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The hydrodynamic approach for intermediate-energy heavy~ion collisions 

has already undergone years of development. Surprisingly, however, one finds 

that a major ingredient of the approach, the magnitude of the transport 

coefficients, has not been settled and that the common microscopic results 

have not been explored. This is unfortunate since the high-temperature 

(low-density) microscopic results for the coefficients can be found in 

textbooks, e.g. [1]. Furthermore, the results for nuclear matter have been 

given in the literature even with the inclusion of relativistic kinematics 

[2]. The low-temperature behavior of the coefficients is also known, and for· 

nuclear matter it has been studied first by Tomonaga [3]. In this paper we 

derive the expressions for the shear viscosity and heat conduction coeffi-

cients associated with the Uhlenbeck-Uehling equation. These extend the known 

results, smoothly interpolating between the known limits. Subsequently we 

examine the effect of the transport coefficients on the shock-wave profile in 

the collisions, with this being a second major topic of the paper. The re

sults for the coefficients are subject to changes due to effects that go 

beyond the dynamics of the Uhlenbeck-Uehling equation and that are discussed 

at the end of the paper, but we believe that the equation, as it stands, is of 

sufficient conceptual significance for the heavy-ion collisions, to make it 

instructive and important to realize the results and implications. 

The shear viscosity and heat conduction coefficients, n and K, respect-

ively, are the coefficients in the expansion of the hydrodynamic momentum 

Tij and energy T0 i fluxes in the particle rest frame in terms of the 

macroscopic gradients: 

( 1) 
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T(1)oi = aT 
-K-. 

ax 1 
.( 2) 

where v is the fluid velocity, Tis the temperature, and (2) is valid in the 

nonrelativistic limit. The elementary mean-free-path arguments yield: 

n - j nmux and K- j ncux, with the particle density n, mass m, average 

velocity u, mean free path x, and the specific heat per particle c. In order 

to fix the attention let us see what these estimates imply for the nuclear 

medium. With x ~ (na)-1, where a is the particle-particle cross-section, and the 

Boltzmann stati sties 1 imit <: = ~· one finds n - j m~ "'~ ( '4)112 
and K - h e~Y'2 • 

independent of density. Taking for the N-N cross-section a = 40 mb, we get n -

4.4 (T/MeV) 112 MeV/fm2c and K- 0.007 (T/MeV) 112 c/fm2• For the temperature 

T- 60 MeV, the mean-free-path estimate yields n- 34 MeV/fm2c and K- 0.055 c/fm2, 

which may be compared with the values used in the hydrodynamic calculations: 

n = 6 MeV/fm2c [4], n = (5 - 25) MeV/fm2c (when T < 100 MeV) [5,6], and K = 

0.015 c/fm3 [6] (cf. also Refs. [7]). At low temperatures the mean free path 

in the fermion system diverges as x ~ T-2, and the coefficients diverge as 

n ~ T-2 and K ~ T-1, respectively. We get the more fundamental results for 

the coefficients by solving the Uhlenbeck-Uehling equation linearized in the 

gradients 

0 fo = g J d3p J dstl da I ~a - ~b I fofofo fo 
a a ( 2,.) 3 b dn 1 m a b a 1 b 1 

x (xa~ + xb1 - Xa- xb) ( 3) 

for the deviation of of the distribution function f(pxt) from equilibrium 

f0
, of= xf0 f0

, with f = 1- f, and here 0 = (:t + ~-~ :x). The system is 

taken to be spin-isospin symmetric, with the degeneracy factor g = 4 (it drops 

though from the transport coefficients). The differential cross-section 

da/dS"2 1 in (3) is spin-isospin averaged, and consequently the integration dst 1 

\l 
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runs only over half of the solid angle. Assuming di~ ~ = 0 (di! ~ drives the 

bulk viscosity which may be considered negligible here [2,8]), Df0 = 2~T 
.. 1 .. 2 ,.. 1 2 5 2 . T .. 2 

f 0f 0[(p 1pJ- 1 o1Jp )v lJ + mi (p - 1 <P >)p1 ~],with the average <P > 
ax 1 

taken over the distribution. We search for x of the form x = c1 
( i j 1 ij 2 'ij ( 2 5 2 i aT 
P P -1 o P )v + c2 P -1 <P >)P ax; , and we fix the constants in 

. the expression by multiplying both sides of {3) by Xa and integrating over 

the momenta. Upon evaluating the fluxes from of we find: 

n' = ~ mT ([ dp p
4
f

0 
)

2

/ [ dpa p~ [ dpb P~ J dcos•ab J dn' 
0 0 0 

da . 2 ' o o- o - o 5 
x diT'·s1n e fafbfa,fb,qab (4) 

= Jm (21 { dp 

00 

p4fo)/ [ dp p2fo)

2 

p
6

f
0 

- 25 (I dp K 

0 ; r dp.p! r dpbp~ rd cos 9 ab f d~' ~ f0 f0 f 0 f 0 
dQ' a b a' b' 

0 0 . 

3 2 2 2 2 2 2 2 - p~,)(p~- p~)cos e'] x qab[(pb' - Pa,) + (pb - Pa) - 2 (Pb' 

( 5) 

with qab = ~ l~a- ebl. The results from (4) and (5), using the polynomial 

fits [9] to the experimental N-N cross-sections, are displayed in Fig. 1. By 

the variational principle [10] for the transport coefficients, Eqs. (4) and 

(5) are only lower bounds for the coefficients associated with the kinetic 

equation. The well explored limits can be examined though. In the Boltzmann 

statistics limit we obtain, from (4) and (5), 

with 

5v; v'iiiT 
n = -ro- --

a 
( 6) 

c,·•:, ... 

¢1'" .·., .. 

~'l 
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These results are the first-order Chapman-Enskog coefficients [11,1]. The 

higher-order corrections typically raise n by only 1.5% and K by 2.5%. The 

low-temperature expansion of (4) and (5) leads to 

n = 

where pF is the Fermi momentum, and 

15 J do sin
5 03

b J do' do 
6

,sin2e• crl = 1"b; ab 2 d cos 

J 0 J da 3 . 3 ab de' (72 = ~ deab s1n ~ d cos e' 

The exact low-temperature solution [8] to the Uhlenbeck-Uehling equation 

(7) 

( 8) 

( 9) 

with the experimental cross-sections leads to n larger by -2% and K by -12% 

for densities (1 - 4)n
0 

(Eqs. (8) correspond to c(A 2s) = j and H(Ala) =~of 
Ref. [8]). Eqs. (7) and (9) are normalized so that for an isotropic energy-

independent cross~section a = a, and a1 : a2 = a. (For the scrupulous reader 

let us mention-in connection with (9) that the low-temperature expansion and 

the limit of a forward peaked cross-section are not interchangeable.) In both 

(7) and (9), and-already in (4) and (5), it can be seen that high momenta are 

most effective in transport in the medium. The q2/mT weight in (7) is 

maximized in particular at a two-particle Elab = 2q2/m = 6T. For temperatures 

T > 80 MeV one cannot ignore the fact that a finite portion of the N-N cross

section is inelastic. In calculating the results of Fig. 1 we add the ine

lastic cross-section as an isotropic contribution to the elastic cross-section, 

and this has, in fact, some justification close to the inelastic threshold. 

"' I' 
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For reference we list analytic fits to the results from (4) and (5): 

n = ~ (.!!_)2 + 22 (.!!_)0. 7 + .. 5 .8Tl/2 ( 10) 
T no 1 + T2 • 10-3 no 1 + 160 tT2 

K = Q.;Ji (nn
0

)1.
4 

+ 0.02 (n )
0

•
4 

+ 0.0225T
1
1
2 

(ll) 
1 1 + T4!7 • 106 no 1 + 160/T2 

where n is in MeV/fm2c, Kin c/fm2, T in MeV, and n
0 

= 0.145 fm-3• The middle 

terms merely serve the purpose of the fit. Also for reference we list rough 

fits to the relaxation times that follow from relating the transport coeffi

cients to the relaxation time equation [12]: 

n ....... 1 _ ....... 

n no 

310 (.!!_)1. 4(1 + O.lT ( no)i\ + _5_7T_-_1_12-n 
7 "o n J 1 + 160/T2 

( 12) 

( 13) 

with 1 in fm/c. Clearly, the system exhibits different relaxation times under 

different symmetries of the disturbance. With nuclear sizes taken into account, ·:• 

it follows from (12) and (13) that for the temperatures T ~ 6 MeV in moderate 

size nuclei, the one-body dissipation (interactions with the nuclear surface) 

starts to dominate over the effects associated with the tw~-body interactions. 

We now demonstrate the importance of the transport coefficients by solving 

the relativistic hydrodynamic equations with dissipative terms (the relativistic 

Navier-Stokes equations) for the shock profile in nuclear matter corresp~nding 

to a projectile bombarding energy in the range Elab ~ 800 MeV/nucl. We use a 

typical equation of state [13,14] consisting of kinetic and potential parts. 

In the compressional part of the energy per nucleon W = K(n - n )2t18nn , c 0 0 

the compressibility K is set equal to 210 MeV. The properties of the matter 

in the two regions away from the shock front are related by the Rankine-
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Hugoniot equation, and an extra constraint on the parameters of the heated 

matter is provided by the bombarding energy per nucleon [13]. In the shock 

frame the flow of matter is stationary, and one can exploit the conservation 

of the hydrodynamic fluxes to obtain the following equations (in the Eckart 

choice of the hydrodynamic rest-frame [15]}: 

nuz = (nuz}
0 

(14) 

(Tzz}
0

((uo}2 + (uz}2} + 2(Toz}
0

uouz 

n(u 0
} 

0 2 z 2 
duz 3 P(u } - e(u } -
dz = 4 ( 15} 

d ~ e + P -euz + (Toz}ouo - (Tzz}ouz 

dz T = nT2 (uo}2 
( 16} 

.with the four-velocity u = (y,y~}. energy density e, pressure P, the direction 

of the shock wave propagation z, chemical potential ~. and (•}
0 

referring to 

fluxes in the asymptotic regions away from the shock front. Eq. (16} reflects 

the fact that relativistically the heat conduction is driven by ~IT [15,16]. 

Nonrelativistically ~ reduces to m, and T becomes the driving force (2}. To 

avoid difficulties with handling the zero-temperature divergences, the temper-

ature of the intact matter is set equal to 1 MeV. In order to start Eqs. 

(14-16), the state of matter has to be ~lightly different from any of th~ 

asymptotic regions. Assuming a variation of uz, the variation of ~/T can be 

found from de l'Hospital's rule. Setting the heat conductivity K = 0 in a 

calculation corresponds to keeping the numerator of the right hand side of Eq. 

(16) equal to zero throughout the shock wave, in an analogy with Eq. (14). 

The solutions to Eqs. (14-16) (or the nonrelativistic reduction of the set} 

are easy to generate, and in general might be used for testing hydrodynamic 

codes devised for handling more complicated problems. In Fig. 2 we present 

the rest-frame density, temperature, and pressure profiles of a shock wave 

~· 

'\ 
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corresponding to Elab = 400 Mev/nucl. The profiles A and Bare calculated 

using the present results for transport coefficients, and for illustration we 

include the profiles calculated using previous viscosity coefficients: 

profiles C with the largest of the coefficients in Ref. [6] n = 18.6 (1 + 

T/120 MeV) 112 MeV/fm2c, and profiles 0 with n = 6 MeV/fm2c of Refs. [4]. 

For the curves B, C, and 0, the heat conductivity K = 0. The transport 
-

coefficients introduce a scale having the dimension of a length into the 

hydrodynamic equations nv/P - 1, and the profiles B, C, and ·0 exhibit a 

scaling which may be directly read off from Eq. (15). Namely, in the calcu

lation based on Ref. [6], the average viscosity in the shock front is n ~ 21 

MeV/fm2c, and the profiles C are by a factor of about 3.5 extended along the 

z axis in comparison with the profiles 0, where n = 6 MeV/fm2c. For the curves 

B the average viscosity is n - 60 MeV/fm2c, cf. Fig. 1, and the profiles are 

about 10 times broader than the profiles 0! Upon switching on the heat con-

ductivity (curves A in Fig. 2), the most amazing result is the slow fall-off 

of the temperature. Note, however, that it is relatively easy to raise the 

temperature in the degenerate Fermi gas without raising either the pressure or ~ 

the energy density much. In fact, the pressure profile A in Fig. 2 follows 

approximately the shape of the density profile A. Variation of the density 

profiles with the bombarding energy is shown in Fig. 3a. The profiles are 

calculated with the present transport coefficients, and the 400 MeV/nucl 

profile is here identical with the profile A of Fig. 2. The 70% of the 

Rankine-Hugoniot (asymptotic) density rise in Fig. 3a is found to occur at 

distances of 4.5, 2.9, 2.1, and 1.8 fm, for Elab = 100, 200, 400, and 800 

MeV/nucl, respectively. The above shock-frame distances contain amounts of 

matter equivalent respectively to distances in normal nuclear matter of 8., 

5.7, 4.7, and 4.4 fm. The shock widths conventionally defined by the 70% 
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density rise, are shown in Fig. 3b in terms of the bombarding energy. 

Additionally, Fig. 3b displays the shock widths extracted from the cascade 

calculations [17,18]. Since the underlying dynamic assumptions are similar, 

the observed rough agreement is not a surprise. To the extent of their 

overlap, the current hydrodynamic results further seem to agree with the 

findings of a shock wave study using a simplified kinetic approach [19]. Let 

us now discuss the rapid rise of the shock widths with decreasing energy per 

nucleon in Fig. ?b. The point is that, irrespective of the zero-temperature 

divergence of the transport coefficients, the width of a. shock wave is known 

to increase to infinity as the shock strength decreases (Mach ~umber tends to 

unity), see e.g. [16]. The divergence of the coefficients implies only a 

stronger divergence [20] of a shock width as compared with that in classical 

gases [16]. It follows from Fig. 3b that shock phenomena are not possible in 

nuclear collisions at energies Elab ~ 100 MeV/nucl. At higher energies, the 

full shock development with the associated creation of high-density equili

brated matter would require rather heavy (A> 100) nuclei. In the view of the 

above, it would clearly be useful to learn the effect of the proper magnitudes 

of the transport coefficients in the calculations taking full account of the 

nuclear collision geometry (21,6,7]. On general grounds, one can expect the 

coefficients to bring the hydrodynamics closer to the cascade type of 

dynamics.* 

Before concluding, we would like to discuss the possible modifications to 

the results for the coefficients. These seem to point towards even higher 

*We should further comment here on the shock profiles from Ne + U collisions 
presented in Fig. 3 of Ref. [6]. Due to a combination of the large impact 
parameter, surface diffuseness, and small projectile size, the developing 
shock wave is fairly weak. It follows from the density that the shock 
corresponds to about 50 MeV/nucl in Fig. 3b. This explains the relatively 
large extension of profiles in [6] despite the small values of viscosity. 

v 

\..i 
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values of the coefficients than calculated here. First of all, under an 

assumption that the effective mass expansion holds for the relevant part of 

the 1-particle spectrum, E(prt) = p2/2m*{rt) + € (rt), the results {4-9) can 
- 0 -

be rederived starting from the Landau rather than Uhlenbeck-Uehling equation. 

All the explicit masses min {4-8) are formally replaced by m*, and at low 

temperatures a strong effective-mass dependence is observed (8), which weakens 

at high temperatures {6). With the current [22] m*/m = {0.8-1), an effective 

mass m* - 0.8 would enhance by 50% the low-temperature coefficients. Further-

more, the medium is likely to cut down the values of the cross-sections, 

though presumably least for high relative momenta. With (10) and (11), then= 

n
0 

cross-sections at low temperatures, (8) and (9), are a1 ~45mb and a2 ~ 

65mb, and consequently K is more likely to change than ~· Enhancement of the 

low-temperature coefficients would tend to push the low-energy rise in Fig. 3b 

towards higher energies. At high temperatures and densities, the effects of 

the finite size of the 2-particle interaction zone, and, in particular, the 

so-called collisional transfer (mediation.of the momentum and energy by the 

potential), may become important, as pointed out by Malfliet [23]. The only 

rigorously developed method that addresses the problem, and is capable of 

providing simple expressions for the coefficients, is the Enskog theory of the 

hard sphere gas [24,11]. Because of its simplicity, the theory is frequently 

used in describing real classical gases [25]. The theory looks for corrections 

to the Chapman-Enskog transport coefficients, in terms of powers of nb, where 

b = ~ d3 and d is the hard sphere diameter. If one proceeded as for classical 

gases, then the hard sphere diameter should be identified at low densities 

from the effective cross-section d = (a/n) 112 ~ 1.0 fm. The Enskog theory 

would then imply a -15% rise over the Chapman-Enskog coefficients at the 

normal nuclear density, and a factor of 2 enhancement of the coefficients at 
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n- 3n
0

, due to collisional transfer. While the rise of the nuclear-matter 

coefficients with density on account of the collisional transfer is plausible, 

the rise need not be as rapid. Namely much of the rise of coefficients in the 

Enskog method stems from the fact that the momentum and energy, otherwise 

transported through the medium with the particle velocities, get instantane

ously transported over the diameter of the sphere when the particles enter the 

interaction range. While this is seemingly a good approximation for classical 

gases, it is certainly not the case for the problem at hand, even by the mere 

consideration of relativity. (The latter point might be best illustrated by 

an observation that at temperature T - 80 MeV, the speed of sound of an excluded 

volume gas, cs = 1 : nb ~~, violates the light velocity at just about the 

same density for which the Enskog corrections to the coefficients become 

sizable.) In any case, if there were a significant enhancement of the coeffi-

cients with density, it would act to bend the curves of Fig. 3b upwards for 

the higher energies in the figure. When the inelastic processes become im

portant, the kinetic results for the coefficients could be improved by writing 

down a set of kinetic equations and solving them for the coefficients, pos

sibly in a similar manner as in this paper. Delays associated with the pro

duction and absorption of particles might bring about a finite value of bulk 

viscosity [16,26] (just as might the collisional transfer, as indicated by the 

Enskog theory). With a rise in temperature, the number of particles could 

soon become too cumbersome to handle, and moreover, the physics too uncertain, 

that one might be forced to use the simplest estimates [27]. Ultimately~ the 

transport coefficients of the nuclear medium should be sought after using the 

many-body methods from the Kubo formulae [28]. This task is definitely not 

trivial if one aims at more than just recovering the results which could be 

obtained.from a kinetic equation [29,30]. Before this can be accomplished we 

v 
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hope that the current results for the coefficients can serve as a useful 

reference. 
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Figure Captions 

Fig. 1 The temperature and density dependence of the nuclear-matter 

transport coefficients. The normal nuclear density has been taken 

1 -3 as n
0 

= 0. 45 fm • Dotted lines denote the Chapman-Enskog 

results (6), with the effective cross-section set equal to a= 30mb. 

Fig. 2 Rest-frame density n, temperature T, and pressure P, as functions of 

the distance z in the shock-wave frame. The shock wave corresponds 
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here to Elab = 400 MeV/nucl. Curves A and Bare calculated using 

the transport coefficients from Fig. 1, curves C with n = 18.6 (1 + 

T/120 MeV) 112MeV/fm2c of Ref. [6], and curves 0 with n = 6 MeV/fm2c 

of Refs. [4]. For the curves B, C, and O,K = 0. The origin of the 

z axis is arbitrary, but it is identical throughout the figure for 

each of the sets (A, B, C, or D). 

(a) Rest-frame nuclear-matter densities as functions of the distance 

z in the shock-wave frame. Numbers in the figure designate the 

projectile bombarding-energy in MeV/nucl to which the shock 

corresponds. 

{b) Bombarding-energy variation of the shock widths which are 

defined by the 70% of the asymptotic density rise. The upper curve 

is in terms of the distance in normal nuclear-matter (see text). 

Continuation with the dashed lines emphasizes the increasing 

abundance of w mesons and t:. resonances that are not included in the 

treatment. The dashed areas and the error bar represent the shock 

widths extracted from cascade calcu'lations [17,18]. Note that in 

the Halbert [17] cascade, the nucleons are at rest on the intact 

matter side (Boltzmann statistics with T = 0) and the cross sections 

are energy independent; consequently, the shock-wave density 

profiles do not depend on energy. This is (up to relativity) 

preserved in the hydrodynamic formulation of the cascade dynamics, 

and we have used it as one of the tests for our calculations. (One 

is always in the Mach number M ~~limit; the sound velocity ahead 

of the shock is 0.) In an attempt at a hydrodynamic formulation of 

the Cugnon [18] cascade type of dynamics, where nucleons are given 

Fermi momenta on the intact side, we took Boltzmann statistics with 

1". 



15 

T = 23 MeV for the intact side and a = 30 mb in (6). The widths 

increase at low bombarding energies, but not as quickly as in the 

regular hydrodynamic calculation. In both simulations of the 

cascade dynamics, the widths are slightly larger than the regular 

ones for higher bombarding energies. 
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