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ABSTRACT
The decoupling theorems associated with an isolated factoriz-
able Pomeron pole of unit interéept are re-examined. It is found that
the coupling>of three such poles, I'(t,t,0), need not vanish,
preciSely at the éoiht t = 0. This is demonstrated by summing only
‘over states in the appropriate unitarity sum, and sum rule, which are
. ' consistent with the M2, s/M2 - o limit. The triple-Regge region

then makes a constant conﬁribution to ¢ instead of the in in s

% total’

. result obtained if the isolated pole is assumed to couple also to

states such that s/Nz = constant. The physical implicatioﬁs regarding

_? factorization and the pole-cut relationship are discussed. The rela-
- . tionship between higher order optical.theorems (Mueller discontinuitﬂﬁ)
i and particular terms in the unitarity sum‘for the two —~ two absorptive
2 part A22 1s exploited. Consistent contributions to the triple-Regge
3 region contirihute constant vertex corrections to pure pole behavior in
M A22. There is no cut contribution and the magnitude of the vertex

T corrections reflects the relative amount.of diffractive production.
e The analysis is extended to multiple fireball prodﬁctién where pure

multipole structures emerge. The series naturally terminates if the
“diffractive component is sufficiently small. The implications for the

behavior of the total cross section at machine energies are discussed.
*

This work was supportéd by the U. S. Atomic Energy Commission.

2=

1. Introduction

There  now appears considerable theoretical evidence that multi-
Regge analyses of reactions where factorizable poles of unit intercept
may contribute, lead to an inconsistency wifh direct channel unitarify
unleés subsidiary decoupling assumptions are madel'a). Based on
experience with two-to-two collisions, where simple factorizable pole
dominance seems experimentally acceptable at even relétively low
energies, it is natural to assume that the same singulérities enter in
inelasti¢ reactions in appropriate kinemstic domains.

When such appropriate kinematic regions are défined for
processes described as diffraction dissociatioh, however, it is found
that the usual simple Pomeron pole dominance assumption leads to a
confribution to the tdtal cross section which grows with increasing
energy. This is in conflict with the fact that fhe same PbmeronApole
leads, through the optical theorem applied to elastic processes, to a
constant total cross section. A commonly accepted escape from this
conclusion is that the coupling P(tl’t2’t3) of three such vacuum
trajectories must vanish wheﬁ the associated trajectory masses t. go
to zero from below. This has a number oflunpleasant conseqpencesl_B),'
including the decoupling of the Pomeron from diffractive précesses,
and pérhaps from elastic scatteringu).

Another possibility is that the Pomeron intercept is below

one. This allows a connection to be made between the relative amount

of diffractive inelastic processes and the nonvaﬁishing magnitude of

- T(0,0,0). However, this dynamical possibility requires that the total

cross sectionvgo'to zero asymptotically. Although an opposite trend

seems apparent in the ISR data5), such a rise in can be seen

%otal
6)
as a temporary threshold effect .
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It shall be our concern here to present an alternative inter-
pretation of the découﬁling problem Which clarifies the nature of the
states to which the factorizable, unit interceft, Pomeron pole may
couple without inconsistencies arisiﬁg. In the triple and di-triple
Regée,limits we show that if one is only slightly more conservative
about the kinematic region in which the mathematical limits guarantee
dominance of an isolated factorizable pole, then there is no inconsist-
ency with intercept-one poles. TFor exémple, if one restricts singly
diffractive processes A+B~A"+X to states X which do not
include partlcles occupying the fragmentation region of particle A,

then the contribution of these states to is constant (and not

%otal
« in tn s). A similar result appliesvto the di-triple Regge limit.

This suggests that the inconsistent conﬁributigns, in ¢n s
and (¢n Lﬁ s)2 in the di-triple casé, are built from specific
kinematic'regions in which the assumption of an isolated factorizable
pole breaks down. The way in which this happens is indeed delicate
and involves the relationship between the leading pole and cuts in the
region t < 0. We present some plausibility arguments concerning the
way in which these singularitigs must be related in order to lead to
a consistent picture.

The exclusive processes of diffraction dissoqiation involved
in the triple and di-triple Regge limits correspond, by the Mueller

7)

analysis'’, to terms in the unitarity sums associated with the dis-
continuities of (continued) six- and eighit-point functions, in certain
. kinematic regions. That is, there is a direc£ relationship between

particular subsets of intermediate state contributions to the two —

two absorptive part A22 and the full untruncated sum over states in

I

higher order optical theorems. This has an elegant formulation in

8 :
terms of inclusive sum rules ). The failure to consistently satisfy
unitarity with Pomeron contributions to inelastic channels in the

* .
condition A22 [ DN T2n Tn2 shows up as violations of the sum rules

" which impose higher order unitarity constraints on these reactionms.

The more conservativg restriction on the states to which the factoriz-
able pole may couple in two - n reactions leads to consistency with
the sum rules.

Consistent contributions in the triple Regge regions are found
to be associated with vertex corpections to pure factorizable pole

exchange in the output two - two absorptive part. That is, those

states in the two - n amplitude which give consistency with the

inclusive sum rules, and hence with unitarity, simply modify the

output pole residues and do not shift its position or involve the

n" "

cut, There are, however, other classes of kinematically‘distinct
contributions to the two - two unitarity sum which do not have a
simple connection with a finite higher order optical theorem. One
such class is that involving diffraction dissociation into two
asymptotically growiﬁg masses. These processes give rise to a much
more serious n s contribution to T otal

in the two — two absorptive part, to Pomeron loop corrections to the

These terms correspond,

Pomeron propagator. These corrections, and the vertex corrections
above, are cleérly related to the conditions on consistency between
input and output for the leading pole, as they réflect on the vertex
and wave function renormelization for composite systems.

In parts 2 and 3 of this paper we explore thgifriple-Regge

limits and suggest conditions on the exclusive production regioms in
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which consistent factorizable pole assumptions may be made. In
section 4 we consider'the nature of the factdrization aésumptions made
and suggest how the breakdown of these assumptions may occur in the
necessary kinematic regions. These arguments indicate that the
qpantitative~measure and qualitative nmature of the breaking of
factorization may be very different matters. Tn section 5 we examine
the relationship between exclusive and inclusive viewé of diffractive
processes and show how the vertex corrections to puré pole behavior
in A22 arise. The j-plane analysis is particularly transparent.

In section 6, the analysis is extended to higher order vertex
cérrections and to pole-dominated multiple-fireball contributions to
the A22 unitarity sum. The inconsistencies associated with latter
can be removed only by further physical input since the higher order
optical theorem conditions are lacking. Suggestions as to this input

are made, Section T is devoted to conclusions.

-

2. Triple Regge Region

We consider a process as in figure l.a., where particle B
dissociates into mass M2, larger than some resonance mass MRE, but
with the same quantum numbers as- B. In the limits M2, s/M? 4‘a>,'
_anv 0(2,1) decomposition of the connected three - three amplitude9)

. . *
indicates an energy dependence

20 2 2 a,(0) 2a(t)
s (s (2.1)
4t d_Mz IVF . S Y (t ) ( ) /&f ) :

s/M? - ©
where, adopting the normalizations of reference (3),
(6) = = o) Bppp(0) T(6,8,0). (2.2)
7 16x Frpaa PEB »

This normalization is such that

do

2(o,(t)-1)
2 . L ) 0 s (2.3)
and
. - a_(0)-1
oﬁtal ~ Bpp(0) Bppp(0) s F . (2.4)

The two-to-two sbsorptive part in the forward direction is related to
%otal by

1
5 o 2 2
A22(s’o) = L (S:m :m)

%otar(8) ¥ 8 Opppar(s) o (2.5)

=
Throughout this paper, we drop the common Regge energy scale

sy as well as inessential signature factors.
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a(0)
P behavior in equation (2.1) is associated with

The ()

the leading Regge singularity a5(0) in the EB chamnel for

in M2 - . The leading helicity singularities for the situation
_ 2aP(t)
in s -+ o, give rise to the behavior (s/NF) .

s>, 1
This requires an identification of poles in complex helicity m.th

) ordina.ry Regge poles. The triple limit can be regarded sas _the

s/M2 - oo 1limit of .the ordinary Regge decomposition of the three —
three amplitude (s,M2 - o, s/Mz, t fixed).

In order fo determine the contribution to the total cross
section coming from these proéesses, we must integrate over regions
of. t and M2 which are consistent with the physical and mathematical
assumptions made. The latter have to do with the regions of wvalidity
of the double“ expansion above. It is usually assumed, by analogy with
two-body reactions or on the basis of models, that the choice
1 =4n s/Mz > N vhere A is a large constant*, is sufficient to
insure Regge behavior. The physical assumption then usually mé.de is
that a factorizable, isolated Pomeron pole doﬁiinates when this condi-
tion is fulfilled. If this i)ole ﬁas intercept one and unless
I'{0,0,0) = 0, this ieads to an integrated contribution to d, . .
which grows like {n fn s . As indicated above, this is inconsistent
with the contribution of the same factorizable pole to Sotal 25
giw}en by the optical theorem. '

We now show that it is the very liberal interpretation of the

domain of velidity of the triple-Regge expansion, coupled with the

factorization assumption, which leads to inconsistency. 1In

In phenomenology, A 1is usually taken to be of order two.

atively as A
v max
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integrating exgpression (2.1), we are usually integrating over ré.pidity
gaps & = in sAC such that 8. 2 D Z \(see figure 1.b.).
The maximum gap may be taken as‘ Doy = in s/MRa, or more conserv-
® y g, where ¥y 1is'a constant near one. Thé
important point is that ’Ama.x scales with &n s while the lower
limit on A does not. It might be thought that the unitarity problem
(the inconsistency above) arises because the gap A may become tpo
large. It is rather that it may become too small. Let us separate
the integration into two parts, €4ins 2 A 2> A and

Ax 2 A > €ins, vhere € isa constant which is not
asymptotically as smail as (in s)-l. The latter region guarantees
the validity of the asymptotic expé.nsion in n = A = in .':',/M2 as

s — @ vwhich is necessary to isolate the relevent helicity (Regge)
i)ole. In this region we are integratinigv over maéses M? such that

M32 £ M2 £ sl_€ where M2 becomes very large if € 1is not too

close to one. The contributions to both regions comes from an

integral of the form

€Y AN
max

an + an J (a + a'a)?t (2.6)
A €y '

o . 200
T.P. 325

(e ey

where we have taken OtP(t) =1 +a't, 7(t) = y(0)exp(2at) and
integrated over t. The contribution from the second region, where
the minimum gap is growing with Y = {n s, thus insuring the strict

mathematical limit, is

R 10) By A (@)

T.P 32na’

This is a constant unless € ~ )\./Y s in which case we have the whole
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integral in (2.6) and recover the usual 2n fn s result. This is
very similar td the result when the Pomeron intercept is below oneB).
For € fixed > O, the contribution from the first téruy which we
shall refer to as the fixed gap region, grows with energy like

in in s. The inconsistency thus arises from the assumption that the
tripie;Regge formia, with isolated factorizable poles, can be -
extended down into the constant gap region. This assumption cor-
responds mathematically to using an asigggotic expansion in

n = 4n s/M2 as an approximate éxpansion for finite 17 .

This result suggests that one has isolated factorizable poles
only in thelstrict (n - ) triple-Regge region. If there are non-
factorizable contributions for A < 1 < o, they must destruc-
tively interfer with the pole in this region in order to festore
consistency. Since this must occur 6ver an appreciable rapidity range,
it is likely that this entails a major qualitative change in the
nature of the 1eading singularity near j =1 as A - constant in
the s + o 1limit. This question will be clarified in section k.

These assertions about thé facﬁorization properties have a very

‘natural physical interpretation. The region M2 < sl'e " includes

only dissociation states M2 of particle B which do not contain
particles lying in the fragmentation region of particle A. ‘That is,
the left-most particle of M2 in the rapidity space decomposition’
of figure 1.b., has a feyﬁman x-value which goes to zero like s'e;

Nonfactorizable exchange would then be réqpired for those produced

states which overlap both fragmentation regions. - This séems a natural

physical definition of factorization, but it is at odds with the usual,‘

multi-Regge assumption of local factorization over constant rapidity_

bound on diffractive contributions to o

~10-

lengths in production ﬁrocesses. This clearly matters most -in the
case of intercept one since‘the unitarity condition then gives us an
obvious constraint on consistency. _

" The contribution of eguation (2.7) is then a measurable lower
since the Pomeron

total
residues in 7(0) are normalized to this quantity (and to celastic)'
That is,' I'(0) ¢n(i/e) 1is a measure of the relative amount of diffrac-
tion. If 'e has a reasonable value, € = % sﬁy, then the éontrib-
uting region A = In s/N? Z e¥, will enéompass very nearly the
samé kinematic‘region ai current machine energies (4 € in s < 8) as
the usual choice s/M2 > 6 = 7. Triple-Regge phenomenology need not
then be altered, except that it becoﬁes unnecessary to assume that thé

triple coupling vanishes at t = O,

There is some energy dependence however. If the integrated

- diffractive contribution is constant (and appreciable), then this

constant contribution must come from avregion in the leading pfoton
x-distribution (1 - x % ¥ /s) which shrinks slovly tovard x = 1
as s increases. The "quasi-elastic” peak near x =1 should then
rise with ehergy. Whether it is this mechanism which is responsible
for the dip near x % 0.88 depends on the dynamics of the fixed gap

region.
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3. Di-Triple Regge Region

We can now proc-eed; in an entirely similar faghion, to the
di-triple Regge regiori. Processes like those in figure 2 are involved
in the combined limits s, M?, sl/M2 3 se/i'? = o0 with
Mzs/sls2 =1 fixed. Taking 1 -x, X »f*/si, the latter condition
becomes (1 - xl)(l - x2) = M2/s. Introducing the gap rarameters
Ai = 4in si/NP, this requires A.L + Aa =4in s/Mz. Neglecting

azimuthal dependences (we are interested in the Boo1ter = 0 part) we

have,
: a(0) 2a(t, ) 2a(t, ) ,
2 do It 1 %2/
¢ s ~ 2 00 (50 (s,MF) 75, )7(t,)
172712
“ (5.1)
In terms of the gap varisbles this becomes (with «(0) = 1)

do - : ' ' : /

ixamgTa expla(a(t,) - 1)) exple(alty) - 1)a] 7(t;) 7(ty).
- (3.2)

This clearly factors into '.f(tl,Al)-f(tg,Ae). Only the limits are

coupled when we integrate over the di-triple region. First, integrate

over the t,, assuning 7(ti) = 7(O)exp[2at1]. This yields (with

- 1
a(ti) =1+a ti),

%%1_&52— - GO B ay))™ (e + °“42)]"1 . | (3.3)

It is usually assumed that this expression is valid when Ai > Ki
constant, and A.L + Aa = {n s/M2 £ tn S/MR2 . Integrating over these

p 2
regions gives a contribution to o which grows like [£n(¢n s)]°.

total

=12«

Let us now proceed, as in the triple Regge case, to break up
' 2

i i i <o Se b

the integrations over gaps inmto regioms A, S 4 S ¢ n(s/MR ) and
2 2

< < .
‘ei &n(s/MR ) < &, with A+ 8, § ln(s/MR ) = Y- The quantities
€, are constants such that 1 > € > 0. Then, the contribution to

%otal 1S

DIR - 1 elYR YR
%ot = B s + an
: N ke

\ [t _ Yo
x ) dqa. + dAa
! 4 'R

x 72 (0)[a + Q'A_L]-l[a. + a-Aal'l 8(Yp -~ 4 - 4).
(3.4)

This now contains four terms. The term where both gaps are allowed to

take constant values behaves asymptotically as [&n(¢n s)']a. The two
terms where only one gap is allowedi to take constant values go like
Ten(tn s)]. The term where both end gaps take only asymptotically
growing values is constant. This last term corresponds to thé strict
1imits sl/NF, s2/'M2 > o0 as s~ o and is a sum over miésing masses
which contain no particles in either fragmentation region. By our 7
earlier arguments, both end gaps must become large () to isolate
factorizable poles. The sum over states M2 is then confined to the
pionization regi(;n. This leads to an output which is .consi’stent wiﬁh

positivity. Wé may thus assert that the pionization region builds the:

factorizable pole in the output. The_other regions, and the boundaries
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“between the regions above, are then associated with nonfactorizable

~ input and output. The factors 72(0) may then be identified with the

couplings of three factorizable poles and need not vanish. In the
other kinematic regions, where factorization does not seem io work
consistently, it seems difficult td define a corresponding object. In
the next section we consider this factorization question in greater

detail from a slightly unconventional generalization of the usual point

of view.

Qb

L, Factorization

There are several general statements which can be deduced from
the preceding analysis concerning the way in which factorizaﬁion way
be broken. Our dynamical Jmnowledge of.nnnfaétorizable Regge sin-~
gulérities is very limited. Apart from»simble j-plane speculations,

10)

we know of the AFS and the very similar Mandelstamll) cuts which

arise from s-channel pole iterations. Feynman>diagram models lead to
a hierarchy of cuts of this type &dnd, in addition, suggest new j-plane

12)

structures . Consistency in the above picture may provide a way of

testing these prescriptions for the manner in which pure factorizabie
pole behavior must be modified.

Consider,.fér example, the triple-Regge case, in which the gap
A = in s/N? appears. We are interested in thé extent to which
there exist factorizable Régge singularities associated with fhis‘
variable in the region € {n S/ME > A 2 constant in the limit
s * . According to the usual ideas, this region may receive con-
tributions not only from a pole at J = 1, but from cuts as well, As
is also customary, let us assume for the moment that the contributions
from these singularities may be separated. That is, that there is no
ambiguity due to the collision of singuiarities near Jj = i and that
we can consequently isolate separate residues. We also argue that
since the pole over-estimates the dynamics in this region, leéding to
inconsistency between input and output, that these other singularities
must, on the whole, destructively interfer with the pole. Let us
further assume that the cut residues have the usual energy dependence

[tn s/M?]-n relative to the pole. We now have an example of the way

in which factorization might be broken. If we take s, M2 -~ oo with
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s/iVJ2 fixed, it is clear that the relative cut to pole strength does
not change. This limit does not isolate the pole from the attendant
cuts. If, on the other hand, we take s, M2 - o© such that s/M2 - oo,
then the cut discéntinuitieé die away, isolating the factorizable
pole. '

Now, it is a simple matter to show that this simple additive
arrangement of factorizable and nonfactorizable singularities is not
sufficient to restore consistency, although it does allov the emer-
gence of a factorizable pole as s/N2 ~ . This suggests that even
if the cuté disappear asymptotically in s/NE‘ that the nature of the
‘combined singularities for finite s/Mz is more complicated than in
this simple scheme. This impiies that we cannot simply isolate the
residues in an additive fashion.

One way in which the relationship between pole and cuts may be
complicated is revealed by considering the t-dependence of the
exclusive single diffraction dissociation process corresponding to the
triple~Regge limit. 7¥For fixed g and M2, there is a minimum

momentum transfer, tm.

k, 2
in ® -(M/s )m2 which goes to zero in the

limit s/N? =+ . In this limit, we are studying the coincidence of
pole and branch points at j = 1. For tmin < 0, however, pole and
branch points ob<n)(t) = n aP(t/he) -n+1 =% 1+ (@/a), are
separated, with branch points to the right of the pole (see

figure 3.a,b.). Whereas it would be convenient and natural to believe
that the pole dominates at t = O, this becomes less tenable when thé

pole lies %o the left of the (infinitely many) branch points, under the

associated cuts. The pole may strongly distort the cut discontinuities.

It may even do so in a way which preserves quantitative factorization

~16-

té a degree which does not reflect the qualitative differences.

i Ap electrostatic analogonf point and line charges rrovideS'é
heuristic approach to the possible collision of singularities. 1In
figure 3.a., point and line chargés represent the arrangement of polé
and branch cuts forv t <0, 'The indepéndence.of the discontinuities
associated with thesé singularitiés is equivalent to .the simpie
addition éf electrosﬁatic fields due to the independent chafge dis;
tributions. The sign of the relevant cut discontinuity may be asso-
ciated with the sign.of the analogous charge. Suppose now that we
relax the static assumption, letting the charges move to equilibrium
situations on the cuts. Charges (discontinuities) with the same sign
as the pole mové away from the pole, accumulating near the branch
point, or at infinity. Charges of the same sign as the pole accu-
mulate near it in the j-plane. Thus the pole may not pnlyvinducé a
higher lying effective pole, to the righﬁ in J, but also an effective
pole (of the opposite sign) nearby itself. The right-most branch
points may have sufficiently localized charge densit& to approximately
factorize. The energy-dependence associated with this situation will
be much stronger than that associated with independent cuts.

| This situation obtains when the momentum transfer is less than
zero--that is, far below elastic threshold. In this region such hard
cuts are allowed according to the recent work of Creﬁtz, Paige and

114).

Wanng) and contrary to Bronzan and Jones If we move closer to

t = 0, and hence toward elastic¢ threshold, there is less induced

accumulation of charge to the right of the pole and the pole ultimately

dominates. There may be an attendant negative effective pole near

J=1 at t =.0, if there are negative cuts. We do not wish to

.
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speculate further on the possibilities of this "dipole" structure.

The important point is that the relationship of pole and cuts may

~ depend strongly upon their relationship in the j-plane, a relationship

which is a function of t. The easy quantitative separation of
factorizable and nonfactorizable contributions reflects the underlying
qualitative arrangement of singularities only if one can simply
separate independent residues.

There are, of course, many othér ways in which factorization
may be broken. It may prove impossible to isolate independent s/@?
and M2 limits. This would happen, for example, in the case of
absorptive cuts in the three — three amplitude. Another possibility
isrsuggested by unitary "multiperipheral” modelslg) in which a
unitarity cut moves offensive poles onto unphysical sheets when there
is dger of inconsistency. This cut is generated by a larger spectrum
of bound state poles than is usually considered in multi-Regge models.

The question of factorization arises in two-body reactions in
a similar form. Tests at t = 0 require total cfoss section meas-
ufements for three reactions (e;g., p-p, n-p, =n-n). This requires
a knowledge of the dynamics only at zero iomentum transfer. Other
tests, for t % 0, indicate that factorization is adequate to the
10 - 20% level. It is not known whether this ensures a dominant
isolated pole or only a simple feature of an otherwise complicated
situation. Inclusive feactions, proceeding at or near t = 0, should
provide bétter tests. In the triple-Regge region, however,‘the point
t =0 1is difficult to reach. Indeed, tmin & (l - x)eme/x with

(1 -~-x) = M?/s. Our assertion that factorization and isolated pole

dominance ought only to be trusted for M?/s __—;?;——9 0, 1is equiv-
. s,M ™00
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alent to the assumption of isolated pole dominance only in the limit

tmin - 0. As long as the approach to this limit is properly under-

stood, so that asymptotic inconsistencies are removed, factorization

may be quite adequate at finite energies. This may be required if an

appreciable triple-Pomeron contribution is required to fit the ISR

datal5). Vanishing of the triple coupling at t = O, to remove

inconsistencies, would remove a potentially major source of scaling

contributions.

All of these problems are more extreme if the Pomeron. trajec-
tory is flat (a' = O). In this case the usual cuts would haﬁe the

same energy dependence (in s/NE) as the pole and hence would not

die away as s/M2, M? =+ . The flat Pomeron may then not be

factorizable anywhere in the triple limit. Equivalently, the triple

coupling must vanish for all t., If it did not, we would find a more

serious {¢n s inconsistency instead of the ¢n fn s above. The only

way to have a nonvanishing diffractive contribution with aﬁ 0 is

il

in the ordinary Regge limit s - oo, ME, t fixed. That is, the flat

Pomeron'may couple only to states of finite mass in the limit s —» .

v
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5. Inclusive and Exclusive Processes

Until now we have been incautious in freely interchanéing
references to diffraction dissociation as inclusive and as exclusive
brocesses. In this section we shall examine the conditions for the
equivalence bf ﬁhesé views. The basic separation betweén these
descriptions lies in whether one is making an asymptotic decomposition
of an n-point function with n small (inclusive, genefalized optical
theorem for discontinuity) or n large (exclusive, amplitude itself).
We will use the single diffraction dissociation process associated
with the triple-Regge region as an illustration. Asymptotically, in
this case, both views seem equivalent. TIn section 6, we will consider
situations which-arebnot equivalent.

.In the triple Regge case, we.can reach the appropriate
kinematic region in two ways. In the exclusive view, we consider the
ordinary Regge limit, s - oo, M2 and t fixed (see figure 1).
Pomeron .exchange presumably dominates this single dissociation
amplitude. These processes make a positive comtribution to the sum
over intermediate states in the two - two unitarity condition. This
means that we have made a very specific exclusive statement about a
potentially small part of the sum over intermediate states. For s
very large, we can take M2 large so that there are many statés
involved in the truncated unitarity sum over M?. The number of states
we are leaving out depénds upon what is meant by M2 large. If we
take M2 <xs (A< 1), this means that we have left out only those
inelastic channels corresponding to a fixed rapidity gap. That is, if
production occurs uniformly in rapidity space, a fixed gap in the

limit Y —+ oo corresponds to relatively few rarticles not being

—20-

produced. The Pomeron in the productién amplitude then communicates
with a major share of the 2 - n inelasticities. Thé condition

M2 < XS1-€ is a more severe truncation of the unitarity sum. In both
cases, however, W gets "large" as s » . In the two — two
absorptive part A22, we then argue that we can isolate the Pomeron
contribution dual to this set of states (in either case). That is,
that we can find the pole contribution to the discontinuity of the
forward Pomeron-particle amplitude. The question we have raised in
earlier sections is a guestion of which definition of e large”
leads to consistency between input’and_output. The ordinary Regge
arguments do not tell us.. We must go to a higher order (three - three)
optical theorem or invoke some additional physical principle to find
out.

Before proceeding to'this,.we should like to observe a connec-
tion between this situation and some wvery old ideas about the nature
of the Pomeron. This singularity was intended to dominate the .
absorptive parts of two two elastic reactions in sgch a way as to
éive constant total cross sections through the optical theorem.
Because of this, one éould regard its roie in two - two reactions as
difffactive scattering, reflecting the shadow of the principal
inelasticities in hadronic collisions. The question then arises as
to which are the principal inelasticities which build this singﬁlarity.
If, at a given energy we allow the "Pomeron" to couple to these
important inelasticities in the two » n producﬁion amplitudes, then
we are in danger of a subtle form of multiple countingls). This
manifests itself in multi-Regge bootstraps as a stréhger output

singularity (higher j) than input. For J = 1, this is disastrous.
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- elegant formulation in terms of the inclusive sum rules.
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The bootstrap computations utilize the two — two unitarity condition
as a calculational device, rather than as & constraint. Further input
is necessary to achieve consistency. This input has usually been of
the form of a decoupling assumption. When the pole goes through 1
at t = 0, a residue vanishes. As noted above, another possibility
is to go to a higher order optical theorem for a clue as to which
inelastic couplings are allowed.

When we proceed to try to understand the elastic three to
three amplitude in terms of these o0ld ideas we are faced with an
immediate ambiguity. The "Pomeron" should represent the shadow of the
inelasticities in the M?, elastic three-body channel. If a pair of
these particles (A'A) has small relative invariant mass, we might be
correct in regarding this as a quasi-two body elastic process in which
the unconstrained sum over states in M2 generates the ordinary - two-
body Pomeron. This seems the situation relevant to the triple-Regge

case if a small continuation is allowed (to negative invariant mass

squared for AR, t < —(Mz/s)2 e ). More complicated cases seem

more difficult to interpret on fhese grounds.

ThevMueller-Regge analysis, with suitable technical assumptims
about the identification of helicity with Regge poles and about
factorization, provides a way to proceed. The continuations from
physical to unphysical regions links the 2 +n ~2 +1n  amplitude
discontinuity to the n-particle inclusive cross sections
2~—>n+ X(Mg). This connection requires a certain consistency between
two » two and n - n absorptive parts. This réquirement has an

Satisfaction

of these sum rules is presumably a necessary condition to full

1
unitarity 7). In the analysis of section 2, the contribution from the
region s/Ng > s gives a constant contribution to the inclusive

sum which i1s bounded from above by ototal = constant. If this is the
only region in which factorization in the three - three analysis is
achieved (and if the nonfactorizable, and hence incalculable, con-
tributions from the other regions behave themselves). then the energy-
momentum sum rule may be satisfied. This is a minimal condition on

the role of the factorizable Pomeron in the three — three discontinuity
in a particular kinematic region, or eqﬁivalently in exclusive
diffraction dissociation into a particular class of stétes (those not
overlapping the fragmentation region of the other particle), to its
role in ctotal for two-body reactions. If this is all that is
necessary for consistency then it would appear that the factorizable
pole may couple, in én exclusive sense, to a large class of inelastic
states, although not as large as multi-Regge models for production

would allow. This may not be sufficient, as we shall see in the next

section.
This discussion establishes a parallel between a particular
truncation of the unitarity sum in the two - two optical theorem and
the unéonstrained unitarity sum in the three - three amplitude in a
particular (continued) kinematic region for the external particles.
Let us now consider this class of contributions to the two - two
absorptive part A22' First note that this class mayvbe enlarged to
consider states consisting of one large (growing) mass fireball
resulting from the dissociation of particle B (figurg 1l.a.) and one
finite mass cluster A' of mass M'

containing n'. particles. The

arguments of section 2 go through as before., This process is then
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related to a term in the Mueller discontinuity in ME, of an

o' +2-n' +2 ampliﬁude, where the n' particles have finite
invariant mass ‘M' and we are interested in the limit s/Me, M2 > o
with M'2, t fixed. With our kinematical constraints on the region of
validity of the Regge and helicity pole expansions (which correspond
to restrictions on the states to which the factorizable Pomeron may
couple) the terms which contribute a constant amount to

oiital @ (1/s)A22(s,t=O) then have the form shoﬁn in figure L.a.
Closure in the sum over A' 1is indicated. Note that the states A’
may partlally £ill the fragmentation region of ;artlcle A. That is,
the particles in" A' may have finite longitudinal fractlons

X, = 2p

5 /“JE? , and still have finite total invariant mass in the

i
limit. This argument is easily extended to the di-triple region. The
corresponding structure is shown in figure 4.b. The ordinary Regge
contribution (s - oo, M'2, M2, t fixed) is involved in the
generation of the usual cut, figure b.c.

We now recognize the contribution from "factorizable" pole
exchange in the input as providing vertex corrections to the output
factori;able pole.! The output pole represents the shadow of high mass
{(multiplicity) inelastic channels which may be reached by factorizable
pole input. Note that these vertex structures would vanish (at t = 0)
,if the triple Pomeron éoupling vanished. The coupling of the Pomeron
to finite mass diffractive states is related to the Pomeron vertex
rendfmalization. As we shall see, there are higher order terms in this
sequence assoclated with higher order inclusive processes in slightly

different kinematic regions.

. We may study these objects in the j-plane by a simple Mellin

ol

transform. For the single vertex (triple-Regge) we had, in equation

(_2.5),'
AP (s) m s all x5 201 ImG/e) | 5.1)

%ot - 5 TZmma ’

The Mellin transform is again a simple pole with residue related to
the integral over the restricted triple—Regge region. That is, the
fbmeron coupling to a rather large (but still restricted) class of

inelastic states only increases the residue of the pole through the
unitarity.bootstrap. The pole position is not Ehanged.‘ We can see
how this arises by transforming without doing the t-integral. The

result is more transparent if we scale M2 by MRQ. Doing so, we
have

"0 @
T.P. . N
AL () ocZ at 7, ,(¢)

. TTAY 4oo /0

ay exp(-jY)

(1-¢e)Y

X d in M2

) +
L op2y T EO L

The last two integrals give

[°

it -\ ] 7(t) _
(@) =) J GO + 1 - sape)] (.3)
e L .
where, with aP(t) =1+aq't,
D(jt) = J-1-20" €t . , - (5.4)

This gives two poles in the t;integral and hence coupled branch points

in j
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0
A (5) ~ [ at 7(t) : (5.5)

[3-1-2at]{3 -1 - 20%t]
oo

The usual result is obtained simply by taking € — 0, so that

U.T.P.,, . -1 y(t)
(3) ~ [3-1] at . (5.6)
b2 N Y ©[3 -1 - 20t

The integrand has the behavior 7(t)/t near j = 1. It is usually

. assumed that 7(%) ——=3 0 to remove this dependence. Otherwise

t—->0

the j-plane structure, near Jj =1, 1is of the singular form
y(0)[§ - l]-l n(j - 1), which corfesponds to AgéT'P'(s) ~ s in in s.

In our case, with € % 0, we have a pair of coupled branch
points, appeargng as poles in the t-integrand. Both poles approach
j =1 from below as t = O, with the pole at j =1 + 2a’ect leading.
This removes.the bad beﬁavior near t =0 by a éancellation. This is
most eaéily'seenrby rewriting the double pole in the t-integral using
the identity (aB)™* = (B - A)2(a! - 871). Ve can invert the

Iaplace transform in Y = ¢n s (Mellin transform in s) so that
. : o . . c+io '
oA o at (% .Y
Byp(s) 2l 1 - <a't [ dJ e
-00 -i

x [(.j 1-2at) Yo (-1 - 2a't)-l]
0 : ' ‘
= el ldf Z(;a't lexp(2ex'tY) - exp(ea'ty)] . (5.7)

The lowest surviving term in the expansion of the bracket is propor-

tional to t, rembving the bad dt/t behavior without requiring

26~

y(0) = 0. For 7(t) = 7(0) exp(at), the integral is of the

Frullani type and is easily done

s 7(0) tn a+a'y

Aopls) ~ Tggr ava Ye | (5-8)

This is just our earlier result. When € = O (or 0(@/in s)), we
recover the usuval 4in in s. In general then, it is not necessary to
assume 7(0) = 0.

As noted earlier, the output is a simple pole at Jj =1 with
residue 7(0) ¢n(1/¢)/(3ena') instead of the more complicated
singularity 2n(j - 1)/(j - 1). In both cases, the singularity ‘
structure is that associated with a sum over particular subsets of
states in the two-body unitarity condition. The simple vertex
renormalization is associated with a smaller class of states than that
responsible for the 4n(j - 1) behavior. The latter is intimately
related éo the generation of the two-Pomeron cut. That is, the cut
contributions are generated at the boundaryls) between the fragmentation
and pionization regions (the region, constant < s/N2 £ s€) in fhe
production process. Simply eliminating factorizable Pomeron couplingé
to states which occupy both regions removes the inconsistency. In
short, those states in the unitarity sum which allow consisténcy
between input and output are those which lead to vertex corrgctions
thch modify the pole residue and do not contribute to the cut. We
hasten to add that we do not have an understanding of the dynamics
associated withvthe highly ambiguous boundaries between the kinematic
regions. We have earlier argued that since the pole overestimate
these regions that there must be destructive interfefence from some

other mechanism which restores consistency. This is probably in the
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form of cut contributions but.they cannot be merely additive. In
section 4 we presented a prlausibility argument for the necessary pole-
cut collision. The conclusion is that there are stétes in ﬁhe two ~»
two unitarity sum which do not consistently satisfy an exclusive
cluster decomposition with clusters separable by an_isolated Pomeron
pole. These states are those which do not correspond to a limit of a
(finite) higher order optical theorem. Many models based on either
fragmeptation or central region dynamics have been introduced. It
seems; ffom our arguments,'crucial to understand the dynamics of the
interface between the kinematical regions where these pure ideas
physically obtain.

We have thus far considéred only a limited set of states in
_’che‘unitérity suﬁl. There are, of course, other exclusive classes of
states involved in the two — two absorptive part. Furthermore, one
might "imagine making an exclusive decomposition of the states involved
‘in M2 in the three.* three absorptive part. In the next section it
will be shown thét all exclusive decompositions which are not simply
' related to a higher order optical theorem are connected with a new

j-plane structure in the two - two absorptive paft.
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6. Higher Order Terms -- the Asymptotic Behavior of % otal

In the last section the relationship between few-particle

inclusive reactions and many-particle exclusive processes invoiving the
production of a single asymptotically growing fireball was explored.
This very limited class of céntributions to the two - two absorptive
part was involved in the development of vertex corrections to fac-~
torizable pole exchange. This suggests that one might also consider
exclusive 2 -'n piocesses which involve other rapidity space
decompositions.* Before proceeding to consider multiple fireball
processes we indicate how higher order vertex corrections come about.
Suppose one were to decompose the M2 wnitarity sum in the
Pomeron-particle forwérd absorptive part (figure 1), and consider

contributions of the form indicated in figure 5. The gap variables
¥

A comprehensive program for this exclusive decomposition has been
undertaken by Bishari, Chew and Kopiik6’l9), based on multi-Regge
models. Input poles in the multipie-cluster production amplitude
are distinguished from output poles generated by the sums over

clusters in the two — two unitafity sum. The output singularity

is below one, so that ¢ wltimately falls. This is necessary '

total
for consistency since pure pole behavior in the production amplitudes
is assumed to obtain for rapidity gaps A& > coﬁstant. This also
insures that poles and cuts emerge together in the output. The
separation 6f these singularities at finite energies depends on the
number of cluster thresholds available. The two-Pomeron cut may
then have.a negative discontinuity at a given eneréy, while still
emerging from the asymptotic analysis with a positiﬁe éign. This

requires a sum over an infinite number of terms and the proper

isolation of the ordinary (AFS) cut contributions.
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2
= = = = |
are Y8, = A = in s/N12 and Y8, = 4, =in W /M'2, The
Feynman variables associated with particles A' and C are

= Bk

x., ~ (1 -e and 0 < x, ® e (1 -e
1-x,, % N12/s s 1-x, %, % M'E/s. This is clearly an

X o ). Equivalently
C
interesting region since in the limit s/M2 - o, particle C is

trapped between the fragmentation and pionization regions.

Assuming no Toller angle dependence, and that the Pomeron-

particle-Pomeron vertex may be factored into V(tl )V(*t;2 ), we have the

contribution to the forward two — two absorptive part:

An(s) » s fatat, an an, exp[E(oz(tl) - 1)Al] exp[E(a(tz) - 1)4,]

x Pt Vlt,) Tltyt,0) N (X

=2y 2
where 'V (tl) = BPAA,(tl)V2(tl) and o0) = 1. This clearly fac-
tors into two terms, with only the limits on the integrals potentially

coupled. Let us rescale the integrals so that

1
Ao(s,t,t,) a s 7° (ti)Ve(te)?(te)Yz / d&l'exp[e(a(tl) -1)61Y]

710
£
x as, exp[2<oz(t2)b - 1)82Y]
720
6}
3 .
& s G(tl’tz) as 35; exp[e(a(tl) - l>5lY]I
10 i
7, ’ -' v
x / s, 5—5—2- exp[2(a(t2) - 1)62Y] (6.2)

{ 720 | j

where
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: T2(¢,) P(t,) T(t,,t,,0)
1 2 2772
a(ty) - D(alsy) - 1)
If a(ti) =1+ a'ti we have the usual nonintegrable divergences near

tl’ t2 = 0. This can be removed by making the residues vanish like some

power of ti .‘ This is necessary in the case in which the gap integrdls

include the region A % constant (or 7 iO. ~ 0 in the scaled integrals).

It is unnecessary if we assume that isolated factorizable poles appear
i .

corresponding to v Ai > 750 in s. Teking the ILaplace transform with

only in the asymptotic A, - @ 1limit. In this case we take 710 >0

respect to Y we have

7
o i o (

G(tl,te) j d8) &—j a8, 35- j ay expl-(3 - 1)Y]
J 1 J

x exp[e(a(tl) - l)&le + 2@(t2) - 1)82Y]

;.’“ 71 - 72 s 5 5
= t i -
Sltpty) e |y H o
Y 4
‘10 20

oA
x {3 -1 -2((t) - )5, - 2(a(t,) - 1)8,]
(6.4)

yielding a sum over four poles if the limits on 5, are independent.

i
To obtain the leading behavior, Qe can always choose these limits small
enough that they are independent. To stay in the appropriate kinematie
region we need 61 + 62' < 1. The contributions from these regions

then lead to ti-integrals of the Frullani type rather than the usual

2
exponential integrals. The latter would give (4n(j - 1)) near
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J =1. That is, the usual result would be

0

- at Ve(t ) © dt V2 £
A(3) & [y -1t e SR S s V(t5)r(ty)
. J - 1 - 20"&1 j -1 - 2a't
-0 L oo .2

(6.5)
2
which yields a leading sltn ¢n s]  ‘behavior.

Meking stricter limitations on the regions in which the limits
are valid so that the gap integrals scale with Y leads again to a
constant renormalization of the output j = 1 pole vertex. The

integration region corresponds to 0 < Xa <1- Xp4 with the limit

" R -€
1-x, = M/s S s™¢ -+ 0. This allows satisfaction of the sum
ru120)
1l-x
A!
do 1 ]
Linm (a-x,)%L 5 L 49

P ( A')dPA, 5 [def e %o a5, ap; |

s S - o >0 Cj
(6.6)

In the limit, the kinematic zero 1 - X 7 0 on the left-hand side

is accompanied by a collapse of the integration region on the right.

Using equations (2.1) and (6;1) this may be rewritten as

e I : 3
Lim | y(t,) > | ' - - j
Al in {‘ 7 ( l) J at, dAgexp[[EQ(te) a(0) l]A2} f(tl,tg)g .
L i
(6.7)
. N o i . } N
Now, to reach the point t = tlm N -exp(—zal)me - 0, we require

the limit Al - . The left-hand side, by the arguments above, need-
not vanish in this limit and thus neifher must the right. The usﬁai
proof corresponds to taking Al X constant ﬁhile tl = 0 to iselate
7(0). These limits are not independent. The sum rule will not then

be satisfie&.
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20)

We note that in the above analysis we could pick nonvacuum
quantum numbers for C and sum over restricted gaps A2 dominated by
an ordinary Regge pole. We then isolate the couplings gPCR(tl’t2)

and 7RRP(t2,O), In the region A 2 o(ey), it is not necessary for
these couplings to vanish since the left-hand side of the suﬁ rule need
not vanish. A similar statement obtains for the Schwarz inequality
proof of Abarbanel, Gribov and Kanchelli2) where the correct

M2, s/M"-2 - 00 1limit is implemented. As established earlier, it is not
necessary for the triple coupling, which is put in as an upper bound
in the Schwarz inequality, to vanish in this limit.

In the preceding we have considered oniy those terms in the
unitarity sum for A22 which have a simple connection with the Mueller
analysis for n - n processes in certain (fragmentation) kinematic
regions. These terms build the vertex corrections to factorizable pole
exchange in a physically intuitive fashion. That is, the vertex sub-
structure involves only the fragmentation products of the external
particles which may be reached by factorizable pole exchange in the
production amplitude. There are many other exclusive contributions to
A22 which have neither a simple connection with the Mueller analysis
nor wifh the vertices.

An important class of such processes will be referred to as
diffraction dissociation into large masses and involves the production
of two asymptotically growing fireballs. These processes were consid-
ered in an elegant paper by Abarbanel, Chew, Goldberger and Saundersa).
The approach advocated there is implicitly multiperipheral. Con- V
sequently, there is & fundamental counting ambiguit& if one attempts
) 5,18,21)

from such processes

to isolate the cont#lbution to ototal
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We shall avoid such ambiguity by considering a more limited class of
states, indicated in figure 6. By summing only over fireball masses
such that 4n M12 S % in s - X.(s), there is a uniquely defined
rapidity.gap which always crosses the center of the rapidity axis. In
this way? no event is counted twice and the sum over missing masses

. *
leads to a contribution to We have

Yotal’

a(0)
)

S 1 A (6.8)
2 2
aM,” aM,” a

| L pzalt)
g~ P/ (ol )2

in the limit Mle, MEE, s/M12 M22 > . If we assume that this
expression is valid for Mi2 > MR2 and s/M12 Nbe 2 constant, then
the sum over states satisfying these constraints gives a contribution
to 0y o0 whjich behaves like 72(0)&n s » tnins for alt)=1 + a't.
This 4n s behavior is a much more serious inconsistency with the
"unitarity" constraint Oy = constant. -

In the work of Abarbanel et al.j), it was assumed that this
in s factor was removed_when one corrected for the multiple counting
involved when one'isolated é particular iink of the approximately ins
links of the multi-Regge chain.,. This is not the case here. The In s
is an essential consequence of the dipole structure of figufe 6.c.
This appears in the Mellin transform as [j - qp(o)]'z. The loop in
figure 6.c. gives rise to the n(fn s) factor. The latter factor is
removed by our arguments that the rapidity gap associéted with the

loop should have a minimum value @ Y. The dipole structure remains.
*

The quantity 7(t) is here defined as »(t) = BPAA(O)T(O,t;t).

. i

To study the associated j-plane structure we introduce the

scaled gap and mass variables & = (4n s/M12M22)/Y, ny T (4n Mi2)/&.

We then have 1 =5 +.nl + n2 with the further constraint ni < % .
i 1 i
It is convenient to introduce a &-function aé’ as 8{1 - & - n - ng}

so that ' 0
lfl
do % dt dn, dn, j a5 P(6) ¥ 81 -y -0, - 0)
.
0
x expla0)Y] exp(lea(t) - a(0) - 1l8Y}. (6.9)

We then take the laplace transform of s do/dt to compute

A22(j) oc jdt A(j,t), where

1 S
2 [+ :
A_(j,t) x l;«é-‘)‘l j as &?—- 6‘?“ o ay exp(l-3 + a(0) + £(t)8lY}
- /s ‘0
0

< an | oan @ -s - -y, (6.10)
with £(t) = 20(t) - a(0) - 1 and the derivatives
(fl/f(t)) ©/3)B/B3) yield the ofiginal factor Y°. The last
integrals are just the line integral in two dimensions. In general,
there will appear the integral over an n - 1 dimensional surface in
n dimensions, where n is the number of produced fireballs. Call
this bounded function I(®). Now, with 0y < 1/2,
I(8) oc 8(8)-(1 - Mo - neo). Integrating only over scaled gaps
5 2 80 > 0 makes this a trivial factor. If the mass integrals go

down to a constant MRQ, so Mo~ 0 then I(d) = 1. We have
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AG,t) = %%‘)‘l % JE,[

(3 - (@ - 8y)alo) - 8, (2a(t) - 1))t

o Zegtz 3 (4 , -1 -1}
Y 53 J-l-aasotl -[j-l—Ea't]j.
' (6.11)
The usual result corresponds to 6 * 0. However, one must be
careful to keep I(®) in this case. The leading behavior then
corresponds to .
dat é ;
A(3) usual( )/ J-Eat + 1
r
d 1 at_ o)
‘/m [j - Q(O)J '] 3 - 2'0: T FTC (6.12)
H J

Near J =1, the last factor corresponds to n(j - 1), Just as in
the vertex correction, taking 50 > 0 removes the latter factor, as

may be seen by doing the t- integral in equation (6.11). Near jJ=1

we have

A % | sy B - (@17 152(0) w1/

1 (6.13)
where _lim )
50 i

o (8 ~ (J-1).

. value of 0<%
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We can now proceed to consider production of multiple fire-
balls. The production of n fireballs contributes (n - 1) bubble

insertions with

(3 - a(o)y™>

A%(3) ~ X (T‘Q(o) Ln(l/ﬁo)]n

2
n! BPAA(O) L o)n

(6'1“

If 60 were very small, we could conslider the asymptotic sum of such

insertions. It would be of the form

A(3)

R

Blz\AP(O) expl T2(0)tn(1/8,) @ pafo))] [5 - a(0)]1™ (6.15)

il

BiAVP(O)F (3 - «(0) —.I‘e(o)’.n(l/6o) ™ (6.16)

Thé»exponential is a simple shift operatof on the position of the
output pole. Taking the limit &) ~ O wmeans that an(l/fjo) = ~2n(3-1)
so that we recover the usual Fredholm denominator of the multi-Regge
model. It is only'in this 1imit that the sum over én infinite number
of terms has any meaning.

The parameter 80 , which is related to the relative amount of
diffractive production, provides a natural limitation on the series
represented by equation (6.14). The maximum number of terms is of

order 1/5o . Since P(o)tn(l/zs ) @ aDD/ 5), a small relative

total
value of the diffractive cross section would be reflected in a larger
o <1, and hence a smaller number of bubble insertions.
If, as suggested by the triple-Regge analysis of section 2, 60 is of -

order 1/2, then at most one insertion is allowed. This then avoids

conflict with the Froissart bound since the fastest allowed growth of
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Gtotal would be {m s, cor;esponding to a dipole contribution near
J=1.

As a function of energy, there may also be important threshold
effects. The scaled relationships above are asymptotic in the sense

that they have little meaning for YR

Ordinary Regge arguments indicate that a rapidity gap of two to three

It

n S/MR2 too smali.

units may be necessary to isolate leading singularities. Since

Z'\‘rnin = 5O YR ?

this requires that the first threshold (that
associated with a single bubble insertion) occurs for

8 n(s/M7) = 23, orwith & % 1/2, for values of s in
the ISR range. This threshold would be responsible for the onset of
a 4n s rise in % otal’ It is important to note that the same
parameter is responsible for both the termination of the series
describing the asymptotic behavior and the thresholds associated with
this series. The scale of the increase in Utotal is set by
Te(O)Ln(l/SO), while that of the diffractive contribution is measured
by P(o)tn(l/so). If TI'(0) is small, these two quantities may be
rather différeﬁt in magnitude.

The threshold argument requires a relaxation of the consistency

requirements observed in the earlier sections, unless the effective

50 is such that no bubble insertions can occur. In this case, there

is no propagator renormalization whose presence can be deduced through
use of the direct channel unitarity relation. Any increase in % otal’
within this context, would have to arise from the nature of the pole-

cut relationship in the boundary regions. This situation, as discussed

in section 4, is a particularly uncertain matter.
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We have been primarily interested, in this section, in explor-
ing the implications fér a consistent pole bootstrap of certain »
exclusive cluster decompositions which do not have a simple correspond-
ence with a higher order optical theorem where a single pole dominatés;
By scaling the gap integrals we were again able to isolate the pure
(multiple) pole behaVior, without the contamination of cut contri-
butions from fixed gap regions. These terms in the absorptive part
A22 are particularly well-defined. It is difficult to see how -
consistency arguments (due to positivity) can avoid dealing with them.
Tacking the higher order constraints which appeared for other con- -

tributions, we then have only the choices outlined above.
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7. .Conclusions

- We have re-examined the origins of the decoupling phenomena
usually associated with the occurence of an isolated factorizable
Pomeron pole of unit intercept. It has been shown that the proofvof
the vanishing of the triple-Pomeron coupling depends on an assumption
which is 1n¢ssential to the asymptotic arguments required for the
associated limit. This assumption is that an isolated Pomeron pole
dominates even constant rapidity gaps even in the limit in ﬁhich the
total rapidity Y= in s becoﬁes infinite. By separating the
contributions to o, ..1» 8nd to the inclusive sum rules, the
inconsistent contributions are seen to arise entirely from this fixed
gap (&b = ¢n s/M2 % constant) region. In terms of the“Mueller
analyéis of the three — three reaction, the usual aséumption cor-
resbonds to assﬁming that the poles which arise in the triple limit
(s, M?, s/N? - ®) also dominate in the ordinary Regge limit
(s, ¥ - o, s/AF fixed).

We‘then argued, with regard to the asyﬁptotic 1imit Yv* o,

- that the emefgence of an isbléted factorizable pole requires the
asymptotic 1limit s/M2 -+ ®. In the nonaéymptotic region, it was
further suggésted, the natgre of the leading singularity is less than
simple, involving the delicate relationship between pole and cuts. A
simple analogy for the necessary collision of singularities was proposed
which indicated that the quantitativé measure of factorization may notv
reflect the complexity of the underlying arrangement of singularities.

When thé Jj-plane analysis of those ﬁerms in the two - two
unitarify sum for which one could consisteptly assume pole dominance

was performed, it was found that they correspond to simple vertex

Pomeron in the absorptive part A2
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corrections to pure factorizable pole exchange (figure 4). The usual

_cut effects (associated with the constant gap region) were absent.

The nonintegrable ‘/‘dt/ﬁ ‘behavior, which is usually removed by the
vanishing of the triple coupling--or perhaps equivalentlyl) by the
venishing of a nonsense wrong signature residue associated with the
usual two-Pomeron cut--disappears in a more trivial fashion. It is
worth remarking again that since t < toin -(M?/é)emz, one may
attain the kinematic point t = 0 only in the 1limit s/Mg -+ 0. It
is precisely at this point that the triple-coupling need not vanish.
It is then the oversimplified dynamics for + < O that gives the
ﬁrouble.

The new conditions on the region of valiaity of the .simple
triple-Regge formula overlap the old ones at current machine energies
if the amount of diffraction dissociaﬁion has the proper size reiative
to ototal' Only the asymptotic definitions of the regioﬁs where pure
pole dominance obtains need change. Phenomenologically, one need not
have a vanishing contribution near t = 0. This will be important if
the ISR (and NAL!) data show the need for such a contribution. ‘

The vertex corrections described above are easily associated
with the Mueller analysis of n - n discontinuities in the fragmenta-
tion region. The simple cluster decomposition properties which
establish a connection between these higher order optical theorems
and particular terms in the two - two unitarity sum suggest the
application of these techniqués to multiple cluster terms in the 2 - mn
unitarity sum. When this is done, a multipole expansion for the output

2

are seen to arise from the Pomeron loop insertion in A, (figure 6)

is.obtained. Cut contributions
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when the loop spané a.finite length in rapidity as Y ®. Scaling
the minimum gaps removes the cut contributions leaving pure multipole
contributions. The number of such allowed bubble insertions is
determined by the minimum gap scale €( = 60) which is measured in the
triple-Regge region. If diffraction dissociation is sufficiently
small, no bubble insertions are allowed and full consistency with

positivity for is achieved. Otherwise; to be consistent

%otal
with the Froissart bound, at most two insertions are alloﬁed
(cdrresponding to the production of three fireballs, in the pionization
and fragmentation regions). Since there do not appear to be higher
order optical theérem constraints on these terms and since there are

no cut effects, perhaps the two-two unitarity sum is providing new

information on the nature of the vacuum singularity.
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FIGURE CAPTIONS

1.) a.) Single diffraction dissociation processes contributing in the

triple-Regge region; b.) Rapidity space decomposition of the
final state. Infinitesimal rapidity displacements, due to energy
conseryation in producing particle masses, are neglected; c.) .
Corresponding form of the three - n(M2) amplitude with the AR
system continued below threshold. The spectrum of bound states

of this system lie on the Pomeron trajectory af(t).

2.) a.) Processes contributing in the di-triple Regge region with

3.)

invariants defined; b.) Rapidity space decomposition with gap

variables A indicated; ¢.) Corresponding region of the

" continued four - n(ME) amplitude.

Pole-cut relationships in the j-plane conjugate, by Mellin trans-
form, to the variable s/ME. a.) Relationship of intercept-one

pole and branch points when t < 0 indicating possible collision

 of singularities; b.) Situation for t = 0; c.) Simplified

situation for ap(0) <1 and t 0. There is no possible

collision of singularities in this case.

4.) a.) Vertex correction to the simple pole in the two - two absorp-

5.)

tive part A22 arising from the restricted triple-Regge region.
b.) Same for di-triple region. The sum over contributing finite
mass states A' and B' is indicated by the loop integrals.

c.)‘ Contribution to the two~Pbmeron cut from the ordinary Regge

- region,

Two-particle inclusive processes‘in the fragmentation region of A.
Particle C must have vacuum quantum numbers if d(tZ) is also the

Pomeron. a.) Rapidity spece decomposition of the corresponding



6.)

L))
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exclusive two - n(M2, M'E) process. b.) Corresponding exclusive
M’2 decomposition-of the continued three — n'(M?) amplitude;

c.) Higher order vertex structure in A,, erising from these
contributions.

Diffraction dissociation into two large masses. a.) Rapidity

space decomposition. Only those states with the gap

A = In s/Ml2 Nbe crossing the center of the rapidity axis are
included; b.) Resulting dipole structure in A22 from states
with A = 8Y, O0<68&_ <1, The variable A is independent
min 0 0

of the variable s, in which the Mellin transform is performed.
This loop contribution, and all higher order terms, will not occur

2 ) ) ,
if only states Mi > € in s are included and if 8 * g te > 1.
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