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Abstract 

We describe a series of numerical experiments using random vortex elemenl 

techniques coupled to a tiame propagation algorithm based on Huyghens prin-

ciple to model turbulent combustion. We solve the equations of zero Mach 

number combustion for the problem of a fiame propagating in a swirling fiow 

inside a closed vessel. We analyze the competing effects of viscosity, exother-

micity, boundary conditions and pressure on the rate of combustion in the 

vessel. 
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A particularly challenging problem in the study of turbulent combustion 

within an internal combustion engine is the interaction between hydrodynamic 

turbulence and the propagation of a fiame. The more reactants reached by the 

fiame, the more energy releas.ed and the less unburnt fuel expelled at the end 

of a stroke. At high Reynolds numbers, turbulent eddies and recirculation 

zones form which affect the position of ·the fiame and the distribution of 

· unburnt fuel available for combustion. Conversely, exothermic effects along 

the fiame front influence the fiuid motion. 

As one might expect, the full set of· equations that describe the above 

phenomenon is highly complex; the equations are usually simplified in such a 

way as to highlight a particular aspect of the combustion process, see (3], 

[12], [18]. For example, most partial differential equation models of turbulent 

fiow are based on a formulation of the Navier-Stokes equations with respect to 

a mean state, together with a set of equations to include such components as 

turbulence velocity and length scales. These model are of varying degrees of 

sophistication and complexity, ranging from zero-equation models ("mean

field closures") to higher order stress equation models. {For an excellent over

view, see [3],[18]). From the combustion side, starting with Landau's work 

[ 11 ], questions of fiame stability have received considerable attention over the 

past few decades, with much of the analysis concentrating on perturbation 

analysis of various models of combustion, containing such effects as mixing 

and fiame speed dependence on curvature. An excellent, though now slightly 

outdated, review of such techniques may be found in [14]. 

Our work has been concerned with developing numerical methods to 

analyze the effects of such factors as viscosity, exothermicity, boundary con

ditions and pressure on the interaction between fiame propagation and tur-
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bulent eddies. At the foundation of our investigations is the random vortex 

method [6], a grid-free numerical technique that is specifically designed for 

high Reynolds number fiow and portrays in a natural and effective manner the 

formation of turbulent eddies and coherent structures. Other applications of 

this method have included fiow past an airfoil [ 4] and blood fiow past heart 

valves [ 15 ]. The random vortex method and the fiame propagation algorithm 

described here were first used in a combustion setting to model tilrbulent 

combustion over a backwards facing step in [B]. In this review, we assemble 

the results of a series of numerical experiments we have designed to analyze 

some components in turbulent combustion; results described have been 

presented in [13], [19], [20], [21] and [22]. 

Statement of Problem/Equations of Motion 

We consider two-dimensional, viscous fiow inside a closed square. On solid 

walls, we require that the normal and tangential fiuid velocities be zero. 

Combustion is characterized by a single step irreversible chemical reaction; 

the fiuid is a pre-mixed fuel in which each fiuid particle exists in one of two 

states, burnt and unburnt. When a particle burns, it undergoes an instantane

ous increase in volume and becomes burnt. Thus; the fiame is viewed as an 

infinitely thin front acting as a source of specific volume and separating the 

burnt regions from unburnt regions. We assume that the fiuid is initially swir

ling in a counterclockwise direction and at t =0 we ignite the fiuid at a point 

halfway lip the left side. Our goal is to analyze the interaction of the swirling 

fiuid with the propagating fiame front. 

c 
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Our model is described by the equations of zero Mach number combus-

tion, which hold under the assumption that the Mach number M is small, the 

initial pressure is spatially uniform within terms of order M2 and the initial 

conditions for velocity, pressure and mass fraction are consistent within order 

M. Under these conditions, asymptotic limits of the full Navier-Stokes plus 

combustion equations can. be taken to yield a set of equations that allow for 

large· heat release, substantial temperature and density variations and 

· interaction with the hydrodynamic ftow field, but removes the detailed effects 

of acoustic waves and instead contains a time-dependent spatially uniform 

mean pressure term. This model can be viewed as existing "in between" con-

slant density models, in which the ftuid mechanics essentially decouples from 

the hydrodynamics, and the fully compressible combustion equations. The full 

derivation of this model may be found in [ 13]; a related model for thermally 

driven bouyant tlows applicable to problems in fire research may be found in 

[17]. We summarize the equations for zero Mach number combustion below. 

Let 'iJ be the ft.uid velocity vector and let 'iJ = w + Vq; be the unique 

decomposition of 11 into a divergence-free component 11J and a curl-free com-

ponent Vq;. We take the curl of the zero Mach number momentum equation to 

produce the 

VORTICITY TRANSPORT EQUATION 

(1) 

where ~ :::: Vx'i!J is the vorticity and _g is the total derivative at + {11· V). Here, 

we have ignored the term {'¥' x V p ~ which corresponds to vorticity production 
p 

across the ft.ame front {We hope to assess the importance of this term at a 
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later dale). The boundary conditions are that 11 = 0 on the boundary of the 

domain . 

We view the flame front as a curve separating the burnt and unburnl 

regions. Let r(t} be a point on the front. The front burns normal to itself with 

speed k and is advecled by the tlow yielding the 

EIKONAL EQUATION FOR THE FLAME FRONT 

: = k ·?t(r) + -Du{7*) (2) 

where 'i1u is the ftuid velocity on the unburnl side, 1l is the unit normal to the 

front at ~(t) and the. burning speed k is determined from the mass flux m 

across the tlame front by 

k = m{p16 {t),P(t)) 
---''-P'-u~(~t }:--'-....-.,_ (3} 

Here, Pu is the density of the unburnt fluid and P is the mean pressure. The 

rise in presure, which results from tluid expansion along the front, depends on 

the length of the front and the volume of the vessel and is given by the 

NON-LINEAR O.D.E. FOR THE MEAN PRESSURE P(t) 

(4) 

where q0 is the non-dimensional heat release, Vol is the volume of the vessel 

and L is the length of the tlame front. We assume a ')'-gas law and take the 

mass tlux to be of the form 

1 1 

m{pv,.P) = Q Pu 2 P 2 (5) 
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where Q is the local laminar flame velocity, see [3]; P-u may then be obtained 

from. the pressure through the relation 

Pv. = (P(t)) 117 Pv.(O)) (6) 

where Pv. (0) is the density of the unburnt t'l.uid initially. Finally, the Neumann 

compatibility condition yields the 

ELUPTIC EQUATION FOR THE EXOTHERMIC VELOCITYFIELD Vcp 

· · 1 dP 
VZrp = "'/P (-- dt + qo·"''mor) {7) 

where or is the surface Dirac measure concentrated on the flame front. Equa

tions {1-7) form our equations of motion. 

Numerical Algorithm 

Faced with the above set of equations, a standard method would be to 

employ finite difference techniques to produce a discrete approximation to all 

of the derivatives and then solve the resulting set of algebraic equations. When 

applied to the turbulence part of combustion models, some of the problems 

inherent in such techniques are 1) the necessity of a fine grid in the boun

dary layer region near walls where sharp gradients exist 2) the introduction 

of numerical diffusion; the error associated with the approximation equations 

looks like a diffusion term and hence places a computational upper bound on 

the size of the Reynolds number that can be effectively modelled and 3) the 

intrinsic smoothing of finite difference schemes which damps out physical 

instabilities. The random vortex method, introduced in [6] is a grid-free 

approximation to the equations of viscous flow at high Reynolds number that 
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avoids the introduction of mean states and turbulence closure relations and 

concentrates on following the motion of vorticity by means of a collection of 

vorticity approximation elements. This technique avoids the averaging and 

smoothing associated with finite difference formulations and allows us to follow 

the development of large-scale coherent structures in the flow. 

When one considers finite difference approximations to the equation for 

flame propagation (Equation 2), a typic at method is to place marker particles 

along the boundary of the burnt region and formulate a set of ordinary 

differential equations corresponding to the motion of these marker particles. 

At each time step, interpolation through these markers provides an approxi

mation to the position of the flame front. There are some problems involved 

with such an algorithm. It is difficult to accurately determine the normal 

direction (needed in Equation 2) from such an algorithm and hence the 

numerical approximation to the propagating front usually becomes unstable 

and develops oscillations. Furthermore, it has been shown (see [19]) that the 

propagating front can develop cusps, analogous to shocks, where the front 

ceases to be differentiable and the normal is no longer defined. The technique 

of adding and subtracting marker particles as the front moves requires initial 

assumptions about differentiability and bounds on curvature. Another problem 

associated with marker techniques is a topological one; when two burnt 

regions burn into each other, such a method must "decide" how and which 

markers are connected and eliminate those no longer on the boundary of the 

flame. The numerical technique we use is based on a "volume" fraction algo

rithm; the technique does not require a determination of the normal direction 

and is not subject to the topological issue mentioned above. 
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Our technique will be to keep track of the vorticity as a way of computing 

'itJ and to keep track of the tlame front as a way of computing Vrp; combining 

these two at any time will yield the full velocity iJ = w + Vrp. We divide the 

square D into two regions; an interior region where we solve the full vorticity 

transport equation together with the boundary condition 11 ·'it = 0 on BD (nor

mal component vanishes) and a boundary layer region where we solve the 

Prandtl boundary layer equations together with the boundary condition 11 = 0 

on BD (no-slip). In both regiom, we use the technique of operator splitting to 

first update the vorticity With respect to the advection term and then with 

respect to the diffusion term. Similarly, we update the tlame position by first 

allowing it to burn normal to itself and then by advecting the tlame by the 

hydrodynamic tlow tleld, calculating the exothermic velocity field Vrp from the 

elliptic equation (Equation 7). Finally, we solve the non-linear ordinary 

differential equation to compute the resulting rise in pressure. The separate 

components are as follows. 

Computation of w 

We update ~ (Equation 1) where ~ = Vxw by following the motion of vorti

city through the use of vortex "blobs" as introduced by Chorin in [6]. 

Knowledge of the position of these blobs at any time provides w. We briefly 

describe the method; for details, see (6], [B], [21]. 

We have the vorticity advection equation a,~ = -( w. VH. Since v. w = 0, 

there exists a stream function -tp such that 11; = ("PJI.-'1/1~) and ( = -f/2-tp. We may 

write velocity as a function of vorticity through the fundamental solution to 

the Laplacian, namely 
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where 

andff = (z,y). Hence 

where 

'!f!(z,t) = J G(x- x') t(x',t)cf.X' 

G(x - z') = -1-log I x - x' I 
21T' 

w = f K(x - z') t(z',t) d.%' 

K(x - z') = ·. (=y,z l. 
. 21T'I%- X I 
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(9) 

Let x(t) be the position of a particle moving in a fluid at time t. Since vorticity 

is advected by its own velocity field, we have that t(x(t )) = t(x(O)), that is, 

each particle "carries" its own vorticity with it. Our technique will be to exploit 

this fact; we place N of particles in the flow at t =0 and follow their motion. At 

any later lime we have a distribution of these "delta functions" of vorticity 

which can be "smoothed out" to allow one to compute the resulting velocity 

field 'iJJ through Equation {9) {Alternatively, one can view this smoothing pro

cess as something that happens to the kernel K). There are two obvious 

numerical parameters involved in the above; the number N of vortex "blobs" 

use to describe the initial vorticity distribution and the smoothing factor a 

used to compute the velocity field. We use the smoothing structure introduced 

iri [6]; consider N vortex "blobs" placed on an initial grid in the domain, each 

with "smoothed" stream function 

-A; loglff I r';!!a 
2rr · 

1/l(x) = k· 
- 2~ ( I ff I I a + log I ff I -1) r <a 
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where A; is the strength ( vorticity ) of the i th vortex blob. To go from one 

time step to the next, we use the positions of the vortex blobs to determine 

the velocity field from Equation {9) and numerically update these positions 

using Heun' s method. Convergence of the vortex method was first established 

in [9]; for work relating to theoretical aspects of this method, see [1], [2], [9] 

and [ 10 ]. To satisfy the normal boundary condition w ·n = 0, we add a poten

tial ftow to the above motion (which, of course, adds no vorticity). 

To update the vorticity with respect to the d.i.tfusion term ~ V2t. after the 

advection step we allow the vortex elements to undergo a random step,. drawn 

from a Gaussian distribution with mean zero, variance ~t . Since the random 

walk constitutes a solution to the di.tJusion equation, the combined.motion of 

the vortex elements approximates the solution to the full vorticity transport 

equation {1). For details, see [6], [21]. 

In lhe boundary layer, we employ similar techniques, only here our vortex 

elements are discrete, finite length "sheets" of vorticity. Once again, we use 

operator splitting to separate the Prandtl boundary layer equations into 1) an 

advection equation 

V·w =o on BD 

'11J(z,y = aa) = w.{z) 

where w = (w~:u~) and W. is the velocity as seen at infinity from the solid wall 

{ the equations are written with respect to a solid wall lying on the z axis) 
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and 2) a diffusion equation 

{note that in this approximation diffusion only takes place in a direction nor

mal to the solid wall). The : component of the velocity (wz) is written as a 

function of vorticity and they component (u;,) is written as a function of W.z 

through the incompressibility relation. As before, the positions of the vortex 

elements are used to approximate the vorticity distribution, allowing one to 

compute the advection field(~.~). The vortex sheets are advanced under 

this advection field and allowed to undergo a random walk in the y direction in 

response to the diffusion term. In addition, newly created vortex sheets are 

added at solid walls whenever necessary to satisfy the no-slip condition. Infor

mation is passed between the interior and the boundary layer in the following 

manner; the velocity from the vortex blob calculation tangential to the wall is 

taken as the velocity W. seen at infinity from the boundary layer. Sheets 

diffuse away from the wall into the interior and become vortex blobs. Conser

vation of circulation is maintained; during this exchange, when a sheet moves 

too far from the wall. it becomes a blob with proper strength and vice versa. 

The velocity field w can be obtained at any time from the positions of the vor

tex elements; for details, see [7], (21]. 

Computation of Fta.m.e Motion and Vrp 

We keep track of the position of the fiame by introducing a square grid ij 

on the domain and assigning each cell a number ! iJ between 0 and 1 {a 

"volume fraction", see [16]} corresponding to the amount of burnt fluid in that 

cell at any given time. The algorithm advances the front in a given direction by 

drawing in each cell for which 0 -5,f ij ~ 1 an interface which represents the 
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boundary between the burnt and unburnt fiuid and moving that interface to 

provide a new set of volume fractions. The orientation of the interface depends 

on the value of f v in both the cell and its neighbors; at any time step, the 

position of the fiame front can be reconstructed from the field of volume frac

tions. The position of the tiame is advanced in response to burning and advec

tion. Burning is accomplished by allowing each cell to ignite all of its neighbors 

at the prescribed rate k determined from Equation (3); this is an approxima

tion based on Huyghens principle which states that the envelope of all disks 

centered at the front corresponds to the front displaced in a direction normal 

to itself, see [5]. In fact, it can be shown that this algorithm capitalizes on the 

geometric nature of fiame propagation described in [19]. After the burning is 

accomplished, the exothermic velocity field Vrp is determined {Equation 7) and 

the full velocity field iJ ='Ill + Vrp is used to advect the ft.ame {as well as the 

vortex elements). Finally, the pressure is updated according to Equation {5). 

We have performed a series of numerical experiments to analyze the vari

ous factors described in Equations (1-7). In all of the cases described below, 

we shall consider a square vessel with sides of length 1m. When the initial con

dition is a counterclockwise swirl, this will be produced by a vortex placed in 

the center of the square of sufficient strength so that the velocity tangential 

to any wall at its midpoint is lm/s. The initial conditions P(O) = 1 and 

Pv, (0) = 1 were taken, and for viscous calculations we assumed a Reynolds 

number of 1000. The calculation in [8] for turbulent ftow behind a step 

assumed a propane-air mixture with a laminar burning velocity of 12cm/s and 

an inlet velocity of 6m/s; this inlet velocity was taken as a characteristic 
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speed scale to provide a non-dimensional laminar ftame speed of Q = . 02 for a 

fiow of unit inlet speed. Since the velocity induced by our initial vortex 

increases as we approach the center, it is not clear what to choose as a 

characteristic velocity. In [21], we took a non-dimensional laminar ftame 

speed of Q = .14, corresponding to a characteristic velocity 7 times that of the 

tangential boundary velocity; in the below results, this characteristic velocity 

will be used in conjunction with Q~ Details about the numerical parameters 

used in the below calculations may be found in [20], [21] and [22]. 

Hyd:rod:yna.mics ;· lnvi.scid/Yi.scous 

In Figure 1, we show the results of a hydrodynamics calculation (no ftame) 

comparing inviscid flow to viscous flow. Results are displayed on a 30x30 grid 

placed in the flow, where the magnitude of the vector at each point denotes 

the relative speed of the ftow. Figure 1A. which is the initial fiow, remains 

unchanged for all time in the inviscid case; the sole vortex remains at the 

center and the normal boundary condition is satisfied through the potential 

ftow. In the viscous calculation (Figs.1A-1F), small counterrotating eddies grow 

in each corner in response to the no-slip boundary conditions. These eddies 

grow, break away and ditTuse downstream, and are replaced by a new set. 
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Fiam.e .Propagation: Pressure a.nd. the Exothermic Velocity Pield. 

In the next experiment, a motionless, inviscid tluid is ignited at the 

center of a closed square. We take a local laminar tlame speed Q=.2. If the 

density of the burnt gas is the same as that of the unburnt gas, then the non

dimensional heat release is zero (q0 = 0), the pressure remains constant 

( ':: = 0 in Equation 4) and the exothermic velocity field Vr(J is identically zero. 

In this case; the fi.uid remains still and the tlame front is an expanding circle 

with origin at the center of the square. On the other hand, with q0 ~ 0, tluid 

motion is induced by the propagating tlame. In Figure 2, we show results in 

which q0 = ~.3333; this corresponds to an initial ratio of burnt/unburnt of five 

to one {Here, we assumed an inviscid tluid, hence the no-slip condition is 

violated). The black region corresponds to the burnt region and once again 

the velocity is displayed on a 30x30 grid. One can clearly see the mechanism 

by which the boundary shapes the front; although the front starts off circular, 

it soon becomes square-like in response to the boundary conditions on Vr(J and 

thus "burns" into the corners. When the volume was completely burnt, the 

pressure in the vessel is 2.93 and k = .24 (as compared with k = .2 at t=O). 

15 
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Hydrodynamics + Combustion : Ezotherrnicity and Viscosity 

Next, we analyze the relative effects of viscosity and exothermicity on the 

fiame motion. Four different experiments were performed with Q = .14: 

A. Inviscid ft.ow with q0 = 0 {Inviscid/Constant Density), 

B. Inviscid tlow with q0 = L3333 (Inviscid/Volume Expansion), 

C. Viscous ft.ow with q0 = 0 (Viscous/Constant Density) 

· D. Viscous flow with q0 = 1.3333 (Viscous/Volume Expansion). 

ln the two viscous runs,· the flow was started two seconds before ignition so 

that recirculation zones would have time to develop. The results are show in 

F"Igure 3A-3D. In the inviscid, constant density case, the fiame is smoothly 

advected by the large vortex in the center. In the inviscid, exothermic case, 

the velocity field produced by volume expansion and the rise ·in pressure and 

flame speed cause the flame to spiral in towards the center at a faster rate. In 

the viscous, constant density case, the fiame front is twisted by the eddies 

that develop in the corners; the fiame is carried over the eddies and dragged 

backwards into the corners. The effect of these eddies is to extend the length 

of the flame front, bringing it into contact with unburnt fuel and increasing 

the rate at which the vessel becomes fully burnt. Finally, when both viscous 

and exothermic effects are combined, the flame is both wrinkled due to the 

turbulence of the flow (hence increasing the surface area of the flame) and 

carried by the exothermic field; in addition both the fiame speed and pressure 

increase. The effect of these factors is to greatly decrease the amount of time 

required for complete conversion of reactants to products. In Figure 4 we plot 

the amount of volume burned vs. time elapsed since ignition, illustrating the 

above comments. 
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Flame Wrinkling due to Viscosity as a .F'u.nction of Lam:i:nar Flame Speed 

Finally, to further analyze this mechanism of ftame wrinkling aue to 

hydrodynamic turbulence, with Reynolds number 1000 we repeated the 

viscous, constant density experiment with local laminar fiame speed 

Q = .02, .06, .1, .14, and .2. In Figure 5, we plot the difference in volume burnt 

between the viscous and the inviscid case against the time elapsed since igni

tion for each of the above tia.me speeds. It is obvious that the lower the .flame 

speed the longer the time required for the vessel to becomes completely 

burnt. However, as the fiame speed decreases, viscosity plays an increasingly 

more important role in the combustion process, as can be seen by noting that 

the maximum difference between the viscous and inviscid case increases with 

decreasing fiame speed. At low fiame speeds, the burning component is 

overshadowed by the advection component and it is the eddies which are 

responsible for the lengthing the front and bringing the flame into contact 

with unburnt fuel. Conversely, when t.he flame speed is large relative to the 

advection component, the faster burning rate overshadows this effect and the 

maximum difference is much less. 

As one might expect. the above experiments merely scratch the surface 

of a highly complicated phenomenon. We are currently investigating such fac

tors as flame speed dependence on curvature, the role of vorticity production 

along the flame front and t.he effect of temperature, with the hope of continu

ing the type of investigation discussed here. 
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