent gravitational anomaly is just as 

easily written, once the appropriate invariant polynomial (3.4) is known. 

In a Riemann space the Riemann tensor (4.8) is antisymmetric 

'Rrf = - 'R rr (4.2.1) 

As a consequence the invariant symmetric polynomial (2.4) vanishes 

except for even n 

'tl- -:= .2 'W\ J 
(4,?.0) 

which corresponds to a space-time dimension 

V = 2'Yl-1. = 4m-2 (4. ~ 1) 

(see the analogous argument below, leading to (6.12) and (6.13). 

In terms of the energy momentum "tensor" 

fl'" :::: .2 !Y!
Jdrv 

) 

(4.5) can be written 

r lA" 
J }v 'Dr e ~X = - HJ =- - 1\. c 

or 

(4,32-) 

) 
c 4,"J3) 
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:D,_ 0~' , = 'dr G v f ( r, 'R) . (If, 3ft.) 

Here the covariant derivative is that appropriate to a symmetric tensor 

density 

.:Dr erv = r;)r erv_ EJff r" 
f' f I (4-. ~r) 

but e~v is not a tensor density, when the anomaly does not vanish. 

How does it transform under Einstein transformations? We follow an 

argument similar to that given in Section 2. Evaluate in two different 

ways the commutator 

( E, br - sr E r ) W [ 'd,. v] ' C 4, s r, J 
where we define 

a(# = f cr ,..~~ L d.x 
' rdf'V " 

(4.?7) 

an operation which gives g~v an arbitrary symmetric increment 'f~v 

Since 

Ei" {(Er 1r• J ~v 
the commutator equals 

- ((E;Cft:..,) ~ dJ< 
J · rdr" 

olx } 

On the other hand, using (4.5), the commutator equals 

(" • 

('r.~f) 

(4.3'/) 
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( Cftv E~ ~ dx - Jr i-lr 
J d~f'v 

(4./tO) 

Equating (4.39) and (4.40), and using (4.32), we obtain 

s { Cfrv Er erv T ( Er <frv) G rv]c;l)( 2 sr 11 :r (4-.41) 

or 

Er r Cfr-v GfV olx. = 2 J'<f H~ ( 4. Lt-2) 

In this equation EF transforms ~ like a tensor, while G~v[g ] 
, ~v po 

transforms as it follows from the transformation law of gpo [Eq. (4.2) ]. 

If the anomaly in the right hand side were zero, the left hand side 

would be Einstein invariant, i.e. G~v would transform like a tensor 

density. 

c 
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5. The Covariant Energy Momentum Tensor and its Covariant Anomaly 

Is it possible to find a symmetric local YIJ'J such that the 

new energy momentum tensor 
,., 
EJ~"v-= er}l + yr" c~., J 

transforms like a tensor density? This means 

( ,.., f"' 
E-r J Cfrv G> d;c == o ( r. 2.)' 

and therefore we must require 

( rv 
E~JCfrvY dx ==-~dfH!. (c;, 3} 

A solution Y11v of this equation can be easily found in terms of the 

solution of the analogous problem discussed in Section 3. There we 
----------- I 

.found a (v-1)-form X which satisfied (3.3) 
I 

~13·X=-rA·C. ) 
(3) 3) 

where 

S ~ fB·~ (t;.4) 

In view of the relation (4.23) between G and H~ , it is clear 

that we can use (3.37) with the substitutions A+ r, F + R 

and taking also (4.11) and 

.B = B [ 'f J = ~'f r J 
Cr. 5") 

since then 0 + 0 
<I> 

in the right hand side of (3.37). The result is 

that yllV is given by 

.. _ • 
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2 B [ 'f] . X = {err• yr• ./x (r.t) 

In order to make this expression more explicit we observe that the 

standard expression for the Christoffel connection 

r. p 
A fA-

implies 

I ftr( ) 
2 t dr~ ).f - ?;. i /A r - t;Jr ~Atr (t;,7) 

]>../ { Cf J :: i ~f~ ( J)r<fAr - JJ; Cfp~ - 'J)f' '(). G"") 1 

(BFeJJ/ = B;.~A-f(q)olx>-. (S.f) 
Substituting into (5.6). and integrating by parts the covariant deriva-

tives one finds easily the explicit form of yllV in terms of that of 

X, but we shall not carry it out. We point out that the argument which 

leads to (5.6) is based on the identification 

E I -== o(r + T,. {r;.1) 

and on the fact that ~~ gives zero when applied to the quantitites 

we are interested in. 

Since the new energy momentum tensor is really a tensor density, 

its covariant divergence will also be covariant. We can work it out 

without unnecessary computations if we observe that 

)C .:D,. 'fv + Dv r,.) y,uvolx -= - 2 f f"v Dr-y rv olx (f./0} 

Therefore we can use (5.6) with the substitution 

Cf 1o, == :D,... sv + J)v tr ;:::: ~:r ~,..v ) 
({;".II) 

which gives 

(f. }2.) ~'f == El 
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and, from (5.5), (4.12) and (4.13), 

][Cf~Av]::: £!r =4r+:DA (!>.13) 

We obtain in this way 

) Iv J)r yrv dx ==- ot; r. X + A I]) X Cr. Jq) 

We shall now use the result (3.60) which represents the solution of the 

analogous problem for the non-abelian current. Equation (3.60) can be 

written as (use fl. instead of v) 

A <D X - 1\ I c ::: In f 'P (A J F 'II- I) (r.Jr) 

Combining (4.33), (5.14) and (5.15) with the definition (5.1) we obtain 

J !v'Dr Gr•d, =: "'[P{t\ R•-')- 4 r. X . (~.U) 

The right hand side is still not obviously covariant but the two 

terms can be combined because, as we shall show below, 

c4 r. ·x == - IYI 1' ( ir r" R 'fl-') . 
Since 

1\f' v -r ( i'f r) r II:= - df 'f v 1- SA r; f V 

=-]) Sv r - M v r I 

we finally obtain the fully cov'ariant result 

J Iv 1l G r• h = "" J 'P ( M , 'R. ,_,) 

( ~./7) 

(f.lf) 

(C11) 

Note that, again, the leading (least non linear) term in (5.19) is 

I'" • _, 
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n = v ; 
2 

times larger than the corresponding term in the right hand 

side of (4.33). The covariant form of the anomaly given by the right 

hand side of (5.19) is also expressed in terms of the connection alone, 

the metric does not occur explicitly, just as it does not in the 

consistent form. 

It remains for us to prove (5.17). In v space-time dimensions, 

(v + 1) forms vanish, therefore 

r ". x = ot r. x == o cr. 20) 

~ . If we apply to these forms the operator i~ , where the vector ~ ~s 

tangent to the v-dimensional space-time manifold, we still get zero 

o = ;,! C r 1
· x ) == ( ir r r). X -(r iy r )- X + r 1

· ir X 
=i~r.(rX+Xr)+r 1• i1 X cr-.21) 

and 

o = ir(d.r. X)== (ird.rJ. X+ Jr. irX 

Now 

olf r. x = ir J r . x + J i} r . x 
- c1 r . L·:r x - i'! r. J. x 

Subtracting (5.21) from (5.23) we obtain 

o{! r, X = - 7< . ir X - ir r I j) X . 

Now, again in v = 2n - 2 dimensions, the (2n-1)-form 

~1 

·~ 

(L22) 

c ~. ?.5) 

(r:. 2 1,) 
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t4)2-n-1 ( r) R. ) = o (5". 2r) 
6. Einstein Anomalies and Lorentz Anomalies are Equivalent 

As explained in the introduction, local Lorentz invariance could 

also be spoiled by anomalies. In this case the connected vacuum 
vanishes. Apply again iE; 

- Lfr }r [cv,,_, . f f + t'rR.- {,) s $R. .z,._, 0 == tl [ cv.ht-' 

functional must be considered as a functional of the vielbein field 

e and cannot be assumed to depend on the metric tensor. Let us work 
~a . 

in the Euclidean. Under local rotations of infinitesimal parameter 

,·r r · C + i1 R · X ) 
cr. t~) aab = -aba the vielbein field transofrms as 

where we have used equations analogous to (3.17) and (3.46). This gives 
L 9 ef'tA. = e,.., e .... I (t.l) 

R · ir X = i1r. C (f:,2.7 ) 
Combining (5.27) with (5.24) we obtain 

while under Einstein transformations we have 

E.1 erQ. = ~ ~?..\ el'q, + ?r '£~ e>-" (t. 2.) 

ot;r· X -=- £1 r. (JJ x + c J (f. 21') It is easy to see that the full Lie algebra consists of (4.3), (4.4) 

together with 

and finally, using (3.60), we prove (5.17). Observe that occasionally, 

in our derivations, we use results proven earlier for odd quantities or [ L9, ' Lg~ l L [PI) 92.1 
(63) 

operations and apply them to even quantities or operations and vice- and 

versa. This is permissible if proper care is exercised and we leave it 

to the reader to be properly careful so a not to make sign mistakes. 
[ L L ] - L· 

9 I l - f.') 9 ( '·"') 
If there are Lorentz anomalies 

L9 W = 1<9 ) (b.r J 
they must satisfy the consistency conditions 

LK-LK'= 
9, p.l. 92. 9, 

I( 
[el)e,1 

(6.6) 

and 

L19 H:t - E! f((;} K~.)B (t.7) 
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It is consistent to assume that there are only Einstein anomalies 

(K
8 

= 0) and we have discussed this case in section 4. It is also 

consistent to assume that there are only rotational anomalies (Hs 

A consistent form for the rotational anomaly is easy to find, the 

orthogonal rotation group can be treated like an internal symmetry. 

The gauge potential is the Cartan-Weyl connection 

O). 

0(4b == - 0(~~ O(fl t:~..l:t d X f' {6.~) 

and the field strength is the Riemann tensor referred to local ortho-

normal frames 

'R~b = -'Rb"--::::: (olo( + oc~ ) .. L = ,i 'RI"vab clx~"clxv (t. q) 

(customarily the connection (6.8) is denoted by the letter w ; here we 

depart from the usual. notation in order to avoid confusion with the 

forms w of section 3.). The solution of the consistency condition 

(6.6) can be written immediately in terms of (3.9) and (3.17) 

I<; = r CJ,"_ .2 I ( e ) o() R ) = 9 . c [ o( ./R J . ( t. /0} 

We note again that, because of the antisymmetry of the matrix Rab' 

'P ( R"' ) = c -d"' P ( 'R. Yl) . (/.II) 

Therefore, in the case of the orthogonai group, the symmetric polynomial 

P will vanish unless n is even 

IVI:2~ (6.12.) 

which corresponds to a space-time dimension 

V -=::: 2'h- 2 :::= 4 m - 1 . (C./1) 

t' ~ 
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Only in these dimensions can there· be rotational (or Lorentz) anomalies. 

Just as the Einstein anomaly (4.23) does not depend explicitly on 

the metric, but only through the connection r, so the rotational 

anomaly ( 6 .10) does not depend explicitly on the vielbeir, but only 

through the connection a Indeed, the functional forms of the two 

anomalies are directly related. However, there is a vielbein field, 

and in this the theory of gravitation is not like other gauge theories, 

a fact which cannot be sufficiently stressed. Let us use matrix 

notation and denote by E the vielbein matrix 

defined by 

£_ 1-1 
.e 

e 
j.la 

The field H 

(6.14) 

behaves, in a certain sense, like a Goldstone field for both Einstein 

transformations and locai rotations. Under an infinitesimal Einstein 

transformation 

where 

E ~ H == ~ >- ;~). H +~H, 

TAH is defined by 

T ,_, 
/\e. 

H 
-1\e 

and A is given by (4.11). The finite version of (6.16) is 

7;. 1-{ 
-e e 

-A H 
..e .e 

Similarly, under a finite rotation 

L9 
.e. 

f../ 1-1 9 
e = .e. .e. 

(6'.11) 

(6.11) 

(6.1'1) 

(t.lf} 

This suggests that, using the vielbein field, one should be able to 

~ 
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construct a local functional whose Einstein variation gives the Einstein 

anomaly and whose Lorentz variation gives the rotational anomaly. This 

is indeed possible by mimicking the solution of the anomalous chiral 
S [ E/ ] = J ~'!" J 7; H c; [ c<.,. ] = S '[ £, o1] , (6.1- r) 

() 1( 

Ward identities obtained using a Goldstone field [6]. Define the 
where 

functional 

s [£ 1 r] [ ~t J r .. ( H c [ r; 1) J 
(t./1) 

TH -~H T~ I -~~ 
exT = e o< .e -t ..e, a .e. (6.'-') 

Using perfectly analogous arguments as for (6.21) one shows that 

X 

where 

r; -H/ r ~H 
.e, .e, + 

_I;J.l ol t;l-/ 
.e, .e. {t. 2.0} 

I 

L9 5 == L9 s := K~ (C,'l'l) 

The functional S (or S')) is local, in the sense that it is the 

In Appendix B we verify that 
integral of an expression constructed with derivatives of the vielbein 

and of the connection up to a finite order. It is highly non linear and 

E1 S j ?ffv C/ [r] -- I-ll (6. 21) uniquely defined only for relatively weak fields. Nevertheless, it can 

be used to redefine the connected vacuum functional so as to eliminate 
X 

either the Einstein anomalies (by changing W into W + S) or the Lorentz 
On the other hand, one can express S in terms of E and a , instead of 

anomalies (by changing W into W- S'). In this sense Einstein and 
E and f We recall the relation between the Levi-Civita and the 

Lorentz anomalies are different aspects of the same thing. It seems 
Cartan connection 

r - E E- 1 EdE- 1 
- o( + , {b,tz) 

convenient to choose the pure Lorentz anomaly (vanishing Einstein 

anomaly) as the canonical form of the gravitational anomaly: the 

formalism is then more directly related to the case of internal gauge 
This implies that 

r. (I-{;) 1-1 - {t-1:) 11 (I - t) 1--1 -(I-t) 1-1 
{; == .e 0( -e. + .e ol. e. (t,'l.J} 

symmetries and the absence of Einstein anomalies gives a more satisfac-

tory geometrical picture.F2,F3 

Changing the integration variable from t to 
Finally, we remark that formulas (6.19) and (6.25) for the 

functional s' can be written in a more intrisic form (see Ref. [12]). 

T-::: /-1:; 
J 

(6.1.1,} We have preferred to use here the special choice of local coordinates 

of (6.19) and (6.25) in order to render manifest the locality in x of 
we see that 

the functional. 
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7. Conclusion 

An anomaly is a local expression which satisfies the consistency 

condition, but which is not the gauge variation of a local functional 

of the gauge potential, or the metric tensor, in the gravitational case. 

Here a local functional of certain fields means an integral over x of an 

expression constructed with the fields and their x derivatives up to 

some finite order. The consistent anomalies discussed in this paper 

satisfy both the above conditions. In order to show that they cannot 

be obtained from a local functional one has to enumerate all possible 

candidate expressions of the correct dimension and with the correct 

power of the fields and check that there is no combination which 

reproduces the anomaly when one performs a gauge variation. In general, 

the proof is rather cumbersome, but it can be considerably simplified 

by going over to the covariant form of the anomalies. Since the 

covariant current J~ is obtained from the original current J~ by adding 

to it a local expression, one can reduce the problem to that of finding 

a covariant current which is a local expression in the gauge potential 

and whose covariant divergence gives the covariant anomaly. Similarly, 

in the gravitational case, one can ask whether there exists a covariant 

energy momentum tensor (which means that it is really a tensor) 

constructed locally from the metric tensor and satisfying the anomalous 

equation. The number of possible candidates is greatly restricted by 

the condition that these quantities be tensors. A further restriction 

comes from the fact that the covariant anomaly has a known form 

possessing "abnormal parity", i.e. it is constructed with epsilon 

tensors (corresponding to it being an exterior form). This would 

require the current and the energy momentum tensor also to have abnormal 

parity, since no epsilon tensors can be generated by taking the 

"'' • ,, 
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covariant divergence. With these restrictions, it is not difficult to 

show that no such local quantities exist [17] (for the energy momentum 

tensor one must also use the fact that it is symmetric). 

"·' 
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Appendix A. Algebraic Structure 

In this appendix we collect and rederive, in part, the results and 

techniques described in Refs. [11-13) and used in the main text of this 

paper. The reader will notice that the structure described below is 

completely algebraic. In the text we use the resulting formulas for the 

gauge potential 1-form A and the field strength 2-form F, and for forms 

which are functions of them. However, the arguments given in this 

appendix apply to any expression which is a polynomial in two free 

variables A and F (free means not restricted by algebraic relations), 

say with complex coifficients. In particular we do not assume that the 

polynomials are symmetric or invariant, nor do we assume that A and F 

commute or that they satisfy specific commutation relations. In 

addition to A and F we shall also use two more variables \F and B. 

A,~ and Bare odd (anticommuting), F is even. On these variables we 

define the (odd) antiderivatives d, ~ and .Q, and the (even) derivative o 

with the properties 

olA:F-A 1 

I 
dF:FA-IlF 

JF=Fv-vf / 
11T--V"2 1:B ::-1r:B-Bv-- / ~ 

lA= 0 , -tF=B -t.v = o 

SA =B ~v == o lB = o 
) I 

and 

1 A + olv ::::- vA -A v

dF-dB = AB+l3A 

/ 
lB = o 

(A. I) 

(A.2) 

[A ,3) 

[A .4) 

(tr.r) 

(4. b) 
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The differentiation operators satisfy 

'1 ~ 1 
ol==-l ==1 :0, 

d1 +:fd.::. 1.1+:!£ :::0 

and 

.td+d-t =s 

(A,7) 

(A.!} 

(/+.'I) 

The algebraic consistency of all these relations (A.l) to (A.9) is 

not hard to verify. For instance, to see that d
2 = 0, apply d

2 
on A 

ol (olA ):: tA {F- fP) = ol F- dJLLJ +A JA 

= FA-AF-(F-IP)A+A(F-Atj:::.o (A.Jo) 

Similarly, on F 

ol{dP)= d(/=,4-AF)= JF'A-+FdA-Jf}F'+AJF 

-= ( FA - A F) A- t- F ( F- A 7-)- {r- A '1) F +It ( F fl-It F) 
( A.ll) 

=0 

Now apply don (A.5). After a little algebra we find, using (A.l) and 

(A. 5), 

ol1A+olzv-=-1dA. 0.t2) 

This shows that d2 = 0 on v as well, provided d and 1 anticommute. 
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Let us also verify, in few cases, the important relation (A.9). 

On A 

.-l(d.4)::-e(F- Al) .tF=B (A. rn 
and 

ot(eft)=o. (A.Ilt) 

Comparing the sum of (A.l3) and (A.l4) with (A.4), we see that (A.9) is 

valid on A. Let us check it on F: 

-i(tiF)= -t(PA-AF)=BA+AB (fl. If) 

and 

ol(e F) dB. (IJ .It) 

Therefore 

( .ed +eli) F :: c1 B + B t4 +A-B == b F / (fL!I) 

using (A.6). 

Because of the properties of derivatives and antiderivatives all 

this extends immediately to polynomials in the variables A, F, v and 

B. 

(.' ~ 
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Appendix B. Solution of the Anomaly Equation 

In this appendix we verify that there exists a local functional 

whose Einstein variation gives the Einstein anomaly and whose Lorentz 

variation gives the Lorentz anomaly. The functional is given by (6.19) 

I " 

S [ E J) :: J .tt- f r-. H ~ ( ~ ] 
0 X 

J (B.I} 

where we use matrix notation and denote by E the vielbein matrix e~~ . 

Then 

E 
H 

= e. (.E. 2} 

and 

,..., - /; H t-J.-1 -t-1·1 I /; H 
't = .e. r .e. + .e. 01 ..e CB.s) 

An Einstein transformation is given by (5.9) 

Er ~ o(j + ~ J 
(B.Lt} 

where 

" " A,_., = - ?r1 (13. r J 

and the effect of TA on r is given by (4.13) 

rr; r= J.A + [r, "l (B.t) 

We see that (B.4) is valid also on E, if we take 

T,._E =-1\E (75. 7) 
and 

a L 
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o<J E ::- !). )>. E / (E.f) 

which agrees with (4.14) 

o(:f = if cJ + J i I (E. CJ) 

if we treat E as a zero-form. 

Now, since S is the integral of a form of maximum degree,~~ 

applied to S gives zero. Therefore, we need only evaluate the effect 

of TA It is easy to verify that 

~r; d !\~ + [r;) 1\t-J ) 

where 

-t-J..I ti-l 
/\t = .e A e 

-H./ HI 
+ ..e t;. .e. 

Observe that, from (B.2) and (B.7), 

T H 
1\.e 

Therefore 

1\, A 
I 

and 

H 
-/\~ 

J\ ::: 0 
I 

'J At- H -~H Hi -HI HI 
-=- e 1\.e -t.e /\e H 
rat 

-tH t~ -rU ~H ) 
-f-1-e. ~e -re ~(e 11 

(B.to) 

(B. II) 

(B. /2) 

(B.13) 
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-HI t:-1-1 -btl Hi ] =[.e 1\e -te ~~ 1 H +~H 

:::[1\t-,H]-r~H. 

It is not necessary to know explicitly TAR 

compute 

and T etH 
A 

(B .14) 

Let us 

I 

'77. 5 =feu· Jr.. { 'T,; IJ G [r;] + fi 'r. qr; J). 
0 X 

(:B.tr) 

Now, according to (B.lO), 

~ c [ ~ J = ~~ c; [ r;] CB.U) 

if we define 

~t r; == c;{ /\~ + r r; ) !\ 1: J . (15 .17) 

The consistency condition gives 

r~ H 'J,;,<;[r,J= fr..;\ ~~[r;]+jT.([IIt,H]C[r;ij, 
x )( x (B. I&') 

where we have defined 

rr;l r; ::: o! J-1 + [~ J..i] = 'dr; n t J - , ')t 
(B .ltj 

So, (B.l5) gives 

~ !J 
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~s"' L~ Jr,.[(r,.H+[At,HV4[r;]-rll 1 d;pn] 
== f~t r rJt r ~ c rr:: J +lq. d cr~l] 

o J L ~t t- ~ 
I X 

= f ,H ~Jr. At G[r,] :: - f if,; 1\ C [r) . (E. 2v) 
0 )( )( 

In conclusion 

(:B .1-J) 
f.~ S :: ot; S + ~ S = J; S ::: - J.IF . 

The effect of local rotations can be evaluated in an analogous 

manner, using the expression (6. 25) in terms of E and a Here 

there is not even the Lie derivative term, since local rotations are 

exactly like ordinary gauge transformations. The result is equation 

(6.27). 

0.:· f 
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Figures 

F1 Actually, in two-dimensional Minkowski space-time, the anomaly 

can be written in one of the forms 

c dr A A ( £ Af i IYf." r ) 

which differ respectively from (1.1) by the gauge variation of the 

local functionals 

+ ' s A A fA + c JA A I" i" ,.,. >.{. =-2 r 

Roman Jackiw has emphasized that these forms are more natural than 

(1.1) since for chiral (antichiral) spinors in two dimensions the 

the Dirac Lagrangian depends only on A
0 

+ A
1

, (A
0 

-A
1

) and 

therefore the anomaly should also depend only on those combinations. 

We prefer to ignore this peculiarity of the two-dimensional 

Minkowski case and illustrate our point using the form (1.1) which 

is perfectly analogous to the abnormal parity expressions valid in 

four and higher dimensions. 

F2 Tom Banks has observed that it is possible (for instance in 

six space-time dimensions) to regularize the Lagrangian for chiral 

spinors with a mass term which is Einstein covariant. Such a 

regularization, however, cannot be Lorentz covariant. Evaluated in 

this way the anomaly would naturally appear as a pure Lorentz 

anomaly. 

6 i.., 
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F3 In the case of an internal gauge symmetry based on the compact 

Lie group ;1 , one knows [12] that the existence of anomalies 

requires that the homotopy group nv+
1

[ ~ ] contain the group Z 

of the integers (here v is the dimensions of space-time). For 

the orthogonal group of local rotations O(v) , one is then led to 

consider nv+
1

[o(v)] Now, it is known that this homotopy group 

contains Z only for v = 4m - 2 (m an integer >1) and otherwise 

is finite (see e.g. Ref. [23]). So, one expects that only for 

these space-time dimensions there can be a topological Lorentz 

anomaly. This condition is the same as given in (6.13). For 

v = 2 there is no topological anomaly, but there still is a Lorentz 

anomaly, in the local sense discussed in this paper. The 

connection between the local and the topological meaning of the 

anomalies will be discussed in Ref. [17]. 
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