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Department of Chemical Engineering 
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ABSTRACT 

A continuum constitutive equation is obtained for suspensions of rigid 
rodlike fibers in a viscous Newtonian medium, enabling simultaneous cal­
culation of the kinematics, stress distribution, and fiber orientation dis­
tribution. A closure approximation in deriving the equation has little 
effect in flows where an exact solution for the orientation distribution can 
be obtained. A finite element procedure is developed for the solution of 
boundary value problems in complex geometries like those encountered in 
processing. Special care is required because of a near-singularity at solid 
boundaries where the kinematical no-slip condition is satisfied. 
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INTRODUCTION 

The calculation of fiber orientation distributions in the flow of suspen­
sions in complex geometries has been limited to non-interacting systems, 
where the fiber motion is described by Jeffery's (1922) solution for the 
motion of an ellipsoid in a Newtonian fluid. Such calculations (e.g,, 
Goettler et al., 1979, 1981; Givler, 1981; Givler et al., 1983; York, 1982) 
require specification of an initial orientation for each fiber; computation 
of a statistical orientation distribution function is possible only by 
repeated calculation for different initial configurations. The statistical 
orientation distribution function is the meaningful quantity both for 
experimental measurement of orientation and for deter~nation of physical 
properties of a solidified shaped object. 

We present here a continuum constitutive equation for non-interacting 
suspensions of rigid rodlike particles in a viscous medium. The equation 
enables simultaneous calculation of the kinematics, stress distribution, and 
fiber orientation distribution. The continuum theory incorporates an order 
parameter that is obtained by statistical averaging over the response of an 
isolated fiber. Finite-element calculations with the continuum theory 
provide the detailed mechanics and orientation distribution in complex flow 
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fields like those that would be used in molding of composites; any initial 
orientation distribution, including a random distribution, can be specified. 

SINGLE PARTICLE EQUATIONS 

Lipscomb and Denn (1983) have shown that the equations computed by Jeffery 
for the fluid stress at a particle are equivalent to the equations for 
Ericksen's (1960) transversely isotropic liquid (TIL): 

(1) 

(2) 

(3) 

N = nn t (4) 

Here, the director n is a vector of unit magnitude, and 8 I 8 t is the 
corotational derivative. In the Ericksen theory the director is a vector 
field with a value at each spatial point. 

The equivalence to the Jeffery analysis is based on identifying n with the 
orientation of the axis of revolution of an ellipsoid of revolution. In 
that case, with n the Newtonian viscosity of the suspending medium and u 1 = 
0, u

0
/n, u2/n, u3/n and A can be expressed as unique functions of the aspect 

ratio, r, as shown in Fig. 1. 

The particles are assumed to occupy a volume fraction ~· The condition that 
the particles be non-interacting is 

~r2 << 1 (6) 
which is highly restrictive for applications. Particles are to be found in 
any small volume region with probability ~· The stress at the particle is 
given by Eqs. (1) through (S), while the stress away from the particle is 
given by 2ng. The average stress in a small region of fluid containing a 
single particle is therefore 

(7) 

It is to be noted that as r + 1, u /n + 2.5 and Eq. (7) reduces to the Ein­
stein equation for the viscosity o~ dilute suspensions of spheres in a New­
tonian fluid. Equation (7) requires specification of the initial spatial 
distribution of n; this distribution will usually be known only as a statis­
tical orientation distribution, in which case flow problems must be solved 
repeatedly for different initial orientations until a sufficient population 
of solutions has been obtained to compute an ensemble average. This is 
clearly not a feasible approach. 
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CONTINUUM THEORY 

Let f(g) dn denote the number of particles per unit volume with orientation 
between n and n + dn. The ensemble average of any quantity ~ is defined 

(8) 

It then follows from Eqs. (1) and (7) that the statistically-averaged 
continuum extra-stress is 

(9) 

An equation for qp is obtained by pre- and post-multiplying Eq. (2) by U 
and statistically averaging to obtain 

(10) 

These equations are equivalent to those derived by Brenner (1972) in the 
limiting case of negligible Brownian motion; specific results for shear flow 
in this limit are given by Hinch and Leal (1972). It is to be noted that 
trace qp =- 1. 

Equat.ions (9) and (1 0) contain the average <ill'!>· 
approximating <lit!> by- qpqp; the coefficient of 
unity to maintain the condition of a unit trace. 
equation is thus 

Closure is obtained by 
the approximation must be 

The final constitutive 

! = 2(n+9lJ 0 )~ + 9ll 2~:<~><~> + 2q,lJ 3 <<~>·~ + ~-<~>) (11) 

8<!!> 

8t 
Appropriate initial conditions for <~> are 

random in space 

random in a plane 

1 <N> =- - I 
3 -

<N> = l(~ 
2 0 

0 
1 
0 

~) 
0 

(12) 

<~> is uniquely specified at solid surfaces in steady flow by Eq. (12), with 
a<~>/at set to zero. 

It is important to note that ~>cannot be formed from the dyad product nut 
of any vector n, so there _is no "equivalent fiber" whose motion represents 
the ensemble average. 
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EXACT SOLUTIONS 

Equation (2) can be solved analytically for flows in which the kinematics 
are specified, in which case <~> can be computed for a given initial orien­
tation distribution by a tedious but straightforward integration over orien­
tation space. This enables direct comparison to the solution of Eq. (12) 
obtained by numerical integration, and an evaluation of the error introduced 
by the closure approximation. Figures 2 and 3 show results for plane shear 
and bi-axial extension, respectively, with r = 10. Agreement between the 
exact solution and the approximate continuum theory is excellent, and 
improves with increasing particle aspect ratio. 

FINITE ELEMENT SOLUTION 

A Galerkin finite-element program has been developed for solution of Eqs. 
(11) and (12), together with the continuity and Cauchy momentum equations, 
in complex two-dimensional and axi-symmetric three dimensional geometries. 
The program uses a mixed method, with linear shape functions for the pres­
sure and orientation and quadratic shape functions for the velocities. 
Results for the orientation distribution in plane shear and biaxial exten­
sion for random far-field conditions agree well with the direct numerical 
integration of Eq. (12). Computed contours of the independent components of 
the orientation distribution function for biaxial extension and the mesh 
used are shown in Fig. 4. 

Difficulties in obtaining numerical accuracy for finite-element solutions in 
pressure-driven flow near solid boundaries or a plane of symmetry point up 
an interesting deficiency in this and any continuum theory based on parti­
cles of zero effective length. Since the velocity vector vanishes at the 
solid surface, it follows from Eq. (12) that <N> takes on a constant value; 
<N11> equals (1-A)/2 along the wall, for example, for Poiseuille flow in the 
2-direction. There will always exist streamlines arbitrarily close to the 
wall for which the residence time is sufficient for the non-zero values of 
~> to take on all values because of rotation. Thus, arbitrarily large 
gradients which cannot be resolved by any numerical scheme must occur near a 
wall. Similar problems arise along the centerline. The problem is masked 
in the calculations of York (1983) because the residence times along all 
streamlines for which the orientation distribution is calculated are too 
short for particle rotation to occur. 

The cause of the mathematical problem is the failure of the continuum theory 
to account properly for the interaction of particles of finite size with a 
wall and with the flow field arbitrarily close to the center plane; cf. 
Batchelor (1970). The problem is analogous to the breakdown of the 
continuum no-slip condition near a moving contact line. There are two 
possible numerical resolutions. The first is to use the known asymptotic 
behavior of Eq. (12) in the shear field adjacent to the wall as the boundary 
condition on a restricted finite-element domain for the solution of Eq. 
(12). The second is to note that interactions with the wall should retard 
rotations in much the same manner as letting r approach infinity (A + 1); 
thus A can be set equal to unity at the wall and allowed to decrease to the 
value corresponding to the proper value of r over a short distance, ideally 
comparable to one particle length. Orientation in the bulk fluid will be 
unaffected by this artifact. Similarly, the derivative of <~> normal to a 
line or plane of symmetry can be set to zero to force the orientation along 
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that shear-free line or plane to. correspond to the orientation in the 
immediate neighborhood. 
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