
! ~.:-::·~. ~ .

J
~

LBL-17709 ~ o--
UC-32 .

Lawrence Berkeley Laboratory
RECEIVED

UNIVERSITY OF CALIFORNIA LAWRENCE
BERI<fl_EY LA80RAT

Computing Division .JUN 12 1984

LIBRARY AND
DOCUMENTS SECTION

RAW QIO INTERFACE TO EUNICE TCP CIRCUITS

J.S. Sventek

April 1984 TWO-WEEK LOAN COPY

This is a Library Circulating Copy
, h. h may be borrowed for two weeks.

w IC II
For a personal retention copy, ca
Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

\

~
I -_J
_J
0

r_o y

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Raw QIO Interface to Eunice TCP Circuits

Joseph S. Sventek

Computer Science Research Department
University of California

Lawrence Berkeley Laboratory
Berkeley, California 94720

April1984

LBL-17709

This work was supported by the Applied Mathematical Sciences Research subrprogram of the
Office of Energy Research, U.S. Department of Energy under contract DE-AC03-76SF00098.

..

..

Raw QIO Interface
to

Eunice TCP Circuits

JosephS. Sventek

Computer Science Research Department
Computing Division

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94 720

Abstract

This document describes the raw QIO interface to TCP circuits provided by the
Eunice TCP /IP networking code. Example sections of code {in FORTRAN) are
also provided to aid others writing network applications.

Disclaimer

No guarantees of the accuracy of this documentation is implied or expressed,
nor is any support for the example programs implied or expressed. Written
notification of problems WITH fixes will be accepted and incorporated in future
versions of this document.

Acknowledgement

This work was supported by the Applied Mathematical Sciences Research sub
program of the Office of Energy Research, U.S. Department of Energy under con
tract DE-AC03-76SF00098 .

•

1. Introduction

This document describes 'th~ raw QIO interface to TCP circuits provided by the
Eunice TCP /IP network software. Before describing the details of the QIO inter
face, it is necess9.ry to pr,esent some introductory information on the general
ideas' behind the network software.

The fundamental object over which network communication takes place is called
a socket. Immediately after creation, a socket merely represents an endpoint
for future communication within a particular address family. Since we are con
centrating on TCP, the address family will always be the ARPA internet family.

Before cooperating processes can begin to communicate, the sock(:!t must be
bound to an address within the selected address family. ·

The actual rendezvous between cooperating processes is accomplished by an
active connect by the client, and a passive accept by the server process. Upon
completion of these calls in the two processes, a full-duplex, flow-controlled,
reliable and sequenced TCP circuit is in place. At this point, the two processes
may perform send/recv system calls in the appropriate manner to accomplish
their joint mission .

-1-

2. Normal Scenarios for Distributed Applications

As you might have discerned from the above discussion, a specific sequence of
operations is necessary in order to establish a TCP circuit between two
processes. The sequence is different for the client process and the server pro
cess. The appropriate sequence for each process is outlined below:

Client

"' create a socket

"' connect to appropriate TCP port on server machine

"' send/receive according to protocol between the cooperating processes

"' remove the socket

Server

"' create a socket

"' bind the socket to the appropriate internet address and port

"' listen for connects

"' accept connect request from client

"' send/receive according to protocol between the cooperating processes

"' remove the socket

-2-

•

·•

3. Interface Specifics

This section describes those VMS system calls and machinations necessary to
perform each of the operations described above. Before describing each of the
specific routine interfaces, a fewwords on the data structures used are in order.

The main data structure which you will see in the C language client and server
programs provided with the network system is sockaddr_in which consists of the
following parts:

* a 16-bit integer in which the address family is kept.

* a 16-bit integer in which the port number of the server is kept {in network
order).

* a 4-byte array in which the internet address of. th,e seryer·~ host {in network
order) is placed by the client before the connect call. ·

* an 8-byte dummy array.

This data structure will be called Sin the descriptions, and these locations will
be referenced as S.af, S.port 'and S.inetaddr respectively.

The only other complex data structure used by the system is that used to
receive the address of the client when the server accepts the connect request.
That structure consists of one 16-bit integer followed by a 128-byte array. The
16-bit integer will contain the number of bytes in the 128-byte array used to
return the address of the accepted client. This data structure will be called R in
the descriptions below.

In the descriptions which follow, symbolic constants are used. Please consult
section 4.1 for their actual values.

In all cases, successful completion of the request will be indicated with the low
bit set, for either the function value of the SYS$GIZORK call, or in the first word
of the io status block. Eunice specific errors are returned in the iosb with the
high bit enabled, and contain the UNIX error number shifted left 3 bits. To
decrypt the error returned in iosb{l), the following' algorithm should be used:

err = '7fff'x .and. iosb(lJ
err = err I 8

Now compare the value in 'err' with those listed in /usr/include/errno.h. The
attached routine ''eunice....§rror" shows one way in which these values can be
turned into printable strings.

-3-

3.1. Creating a Socket

{1) assign a channel to the device 'INETO:'

(2) issue qiow request on socket channel with the following parameters

* function = 10$_SOCKET
* pl = %val{AFJNET) ·
* p2 = %val(SOCK_.STREAM)
* p3 = p4 = p5 = p6 = 0

3.2. Binding the Socket to an Address

{1) place the value AFJNET into S.af

{2) place the port number into S.port in network order (byte swapped) and load
S.inetaddr with the address 0.

(3) issue qiow request on socket channel with the following parameters

* function = IO$_l3IND
* p1 = %ref(S)
* p2 = %val{16)
* p3 = p4 = p5 = p6 = 0

3.3. Listen for Connect Requests

(1) issue qiow request on socket channel with the following parameters

*function= IO$_LISTEN
* p1 = %val{backlog)
* p2 = p3 = p4 = p5 = p6 = 0

The 'backlog' parameter passed in p1 indicates how many incoming connect
requests the process wishes to be queued up while servicing an accepted
connection.

Note that the listen completes immediately, since it simply indicates to the
system that your process wishes to process conne'ctions to the specified
port. The process is actually blocked when it executes the accept request
described below.

-4-

•

3.4. Accept a Connect Request

(1) issue qiow request on socket channel with the following parameters

* func'~ 10$ ACCEPT WAIT - -* pl = p2 = p3 = p4 = p5 = p6 = 0

This causes the process to block until an incoming connect request is
received.

(2) assign a new channel to 'INETO:'

(3) issue qiow request on new socket channel with the following parameters

* func = IO$_ACCEPT
* pl = %ref(R)
* p2 = %val(l30)
* p3 = %val(original socket channel)
* p4 = p5 = p6 = 0

Setting pl and p2 to non-zero values is optional, with the only required
parameter being p3 ..

3. 5. Receiving Packets over the Circuit

(1) issue qiow request on socket channel used in the accept of connect
requests, with the following parameters

* func = IO$_RECEIVE
* pl = %ref(buffer to receive next packet)
* p2 = %val(sizeof(buffer))
* p3 = p4 = p5 = p6 = 0

The length of the received message is returned in iosb(2).

NOTE: a successful receive with a length of 0 seems to indicate that the
partner has disappeared .

3.6. Transmitting Packets over the Circuit

(1) issue qiow request on socket channel used in the accept of connect
requests, with the following parameters

* func = IO$_SEND
* p1 = %ref(buffer with data to send)
* p2 = %val(number of bytes to send)
* p3 = p4 = p5 = p6 = 0

3. 7. Initiate a Connect Request

(1) place the value of the port number for the connection into S.port

(2) place the value of the internet address of the server machine into
S.inetaddr (see section on address resolution below)

(3) issue qiow request on socket channel with the following parameters

* func = IO$_CONNECT
* p 1 = %ref(S)
* p2 = %val(16)
* p3 = p4 = p5 = p6 = 0

•

3. 8. Address Resolution

If we consider the internet address [first.second.third.fourth] and that the
structure S is a 16-byte array, the following must be done prior to issuing the
connect request in the client process:

5(5)
5(6)
5(7)
5(8)

first
second
third
fourth

Of course, one often has the name of the host, not its internet address. The
binding of internet address to hostnames and nicknames is contained in the file
etc:hosts. The format of the file is as follows:

(1) Lines beginning with the character'#' are comments.

(2) A '#' character in any other position in a line indicates the start of a com
ment, and is thus the logical end-of-line.

{3) The information binding internet addresses to names is of the form

111.222.333.444 official-name[nickname]*

Section 4.4.4 contains the FORTRAN source code which will sequentially scan
etc:hosts for a particular host name and return the internet address in the
appropriate format for inclusion in the S data structure .

-7-

4. Sample Programs

The following two sections present the FORTRAN code for a sample client and
server.

The server listens for a connection on port 4321. Mter successfully accepting a
connect request, it simply receives buffers from the link until the received byte
count goes to 0, indicating that the client has exited. It then waits for another
connect request.

The client, when defined as a foreign DCL command, fetches the hostname from
the command line for the server connection. It also will take optional values
from the command line for repeat count and buffer size. Mter successfully con
necting to the server, it sends <buffer size> buffers <repeat count> times.
Mter closing the connection, the program displays the elapsed time and
throughput in bytes / second. · ·

4.1. Include File - INETSYM.INC

integer AF _jNET
parameter (AF _jNET=2}
integer SOCK-PTREAM
parameter (SQCK.J)TRE~"'l)

integer IOS~CCESS
parameter (10S~CCESS"''32'x)
Integer IOS_BEADVEILK
parameter (JOS_BEADVBLK='31'x)
integer IOS~RITEVBLK
parameter {JOS~RITEVBLK='30'x)

i n teger IDS -PEND
parameter (10$ __ SEND=IDS~RITEVBLK>
integer IOS_BECEIVE
parameter <IOS_BECEIVE=IDS_BEADVBLK)
integer IOSJSOCKET
parameter <IO$_pOCKET=IDS __ ACCESSl
Integer IOS~IND
parameter £IOS~IND=IDS~CCES5+64)
integer IOS~ISTEN
parameter <IOS~ISTEN=IOS __ ACCESS+128l
integer IOS~CCEPT
parameter £IOS_bCCEPT=IDS __ ACCESS+192)
integer IOS~ONNECT
parameter <IOS~ONNECT=IDS~CCES5+256}
integer IOS~CCEPT~AIT
parameter (JOS_bCCEPT~AITo:IOS~CCESS+640)

<_•,

•

,_,

•

4~2. Receiver Process- RECEIVE.FOR

C,
c
c
c
c
c
c
c
c
c
c
c

c

program receive

This code is a TCP receiver using Kashtan's port of the UNIX
networking code. It listens on TCP port 4321, accepts a
connect request, and receives alI data packets until the
connection is broken. It then goes back and waits for another
connect request.

FORTRAN RECEIVE.FOR
LINK RECEIVE.OBJ
RECEIVE:==SSVSSDISK: [THIS.DIRECTORVJRECEIVE
SPAWN/NOWAIT/OUTPUT=RECEIVE.OUT RECEIVE

include '11\ETSYM. INC'

integer*4 fd, sd, errlen
integer~ sysSassign, sysSqiow
character errbuf*ZSS
integer~ iosb{4J, s
integer~ swab
logical*1·buffer{2048J
logical*4 error

c FORTRAN equ iva I en t of sockaddr _j n
c

c

integer~ i2buf{8J
logical*1 11buf{16l

equivalence {i2buf{1J, 11buf{l))

c assign channel to device and create socket
c

c
c
c
c

s = syslassign{'INET0:', fd,,)
if {error{s, 1, errbuf, errlen)) then

cal I errorx{errbuf{1:errlen)J
endif
s = sysSqiow(%val {0), %val {fd), %val {IOS __ SOCKETJ, %ref{iosb),
1 , , %va I <AF JNETl, %va I {SOCK_..PTREAMl,,,, l
if {errods, i osb {1), errbuf, err I en)) then

ca I I errorx (errbuf (l: err I en))
endif

fi II in address family, port# and wild card address.
Bind socket to that address

i2buf UJ = AF JNET
i2buf(2) = swab£4321)
llbuf (5) = 0
llbuf (6) = 0
llbuf(7) = 0

c
c
c

c

l1buf (8} = 0
s = sysSqio~(%val (0}, %val (fd}, %val <IOS~INDl, %ref(iosb),
1 , , _%r€lf U1buf}, %va I (16),,,,}
if (error<s, i osb.tu'~ :errbuf, err I en}} then

ca I I errcirx (errbuf £1: err I en})
endif

I i sten on port

s = sysSqio~(%val (0}, %val (fd}, %val !IOS~ISTENJ, %ref(iosb},
1 , , %va I (1} , , , , ,)
if (error(s, iosb(1}, errbuf, errlen)) then

cal I errorx(errbuf(1:errlen))
endif

c main loop- ~ait for connect request, accept it and process it
c
1 continue
c
c wait for connect request
c

c

s = sys8qio~(%val (0}, %val (fd), %val <IOS~CCEPT~AITJ,
1 %ref(iosb),,,,,,,,)
if (error(s, iosb{1), errbuf, errlen)} then

cal I errorx(errbuf(1:errlen))
endif

c assign ne~ channel to INET9:
c

c

s = sysSassign{'It£T0:', sd,,}
if {error{s, 1, errbuf, errlen)) then

cal I errorx{errbuf(1:errlen)}
endif

c accept connect request on the new socket
c

c
c
c
c
2

s = sysSqiow{%val (0}, 'lval (sd}, %val fiDS~CCEPTJ, %ref(iosb),
1 , , , , %va I (fd) , , ,)
if (error{s, iosb(l}, errbuf, errlen}) then

cal I errorx{errbuf(1:errlen)}
endif

read on socket unti I 0 length read - seems to imply
that the partner has exited

continue
s = sysSqio~(%val (0}, %val (sd), %val (IOS __ RECEIVEJ, %ref(iosb),
1 , , %ref (buffer), %val (2048),,,,)
if (error { s, i osb (1) , errbuf, err I en)} then

cal I errorx(errbuf(1:errlen})
endif
if (iosb(2) .gt. 0} goto 2
ca II sysSdassgn (%va I (sd}}
goto 1

-lo-

•

end

include 'ERRORX.INC'

include 'SWAB.INC'

include 'ERROR.INC'

include 'EUNICEERR.INC'

4.3. Transmit Process- TRANSMIT.FOR

c
c
c
c
c
c
c

program transmit

This code is a TOP transmitter using Kashtan's port of the UNIX
networking code. It connects to a receiver on port 4321, and
transmits a fixed number of fixed size packets. Upon completion
of the request, the elapsed time and throughput in bytes/second
are displayed.

c FORTRAN TRANSMIT.FOR
c LINK TRANSMIT.OBJ
c TRANSMIT:==ISYSSOISK: [THIS.OIRECTORYlTRANSMIT
c TRANSMIT HOST [-RREPCNTJ [-88UFSIZl
c

c

include 'INETSYM.INC'

integer~ repent, bufsiz, host_jen, arg_jen, sd, total, errlen
integer~ start(2}, stop£2), result£2), msec, rem, thruput
integer*2 sysSassign, sysSqiow
logical*4 inet_getarg, inet_gethost
logical*1 buffer£2048}
real~ ><
integer*2 iosb(4), s
logical*4 error
integer*2 swab
character arg_puf~0. host~0, errbuf~G

c FORTRAN equ i va I en t of sockaddr _j n
c

c

integer*2 i2buf(8}
logica1*1 l1buf(16)

equi va I ence (i2buH1>, 11buf{1})

c fetch command line arguments
c

repent = 1000
bufsiz = 512
host len = 0
do while (inet_getarg(arg_puf, arg_jen})

ca II i net_j ower {arg_puf Cl: arg_jen)}
if (arg_puf{l: 1> • eq. '-') then

if (arg_puf(2:2} .eq. 'b'} then
call otsScvt_j:i_j {arg_puf(3:arg_jen}, bufsiz)

elseif {arg_9uf{2:2} .eq. 'r') then
ca II otsScvt_j: i _j {arg_puf£3: arg_j en}, repent)

else
type *• arg_puf(l:arg_jen), ': invalid argument'

endif
else

host_jen = arg_jen

-12-

-'

•

c
c
c

c

host arg_puf
endif

enddo
if (host_j en • eq. 0) then

call errorx('usage: transmit [-rrepcnt] [-bbufsiz] host')
endif

assign channel to device and create socket

s = sysSassign{'INET0:', sd,,)
if (error(s, 1, errbuf, errlen)) then

cal I errorx{errbuf{l:errlen)}
endif
s = sysSqio~(%val (0), %val {sd), %val <IOI __ SOCKET>, %ref{iosb),
1 , %va I (AF _jNEn, %va I <SOCK_liTREAMl,,)
if {errods, i osb (1), errbuf, errl en)) then

cal I errorx{errbuf{l:errlen)}
endif

c fi I I in destination port and host address. inet_gethost locates
c the entry for the specified host in the file ETCzHOSTS.
c and returns the internet address in the correct order
c

c

i2buf{l} = AF !NET
i2buf(2) = s~ab(4321)
if {.not. inet_gethost(host<1:host_jen), l1buf(5))) then

cal I errorx('Unknown host name')
endif

c connect to server
c

c

s = sysSqio~(%val (0), %val (sd), %val (!OS __ CONNECT), %ref(iosb},
1 , %ref(11buf), %va I (16),,)
if (error (s, i osb {1) , errbuf, err I en)) then

cal I errorx(errbuf(l:errlen})
endif

c initialize counters and note current system time
c send 'repent' buffers of 'bufsiz' characters to the server
c

c

total = 0
cal I sysSgettim(%ref(start))
do while (repent .gt. 0)

s = sysSqiow(%val (0), %val (sd), %val (IOI_liEND>, %reHiosb),,
1 %ref(buffer), %val(bufsiz),,,,)

if (error (s, i osb (1), errbuf, err I en)) then
cal I errorx(errbuf(1:errlen))

endlf
total = total + bufsiz
repent = repent - 1

enddo

c note system time and output transfer statistics
c

cal I sysSgettim{%ref{stop))

-13-

call libSsubx{stop, start, result)
call libSediv{10000, result, rnsec, rem)
x = float(msec) I 1000.
thruput = int { float(total) I x)
type 100, x

100 format{1x,f8.3, ' seconds elapsed time')
type 101, thruput

101 format{1x, i8, • bytes/second throughput')
ca II sysSdassgn {%va I (sd))

call exit
end

include 'LOI.ER. INC'

include 'GETARG. INC'

include 'GETHOST. INC'

include 'GETWORD. INC'

include 'ERRORX.INC'

include 'SWAB. INC'

include 'ERROR. INC'

include 'EUNICEERR.INC'

-14:

•

•

•

4.4. Included Routines

4.4.1. Print error and exit- ERRORX.INC

subroutine errorx(str)

type *• str
call exit

end

4.4.2. Fold character string to lower case- LOWER.INC

subroutine i ne t_j ower (buf)

character*(*) buf
integer n, i, biga, bigz, dlff, x

n = I en (buf)
i = 1
biga = ichar{'A')
bigz = ichar('Z')
diff = ichar{'a') - biga
do wh i I e (i . I e. n)

x = ichar(buf(i: i))
if (x .ge. biga .and. x • le. bigz) then

buf(i: i) = char(x+diff)
endif
i = i + 1

enddo

return
end

-15-

4.4.3. Fetch next argument from command string- GETARG.INC

logical function inet_getarg(arg.J?uf, arg_jen)

character*(*) arg.J?uf
integer arg_j en
logical first
integer force, cmd_jen, ind
integer libSget_foreign, inet_getword
character cmd.J?uf%256

data first /.true./

if (first> then
first= .false.
force = 0
if (.not. I ibSget_foreign(cmd.J?uf,, cmd_jen, force}) then

cmd buf = ' '
cmd len = 1

elseif (cmd_jen. le. 0) then
cmd.J?uf = ' '
cmd_jen = 1

endif
ind = 1

endif
arg_jen = inet_getword(cmd.J?uf<1:cmd_jen}, ind, arg.J?uf}
if (arg_jen. le. 0J then

inet_getarg .false.
else

inet_getarg .true.
endif

return
end

-16-

•

•

4.4.4. Find host in etc:hosts and return inet address- GETHOSI'.INC

logical function inet_gethost(host, adrbuf)

character*{*) host
logical*1 adrbuf{4)
integer~ lun, hostlen, n, i, adrlen, m, j, k
integer~ I iblget_jun, inet_getword
character buffer~S, address~0, nicknm~

integer*4 i4
logical*1 11

equivalence (11, i4)

if {.not. I iblget_jun{lun)) then
inet_gethost ~ .false.
return

endif
open {unit= I un, f i I e=' ETC: HOSTS.', type=' Cl.D', REAOONLY,
1 err=10)
hostlen = len(host)

1 continue
read {lun, 100, end=11) n, buffer

100 format {q, (a))
if (buffer{1:1) .eq. '#') goto 1 have a comment
i = index{buffer(1:n), '#')
i f (i • g t. 0) then

n = i
endif
do 4 i = 1, n

k = ichar{buffer{i:i))
if (k .eq. 8) then

buffer(i: i) = ' '
endif

replace tabs by blanks

4 continue

2

i = 1
adrlen = inet_getword(buffer{1:n), i, address)
adrlen = adrlen + 1
address{adrlen:adrlen) = '.'
continue
m = inet_getword{buffer{1:n), i, nicknm)
if (m. le. 0) goto 1
if {m .ne. hostlen) goto 2
if (nicknm{1:m) .ne. host{1:m)) goto 2
close{unit = lun)
ca II I i blfree_j un (I un)
i = 1
do 3 j = 1, 4

k = i + index(address{i:adrlen), '.') -2
ca II otslcvt_! i _j {address { i: k), i 4)
adrbufCj) "' 11
i = k + 2

3 continue
inet_gethost =.true.

-17-

11
10

' ~.

return
close {unit= lun}
ca II I i bSfree.J un {I un}
inet_gethost =.false.
return
end

."1"
., ,,

,,_ •'

'

4.4.5. Swap bytes in short integer- SWAB.INC

integer~ function s~ab{short)

integer~ short, result
logical*l bytes{2), temp

equivalence {resu It, bytes {1)}

resu It = short
temp = bytesU)
bytes{l) = bytes£2}
bytes£2) = temp
s~ab =result

return
end

-18-

.• ..

.,,,

4.4.6. Fetch netxt word from buffer- GETWORD.INC

1

i nteger*4 function i net~etword (buf, i, out) ·

character*(*} buf, out
integer~ i, n, j

n = len(buf}
continue

if (i .gt. n) then
goto 2

e I se if (buf (i: i) • ne. ' ') then
goto 2

else
i = i + 1

endif
goto 1

2 continue
j = 1

3 continue
if (i .gt. n) then

goto 4
elseif {buHi: i) .eq. ' '} then

goto 4
else

out{j: j) = buHi: i)
j = j + 1
i = i + 1

endif
goto 3

4 continue

inet~etword = - 1

return
end

-19-

4.4. 7. Translate error into printable string- ERROR.INC

logical function error{first, second, errbuf, errlen)

integer~ first, second
character*{*) errbuf
integer~ errlen
integer~ err

errlen = 0
if {first .and. second) then

error= .false.
return

endif
if {.not. first) then

err first
else

err .. second
endif
if {(err .and. '8000'x) .eq. '8000'x) then

cal I eunice~rror{err, errbuf, errlen}
else

cal I sysSgetmsg{%val {err}, %ref{errlen), errbuf, %val (15},}
endif
error= .true.
return

end

-2o-

·ei

•

4.4.8. Translate Eunice error number into printable string - EUNICEERR.INC

subroutine eunice~rror(error, errbuf, errlen)

integer*2 error
character*(*) errbuf, temp~00
integer~ i, errlen

i = error .and. '7fff'x
i = i I 8
if (i • I e. 0 .or. i .gt. 65) then

temp = 'EUNKNOWN, Unknown Eunice error'
else

goto {1,2,3,4,5,6,7,8,9,10,
1 11,12,13,14,15,16,17,18,19,20,
2 21,22,23,24,25,26,27,28,29,30,
3 31,32,33,34,35,36,37,38,39,40,
4 41,42,43,44,45,46,47,48,49,50,
5 51,52~53,54,55,56,57,58,59,60,
6 61,62,63,64,65),

1 temp
1 'EPERM, Not owner'

goto 100
2 temp =

1 'ENOENT, No such file or directory'
goto 100

3 temp =
1 'ESRCH, No such process'

goto 100
4 temp =

1 'EINTR, Interrupted system cal I'
goto 100

5 temp =
1 'EIO, 1/0 error'

goto 100
6 temp =

1 'ENXIO, No such device or address'
goto 100

7 temp =
1 'E2BIG, Arg I ist too long'

goto 100
8 temp =

1 'ENOEXEC, Exec format error'
goto 100

9 temp =
1 'EBADF, Bad file number'

goto 100
10 temp =

1 'ECHILD, No children'
goto 100

11 temp =
1 'EAGAIN, No more processes'

goto 100
12 temp =

1 'ENOMEM, Not enough core'

-21-

goto 100
13 temp =

1 'EACCES, Permission denied'
goto 100

14 temp = ' 1 'EFAULT, Bad address'
goto 100

15 temp = ...
1 'ENOTBLK, Block device required'

goto 100
16 temp =

1 'EBUSY, Mount device busy'
goto 100

17 temp =
1 'EEXIST, File exists'

goto 100
18 temp =

1 'EXDEV, Cross-device I ink'
goto 100

19 temp =
1 'ENODEV, No such device'

goto 100
20 temp =

1 'ENDTDIR, Not a directory'
goto 100

21 temp =

1 'EISDIR, Is a directory'
goto 100

22 temp =

1 'EINVAL, Invalid argument'
goto 100

23 temp =

1 'ENFILE, File table overflow'
goto 100

24 temp =
1 'EMFILE, Too many open files'

goto 100
25 temp =

1 'ENOTTY, Not a typewriter'
goto 100

26 temp =
1 'ETXTBSY, Text file busy'

goto 100
27 temp = '-'

1 'EFBIG, File too large'
goto 100

28 temp = ;
1 'ENOSPC, No space left on device'

goto 100
29 temp =

1 'ESPIPE, I I legal seek'
goto 100

30 temp =
1 'EROFS, Read-only file system'

goto 100

-22-

...

31 temp =
1 'EMLINK, Too many I inks'

goto 100
32 temp =

1 'EPIPE, Broken pipe'
goto 100

33 temp =
1 'EOOM, Argument too large'

goto 100
34 temp =

1 'ERANGE, Result too large'
goto 100

35 temp =
1 'EWOULDBLOCK, Operation would block'

goto 100
36 temp =

1 'EINPROGRESS, Operation now in progress'
goto 100

37 temp =
1 'EALREADY, Operation already in progress'

goto 100
38 temp =

1 'ENDTSOCK, Socket operation on non-socket'
goto 100

39 temp =
1 'EDESTADDRREQ, Destination address required'

goto 100
40 temp =

1 'EMSGSIZE, Message too long'
goto 100

41 temp =
1 'EPROTOTYPE, Protocol wrong type for socket'

goto 100
42 temp =

1 'ENOPROTOOPT, Protocol not available'
goto 100

43 . temp =
1 'EPROTONOSUPPORT, Protocol not supported'

goto 100
44 temp =

1 'ESOCKTNOSUPPORT, Socket type not supported'
goto 100

45 temp =
1 'EOPNOTSUPP, Operation not supported on socket'

goto 100
46 temp =

1 'EPFNOSUPPORT, Protocol family not supported'
goto 100

47 temp =
1 'EAFNOSUPPORT, Address family not supported by protocol family'

goto 100
48 temp =

1 'EADDRINUSE, Address already in use'
goto 100

49 temp =

-23-

1 'EADDRNOTAVAIL, Cannot assign requested address'
goto 100

50 temp =

1 'ENETDDWN, Network is down'
goto 100

51 temp =
1 'ENETUNREACH, Network is unreachable'

goto 100
52 temp =

1 'ENETRESET, Network dropped connection on reset'
goto 100

53 temp =
1 'ECONNABDRTED, Software caused connection abort'

goto 100
54 temp =

1 'ECONNRESET, Connection reset by peer'
goto 100

55 temp =
1 'ENOBUFS, No buffer space avai I able'

goto 100
56 temp =

1 'EISCONN, Socket is already connected'
goto 100

57 temp =
1 'ENOTCONN, Socket is not connected'

goto 100
58 temp =

1 'ESHUTDOWN, Cannot send after socket shutdown'
goto 100

59 temp =
1 'ETDDMANYREFS, Too many references: cannot splice'

goto 100
60 temp =

1 'ETIMEDOUT, Connection timed out'
goto 100

61 temp =
1 'ECONNREFUSED, Connection refused'

goto 100
62 temp =

1 'ELOOP, Too many levels of symbolic I inks'
goto 100

63 temp =
1 'ENAMETODLDNG, File name too long'

goto 100
64 temp =

1 'EHOSTDOWN, Host is down'
goto 100

65 temp =
1 'EHDSTUNREACH, No route to host'

goto 100
endif

100 continue
errbuf = 'Eunice-E-' // temp
errlen = len(errbuf}
do while (err len .gt. 0)

..

•

if (errbuf(errlen:errlen) .ne. ' ') then
goto 101

endif
errlen = errlen - 1

enddo
101 continue

return
end

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

... .,... -- ~ ..
TECHNICAL INFORMATION"-rDEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

........

'" --. -' ~...--

. ' . ~-..

