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Abstract 

Note on the Partitioning of Nuclei 

L. G. Sobotka and L. G. Moretto 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

LBL-17699 

We show that the information theory method of Aichelin and Huefner for 

calculating the fragment distribution resulting from high energy proton 

bombardments is an approximation to the Euler number partition. We find that 

a consistent application of the theory produces fragment distributions 

substantially steeper than the calculation of Aichelin and Huefner. The 

quality of fit to the data and its implications are discussed. 

PACS number: 25.70.Np 
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The inclusive charge and mass distributions of high energy proton and 

heavy ion bombardments are frequently interpreted in terms of a liquid-gas 

phase transition. 1' 2 However, Aichelin and Huefner3 have recently shown 

that the charge distributions for high energy p + Kr, Ag, Xe and U can be 

reproduced by a calculation which is portrayed to produce the least biased 

distribution. We show that the approach of Aichelin and Huefner is an 

approximation to the Euler number partition and that such an approximation 

breaki down fo~ large fragment size. ·Furthermore, we show that the mo~ 

reasonable application of these types of theories differs substantially from 

th~ previously published work. 3 Although this theory is not inconsistent 

with fhe data its applicability to the nuclear case is made uncertain by the 

lack of appropriate geometrical constraints. 

We wish to calculate the part size distribution when an integer is 

decomposed. As with Aichelin and Huefner, our assumption will be that all 

decompositions are equally likely. 

Let us calculate the number of times a part of size 2 appears when we 

fracture an integer N in all of the possible ways. We start by calculating 

the number of unrestricted pirtitions P(N) of the integer N by using Euler's 

recurrence relation4 

P(N)- P(N- 1)- P(N- 2) + P(N- 5) + P(N- 7) ... = 0 (1) 

where 2 K1 = (3K - K)/2 

and K = 1, 2, 3, 4, 5, ..• 
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For example: P(1) = 1, P(2) = 2, P(3) = 3, P(4) = 5, P(5) = 7, P(6) = 11 etc. 

The number of times a part of size a occurs when the integer N is 

fractured in each of the P(N) ways is 

Pa(N} = P(N- a)+ P(N- 2a) + P(N- 3a} + ••• P(O) (2) 

There is no overcounting in equation 2 due to the removal of the part of size 

a in each successive term. If all fractures are equally likely then Pa{N) 

is proportional to the probability of producing a part of size a. 

Aichelin and Huefner calculate the equivalent probability Pa(N) as follows. 

They define the probability P(m,a) of producing a fragment of size a with a 

multiplicity m as, 

~ P(m,a) = 1 for each a 
m=O 

N 
and 2: L rna P(m,a) = N 

m=O a 

where N is the size of the object being fragmented. 

The information contained in P is 

N 
I = L 2: P(m,a)~nP(m,a) 

m=O a 

Introducing the constraints 3, 4 one obtains the maximum 

N 
L [P(m,a)~nP(m,a) - C(a)P(m,a) - DmaP(m,a)] = 0 
a 

(3) 

(4) 

(5) 

\ .... ~·' 
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which gives 

P(m,a) C(a)exp(-Dma) 

From eq. 3 one obtains· 

C(a) ~ 1 - exp(-Da) 

and from eq. 5 one obtains 

00 N 
N = L: L: ma[1 - exp(- Da)]exp(~Dma) 

m a 

N 
o-2r(2)r;;(2) L a/(exp(Da) - 1) = 

a 

where r;;(x) is Riemann•s zeta function. 

From which 

( 6) 

(7) 

( 8) 

( 9) 

Conditions 3 and 4 make this problem a saddle point method approximation 

to the Euler number partition. Therefore the part size distribution from eq. 

2 should he identical to t~at obtained with the method reproduced above. 

Figure 1 shows the part size distributions for two values of N for both eqs. 2 

and 9. We can immediately notice that the two calculations are nearly 

identical for small fragments. However, the calculations diverge as the part 

size increases. This divergence can be traced to the upper limit in the 
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summation over m used in obtaining eq. 7, and in eq. 8, which is taken to be N 

while it should be int(N/a). 

The comparison between the calculation and data presented in ref 3 is 

obtained by identifying N with Z
0

, the total charge minus a certain number 

of charges presumably directly knocked out by the projectile. However since 

these theories do. not involve any potentials and all "fractures" are equally 

likely, the only consistent application of these theories is to identify N 

with the total number of nucleons. Unfortunately eq. 9 shows that the 

partition theory does not scale trivially from Z to A. Ln other words the 

calculat~on is not invariant with respect to the transformation A = Zf(Z) 

where f(Z) is a slowly varying.function of Z. Therefore the calculation 

yields dramatically different results if one uses Z rather than A. The point 

is illustrated in Fig. 2. The solid line is an "inappropriate" calculation of 

the charge distribution obtained by calculating the number of partitions of 

Z
0 

= 43 charges. If we calculate the number of partitions of A
0 

= 99 and 

transform the mass distribution into a charge distribution by assuming an 

average charge per part of Z = a x Z
0

/A
0 

we obtain the dot-dashed curve. 

This curve, which, we believe, is the only approach consistent with the spirit 

of the theory, has a steeper slope than a calculation where the charges are 

partitioned and the neutral particles ignored (solid line). 

The experimental charge distributions 5 and mass distributions1 are 

compared to calculations in Figs. 2 and 3 respectively. The data are more or 

less reproduced by number partitions in either of the versions, but cannot 

distinguish between them. This approximate agreement is somewhat surprising 

since both the isospin and geometrical aspects of the problem are ignored. 

~ ........ -~ 
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Some insight into the geometrical aspect of the problem can be gained 

from the studies on the degradation of a linear polymer. 6 The problem of 

determining the part size distribution of degraded polymers is not related to 

partitions (where the order of summands is irrelevant) but rather to permuted 

partitions. The extension of such a calculation to 2 or 3 dimensional polymer 

is much more complicated and probably can be dealt with within the framework 

of percolation theories. Although the bond breaking in a polymer may not be 

the best illustration of nuclear fragmentation, it indicates the required 

complications that arise when the dimensionality of the problem is 

considered. As a consequence we find the connection between number partition 

and fragmentation somewhat tenuous and we wonder whether the fair comparison 

between data and theory may not be fortuitous. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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Figure Captions 

Fig. 1 

Part size distributions. The solid lines are the calculation using 

partition theory (eq. 2) while the dashed line uses the expression of 

Aichelin and Huefner (eq. 9). This second calculation (eq. 9) is 

normalized to the number theory calculation at a = 1. The thin curve is 

a distribution given by a-2· 64 which fits both p + Kr and p + Xe data 

of ref. 1. 

Fig. 2 

The charge distributions calculated in various ways~ see text. 

Fig. 3 

Mass distribution calculated from number partitions. The dots are the 

data of Finn et a1. 1 
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