
, ' 

(~:' :r .~-~~~~. -

J~ 

LBL-17814 'd
Preprint C'. 

IrnI Lawrence Berkeley Laboratory 
1Ii:I. UNIVERSITY OF CALIFORNIA 

EARTH SCIENCES DIVISION 
RECEIVED 

LAWRENCE 
BERKELEY LA8()~?ATORY 

Submitted to Water Resources Research JUL % 4 1984 

GEOMETRY-1MBEDDED DARCY'S LAW AND 
TRANSIENT SUBSURFACE FLOW 

LIBRARY AND 
DOCUMENTS SECTION 

T.N. Narasimhan 

April 1984 

.- ..,..-- .- -- ~ _ .... --' -~ ... -. 
. .~. ' . ". 

TWO-WEEK LOAN COPY:'~: ; 
, '. I 

\ This is a Library Circulating Copy .':1 
I which may be borrowed for two weeks. '~ 
I . , '.' "I 
. , ' .. " , 1 

....... ___________ -:t~_:;'_. .. ."""'''- ,""""_,,, =========.::=~""'_~"""'·_.,-;("t',.\ 
t .. _, 

r 
I " /'::-. , ----i. " - ~.;"":- :~~,,-'''''-./ 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-17814 

GEOMETRY-IMBEDDED DARCY'S LAW AND TRANSIENT SUBSURFACE FLOW 

T. N. Narasimhan 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

This work was supported by the Director, Office of Energy Research, 
Office of Basic Energy Sciences, Division of Engineering, Mathematics 
and Geosciences of the U. S. Department of Energy under Contract No. 
DE-AC03-76SF00098. 



iii LBL-17814 

GEOMETRY-IMBEDDED DARCY'S LAW AND TRANSIENT SUBSURFACE FLOW 

T. N. Narasimhan 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

ABSTRACT 

The-traditional interpretation of Darcy's experiment views it as a 

valuable means for setting up the partial differential equation of 

transient or steady state subsurface fluid flow. In the present work 

Darcy's observations are viewed from a different perspective, enabling 

the statement of transient subsurface fluid flow in terms of an equa-

tion defined over finite domains of space and time. Two new notions, 

namely, geometry-imbedding and location of average are introduced. The 

equation describes transient flow along a flow tube with arbitrarily 

varying cross section consisting of materials with properties dependent 

on fluid potential. This equation, based on its own postulates, is 

fully consistent within itself and exists independently of the classi

cal partial differential equation. This brief report presents prelimi

nary ideas on what appears to be a promising new line of inquiry that 

departs from the tranditional approach based on continuum mechanics. 

Further work is in progress. 
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INTRODUCTION 

Darcy's classical experiment involved observations on a tube of 

uniform cross sectional area filled with a homogeneous porous material, 

through which water was flowing at a steady rate. Darcy found that the 

flow rate through the tube was directly proportional to the drop in hy

draulic head between the ends of the tube and inversely proportional 

to the length of the tube, L. In order that Darcy's observations may 

help formulate the differential equation of flow in a porous material, 

it is customary, in the interpretation of Darcy's experiment, to let 

the length, L of the tube to tend in the limit to zero~ When this is 

done, Darcy's observations lead to the inference that the flow rate 

through the tube is directly proportional to the hydraulic gradient. 

In the present work, we shall view Darcy's observations from a 

different perspective, without requiring that L tend in the limit to 

zero. Accordingly, Darcy's Law is viewed as a statement of the rela-

tion between flow rate,potential difference and the geometry of the 

flow tube. Development of this perspective leads to some interesting 

insights about how one may formulate and solve the transient subsur

face problems by techniques quite independent of the classical differ

ential equation. The purpose of this brief report is to present the 
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preliminary ideas in this regard. Work in the development of the ideas 

is still in progress. Narasimhan and Goyal (1981) briefly reported on 

these ideas in the form of an abstract. 

DARCY'S LAW 

We consider that Darcy's observations are in general applicable to 

a flow tube of non-uniform cross sectional area, bounded by surfaces 

of equal potentials at either end and with impermeable sides (Fig. 1). 

The flow tube consists of many stream lines and the flow rate through 

the tube is spatially constant, although the velocity is not. We de

fine the area of cross section of the tube at any given location to be 

the area of the equipotential surface at that location, which, inci-

dentally is perpendicular to the stream lines. Let us choose anyone 
, 

of the stream lines to form the X axis. Then, the ~rea of cross sec-

tion of the tube, A = A(x). 

If we assume creeping flow and equilibrium of forces, then, the 

impelling pressure forces on the fluid are exa~tly balanced within the 

tube by the sum of frictional forces generated by the flowing Newtonian 

fluid and the body forces due to the weight of the fluid itself. Then, 

following Collins (1961), one can show, as demonstrated in Appendix 1, 

that, 

Q = (1 ) 

where Q is the volumetric flow rate through th tube; K is the hydraulic 

conductivity of the homogeneous material; -1 and ~2 are the hydraulic 



Equipotential 
surface,., 
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Figure 1. Sketch of a flow tube of non-uniform cross sectional area 
filled with a homogeneous porous material. 
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heads at xl and x2; and A is the area of cross section (Fig. 1). 

Equation 1 is a valid generalization of Darcy's Law. It simply states 

that the flow rate is a function of the potential drop over the tube, 

the geometric properties of the porous material and the properties of 

the Newtonian fluid (both of which are included in K) and the geometry 

of the macroscopic flow channel. For a tube that is filled with a non 

homogeneous material such that K is a function of x, one may generalize 

(1) as follows: 

Q = (2) 

As shown in the appendix, one could neglect body forces and extend 

the derivation to the flow of a non-ideal gas with the expression, 

(3) 

where Qm is rate of mass flow, k is absolute permeability, ~ is gas 

viscosity, M is molecular weight of gas, R is gas constant, T is tem

perature and Z is a factor for non-ideal gas behavior. 

TRANSIENT SUBSURFACE FLOW 

We now wish to use (1) or (2) to formulate the equation for trans

ient subsurface flow. Obviously, neither (1) nor (2) is in a form 

compatible with the format of the differential equation. Therefore, 

we shall attempt to formulate t~e transient equation in a spatially 

integrated form. 

o 
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In Figure 2, ~ is a segment of the stream tube bounded by two sur

faces Land R that are perpendicular to the stream lines. If we treat 

~ as a discrete elemental volume, then we may write the equation of 

mass conservation for this element as follows: 

(4) 

where p is the density of water; ~t is a discrete interval of time; 

QL and QR are flow rates across Land R; and ~Mw,~ is the change 

in mass of water over element ~ during ~t. We now wish to express the 

right hand side of (4) in terms of the average hydraulic head over ~. 

To this end we introduce the capacity term through the relation, 

(5) 

where M n is the fluid mass capacity of element 1 (Narasimhan and 
C,N 

Witherspoon, 1977). Fluid mass capacity is a generalized storage co

efficient for an arbitrary volume element. Also, ~~1 in (5) is the 

average change in hydraulic head over ~ during the time interval of 

interest. In view of (5), we may rewrite (4) as, 

(6) 

Under general transient conditions, the hydraulic heads at Land Rand 

at any location in between will be changing at different time rates, 

with the result that ~~ will vary along x. If so, at what location 

will the ~~~ given in (6) will occur? To answer this, we introduce 

the postulate described below. 

Assume that element 1 is consists of a material with a spatially 

constant specific fluid mass capacity, m n, such that, 
C,N 

(7) 
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Figure 2. A section of a flow tube treated. as an elemental volume R. • 
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where VR, is the volume of R, and mc,R, is the specific fluid mass capac

ity. Then~ at any given instant the average hydraulic head ~l over 1 

is defined by 

x
R 

. 

A (x) dx = V ~ I ~ ( x) A ( x) dx 

xL 

(8) 

Now, let ~L be the hydraulic head at L and ~R the hydraulic head at R. 

We may now apply (1) to the element and write, 

-K(~R - ~ ) 
Q = L 

f R d 

x A(~) 
L 

(9) 

In view of (9) we get the expression for hydraulic head at any location 

on the x axis: 

(10) 

tet xl be the location between xL and xR at which the average hydraulic 

head of the element is realized. Then, from (10), 

(11 ) 

Also, from (8). 
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x xR (~R - -L) f dx 
J\\xT 

I/J
t 

1 
[I/JL + 

xL 
] A(x) dx. (12) = x 

fR dx f R A(x) dx 
xL xL x A(XT 

L 

Equating ( 11) and (12) and rearranging terms we get, 

x . [R dx 
, AfXT 

L
Xt 

dx xL 
x A{XT = -r"( 0..-

R
--I/J..,....L ........ }-( 

L 

(13) 

This equation can be simplified by algebraic manipulation to 

[

t dx 1 

A(xT =JxR 
L A(x) dx 

xL 

(14) 

One could explicitly solve (14) for Xt, the location at which the aver

age hydraulic head I/J t occurs within the element t. We postulate that 

Xt is the "location of average" for element t. Note that for the situ

ation in which K and m n do not vary with time or with hydraulic head, 
C'N 

the only unknown in (14) isxt , and it is purely a function of the geom-

etry of the element. 

One can easily verify, for example, that for a cylindrical shell 

bounded by an inner radius xL and an outer radius xR (14) leads to, 
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(15) 

and, for a spherical shell, 

(16) 

In view of (1) and (14), we can now write the governing equation 

for the transient behavior of element t. Consider, as shown in Fig. 3, 

the element t and its nei ghbors 1 and 2. The equat i on of mass conser

vation for t is now given by, 

(17) 

where 60 (xt ) = 60t is the change in hydraulic head at x
t 

and is given 

by, 

(18) 

Equation (17) is an exact statement of the transient problem for a 

discrete elemental volume and can be solved for 60t as accurately as 

one may desire. 

THE HETEROGENEOUS CASE 

We now consider cases in which hydraulic conductivity and specific 

fluid mass capacity are functions tif position. The spatial dependence 

of these properties may arise either of two ways. In .the simpler case 

of heterogeneity, the properties are known a priori as functions of 

location and they remain independent of time. In this case one can 
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Figure 3. Volume element t and its neighbors, volume 
elements 1 and 2, showing locationsof 
average xl, Xt and x2 
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evaluate flow rate using (2) in which the hydraulic conductivity is 

incorporated into the integrand in the denominator. So also one could 

evaluate x~, the location of the average hydraulic head over ~ by ex

tending (14) to include K within the integrand and solving explicitly 

for x~. 

Consider, for illustration, equation 2. Suppose the interval 

(xl' x~) consists of four different materials with the material inter

faces perpendicular to the stream lines as shown in Fig. 4. The flow 

rate within this tube can be expressed by, 

-(t>~ - t>1) 
Q =----------------~--~-----------------------

_l_f
xi 

dx + 1 fX
j 

dx +1 IXk 
dx + 1 IX R, dx 

Ki x A\xT Kj 'A\xT Kk ,ATxTKR, A\xT 
I x. x· Xk 1 J ' 

(19) 

If A is constant in (19), then one can easily derive the well-known 

expression for harmonic mean for hydraulic conductivity, 

(20) 

Or, if the tube is radially symmetric such that A = 2nx, then we ob-

tain, 

XR, 
R,n-

Kmean = R,n 

Xl 
(21) 

xi7x1 R,n x .]x. 1I:i1 xk7xj 1I:i1 ~7xk 
+ J 1 + + 

Ki K. Kk KR, 
J 
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Figure 4. Volume element 1 with 4 different materials with 
hyd~aulic conductivities Ki, Kj' Kk and Kl. 
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THE NONLINEAR CASE 

We now consider the case in which hydraulic conductivity is a func-

tion of hydraulic head. In unsaturated systems, hydraulic conductivity 

is a function of pressure head and hydraulic head is equal to pressure 

head plus a constant, the elevation head. If elevation is assumed to 

be constant, we may treat K as a function of hydraulic head in our dis

cussions. In this case we may generalize (2) and obtain, 

-(~2 - ~1) 
Q =-~-~--x 

J 
2 dx . 

k[~(x)]A(x) 
x . 
1 

(22) 

Equation 22 is an implicit equation because the function ~(x) 

within the integrand is unknown. We cannot, therefore, explicitly 

compute the flow rate. We may, however, use an appropriate 'recursive 

technique and simultaneously solve for Q as well as ~(x) within the 

interval (x1,x2). 

For the non-linear case, the calculation of, xi' the location of 

the average potential wjthin element i leads to some difficulties. 

Following (8), one could express an average hydraulic head for the 

element by the relation, 

xR 
~i = V m

1 I' mc(~) ~(x) dx • 
c, i x 

. L . 

(23) 

In (23), mc(~) within the, integrand denotes the material property which 

is a function of the hydraulic head within the element over which 

hydraulic head is varying. The mC,i in the denominator, however, 

represents the Ilaverage" specific fluid mass capacity for the entire 
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element. There is no sound logic available as to how one may define 

an average specific fluid mass capacity for an element over which the 

material property is a function of potential. As a result the average 

hydraulic head in (23) is also poorly defined. To avoid contending 

with this difficulty in formulating the transient equation, we dispense 

with the notion of specific fluid mass capacity and use a more primi

tive notion of fluid mass capacity. 

Consider an interval of time 6t extending from to to t 1• Let 

Q be the volumeteric moisture content of the material of interest and 

let Q be a function of hydraulic head. That is, Q = Q(~). Then, the 

change in the mass of water in the element over the time interval is 

given by, 

6Mw,~ (6t) = Mw,~ (t1) - Mw,~ (to)' (24) 

One could evaluate the mass of water contained the element at the two 

instants of time by the relations, 

xR 
Mw ,~ ( to) = f P 9 ( to) A ( x) d x 

xL 

M 
w,~ 

xR 
(t1) = J P9(t1) A(x) dx • 

xL 

(25) 

(26) 

In order, to evaluate the integrals in (25) and (26) we need the dis

tributions in hydraulic head over the element at the intants to and 

t 1• These distributions can in fact be obtained by implicitly solving 

(22) for flow rate as well as for the distribution of hydraulic head. 

We can now define the fluid mass capacity of element ~ by the re-

lation, 

", 
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(27) 

where 

However, since the change in potential over the time interval is a 

function of position within the volume element, the question arises 

as to the location at which A0 i should be measured. The answer is 

surprisingly simple; one can choose A~~ to be measured at any de

sired l~cation within the element as long as one recognizes that the 

value M n computed is associated with that chosen location. In other c,x. 
words, 

(28) 

where x~ is a conveniently chosen location anywhere within~. It is 

clear from (28) as to why the fluid mass capacity so defined is primi-

tive in nature. It is customary to define fluid mass capacity or spec-

cific fluid mass capacity for the limiting case in which A~~ tends to 

zero. Thus, for example, one usually defines, 

(29) 

However, in (28) we have let A~~ be a finite quantity. Secondly, fluid 

mass capacity and the analogous notion of heat capacity are customarily 

treated as material properties without any dependence on a spatial 10-

cation. Such a consideration is valid if the elemental volume changes 

from one hydrostatic state to another hydrostatic state. In this case 

o is constant everywhere within the element at any instant and fluid 
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mass capacity is uniquely defined in (27). However, if one is concerned 

with a discrete volume element that is changing from one transient state 

to another, the denominator in (27) is a function of position and one 

has to relate the definition of fluid mass capacity to a spatial loca-

tion. 

There is a special case that merits attention. If the volume ele

ment is made to be infinitely small, that is, one lets Vi tend in the 

limit to zero, then the elemental volume contains only one point and 

the fluid mass capacity could conceivably defined uniquely at that 

point. 

In view of the foregoing, we may now write the governing equation 

for a volume element under transient conditions, 

I ¢>1 - ¢> i ¢2 - ¢ i 
p~t +. 

xi X2 

I dx I dx 
K(~(x))A(x) K(~(x))A(x 

Xl xi 

(30) 

One could solve (30) over arbitrarily discrete spatial and temporal 

domains using appropriate numerical methods involving iterative, re-

cursive or other techniques. 

DISCUSSION 

For the special case of a volume element which is a segment of a 

stream tube we have developed a governing equation for transient sub

surface flow. This equation is neither a differential equation nor a 

integro-differential equation usually obtained by integrating the dif-

ferential equation. It does not involve any spatial derivatives. Nor 
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• does it involve the notion of a point. Logically, the equation is 

consistent in itself and is founded on its own postulates. Numerical 

solutions of the equation can be validated in terms of the accuracy 

with which the integrals are evaluated and the time-dependent parame

ters are estimated. In other words, this development is completely 

independent of a differential equation, although one could relate this 

development with the appropriate differential equation for purposes of 

qualitative or quantitative comparison. 

As pointed out in the introduction, the purpose of this prelim-

inary report is to present a new perspective that may provide fresh 

insights into the formulation of transient subsurface flow equations. 

For example, if the complete independence of the formulation from the 

differential equation can be asserted, tne question of validating nu-

merical models can take on an entirely new significance. The current 

mathematical approach to validating numerical models consists in com-

paring discretized numerical solutions to known analytic solutions. A 

credible validation is indeed assumed impossible without the availa-

bility of an appropriate analytic solution. Secondly, when one uses 

the classical integrodifferential equation as the basis of numerical 

solutions, one is constrained to evaluate the spatial gradients of 

hydraulic head by discrete methods such as the finite differences or 

the finite elements. Unfortunately, since gradient, by definition, is 

a limit concept, the only real way of minimizing errors in the evalua

tion of gradients is to use arbitrarily fine discretization. Because 

of this, improved accuracy in the traditional approach implies finer 

discretization and larger computer storage. In an equation such as 
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(30) in which a true gradient does not occur, the solution process 

is not strongly dependent on discretization. Accuracy does not 

necessarily imply finer discretization, a factor of much practical 

signific~nce in numerical modeling. 

A key issue that will be raised in regard to (30) is that it is 

specific to a stream tube. In many problems of interest we do not 

know the location of the stream tube. Therefore, one could argue that 

the discussions presented here, although of interest, are of limited 

practical value. Two points are 'worth noting in this regard. First, 

in its essentials Darcy's Law, wnich provides a fundamental postulate 

for our theoretical development, is well defined only for a stream 

tube bounded by surfaces of equal potential. If we desire to validate 

our models against the postulate of Darcy's Law, it is very difficult 

for us to do so unless we deal with geometries closely related to the 

basic features of Darcy's Law. For more complex conditions, additional 

postulates, extending beyond Darcy's Law will be needed if more g~neral 

validations are desired. 

Second, even a stream tube formulation may not be very limiting. 

We may classify the problems of interest in sUbsurface fluid flow into 

three categories: 

1. Those in which the flow geometry is prescribed in detail. 

This would include axi-symmetric or spherically symmetric 

problems as well as many otner problems with mixed symmetry. 

2. Those in whicn the stream tubes do not change with time but 

whose exact locations are a priori unknown. 
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3. Those in which the stream tubes vary with time. Problems 

in category 1 can be addressed directly using the ideas pre

sented here. The number of problems of interest here are 

not trivial, if we recognize that when we deal with non-

linear systems, we still attempt to consider only the sim-

p1est geometries. 

One could take on problems under category 2 using the ideas 

presented if one uses the qualitative understanding of the problem 

on hand to set up the flow region discretization. Extension of the 

method to handle problems in category 3 should surely await further 

development of postulates in regard to flow tubes that change geometry 

with time. 

RELATION TO DIFFERENTIAL EQUATION 

We can combine (17) which expresses the linear problem and (30) 

which expresses the non-linear problem to write a general expression, 

(Fig. 3), 

~l-~t ~2-~~ 
= M t 

6~(Xt) 
p + 

~Xl 
x c, 6t 

dx ~ 2 dx 
x K(.)A(x) K(.)A(x) 
1 x~ 

(31) 

In the case of the linear problem K(.) is an a priori known spat

ial function, while in the case of the non-linear problem K(.) is 

a function of ~, which in turn is a function of x. Considering 

the right-hand side of (31) Mc,t = V mc,t in the case of the lin

ear problem where mc,t is an a priori known function of space and x~ 

is the "location of average ll
• For the non-linear problem, Mc,t is a 

function of the arbitrarily chosen location x~ and, is as defined 

in (28), applies to the arbitrarily chosen time interval 6t. 
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In order to derive the partial differential equation from (31), we 

may express the right-hand side of (31) by the equivalent expression, 

(32) 

For the linear problem mC,t is a known average value that is inde-

pendent of time. For the non-linear problem, m in (32) satisfies C,t 
the relation according to (28), 

(33) 

where ~~(Xt) is the average change in potential at xt over an arbitrar

ily chosen time interval ~t. 

We may introduce a set of assumptions now to derive the parabolic 

partial differential equation. First we assume that A(x) has a simple 

functional form such as A(x) = Ao + mIx or Ao + m1x2 with the parame

ters Ao and m1 remaining constant between xl and x2 (Fig. 3). We may 

then divide both sides of (31) by Vt and state the conservation of mass 

per unit volume of element t, 

. K(.)A(x) 
1 

~2-1/J 
+ t 

f
X2 dx 

x """"'K (.--. "'<"'1) A:-T'( -'x )r-I 
t 

(34) 

We m~y now let Vt ~ ° so that the left-hand side of (34) leads to the 

div of pK(.)a~/ax. By definition (Sokolnikoff and Redheffer, p. 394) 

divergence is merely the rate of accumulation per unit volume in a 

vanishingly small elemental volume. The condition Vt ~ 0, requires 

that (Fig. 3), xL ~ Xt and xR ~ Xt so that XL' xt and xR coalesce. And, 

if we let ~t ~ 0, (34) collapses to a point-equation, 
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a~ a~ -div. pK(.) ax = mc ~ • (35) 

For the linear problem K(.) and mc are constant. For the non-linear 

problem K(.) = K(~) and mc = mc(~) which is defined by 

Lim 1 AMW,t 
mc = Vt ~ 0 v;- A~t 

A~t ~ 0 ~ 

(36) 

The POE in (35) has been derived from (31) subject to the assumptions 

of a simple functional form for A{x) with constant parameters Ao and 

mI. If these parameters change along the flow tube, then one has to 

set up a POE for each segment over which Ao and m1 are constant and 

couple adjoining segments by continuity criteria. Moreover the POE is 

also subject to the assumption of a vanishingly small element, a van

iShingly small At and a vanishingly small A~t is defining mc as in (36). 

The primitive equation (31), on the contrary, is not limited by any of 

these assumptions. 

It is very important to point out here that the location of aver

age xt and its role in influencing mc,t{x t ) are not explicitly mani

fest in the POE because the plurality of xL' xt and xR is lost in 

the point-wise POE. If one wishes to obtain (31) by integrating (35) 

in space and time, one has to carefully introduce the notion of loca-

tion of average into the integration process. This step requires a 

kno~ledge of the manner in which (35) is derived from (31). However, 

of one simply starts with (35) asa mathematical statement and carries 

out the spatial and temporal integrations, one could end up with an 

expression that is indeed different from (31) and hence not exactly 

representative of the non-linear physical problem of interest. 
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AN ILLUSTRATION 

We will just consider one example to illustrate that the logic 

developed in so far does indeed have practical merit. We consider 

the radial flow of water to a well of finite radius, 0.1 m, producing 

at a constant rate Q. The well fully penetrates an aquifer of con-

stant thickness H, consisting of a homogeneous material with constant 

hydraulic conductivity and specific fluid mass capacity. For this 

system, the analytical solution is given by, 

~(t) - ~o = 4~KH W(u) (37) 

W(u) = [ _e:_
u 

du 

, u 

(38) 

in which 

(39) 

In the above, r is the distance to the point of observation and ~o 

is the initial potential, assumed constant throughout the aquifer. 

To solve this problem numerically using (17), the aquifer was di

vided into 4 cylindrical shells, each representing a volume element as 

shown in Fig. 5. As can be seen, the discretization is very coarse, 

with the volume of a given element being 2,500 times larger than the 

next smaller one. Also, the well itself is treated as a volume ele-

ment to realistically simulate effects of well-bore storage. 

The results of the simulation are given in Fig. 6 and Fig. 7 which 

are plots of the dimensionless variables appropriate to the problem. 

The solid line in the figure is the analytic solution and the solid 

-. 
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dots denote the results obtained by solving (17). The open dots denote 

solution obtained using the conventional Integrated Finite Difference 

Scheme (Narasimhan and Witherspoon, 1976). It is clear that despite. 

the extremely coarse discretization used, equation (17) has led to a 

solution that is reasonably close to the analytic solution. 

The wave-like departures of the numerical solution from the 

analytic solution merit attention. Note that as the discharge is 

commenced as a step function at t = 0, a perturbation front migrates 

radially from the well-bore at a finite velocity. A finite time in

terval is needed for this front to succ~ssively cross the outer sur

face of each volume element in Fig. 5. Until the perturbation front 

has crossed the outer surface of a given element, only that part of 

the element from the inner surface to the location of the front really 

experiences the transient flow. The rest of that of element beyond 

the location of the perturbation front does not participate in the 

transient process. Therefore, the bulk volume of the element is a 

function of time until the perturbation front passes its outer sur

face. During this period of time-dependent geometry, the location of 

the average hydraulic head within the element, x~, is a function of 

time. It appears that the wave-like departures in Fig. 6 and Fig. 7 

arise from not accounting for the time-dependent geometry of each of 

the elements during the appropriate early times •. This reasoning is 

supported by the fact that the numerical solution exactly matches the 

analytical solution for very large times (to greater than 109) 

after the perturbation has crossed the outer impermeable boundary of 

the system. Indeed, this reasoning suggests that if a proper logic 
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Figure 5. Space discretization for example prOblem. 
xl, x2, x3, x4 represent locations of average. 
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GEOMETRY-IMBEDDING: COMPARISON WITH CONVENTIONAL METHOD 

o Numerical t IFDM 
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geometry - imbedding 
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Figure 6. 
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Example problem: Comparison of geometry-imbedded solution 
with analysis solution and a conventional numerical solution. 
Radially infinite case. 
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GEOMETRY-IMBEDDING: EFFECT OF OUTER BOUNDARY 
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Figure 7. Example problem. Comparison of geometry-imbedded solution 
with analysis solution. Radially bounded case. 
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can be developed to handle the rate of propagation of the front in 

time~ then one may be able to solve the entire problem with but a 

single volume element that spans the region from the well to the 

front. The geometry of this element will of course be a function 

of time. The novel possibility then arises that the solution of the 

transient problem should in fact seek to predict the position of the 

propagating front as a function of time. If its position is known at 

any instant, one may use (10) to compute ~(x) at any location within 

the element. This perception of solving the transient subsurface 

problem is quite different in character from that of the traditional 

approach of computing solutions at discrete points in a spatial domain 

which is fixed in time. 
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APPENDIX 1 

Derivation of Geometry-imbedded Darcy's Law 

Consider a tube of non-uniform cross sectional area inclined at 

an angle s from the horizontal and filled with a homogeneous porous 

material (Fig. A.l). Let water flow from left to right as shown. 

Fp is the force that impels the water to flow in the direction of 

movement. This force is opposed by the body force FB and the fric

tional force, F. Assuming equilibrium of forces, we may write, 
p 

Fp=Fp+FB' (A.l) 

We postulate the following expression for Fp' 

Fp = n(Pl - P2) A (A.2 ) 

where, A is the mean cross sectional area, given by, 

A = 1 
x2 J A(x) dx x2-x l 

xl 

(A.3) 

and n is porosity. The body force, FB is given by, 

FB = Vnpwg sins 
z2-zl 

= Vnp g w x2-x l 
(A.4) 

where V is the volume of the tube, Pw is density of water, and g is 

acceleration due to gravity. 

For a Newtonian fluid, F is the frictional exerted by the moving 
p 

fluid on the solid grains. That i~, 

dv 
F = p «-» A 

p dy s (A.S) 

where p is the coefficient of viscosity, v is fluid velocity which is 
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Datum, z =0 

XBL844-9766 

Fig. A.I. Schematic representation of an inclined flow tube filled 
with a homogeneous porous material. 
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zero at the solid surface under conditions of non-slip, As is the total 

surface area of the solid grains and they y axis is oriented perpen

dicular to the solid surface. We now develop an expression for F in 
lJ 

a manner suggested by Collins (1961) • 

As shown in Fig. A.2, consider a small segment of the flow tube 

with thickness dx. Let the average velocity gradient within the pores 
dv contained in this segment be <dy>. We postulate that this average is 

proportional to the average macroscopic velocity across the flow tube 

at x. Thus, 

dv Q 
<dy> = B A\xT (A.6) 

where B is a constant of proportionality, which depends on pore diam-

eter, tortuosity and specific surface of the porous medium. We now 

wish to average <dv/dy> over the entire tube. We postulate, 

" • • f 

(A.7) 

In view of (A.7) we may write, 

(A.B) 

(A.B) where a is the specific surface of the porous medium. In view 

of (A.2), (A.4) and (A.B), the equilibrium equation (1) becomes, 
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Fig. A.2. A small segment of the flow tube with width dx and area 
A{x) • 

,. 
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Or, rearranging and simplifying, 

-n 
Q = sa x . 

i 2 dx 
A\xT xl 

Noting that p = Pwg , we may rewrite (A.10) as 

where '1' is pressure head. 

Or, 

where 

Pwgn 
K - -- and ¢J = z + '1'. - BO'~ 

Extension to Flow of a Gas 

(A.9) 

(A.10) 

(A.l1 ) 

(A.12) 

It is of interest to extend the above derivation to the flow of a 

non-ideal gas under isothermal conditions. For a non-ideal gas, 

Mp 
P = 'ZR'r (A.l3) 

l 
.' 
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where M is the molecular weight of the gas, Z(p) is the Z factor to 

account for deviations from the law for ideal gases, R is the gas 

constsnt and t is temperature. 

In dealing with the steady flow of a compressible fluid through a 

porous medium we need to recognize that it is the mass flux of the gas 

that is constant across any cross 'section of the flow tube and not the 

volumetric gas flux. Secondly, we may neglect for convenience the 

gravitational potential in considering the flow of gases. 

Accordingly, rewrite (A.6) for a gas using the mass flux of the 

dv Qm 
<dj> = B p{x}A{x} • 

In view of (A.l3), we may rewrite (A.l4) as 

Consequently, 

Z(p(x) 
p(x)A(x) • 

Equating (A.l6) with Fp' rearranging and simplifying, we get, 

k M (PrPl) 
Qm = - -; RT IX 

2 Z(x)dx 

X 
p{x)A{x) 

1 ' 

(A.l4) 

(A.l5) 

(A.l6) 

(A.I?) 

.. ' 

''0' 
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