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ZEROS IN nn SCATTERING 

* M. R. Pennington 
Lawrence Berkeley Laboratory, University of California 

Berkeley, California 94720 

ABSTRACT 

We discuss how zeros in nn scattering relate 
various dynamical aspects of the scattering amplitude. 
In particular, we consider the way in which many 
differing roles, such as the Legendre zeros of reson­
ances, double-pole-killing zeros, the high energy 
crossover zero and the Adler zero, can be played by 
the same zero contour. We emphasize that the study of 
the scattering amplitude is essentially one of looking 
at zeros travelling across the Mandelstam plane. 

INTRODUCTION TO ZEROS IN nn SCATTERING 

The purpose of this talk is to advertise a particularly useful 
tool for studying the scattering amplitude and that is the investi­
gation of the zeros of the amplitude. We will illustrate, in a 
fairly straightforward way, the close relationship between the zero 
structure of the amplitude and various dynamical mechanisms. We 
shall, of course, only consider zeros in nn scattering, but many 
of the properties we discuss are features of more general 

scattering processes. 1 

Before we can begin this discussion of what role zeros play we 
must introduce zeros into the Manqelstam plane. This we do in the 
simplest possible way. Whilst we cannot determine the scattering 
amplitude, F(s,t), everywhere, we know that in certain limited 
energy regions we can make a reasonable approximation to it. For 
example, at high energies, near the forward or backward directions, 
we can supposedly represent F(s,t) by a Regge expansion, involving 
only the rightmost Regge singularities. Similarly, in the low 
energy region, in the neighborhood of a narrow resonance, we can 
reasonably well describe the amplitude by a simple Breit-Wigner 

form. So for sE(m2 - mr, m2 + mr), where m,r are the resonance 
mass and total width respectively, we have: 

F(s,t) (2£ + 1) 2 
m 

+ background 

mrx P / 1 + 
- s - imr .e \ 

2t ) 

s - 4~-t2 

*Work supported by the u. s. Atomic Energy Commission. 
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Fig. 1. The three most important low energy 
nn resonances with spin are shown in the 
s-channel of the Mandelstam plane. The black 
dots mark the Legendre zeros of these 
resonances. 
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(i is the spin of the resonance and x = ~e£/r)~ Such a simple 

form is a good description of the amplitude at least for narrow 
resonances, e.g., for the p, f 0 , and g. We deliberately omit the 

E or cr and s* resonances, as neither is well-described by 
Eq. (1). 

Let us notice a very important feature of the resonant part of 
Eq. (1), and that is the Legendre polynomial P£(cos 9s). This 

function has £ zeros inside the physical region, i.e., for 
cos 9 E[-1,+1], where £ is the spin of the resonance. Indeed we s 
can regard these zeros as dynamical objects which give the spin to 
the resonance. We see that even though we are looking at the ampli­
tude close to a pole of the S-matrix the zero structure is equally 
important in determining the amplitude. If the background in Eq. (1) 
is negligible, the whole amplitude will have i zeros in the 
neighborhood of the spin £ resonance. In practice, of course, the 
background is not negligible and the zeros are shifted from their 
simple Legendre zero positions. However, as we shall see, unitarity 
generally constrains these zeros not to move far from where 
Pi(cos 9) = 0. 

Let us look where these zeros occur in the Mandelstam plane, 
which is where all the action takes place (see Fig. 1). The p has 
one zero, the f 0 two, the g three and so on. In Fig. 1 we 

have marked, for simplicity, the position of the Legendre zeros of 
these resonances, as if the background were negligible. So we now 
have zeros sitting in the Mandelstam plane, what do they do? 

Well, the usefulness of zeros rests in the remark that the zeros 
of an analytic function of two variables are not isolated, as shown 
in Fig. 1, but are continuous. Thus we have zero contours (to be 
defined below), which traverse the Mandelstam plane relating various 
dynamical aspects of the scattering amplitude. As we shall see, not 
only are the Legendre zeros of different resonances related to each 
other, but are also related to high energy Regge zeros. In this way 
zero contours provide a natural vehicle for duality. We shall also 
discuss how zero contours enable us to relate low energy resonance 
dynamics to chiral dynamics. 

Before we can connect up the isolated zeros plotted in Fig. 1, 
we have to define what we mean oy a zero contour and this is what 
we do next. 

with 
then 

ZERO CONTOUR DEFINED 

Consider the scattering amplitude, F(s,t), in the s-channel 
s real (since this is where we have its value experimentally), 
F(s,t) = 0 for complex values of t = t 0 (s). We then refer 

to the projection of this complex curve on the real t axis as a 
zero contour, i.e., 

t (2) 

-3-



!s a zero contour. In some cases it will be more usefUl to treat 

the amplitude as a fUnction of s and z cos 9 = 1 + 2t/(s-4~2 ) s 
rather than s and t. Then the same zero contour will be at 

2 
z = Re z0 (s) where z0 = 1 + 2t0/(s - 4JJ. ) • 

Since experimentally we look not only at real s but also real 
z, we next ask what does a zero at z = Re z

0 
+ i Im z0 mean in 

terms of measurable quanti ties, in partic~ar for IRe z0 I <.. 1. 

Experimentally we measure dcrjdn or IFI , so let us look at that. 
Well, under certain conditions, we will see a minimum in the angular 
distribution at z = Re z0 (s), so ~hat the zero contours defined 

above are just the paths of dips in the angular distribution. Now 
we know what Re z0 means, what about Im z0 ? This also has a 

well-defined interpretation. Im z0 is related to the magnitude of 

IFI at z = Re z0 . This is easy to see, since the smaller lim z0 1 

is, the closer the zero is to a real zero and so the closer 
the minimum is to zero. Now it is only nearby zeros, (with 

IFI at 

IRe z0 1 < lh which have small imaginary parts, that produce marked 
dips ~n the differential cross sections. However, these are-not the 
only zeros which play a role in understanding the scattering ampli­
tude as we shall see, so we will, in fact, need our definition of 
zero contours given by Eq. (2) which is more general than that of 
just paths of minima of dcrjdn. 

ZEROS NEAR RESONANCES 

Before we actually plot zero contours in the Mandelstam plane 
of Fig. 1, we discuss briefly what we might expect these contours 
to do when they approach resonance structures. We consider two 
examples of physical interest, for the purposes of illustration: 
(i) . a narrow p-wave resonance with a smooth s-wave background, 
(ii) a narrow s-wave structure with a smooth p-wave background. 
~ For definiteness, consider ~-rro elastic scattering in the 

s-channel. Then we ask: where does Fs1 (s,z) + Fs2(s,z) = 0 in 
the region of the p resonance? In this region we have 'just s 
and p waves and so consider* 

* In terms of partial waves it is clear why our definition of zero 
contours of Eq. (2) considers the amplitude for real s and 
complex t or z. Experimentally we know the partial waves only 
for real s, but we can use the partial wave expansion to continue 
the amplitude to complex z. More general definitions of zero 
contours with both complex s and t are not usefUl phenomen­
ologically although formally well defined in model amplitudes. 2 
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In the p 

l 2 
3f1 (s)z + f 0 (s) = 

1 region we can represent f 1 (s) 

0 (3) 

by a unitary Breit-

Wigner form and use a phase shift representation for 
that 

2 f 0 (s), so 

= 1 (m
2 

- s) 1 . 2( ) 1 . 2 2( ) (4) - 3 mr 2 s~n 280 s - 3 s~n 80 s • 

We know that if the background were negligible the amplitude 
vanishes at z = 0, so we first ask how far is the zero shifted 

2 at s = m by a nonzero background? From Eq. (4) we have 

= 

which implies 

1 . 2 ~02(m2) - 3 s~n u 

We see that even if the background were as large as pgssible, 
unitarity constrains the zero contour to cross s = m2 not far 
from z = 0. Indeed in this particular case the background is 

exotic, so sin2 80
2 is small and Re z0 (m2) ~ - l/20. 

(5) 

(6) 

Next we consider the energy dependence of the zero away from 
2 2 2 2 s = m , e.g., s€(m - mr, m + mr). If e0 is slowly varying, 

the zero contour is close to
2
linear [Eq. (4)] as depicted in Fig.2a. 

If we know nothing about e0 , other than it is between 0 and 

-n/2, the zero contour is constrained by unitarity to pass between 
the hatched boundaries of Fig. 2a. 

For 
has both 
requires 

+ -:rr :rr 
I = 0 

elastic scattering the background in the p region 
and I = 2 s-waves. Nonetheless unitarity still 

2 
0 > Re z0 (m ) > - 1/3 

so that the zero cannot be shifted too far away from z = 0, in 
this case too. 

In general for resonances with spin £ > l, zero contours will 
cross the resonance positions smoothly and close to where the 
appropriate Legendre polynomial vanishes. However, when we have 
an s-wave resonance this need not be the case and this is what we 
next consider. 
~ The situation o:f a smooth p-wave background with a rapidly 

+ -varying s-wave occurs between 900 and 1000 MeV in :rr :rr elastic 
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(A) 

s =m 2 
p 

s= 4m2
K 

----t-5 

-s 

z =+I 

z =0 

z =-1 

z =+I 

(B)-- -'""V--- z = 0 

z =-1 
XBL 734-2633 

Fig. 2. (a) The solid line marks the zero 
contour in n-n° scattering at it crosses the 

p resonance, with 50
2 assumed to be a slowly 

2 varying fUnction of energy for s ~ m . With 
2 - p 

80 E(-~,0), but otherwise unknown, the zero 

is constrained by unitarity to pass between 
the hatched boundaries. 

(b) An example of how a zero contour 
behaves when crossing a narrow s-wave struc­
ture, with a smooth p-wave background, as 
occurs in n+n- elastic scattering near 
KK threshold. 
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scattering. Then the zero contour varies rapidly as shown in Fig. 

2b, using 81
1 ~ 150° and 80° varying from 80°-200°. We should 

therefore expect to see such a wiggle in the zero contour near KK 

threshold where such a rapidly varying 80° has been found.3 

We are now almost in a position to plot zero contours on Fig. 
1. However, a remark is called for about the number of zeros 
increasing with increasing energy. Near threshold the amplitude is 
just s-wave. As the p-wave begins to grow, a zero enters the 
physical region from outside, either through the backward or forward 
direction. It steadily moves towards the center of the physical 
region when the p-wave resonates. Then as the d-wave begins to 
grow, a second zero enters the physical region. If the d-wave is 
I = 0 this zero, together with the Legendre zero of the p, will 
become the two Legendre zeros of the f 0 . As higher and higher 

partial waves grow, more and more zeros enter the physical region 
producing higher and higher spin resonances. Whether the zero 
contour enters the physical region through the forward or backward 
direction depends on the relative sizes and signs of the contributing 
phase shifts in that energy region. However, the £th zero's 
entrance is mainly controlled by the _£th and (£ ::- l)th partial 
waves. As the energy increases we should therefore expect to see 
increasing numbers of zeros entering the physical region. 

ZERO CONTOURS FROM THE DATA 

Let us look at the actual pattern of zeros
4 

for the two 

reactions ~+~- and ~-~O elastic scattering as determined from 

the s-, p-, and d-wave phase shifts of Protopopescu et a1. 3 up to 
1100 MeV (Fig. 3). 

~+~- We see the first zero enters the physical region through the 
backward direction and moves towards the center of the physical 

region, crosses s = m 2 close to p 
z = 0, then wiggles near 

threshold as expected because of the rapid variation of 0 
80 • 

KK 

The 

zero then lines up ready to become one of the Legendre zeros of the 
f 0 resonance. As the I = 0 d-wave grows a zero approaches the 

* physical region and enters through the forward direction and moves 
ready to become the other Legendre zero of the f 0 • Note that since 
the s and t channels are identical, ":he first zero looks as 
though it may well pass through the Mandelstam triangle as suggested 
by ·the dotted line -- the possible significance of this will be 
discussed later. 

* We cannot determine the zero contour far outside the physical re­
gion as a finite number of partial waves provides a poor representa­
tion there. 
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+ -Fig. 3· The zero contours f~r n n and 

n-nO elastic scattering as determined in Ref. 
4 from the s-, p-, and d-wave phase shifts 
of Protopopescu et al. and Baton et al. The 
dotted line is shown to illustrate a possible 
continuation of the first zero contour ~hrough 
the Mandelstam triangle. Since in rr-n 
elastic scattering the I = 2 d-wave is not 
well determined we have a range of positions 
of the zero contours, marked by the shaded 2 
regions. These were obtained by varying o2 
at 1 GeV from -3° to -6°. 
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O.B O.B O.B 

0.6 0.6 0.6 

0.4 0.4 

M(TT-7T0)= .97 GeV M(TT-TT0)= .99 GeV 

1.0 1.0 ,.......-~-..,....--.-----~--. 

0.4 0.4 0.4 

o.z o.z 0.2 

0.0 0.0 '--~-...J--"'-'""'--~.........J 
-z.o -1.5 -1.o -0.5 o.o o.5 1.0 -2.o -1.5 -1.0 -o.5 o.o o.5 1.0 

0.0 '--~--L---'""'="""'--~__._j 
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 

cosfl("-"0 ) cosfl("-"0) cosfl(,-,o) 

Fig. 4. The angular distributions (in arbi­
trary units) for rc\r- ~ rc\r- and 

- 0 - 0 rc :rr -+ rc 1r scattering at 970, 990, and 1050 
MeV. 
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- 0 - 0 
~ rt In rt rt elastic scattering the s and u channels are the 
same. The first zero leaves the region of the Mandelstam triangle 
enters the physical region through the forward direction crosses 
the line z = 0,-this time very close to s = m 2 since the s-wave 

.p 
background is exotic (as in Fig. 2a). Then as the zero contour 

2 
moves on there is some latitude because a2 is rather uncertain. 

The shaded area represents the possibility for 82
2 at 1 GeV 

being between -3° and -6°. As can be seen, a second zero 

approaches the backward. direction, because of the growing /f2
2 /, 

but has not yet entered the physical region by 1100 MeV. 
The fact that the first zero enters the physical region through 

the backward direction in ~+rt- scattering, whilst through the 

forward direction for rt-rtO scattering is determined by 
0 2 1 2 1 sgn(280 + 8

0 
) = sgn(81 ) and sgn(a0 ) = -sgn(81 ), respectively. 

Similarly, the second zero approaches the forward direction for 
+ - 0 - 0 rt ~ scattering as 82 > 0, whilst for rt rt scattering the 

d-wave is exotic and negative and the zero approaches the backward 
direction. 

So far we have only considered the zero contours, i.e., the 
lines z = Re z0(s), and we do not know if the zeros produce marked 

dips in the angular distributions or not. This depends on how 
large Im z0 (s) is. 

In Fig. 4 we show the angular distributions4 in the region 
where the second zero nears and enters the physical region, i.e., 
for -{S between 970 and 1050 MeV. As can be seen for both 
+ - - 0 . rt rt and rt rt elastic scattering, the first zero--the Legendre 

zero of the p--is always a very nearby zero producing a marked dip 
in the angular distribution (not just in the energy region shown). 
However, the second zero in ~+rt- scattering has a large imaginary 
part and produces no marked dip in the differential cross-section · 
until it is right inside the physical region, when its imaginary 
part decreases rapidly ready to become the Legendre zero of the f0 • 

- 0 In ~ rt scattering the second zero is not nearby even at 1.05 
GeV. 

WHERE DO THE ZERO COME FROM? 

As mentioned above, when the energy increases, higher partial 
waves grow and an increasing number of zeros enter the physical 
region, resulting in higher and higher spin resonances where do 
these zeros come from? It appears that all the zeros except the 
first, the Legendre zero of the p, may have a common origin, which 
we next discuss, leaving consideration of the first zero till later. 
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Consider ~+~- elastic scattering in the s and t channels 
and note that the u-channel is exotic having I = 2. Imagine we 

u 
already have the first zero inside the physical region and we have 
the p resonance (Fig. 5). Now we look in the unphysical region 

2 2 
near s = m , t = m There the amplitude is approximately given 

p p 
by 

F(s,t) 

where we can consider 
Rewriting Eq. (7) as 

2 
m to be complex to include the width. 

2 
F(s,t) = 

a(2m - s - t) 

(m
2 

- s)(m
2 

- t) 

(7) 

(8) 

2 2 we see F has a double pole at s = m , t = m , but with a zero 
2 intersecting this double pole at s + t = 2m , i.e., F = 0 for 

u = 41-1
2 

-2m
2

. The occurrence of such a zero which "kills" the 
double pole in Eq. (8) is completely general. Let us forget, for 
the moment, the zero contours we saw above from the data and let us 
pretend that the fixed u zero, we have just seen occurs at the 
intersection of the p poles in the s and t channels, continues 
to traverse the Mandelstam plane at fixed u.5 This zero contour 

then crosses s = mf 
2 

remarkably close to z = +1/W (i.e., where 

and then crosses s = mg2 close to z = 0 (where 

Recall we already have the p's Legendre zero in the 

P
2

(z) = o) 

P
3

(z) = o). 
physical region, so we 
f 0 , but to have a spin 

now have two zeros, which takes care of the 
3 g resonance we need another zero to enter 

2 2 the physical region between s = mf and s = mg Where does this 

come from? Well, we now have double poles in the unphysical region 
where the p and f 0 poles in the s and t channels intersect. 

Again we must have a double pole killing zero, this time at 

R 4 2 2 
- mf

2 
whJ."ch 

2 
1 t wh e u = 1-1 - m crosses s = m very c ose o · ere 

p g 
P

3
(z) = 0. As each resonance occurs we have more and more double 

poles in the unphysical region, which are killed by more and more 
zeros, which enter the physical region producing higher and higher 
spin resonances and so the cycle continues. This structure of 
fixed u zeros is epitomized by the single term Veneziano 

amplitude. 6 
This amplitude, you recall, for 

involves the product of poles in the 

-11-
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+ -Fig. 5· The Mandelstam plane for n n 
elastic scattering showing the p poles in the 
s and t channels. The circle, centered on 
the double pole in the unphysical region, indi­
cates where Eqs. (7,8) may be a reasonable 
approximation. The dashed line marks the fixed 
u zero which "kills" the double pole. 

-12-



u ,) (J 

1 

• 

t- m 2 
- 9 

~ 
~ 
~ 

t - 2 -mp 

u -J 

/ 

\ 
\ 

\ 
\ 
\ 

t=m: 

\ 
\ 
\ 

\ 
\ 

\ 
\ \ 

\ 
\ 

\ 
\ 
\ 

\ 
\ 
\ 

\ 
\ 

\ 

XBL 732-2230 

Fig. 6. The zeros (dashed lines) and poles 
(solid lines) of the Lovelace-Veneziano model, 
Eq. (10). The open circles mark the double 
poles and the black dots the Legendre zeros of 

resonances. 
2 

a.t t = m 
p 

2 The hatched band at s = m and 
p 

indicates where unitarity would 

constrain the Legendre zero of the p to be. 
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where a = a
0 

+ a'x. To kill the forbidden double poles the above 

form is ~ivided by
6 

r(2 -as -at). Let us look at the zero and 

resonance structure of this amplitude 

r(l - as) r(l - at) 

r(2 - a - a ) s t 
(9) 

This is shown in Fig. 6. Ignoring for the moment the zero close to 
u = 0, we have a zero structure exactly as described before. How­
ever, the p has no Legendre zero, the f

0 
one, the g two, and 

so on. This amplitude therefore has the wrong spin structure for 

nn scattering. This was remedied by Lovelace? by multiplying Eq. 
(9) by (l - as - at) to give 

= 
r(l -as) r(l -at) 

r(l - as - at) 
(lO) 

This introduces an extra zero, not a double-pole-killing zero, at 
2 (l - 3ao) 2 

u = 4~ - which Lovelace fixes at u = 2~ As can be 
a' 

seen in Fig. 6, this zero crosses through the Mandelstam triangle 
(the significance of which will be discussed later) and gives the 
correct spin structure to the p, f0 , g etc. However, this zero 

is outside the physical region and clearly violates unitarity, since 
at the p, for example, we have already seen it should pass through 
the marked bands shown in Fig. 6. This violation occurs because 
the s-wave amplitude with its E resonance, degenerate in mass 
with the p, grossly exceeds the unitarity bound. 

ODORICO ZEROS INTRODUCED 

Although the Lovelace-Veneziano model7 violates unitarity it 
provides a beautiful example of how an amplitude, which is essen­
tially real, is determined by knowing its poles and its zeros. 
However, the physical world is supposedly just the unitarization of 
some dual model and perhaps some features of the simple Veneziano 
model, for example, are preserved by this unitarization. Certainly 
the real parts of the pole positions are unchanged, perhaps then 
the real parts of the zero positions are still approximately at 
fixed u. Indeed this has been suggested by Odorico.5 However, 
his hypothesis of straight line zeros does not just apply to ampli­
tudes represented by single Veneziano terms, but also to amplitudes 
with resonances in all three channels, when the single term 

-14-
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Virasoro model8 is an explicit example having straight. line zeros 
(SLZ). Using this SLZ hypothesis we can build up the structure of. 
zeros and poles in the Ma.ndelstam plane for the "true" amplitude 
without recourse to a specific (nonunitary) model. Of course, to 
make anysenseof this prescription Odorico avoids the most blatant 

violation of unitarity in ~+n- elastic scattering 

first zero, which Lovelace fixes at 2 
u = 21J. , to 

by shifting the 
2 1 2 

u = I+!J. - - m 2 p 
This zero, which you recall is not a double-pole-killing zero, then 
becomes the Legendre zero of the rho with an s-wave background 
consistent with unitarity. It is rather remarkable, as we shall 
mention again later, that this fixed u zero of Odorico's now also 
crosses both the f 0 and g resonances very close to where 

P2(z) =0 and P
3

(z) = o, respectively. 

Let us look at Odorico's SLZ hypothesis in the two cases of 

~+~- and ~-~O elastic scattering4 (see Fig. 7) and compare it 
with the data of Fig. 3. 

+ -
~ The first zero certainly follows an approximate straight line 

from s = mp
2 

to s = mf
2

, just as suggested by Odorico, aside from 

the wiggle at KK threshold. This is not surprising since no such 
coupled channel effect is built into the Veneziano model. However, 
closer to ~~ threshold the data suggests that this zero leaves 
through the backward direction, while Odoricg's zero leaves through 
the forward direction (corresponding to 50 < o) and passes far 

from the Ma.ndelstam triangle. 
The second zero also does not follow a very straight line, 

however, it is very likely that it is in fact related t~ the doub~e­
pole-killing zero in the unphysical region near s = m , t = m • 

- 0 p p 
:r. ~ Here the pattern of Odorico zeros is more complicated, and 
here too the first zero does not follow Odorico's lines very closely. 
Nonetheless, it is very likely that the second zero is once again 
related to the double-pole-killing zero. However, Odorico's lines 
suggest that, in the physical region, this second zero becomes the 
Legendre zero of the g at z = 0, while the rho's Legendre zero 
becomes that of the g at z = -~~ From the data it seems that 
these zero contours do not cross, but that the double-pole-killing 
zero becomes the g's Legendre zero in the backward hemisphere 
(more on this later). 

COMMENTS ON STRAIGHT LINE ZEROS 

It is appropriate here to make a few general remarks about 
Odorico zeros. It is very likely that the increasing number of 
zeros which enter the physical region from outside are the double­
pole-killing zeros in the unphysical region (as also emphasized 
by A. D. Ma.rt'in and W. J. Ochs in these proceedings). This 
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+ -Fig. 7· Structure of Odorico zeros for rr rr 

and rr-rro elastic scattering. The dashed 
lines denote the zeros. 
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+ -Fig. 8. The Mandelstam plane for rr 1f 

elastic scattering showing the E and o 
poles in the s and t channels. (There 
is no significance to the E resonance 
being drawn at lower mass than the p: 
they are interchangeable). The black dots 
mark the four double poles in the unphysical 
region which must be killed by three differ­
ent zeros (dashed lines) if only straight 
line zeros are allowed. 
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provides us with a simple way of keeping track of the zeros and 
poles of the scattering amplitude, at least in a somewhat idealized 
world, e.g., one with the mass spectrum of the Lovelace-Veneziano 
model. The idea of straight lir.e zeros is a further idealization 
which need not occur in reality. However, it may well be that if 
we look at the Mandelstam plane as a whole and not in any local 
region, particularly near threshold, that straight line zeros are a 
reasonable first, or perhaps zeroth, approximation to reality. 

To see simply that the straight line zero hypothesis refers to 
an idealized world with Veneziano model mass spectrum, let us con­
sider a simple example. Let us return to Fig. 5 and introduce the 
€ or cr resonance. This introduces new double poles in the 
unphysical region. In the Lovelace-Veneziano model, all poles are 
real and the E and p poles are degenerate in mass. Then a 
single real fixed u zero can kill the pp, E E, a.nd Ep double 
poles. However, it is clear that in nature, if the € pole exists, 
it is not degenerate with the p. Then the complex double poles in 
the unphysical region are not degenerate and each double pole must 
be killed separately. Clearly, if we only allow fixed u zeros, we 
must have three distinct zeros, which will enter the physical 
region before 1200 MeV and produce a spin four resonance in the f 0 
region (Fig. 8). Of course, no such zeros occur here. Such a 
difficulty with straight line zeros not only occurs here but every-

* where the E and S , or any other "daughter" resonance, in one 
channel cross resonances in the other. 

If we abandon the SLZ hypothesis then one zero can be very 
clever and wiggle around to kill the four double poles in Fig. 8. 
Then there is certainly no need for this zero to enter the physical 
region along a fixed u line. Alternatively, it is possible that 
there are a number of zeros in the unphysical region killing the 
double poles, but with only one of them coming near to and entering 
the physical region. 

HIGH ENERGY ZEROS 

We next briefly discuss what happens to zeros near the forward 
or backward directions at high energies. It has been noted by 

Schmid,9 Harari, 1° Cohen-Tannoudji et a1. 11 and many others that if 
we look at the near forward Legendre zeros of the p, f 0 , and g 

of Fig. 1, then they are at the same t-value: t ~ -0.3(GeV/c)
2

• 
Similarly, their near backward Legendre zeros lie at fixed 
u ~ -0.3(GeV/c)2 . Perhaps such a fixed t or u zero persists at 
higher energies, as we may expect from duality considerations. 

If the amplitude considered involves isospin one in the 
t-channel, then we expect to see a fixed t zero at high energy. 
This is the well-known crossover zero which arises from the vanish­
ing of the imaginary part of the p exchange amplitude. In a 
model of just Regge poles and strong exchange degeneracy this 
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vanishing occurs at t ~ -0.6(GeV/c) 2, whereas absorption models 
with no strong exchange degeneracy place this zero at 

2 
t ~ -0.2(GeV/c) . 

In the absorption model of Cohen-Tannoudji et a1.11 which 
includes duality, it is conjectured that in ~+~- scattering (see 
Figs. 3,7) that a zero leaves the region of the Mandelstam 
triangle becomes the rho's Legendre zero and then moves on at 
fixed t becoming the near forward Legendre zeros of the f 0 and 

g and then the cross over zero. 
contrasted with Odorico's fixed u 
locally indicate such a behavior. 
of one zero producing this fixed t 
zeros in different energy regions, 
not "local" duality. 

Such a fixed t zero is to be 
zero. We see the data does not 
However, it appears that instead 
effect it is mocked by different 

and so exhibiting "average" but 

- 0 Similarly backward rr rr scattering is controlled by p 
exchange. We might then expect a zero to leave the Mandelstam 
triangle become the rho's Legendre zero and move off at fixed u 
along the line of Odorico's zero. Again such a high energy zero 
is built up not by one zero but by different zeros in different 
energy regions. In both forward rr+rr- and backward rr-rr0 
scattering the high energy zero pattern may be distorted by the 
presence of I = 0,2 and I = 2 exchange amplitudes, respectively, 
in addition to p exchange, so let us isolate the amplitude with 
just isospin one in the t-channel to see what happens. The zero 
contours for this amplitude are shown in Fig. 9 from the data of 

Carroll et a1. 12 as determined by Eguchi et a1. 13 * Here the 
approximately fixed t zero of Cohen-Tannoudji et al. and others 
appears quite distinctly in this amplitude, which involves just p 
exchange in the t channel. Indeed, the zero contour (Fig. 9) is 

approximately at t = -0.3(GeV/c)2 . This dip in the differential 
cross section is usually thought of in terms of the vanishing of 
the imaginary part of the amplitude at a real value of t, rather 
than as a zero of the whole amplitude at a complex value of t. 

Tryon14 has, in fact, determined the imaginary part of the prrrr 
12 

Regge residue function y (t), from the same data by performing a 
p 

physical region crossing sum rule calculation. Tryon finds Y 
p 

* Eguchi et a1. 13 also determine the zero contours for rr+rr- and 
- 0 rr rr elastic scattering from the data of Carroll et al. Apart 

from near KK threshold, their results are absolutely identical 

to those found by Pennington and Protopopescu,
4 

using the data 
of Protopopescu et al. (and shown in Fig. 3) despite the comments 
made by Eguchi et al. implying the contrary. 
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XBL733- 2499 

Fig. 9. The zero contours for the rrn ampli­
tude with isospin one in the t-channel from 
Eguchi et al. (Ref. 13) using the data of 
Carroll et al. (Ref. 12). This amplitude 
vanishes on.the line s = u (the vertical 
dashed line) by Bose symmetry. 
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vanishes at t = -0.52(GeV/c)
2 

which looks rather like the zero 
implied by strong exchange degeneracy in a pure pole model. 16 However, in Ref. 15 it is reported that Basdevant and Schomblond 
suggest that this zero is nearer -0.2 than -o.6(GeV/c)2. We 
will have to wait to see the details, before we can draw any 
conclusions . 

THE LEGENDRE ZERO OF THE RHO AND CURRENT ALGEBRA? 

We next discuss the most important zero in very low energy ~~ 

scattering and that is the p's Legendre zero. We have seen that 
this zero contour appears to pass close to threshold and near to 
the Mandelstam triangle. It is in this region that current algebra 
has some predictions to make and so let us see if they are relevant 
in any way. 

Within and near the Mandelstam triangle the amplitude is 
0 2 controlled by just the s-and p-waves f 0 (s), f 0 (s), and 

1 
f 1 (s). If the exotic channel is weak (in a sense defined below), 

these partial waves will be quasilinear given by 

foo(s) ~ ~ all(2~2 + s -~sA) 

1 l 2 
~ 4 a

1 
(s - 4~ ) 

on using crossing symmetry, so that 

5 - 6~2 
2 s 

A 

(11) 

(12) 

The forms of Eq. (ll) only apply for values of s in, or close to, 
the gap in the cut s -pla.ne. For values qf sA in this same range, 

the parameter sA of Eqs. (11, 12) is the value of s at which the 

s-wave of the Chew-Mandelstam invariant amplitude 

A(s,t) = !(FsO - Fs 2) vanishes. We see that the amplitude, in 
3 

the neighborhood of the Mandelstam triangle, is determined essen-

tially by two parameters: 1 
al to set the scale and the dimension-

0 2 less ratio a0 ja0 . It is for these two parameters that current 

algebra makes predictions, which we will shortly discuss. 
Let us remark that by a weak exotic channel we mean that the 

contribution of the I = 2 absorptive part, both in the direct 
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channel and in the crossed channel, to the Froissart-Gribov 
integrals for the p- and d-wave amplitudes below threshold, is 
very much less than the corresponding contributions of the I = 0 
and l absorptive parts. These conditions are justified by the 
nonexistence of exotic resonances and hence of leading exotic 
Regge trajectories. 

This weakness of the 
and p waves of Eq. (11) 
derivatives determined by 

I = 2 channel has implied that the 
are quasilinear below threshold with 
the p-wave scattering length, a

1
1 . 

s 

This 

scattering length can also be simply calculated using the weakness 
of the exotic channel. From an unsubtracted fixed s dispersion 

sl( relation for F s,t), we have 

~foo dt Asl(t 4 2) 
= 3rc 2 ' J..l 

2 t 
41-L 

where As1 (t,s) is the t-channel absorptive part with Is = 1. 

Using the crossing matrix we have 

dt Atl(t 4 2) 
2 J f.! 

t 

(13) 

(14) 

by the weakness of the I = 2 absorptive part in both the direct 
an·d crossed channels. To a good approximation the integrand of 
Eq. (14) is dominated by the p resonance, so we have 

~~ 10J.l
2 

\ = -z, l+ 2 2' 
m / m - 41-L ) p p 

(15) 

* using the narrow resonance approximation. Numerically this gives 

* This simple way of estimating a1
1

, which neglects all contribu­

tions except that of the rho, gives a value for a1
1 

which is 

10-15% smaller than a more exact calculation15 , 17 using the 
data and high energy estimates in Eq. (13). So our simple 
calculation is rather good. 

-22-

• 



\. .. 

u 'I) • < ,j 9 i t~;r \..I ·d..» .. .;J c..J :r! • 

1 a1 (p) ·= 0.032 in pion mass units. We see, from Eq. (15), how the 

p resonance essentially determines the scale of the near threshold 

nn amplitude, l7 using the weakness of the I ... 2 amplitude [see 
Eq. (ll)J. 

We now discuss what current algebra has to say about the nn 
amplitude in the neighborhood of the Mandelstam triangle. Current 
algebra and PCAC make definite preC::.ctions about the 4n amplitude 
when one or two pions have zero 4-momentum, that is for the ampli­
tude at certain kinematic points on the planes s + t + u = 31l2 

2 . 
or 21J. • To compare these predictions with experiment we have to 

know how to extrapolate to the plane s + t + u = 41J.
2

. Assuming 
this extrapolation is smooth and simple, two definite predictions 
from PCAC become relevant. 
(1) The Adler-Weisberger relation expresses the derivative of the 

2 
I = 1 amplitude at s = 0, t = u = ll , in terms of the pion s 
decay constant f (experimentally f = 93 MeV). The derivative 

Jt Jl 

of the I = 1 amplitude near threshold is just the p-wave 
scattering length, so that the Adler-Weisberger relation, together 

with smoothness, predicts18 

1 

24nf 2 
Jt 

(= 0.030 in pion mass units) • (16) 

Equating the algebraic conditions Eq. (15) and Eq. (16) we obtain 

1 

f 2 
Jt 

96nr
2
P(1 + 101l2 ) 

2 4 2 m m - ll 
p p 

(17) 

With ll = 0 this condition is the well-known KSRF relation. 19 
Since this condition is empirically well satisfied PCAC predicts 
the correct "scale" for low energy nn dynamics. The second 
prediction of PCAC, we consider, concerns zeros of the amplitude: 
(2) The Adler self-consistency condition20 states that the 
nn ~nn amplitude vanishes at the point 

s . t = u 
2 

!..1 (18) 

Weinberg has given an explicit extrapolation of this condition to 

the plane s + t + u = 41l2 : 

2 
A(s = ll ,t,u) 0 for all (19) 

where 

A(s,t) (20) 
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Fig. 10. A simple three dimensional illustra­
tion of how a surface of zeros for the invar­
iant amplitude A(sJt) can relate the Adler 

zero at the point s = t = u = 1-1
2 

(marked by 
A) to the Legendre zero of the p. This zero 

extrapolates to the plane s + t + u = 4~-t2 
like Weinberg's amplitude) inside the Mandel­
starn triangle. The amplitude A(s,t) is the 

+ - 0 0 
1r rr ~ rr rr amplitude in the s-channel and 

the rr-rro elastic scattering amplitude in 
the t and u channels. On the physical 
plane this figure is to be compared with 
Fig. 3. The three dimensions are specified 
by the orthogonal coordinates s,t - u and 
s + t + u. The latter variable is normal to 
the plane s + t + u = 4~-t2 and represents 
varying one pion mass at a time from 140 
MeV to zero. 
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This condition, 

vanishes at sA 
0 2 a0 /a0 = -7/2. 

Eq. (19), implies that the s-wave projection of A 

= ~2 , which we recall from Eq. (12) predicts 

We refer the reader to Weinberg 1 s paper18 for a 

discussion of the assumptions involved in this particular extrapola­
tion. This same extrapolation of the Adler zero implies that the 
+ - 2 n n elastic amplitude vanishes on the line u = 2~ (in the 

Mandelstam triangle), which is where Lovelace imposes the zero in 
his single term Veneziano model [see Eq. (10) and Fig. 6] for all 

values of s.7 Different on mass-shell e~trapolatio~y give differ-
ent values for sA, and hence for a0°ja0 , but most give sA 

2 not far from ~ . 
From the data shown in Fig. 3 we have seen that the zero 

contour, which is the Legendre zero of the p, may very well pass 
through or near the Mandelstam triangle, as suggested by the 
dotted curves. In Fig. 10 we show a simple extrapolation of the 
Adler zero on-mass-shell consistent with Weinberg's model for the 
Chew-Mandelstam invariant amplitude, Eq. (20), inside the Mandelstam 
triangle and consistent with unitarity in the region of the p 
resonance. (Note no zero at fixed s, t, or u can be consistent 
with both of these.) Whilst this simple zero contour agrees with 
the data beyond 500 MeV, we have to look in a different way to see 
that there is a zero closer to the Mandelstam triangle. Let us 
look at Re A(s,t) along the line t = 0 as a function of (s - u) 
as found from the data. From Fig. 11, it is clear that a zero of 
the amplitude really must occur near the Mandelstam triangle, 
though, of course, not necessarily exactly where Weinberg's model 
places it. In fact, a zero will pass through the Mandelstam 

triangle for 1 > a0°ja0
2 > -oo, and just below it (in the sense of 

Fig. 10) if the ratio a0°ja0
2 is large and positive. From Eqs. 

(11) and (12), it is clear that an exact knowledge of sA' an as 

yet poorly known parameter, is required before we can know the 
s-wave scattering lengths in any way but crudely. 

By relating the on-mass-shell appearance of the Adler zero to 
the Legendre zero of the p we understand immediately why if we 
take a model like that of Weinberg's or any other having s-waves 
with near threshold zeros and unitarize it, we obtain a resonating 

p-wave. 22 The near-threshold zeros of the s-wave imply a zero in 
the invariant amplitude which unitarity forces to curve down into 
the t and u channel physical regions (Fig. 10), and when this 
zero contour crosses the line zt = 0 we have to have a p-wave 

resonance, 23, 2 at least if the exotic amplitude is weak. However, 
the actual parameters of this p-wave resonance are not quite so 
simply understood. 

Having discussed most of the zeros of present physical 
interest all that remains is to summarize. 
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Fig. 11. A plot of2the Re A(s,t = 0) 
against (s - u)/4~ from the data of 
Protopopescu et al. and Baton et al., 
illustrating that there must be a zero of 
this amplitude between (s - u)/4~2 = -5 
and +5. The solid line is Weinberg's 
prediction for this amplitude inside the 
Mandelstam triangle. The amplitude A(s,t) 

d . b + - . 0 0 tt . . th escr1 es n n ~n n sea er1ng 1n e 
s-channel. For similar plots for other nn 
amplitudes, see D. Morgan (Ref. 1). 
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CONCLUSIONS 

Zeros provide us with a particularly beautiful, yet simple, 
way of relating various dynamical aspects of the scattering 
amplitude. We have discussed how double-pole-killing zeros become 
the Legendre zeros of resonances and how these zeros appear in the 
high energy Regge region. Finally we have discussed how the near­
threshold zeros of the nn s-wave amplitudes are related to the 
existence of a resonating p-wave and how this Legendre zero of the 
p may be thought of as the on-mass-shell manifestation of the Adlet 
zero appearing in the physical scattering amplitude. In this way,2 
the investigation of zeros may help us to understand how unitarity, 
analyticity, and crossing build the dynamics of the scattering 
amplitude., Indeed, we can think of the study of the scattering 
amplitude, both theoretically and experimentally, as essentially 
one of looking at zeros travelling across the Mandelstam plane. 
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