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MACROSCOPIC TREATMENT OF NUCLEAR DYNAMICS* 

W. J. Swiatecki 

Nuclear Science Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720 

A qualitative classification of nucleus-nucleus reactions into four types is 
described, a consequence of the existence of up to three "milestone configu
rations" that a fusing system may be faced with. These considerations lead 
to phenomenological formulae for fusion and compound-nucleus cross-sections 
that may be compared with experiments by the use of "rectilinear cross sec
tion plots." Examples of more specific model calculations of nuclear reac
tions employing the "Chaotic Regime Dynamics" are described. Some misunder
standings regarding the Wall and Wall-and-Window formulae, underlying this 
type of dynamics, are discussed in the appendix. 

1. INTRODUCTION 
We have been urged by the conference organizers to make our presentations 

understandable to a wide audience and to emphasize the connection between theo
ries and experiments. I will accordingly devote the first half of my talk to 
some very simple considerations concerning nucleus-nucleus reactions. I will 
inject the physical ideas one by one and derive the resulting cross-section 
formulae in a form especially suited to the presentation of empirical data. 

The conference is also dedicated to discussing recent theoretical develop
ments and new ideas. In the second part of my talk I will thus mention two re
cent developments in the more specific domain of macroscopic nuclear dynamics 
based on the use of the so-called one-body dissipation formulae (the "Chaotic 
Regime Dynamics"). I will also attempt to clarify, in the appendix, some mis
understandings that seem to have arisen in the past few years in connection 
with that theory. 

The outline of my talk is thus as follows: 
Part I, Phenomenological 
***Qualitative classification of nucleus-nucleus reactions. (Underlying 

physics: common sense.) 
. ***Rectilinear cross-section plots. (Physics: centrifugal force is 

proportional to the square of the angular momentum.) 
***"Extra-push" formulae. (Physics: nuclei have Coulomb and surface energies; 

*This work was supported by the Director, Office of Energy Research, Division 
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. 
Department of Energy under Contract DE-AC03-76SF00098. 



2 

nuclear dynamics is dominated by 1I0ne-bodyll dissipation.) 

Part II, Chaotic Regime Dynamics 
***Examples of numerical calculations of nucleus-nucleus reaction dynamics. 
***A new term in the Wall-and-Window dissipation formula, dealing with the 

mass-asymmetry degree of freedom. 
***A miracle when IIFermi Jetsll are treated according to the Wall-and-Window 

formula. 
Appendix, Some misunderstandings 
***The Pauli exclusion principle and Liouville's theorem. 
***Self-consistent drifts and the conservation of linear and angular momenta. 

2. QUALITATIVE CLASSIFICATION OF NUCLEUS-NUCLEUS REACTIONS 
Think of two nuclei coming together in a nuclear reaction. On qualitative 

grounds one may expect the existence of up to three milestones in the dynami
cal evolution of the reaction. The first milestone is obviously the attainment 
of contact. Up to about the contact point the nuclei can, for rough esti
mates, be idealized as rigid and the essence of the problem is, approximate
ly, one-dimensional. The separation between the mass centers, r, is the 
single dominant degree of freedom. In this one-dimensional configuration space 
the potential energy goes up as r decreases (Coulomb repulsion). Around con
tact the nuclear attraction usually overcomes the electric repulsion, producing 
a maximum in the potential energy--the Coulomb barrier (or contact barrier). 
In any case the energy needed to achieve contact is the first hurdle that must 
be overcome in a nuclear reaction. 

After contact, the freezing out of all degrees of freedom except the separa
tion r cannot continue to be a good approximation. In particular, the size of 
the neck can be expected to be an essential degree of freedom. The shape de
grees of freedom of the fragments wi 11 also become more important. The only 
degree of freedom that may, for a while, continue to be approximately frozen-
so long as the neck is small--is the mass-asymmetry degree of freedom, describ
ing the relative sizes of the two pieces. This is because it is, in general, 
difficult to push matter through a small neck. So now we have to think in 
terms of a dynamical problem in (N-l) dimensions, where N is the total number 
of relevant degrees of freedom, and the 1 represents the frozen-out asymmetry 
degree of freedom. The distance coordinate r is now merely a one-dimensional 
sub-space of the larger (N-l) dimensional space. With all these additional de
grees of freedom unfrozen, the contact configuration of rigid fragments (and 
the associated Coulomb barrier) no longer plays any special role (except as the 
approximate injection point into the (N-l) dimensional space). What has re
placed the Coulomb barrier as a IIgo-or-no-goll configuration is the conditional 

• 
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saddle-point configuration in the (N-l) dimensional space. It is a configura
tion corresponding to a saddle point in the (N-l) dimensional potential energy 
hyper-surface. It has the significance of a potential energy barrier separat
ing the configuration of two fragments of given asymmetry from the configura
tion of a fused, undifferentiated blob, the "mononucleus." This conditional 
saddle-point is the second milestone configuration that a fusing system may be 
faced with. I say "may," because for some systems (the lighter ones) overcom
ing the first hurdle automatically guarantees the overcoming of the second. 
But for heavier systems that is not so, and one has to give the colliding nu
clei an "extra push" over and above the Coulomb barrier in order to send the 
system over the conditional saddle point. 

For systems that have overcome the conditional saddle, the neck wi 11 usu
ally conti nue to grow and, as a result, the asymmetry degree of freedom wi 11 
also become unfrozen eventually. One is then faced with the full dynamical 
problem in N dimensions. The conditional saddle point in the (N-l) dimensional 
subspace loses its significance. The "go-or-no-go" configuration determining 
the further evolution of the system is now the unconditional saddle point. 

This is nothing else than the familiar configuration determining the potential 
energy barrier of 'a compound nucleus against fission. In the context of a nu
cleus-nucleus reaction, this saddle-point configuration is the third hurdle 
that the system may encounter on its way to compound-nucleus formation. Again 
it is "may" because overcoming the first two hurdles mayor may not lead to an 
automatic overcoming of the third. If not, then an "extra-extra push" will 
be needed to make a compound nucleus. 

Figure 1, taken from ref. 1, illustrates schematically the consequences of 
these qualitative considerations. The existence of up to three hurdles results 
in a classification of nucleus-nucleus reactions into four broad categories, 
shown in the figure. Also, two kinds of extra push are anticipated: one to 
make two nuclei fuse into a mononucleus (an undifferentiated blob) and one to 
make a compound nucleus (the stable equilibrium configuration of the compound 
system) • 

3. RECTILINEAR CROSS-SECTION PLOTS 
I will now derive some cross-section formulae that follow from the above 

qualitative considerations. Let me start by reminidng you of the derivation of 
the standard formula for the reaction cross-section (the cross-section to make 
nuclei touch), viz.: 

(1) 
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FIGURE 1 
Schematic illustration of the relation between three critical energies, four 
types of nuclear reactions, and two kinds of extra push. This figure ;s appro
priate when the three milestone configurations discussed in the text exist and 
are distinct. In some situations the critical energies I, II, III may merge 
(pairwise or all together) squeezing out the regimes corresponding to dinuc1eus 
and/or mononuc1eus reactions. In other situations one or both of the upper 
boundaries (II and III) may dissolve, making the adjoining regions merge into 
continuously graduated reaction types. 

where E ;s the bombarding energy, r is now the nuclear center separation at 

contact and B ;s the contact energy (Coulomb barrier). To prove eq.(l) you 
just write down the energy conservation equation at contact 

E B + E
t 

+ E 
r 

(2) 

where Er is the energy in the radial motion and Et the tangential energy (at 
contact). In a head-on collision, Et = a and Er = E - B. As the impact para
meter increases, Et wi 11 increase and Er wi 11 decrease. At some maximum im-

pact parameter b, Er will be zero (grazing collision) and beyond that the col

liding nuclei do not touch. The cross-section for touching is then 

a = 'll"b 2 (3) 

and since Et is related to the angular momentum L and the impact parameter b by 

• 
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where M is the reduced mass, we have (using eq.(2) with Er = 0) 
2 

• = wr/t = .r2(1 _ ~) 

(4 ) 

( 5) 

Consider now the cross-section for a process of fusion that requires an ex
tra push-an extra radial velocity--for its initiation. Part of this extra ra
dial velocity may be needed because,of an adverse balance of Coulomb and nucle
ar forces and part because'of the presence of a centrifugal force. If the lat
ter is taken to be proportional to the square of the angular momentum, we may 
write the extra push velocity, ur ' as 

ur oc ~Er = a + (constant)L2 

or, using eqs.(4) and (5), as 

~E = a + f3 aE 
r ~ 

( 6) 

Here a and f3 are constants for a given reacting system, a being a measure of 

the excess of Coulomb over nuclear forces and f3 a factor in the centrifugal 
force. ' Inserting eq.(6) into eq.(2) and using again eq.(5) we have an equation 
relating implicitly the fusion cross-sectidn a to the center of mass energy E: 

V aE aE E-B--2 =a+f3 2 nr nr 
(7) 

[You may ask: why did I write the extra push velocity ur ' rather than the extra 
push energy Er , as proportional to a + f3~? It is a symmetry argument that 
can be appreciated by an analogy. If youn~re shooting at a target (the condi
tional saddle) in the presence of a cross wind (the sum of the Coulomb, nuclear 

and centrifugal forces in the radial direction) then the correction to your 
aiming angle is proportional to the wind velocity. (If the wind velocity 
changes sign so does the correction angle). Now the correction angle is pro
portional to the velocity component imparted to the bullet in the wind direc
tion (the "radial ll direction); so it is the extra velocity and not the extra 
enel1gy that tracks with the wind velocity.] 

Equation (7) may be solved explicitly for a, giving 
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2 [ 1I'r 
o = -y-t la. a + 1/2) _ (a + B - E) _ (aa + 1/2)] 

\ a2 a2 a2 (8) 

This is a generalization of the standard equation (1), to which it reduces 
when a = a = 0 (no extra push). From an experimental point of view, the 
implicit eq.(7) may be actually more convenient than eq.(8). Just plot the 
experimentally determined quantity ~ E - B - ~ against oE/1I'r2. Theory pre
dicts a straight line, with slope a and inter~~pt a. Note that the physical 
input into the theory is merely that fusion needs an extra radial velocity push 
over the Coulomb barrier, the push being in part due to a centrifugal force, 
proportional to L2. This is not much of an assumption, so the resulting for
mula might be valid for a wide variety of theories. The differences in the 
theories would show up in the numerical values of a and a, but for many theo
ries the functional form of eq.(7) or (8) is expected to be the same. 

It turns out that the quantities 

Y = oE 
-~ 

nr 
(the lIenergy-weighted reduced cross-section ll

) (9) 

-t oE X =E - B - ~ 
nr 

(the square root of the IIcross-section defect ll
) (10) 

have nice properties in a wider context than the analysis of fusion cross-sec
tions. Thus, predicted compound nucleus cross-sections limited by an extra

extra push should also be straight lines in a plot of Y vs. X. In addition, 
compound nucleus cross-sections limited by the vanishing of the fission barrier 
of a rotating nucleus, as well as evaporation residue cross-sections limited by 
the decrease of the fission barrier below the neutron binding energy, are all 
predicted to result in straight-line plots of Y vs. X. For details and exam
ples of comparisons with data (not comprehensive) see refs. l ,2,3,4 

4. THE EXTRA-PUSH FORMULAE 
So far the only physics that showed up in the algebra was the recognition of 

the presence of a centrifugal force proportional to the square of the angular 
momentum. Let us now inject the following additional pieces of physics: 

a) The electric repulsion between two fragments near contact is approximate-
2 2 ly Zl Z2e /r • 

b) The nuclear attraction is related to the nuclear surface-energy coeffi
cient y and, near contact, is proportional to the quantity 4nyR, where if 

= Rl R2/(R l + R2). (Nuclear Proximity Frirce Theorem5,6). 
c) The nuclear dynamics is dominated by 1I0ne-body dissipation" {the kind of 

dissipation expected to be relevant, under certain conditions, for an ap-

• 
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proximately independent-particle system like a nucleus7,8,9.10,11). 

d) The centrifugal force is approximately proportional to the square of a 
fraction, fL, of the total angular momentum, divided by the "mass points" 
of inertia of the nuclear configuration at contact. 

From now on it is an exercise in dimensional analysis. The assumptions a) 
and b) predict that a relevant dimensionless parameter measuring the relative 
strengths of electric and nuclear forces may be taken as the "effective fissil

ity parameter" xe defined by 

(11) 

where 2 
(Z /A)eff (12) 

- AlI3AlI3(AI/3 + A113) 
121 2 

and 2 
(Z /A)crit 

3 40 'If roY 
= 2 

3e 

40'lfr~Yo(1 - KsI2) 
( 13) 

= 3e2 

(Here ro is the nuclear radius constant, Yo is the surface energy coefficient 
of standard nuclear matter and KS is the surface symmetry coefficient, de
scribing the dependence of y on the relative neutron excess I = (N-Z)/A). As
sumptions c) and d) predict that, for systems near contact, a natural unit of 
velocity in the dynamical equations of motion is the quantity 2y/pvR, where p 
is the nuclear mass density and v the mean nucleonic speed. (The "flux factor" 
pv is a characteristic quantity of the one-body dissipation mechanism. 
nuclear Fermi gas one finds 

27 ('If)1/3 h pv = 32,f j 4" .) 'If r 
o 

For a 

(14) 

For a head-on collision it should therefore be possible to write the extra-push 
velocity, -dr/dt, in the form 

-dr/dt = ~ (x _ x ) 
2y/pvR e th 

~a(xe - xth } + higher powers of (xe - xth ) (15) 

In the above, ~ is a universal dimensionless function of the excess of xe over 

a universal dimensionless threshold value xth • In eq.(15), ~ has been expand

ed in powers of xe - xth ' and a is thus the derivative of ~, another universal 
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pure number. 
Converting the extra-push velocity into an extra-push energy Ex' one finds, 

for head-on collisions, 

_ 2 1 (dr)2 Ex = a = 2 M dt 

2 
. 2/3 4 A1/3A1/3(A1/3 + A21/3) f 2 ]2 

_ 32 (1) e m ._1 __ .;:;...2_......;;1~_~_ 2 (z ) 2 
-""20'25 tr 1'1.2 - A a A eff - b(1 - KsI ) 

(16) 

Here A = Al + A2, m is the nucleon mass and b is a pure number, related to xth 
by 

( 17) 

Eq.(16) is the theoretical prediction of how the quantity a in eq.(8) is ex

pected to vary with AI' A2, ZI' Z2 as one goes from one colliding system to 
another. 

Throwing in the assumption d), one may similarly write down the expected be
havior of a, required for the discussion of non-central collisions and for the 
prediction of cross-sections (eq.(8)). One finds 

. '-( 1/3 1/3) 
32y'2 (3)1/3 r 0 v m Al + A2 f 2a (18) 

a = 45 ~ 1'1. A176A176~ 
1 2 

So, having injected the four physical assumptions a)-d), one now has a more 
specific set of cross-section formulae to compare with experiment. The formu
lae contain three parameters: the threshold parameter xth (or b), the slope 
parameter a and the angular momentum fraction f. Fig. 2 shows one of the early 
comparison~ of the predictions with data on fusion cross-sections1, from which 
the following values of the parameters were deduced graphically (by using rec
tilinear cross-section plots, as explained in section 3); 

xth = 0.70 -: 0.02 (b = 35.6) 

a = 12 -: 2 (19) 

f = 0.75 -: 10% 

Additional such confrontations of theory and experiment are accumulating. 12 

". 
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FIGURE 2 
Examples of six reactions, discussed in ref.!, showing experimental fusion 
cross sections as a function of center of mass energy. The dashed curve shows 
the theoretical prediction (eq.(8}). The meaning of the other curves is ex
plained in ref.! 

There are also related comparisons of the extra push energy Ex' as given by eq. 
(!6), with values deduced from measured evaporation-residue cross-sections.!,13 
(Fig. 3) The time may soon be ripe for a comprehensive survey and assessment 
of where we stand today in such comparisons. As. I indicated, the theory con
tains now the assumption of the one-body dissipation dynamics [item c) above], 
and a careful confrontation with experiments might begin to shed light on this 
interesting aspect of nuclear physics. It is also true, however, that items 
a}, b} and d} are rather general and are expected to be common to many differ
ent types of theories, all which might lead to similar, even if not identical, 
functional forms for the quantities a,S. It may well be that rather precise 
and comprehensive comparisons of theory and experiment will be needed to ex
tract the really interesting features of nuclear dynamics. 
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FIGURE 3 
A comparison of experimentally deduced values of the extra-push energy with the 
trend of the theoretical prediction (approximately eq.(16)). The data are from 
ref .13 

Another way to make progress is to ask the dynamical theory to predict not 
only the functional form of the cross-sections but also the absolute values of 

the parameters xth ' ~ and f. An example of some early theoretical estimates, 
using the model I will describe in the next section, gave the following re
sults1: 

Xth ~ 0.723 

a ~ 18 

A theoretical estimate of f in ref. 23 gave 

f ~ 0.85 

The discrepancy in the value of ~ may be signific'ant ~l1d might eventually throw 
light either on the limitations of the on'e-body dissipation dynamics, or on 

more technical idealizations of the model used to implement the theory. 

'. 
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***** 
5. NUMERICAL STUDIES OF REACTION DYNAMICS 

In the past several years there have been a number of numerical computer 
studies of nucleus-nucleus reactions and of fission, based on the Chaotic Re
gime Dynamics. 7,lO,14,15,16 This is a form of nuclear dynamics, believed to be 

appropriate for a system composed of approximately independent particles, in 
the regime of conditions when the particle motions can be considered as chaot
ic. 1l The opposite extreme, the Ordered Regime, is characterized by regular 
particle orbits, usually leading to strong shell effects. In the Chaotic Re
gime, the nuclear energy is well approximated by a liquid-drop type of expres
sion, and the dissipative forces are believed to be given by the so-called Wall 
Formula (for convex, compact shapes) and the Wall-and-Window Formula (for 
strongly necked-in shapes). Inerti al effects are often negl i gi ble and shell 
effects are unimportant, so that all properties should be smooth functions of 
shape and of nuclear type. The Ordered Regime is more complex: both the po
tential energy and the inertial and dissipative effects are dominated by symme
tries (resulting in shell effects) and nuclei are expected to exhibit complex 
visco-elastic properties (and sometimes superfluidity). The conditions favour
ing the validity of the simpler Chaotic Regime dynamics are: irregular nuclear 
shapes to break down symmetries, assisted by a certain amount of residual in
teractions between the nucleons, and some excitation energy (to break up pair
ing effects and reduce shell effects). The precise way in which the Ordered 
Regime goes over into the Chaotic Regime with the destruction of nuclear symme
tries is largely an open question at this time. Rapid progress is being made 
in the theories of the usually abrupt transition from order to chaos in dynami

cal systems in general, and it is likely that also in the nuclear case this 
transition will turn out to be relatively abrupt. 

As I mentioned, the physical ingredients of the Chaotic Regime Dynamics are 
typically as follows: 

1. Conservative forces derived from a liquid-drop type of potential energy. 
2. Dissipative forces described by the Wall and Wall-and-Window formulae. 
3. A simple approximation to inertial forces, whose finer features are usu

ally obli~erated anyway by di sspative forces. (The so-called Werner
Wheeler approximation to irrotational mass flow is often used.) 

The nuclear shapes are usually parameterized in a suitable way, for example as 
spheres (or spheroids) connected by a quadratic surface of revolution (Fig. 4). 
In the ~alculation done in collaboration with J. Blocki,16 which I will 
describe, there are three degrees of freedom specifying the nuclear configura
tion: 
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FIGURE 4 

A - 0.25 p = 2.6066 A = 0.6163" 
t .. -0.03 

A = 0.25 p = 2.6066 AoO.52 
t = -0.071 

The parameterization of nuclear shapes by two spheres and a third quadratic 
surface of revolution. This parameterization is used in the comprehensive 
atlas of nuclear deformation energies in ref. 1? and in current reaction stu
dies based on the Chaotic Regime Dynamics. 

R1 - R2 
1. An asymmetry variable ~ == 

R1 + R2 

2. A distance variable p 
r 

- R1 + R2 

R, 
3. A IIdeckll variable A == -=-R---''''''''-:-

1 + R2 

(IiDeck ll stands for IIdeformation/neck"). Here Rl'R2 are the radii of the two 
spheres and R, is the combined thickness of the spherical lenses covered up by 
the middle quadratic suface of revolution--it is a convenient measure of the 

deviation of the actual shape from two unconnected, undeformed spheres. The 
configuration space ~,p,A is shown in Fig. 5. Focus first on the vertical sec
tion at ~ = 0, corresponding to reflection symmetric shapes. Along the bottom 
edge you have approach·ing (equal ) spheres, which touch at the point p = 1. 

Along the line inclined at 45° you have non-overlapping portions of intersect
ing spheres, ending up ,as a single sphere (properly renormalized, of course) at 
p = 0, A = 1. As you move to the right along the upper edge you have elongat
ing spheroids. Along the dashed horizontal line at A = 1 you have elongating 
cylinders (with hemispherical ends). Above this line you have convex shapes, 
below the line necked-in shapes. Along the curve labeled IIscission ll the area 
of the neck has gone to zero percent of its maximum degree of opening (which is 

100% for the cylinder). 
Figure 5 also shows sections of the configuration space at ~ = 0.2, 0.4, 

,.. 
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FIGURE 5 
The configuration.space of, the deformation variables A,p,>', explained in the 
text. 

0.6, 0.8, 1.0. At each asymmetry, the shapes are similar to those I described 
for ~ = 0, except that one side of the config~ration is blown up and the others 
shrunk. (For example, in place of a cylinder with hemispherical caps one has a 
portion of a cone capped with portions of unequal spheres). The value of p ex
tends to infinity on the right, but the other boundaries in Fig. 5, shown as 

. thicker curves for each asymmetry, are significant: shapes beyond those boun
daries are either unphysical or redundant in our parameterization. So our con
figuration space is confined to a semi-infinite box, with flat bottom and sides 
and a somewhat peculiarly shaped top. (Only half of the box is shown in Fig. 
5. The other half, for negative A, is obtained by reflection in the plane A = 
0). This way of parameterizing nuclear shapes is taken from re~17, where 
cOOlprehensive potential energy maps of nuclear deformation energies are pre
sented. 

A dynamical calculation of two colliding nuclei corresponds to a trajectory 
in the configuration space of Fig. 5, which enters from the right along the 
bottom.of the box, and runs along a line corresponding to the initial asymmetry. 

When the line labeled "TANGENT SPHERES II is reached, the neck (A) and asymmetry 
(6) degrees of freedom begin to change, A very rapidly and 6 very slowly at

first. The trajectory becomes a curve in three dimensions and sometimes bends 
back and re-emerges on the right as two separating, deformed fragments, and 
other times bends over to the left and tends to the spherical (compound nucle
us) shape. An example of the kind of potential-energy landscape that such a 
trajectory traverses is shown in Fig. 6, which refers to a section at fixed 
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X= .900 ASYMMETRY DELTA= .200 FRACTIONAL= .7714 

SPHERES -.26325 TANGENT .06261 LENGTH 12.274 ENER~Y 695.85 SPACING .002 SADDLE -.02<06 
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FIGURE 6 
An example of a potential energy map, taken from the atlas in ref. 1l The map 
represents approximately the deformation energy for a colliding and fusing sys
tem of 208pb and 52Cr at fixed asymmetry' A. The energy contours show the de
formation energy with respect to the sphere, corresponding to the tip on the 
left. The spacing between contours is 0.002 times the surface energy of the 
sphere (695.85 MeV), i.e., about 1.4 MeV. The spherical shape is separated 
from the two-fragment valley on the lower right by a flat saddle-point struc
ture (with a height of the order of 1 MeV) in the upper left-hand part. 

asymmetry corresponding approximately to the system 208pb + 52Cr • In cases 
when the nucleus re-separates, one finds that sometimes the asymmetry is very 
similar to the initial one, and this corresponds to deep inelastic scattering, 
associated with trajectories that did not overcome the conditional saddle. In 
other ca5es one observes re-separating fragments with an asymmetry very differ
ent from the initial one, ranging practically to symmetry. These reactions 
are of the "fast-fission" type, in which the conditional saddle was overcome 
but not the unconditional one. These calculations are currently in progress. 
Table I shows a sample of results, taken from ref. 16 , concerning a few symme
tric and asymmetric head-on reactions (specified in the first two columns). 
The collision energies (above the Coulomb barrier) are specified in the third 
collll1n. The fourth column gives the "sticking time" (the time frOOl contact to 

... :. 
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scission). The fifth and sixth columns give the final fragment masses. The 
seventh column gives the Coulomb interaction energy between the fragments and 
the eighth column the translational energy of the fragments at scission. The 
sum, shown in the last column, is an estimate of the fragments' kinetic en
ergy at infinity. 

Table I 

INITIAL E - B t FINAL EINT ETR Eoo 

A2 A . (MeV) ( 1O-22S) A2 Al (MeV) (MeV) (MeV) 1 
00 

80 80 0 (FUSION) 
------------------------------------------------------------------------------

80 160 0 74 88.7 151.3 145.6 10.2 155.8 
10 119 93.5 146.5 147.9 11.0 158.9 
20 135 94.7 145.3 149.8 10.7 160.5 
50 166 96.9 143.1 151.1 11.2 162.3 

------------------------------------------------------------------------------
80 240 0 77 96.3 223.7 150.4 10.4 160.8 

10 104 103.6 216.4 157.5 10.6 168.1 
20 110 105.0 215.0 158.7 11.7 170.4 
50 121 106.7 213.3 162.6 12.1 174.7 

----------------.-------------------------------------------------------------
160 160 0 24 160 160 244.6 41.4 286.0 

10 38 160 160 229.3 38.3 267.6 
20 43 160 160 229.4 35.4 264.8 
50 54 160 160 227.2 33.9 261.1 

------------------------------------~---------------------------------------~-
160 240 0 20 161.9 238.1 316.4 80.0 396.4 

10 29 163.3 236.7 296.9 67.5 364.4 
20 34 163.9 236.1 .289.4 65.5 354.9 
50 42 165.1 234.9 278.5 63.9 342.4 

------------------------------------------------------------------------------
240 240 

48 248 

0 
10 
20 
50 

o 
10 

16 
22 
24 
29 

213 
235 

240 
240 
240 
240 

96.3 
96.8 

240 
240 
240 
240 

199.7 
199.2 

430.4 
415.6 
411.3 
397.9 

141.4 
141.0 

157.4 
130.7 
122.5 
118.3 

6.7 
8.7 

587.8 
546.3 
533.8 
516.2 

148.1 
149.7 

There are many features of these calculations that remain to be studied 
thoroughly and confronted with experiment. I will only draw your attention to 
one, namely that in the asymetric reactions there is, as a rule, a fair degree 
of preservation of the initial asymmetry, of the kind seen in deep inelastic 

reactions. (The case of Al = 248, A2 = 48 is an exception.) That may seem 
trivial to you but, in fact, it is a feature that dynamical calculations of the 
type I have described were completely unable to reproduce until quite recently. 

It was only last year that we realized18 ,19 that the Window Formula for dissi
sipation, as used up to then, was incomplete and should have in it an addition-
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al term. (Without this term the final asymmetries in most of the reactions in 
Table ~ would be practically zero.) If further numerical studies bear this 
out, then the new term is really the underlying reason for the very existence 
of deep inelastic reactions in dynamical calculations using the Chaotic Regime 
Dynamics. I will now describe this new term. 

6. THE DISSIPATIVE RESISTANCE AGAINST CHANGES IN MASS ASYMMETRY 
Suppose you have two idealized nuclei (with volumes V1,V2 and mass numbers 

ApA2) which are in relative motion and which communicate through a small win 
dow of area a. The rate of dissipation of the collective energy when the frag
ments are assumed to be rigid is given by the Window Formula, and if they are 
deformable, by the Wall-and-Window formula. 7,19 But what if, in addition to a 

relative motion and fragment deformations, the asymmetry degree of freedom is 
also changing, i.e. if Al or VI are non-zero? What is the rate of dissipation 
of energy associated with this degree of freedom? The answer may be written as 
follows: 

(20) 

. 
where pv is the flux factor already mentioned in section 4 and VI is the rate 
of change of the volume of one of the fragments. The essence of the derivation 
is as follows: Start with the identities 

dE ( dE) dAj - CIt = - dA
1 

CIt 

(( dE )/A
j] -2 = - <rAJ." crt Al 

= [(iit(- ~~N::j] v~ (21) 

intended to factor out· the square of the rate of change of the (volume) asym
metry degree of freedom VI' to which the rate of change of energy loss, 
-dE/dt, ought to be proportional in a dissipative process. (Here m is the nu
cleon mass.) The cofactor of vi in eq.(21) is evaluated by considering the 
case of two containers filled with Fermi gases of nucleons, characterized by 
nearly equal Fermi energies T1,T2, and associated flux factors Plvl,P2v2' 

Note that the potential energy cost, -~, associated with particle transfer 
1 

from container 1 into container 2 is, in the case of simple Fermi gases, given 

by the difference in the Fermi energies, T2 - T1, i.e., 
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Recall also the standard result that for a Fermi gas the one-sided particle 
flux (per unit area) is { (p/m)v, so that 

dA1 1 a 
~ = 4m (P2 v2 - P1 v1) 

It follows that 

(22) 

(23) 

(24 ) 

The denominator in eq.(24) is readily evaluated by recalling that for a Fermi 
gas the mean particle speed v is proportional to p1/3 and the Fermi energy to 
p2/3. Hence 

d(pv)pv d(tn pv) pV d(tn p4/3) 2pv 
-cnr-- = -y. d(tn T) = -y d(tn p273) =-y-

Recalling that for a Fermi gas the mean speed v is { of the Fermi velocity, 
so that 

and substituting in eq.(24), we find 

1 _(4 ..\2 
dE4p2 ~ °2 16 pV °2 

- dt = rr;a--- 2pv V1 = 9 a V1 

(25) 

(26) 

Because the area of the neck appears in the denominator, this new dissipation 
term effectively freezes out the asymmetry degree of freedom for small necks. 

Eq.(2D), derived independently in refs. 18 ,19, is new in the context of the 
one-body dissipation dynamics, but I should stress that the physics it repre

sents is already present in transport treatments of nuclear reactions, in par
ticular in the form used by Randrup in ref. 2D That is presumably why such 

transport theories had no major difficulties in accounting for the existence of 
deep inelastic reactions. It seems that the same will be true in our dynamical 
treatment, now that we have incorporated the properly completed Wall-and-Window 
Formula. 
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7. "FERMI JETS" AND THE WINDOW FORMULA 

A second recent result I would like to mention concerns a simplification in 
the treatment of Fermi Jets, resulting from the intimate relation between the 

Fermi Jets and the Window Formula dissipation. Let me remind you that Fermi 
Jets (or PEPs, promptly emitted particles) is the name given to a type of pre
equilibrium emission of neutrons or protons in the early stages of a nucleus
nucleus collision, in which .the Fermi velocities of the nucleons playa domi
nant role. 21 ,29 Experimentally, pre-equilibrium tails in the energy spectra of 

nucleons produced in nucleus-nucleus reactions have been known for a long time, 
but their relation to the specific Fermi jetting mechanism remains unclear. 
This is partly due to the cumbersome nature of the calculations necessary to 
characterize the expected properties of the Fermi jets. Such calculations have 
required, in the past, numerical time integrations over the complex and poorly 
understood time evolution of the nucleus-nucleus collision dynamics. What we 
have found recently is that if this time evolution is formulated according to 
the Chaotic Regime Dynamics, then it tends to cancel out in the calcuation of 
Fermi jets and the question of the collision dynamics can, to a large extent, 
be bypassed. In simple cases one can even write down closed algebraic formulae 
for the properties of the jetted particles, the time evolution having cancelled 
out exactly from the analysis. 22 

Let me sketch how this mi.racle comes about in the case of a head-on colli
sion. The calculation of the jetting goes something like this. After contact, 
a window opens up between the nuclei, and its cross-sectional area, a(t), will 
be some complicated function of time. Through this window time-dependent 
fluxes of particles begin to irradiate from inside the two potential wells. 

These fluxes are calculable elementarily in terms of the instantaneous rela
tive velocity u(t) and the window area a(t), to which they are proportional at 
each instant. A small fraction of the nucleons in these fluxes have velocities. 

high enough for escape and produce the jetting. The remainder is captured in 
the receptor wells and causes a slowing down of the relative motion of the nu
clei according to the Window Formula dissipation. This slowing down is, of 
course, also proportional to the window area a(t), so that 

du 
dt ex: a(t) " (27)" 

i.e. dt ex: du 
. art} 

It follows no\./ that' if the Fermi jetting, which at each instant is directly 

proportional to a(t), is integrated over time, and the integration variable is 
changed from dt to du, the unknown window-area function a(t) cancels out and 
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the result is an elementay integral over u, independent of the collision dynam
ics! 

Since the jetting fluxes as well as the window friction contain no adjust
able parameters, the final answers to all calculations with the above idealized 
model come out as absolute magnitudes, with nothing to adjust. Even the flux 
factor pvcancels out! 

As an example, let me give you the formula for the predicted total number of 
particles, 6A, jetted through both the target Al and projectile A2, as a func
tion of the relative velocity Uo at the moment of contact in a head-on colli
sion: 

AIA2 
6A = A + A [F(v) - F(n - 1)] , 

1 2 
(28) 

where 

2 2 8 2 2 2 1 4 F(x) = (1 - n ) Rn x + 1 (1 - n )x + (1 + n)x - 11 x ( 29) 

In the above, v is the velocity uO in units of the Fermi velocity vF and n is 
the nucleon "escape velocity~ (also in units of vF), given by 

n _,p; S (30) 

where T is the Fermi energy and S is the neutron separation energy in the case 
of neutron jetting or the proton separation energy, augmented by the proton 
Coulomb barrier, in the case of proton jetting. Let me stress again that one 

is able to derive eq.(29) without having solved the dynamical problem of the 

slowing down of the relative motion of the nuclei. 

***** 
What I have described in my talk is how progress is being made along one of 

the several paths that are being followed in our quest to understand the dynam
ics of nucleus-nucleus reactions. To some extent this progress consists of 
simplifying and tidying up the theoretical concepts, so that the essential fea
tures may stand out clearly. Apart from conventional elements concerning nu
clear, electric and centrifugal forces, the most interesting component of the 
analysis that I presented is the Chaotic Regime Dynamics, with its one-body 
dissipation. As time goes on we should be able to specify more closely the 
range of validity of this elegant idealization. 
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Appendix. Some misunderstandings 

AI. THE EXCLUSION PRINCIPLE AND LIOUVILLE'S THEOREM 
A problem that often crops up in discussions of the Wall or Wa11-and-Window 

formulae is the exclusion principle. Doesn't a nucleon bouncing off a moving 
wall, or trying to enter another nucleus, have to look for an unoccupied state 
in the Fermi sea of nucleons? Should one not introduce blocking factors that 
cut out most of the contemplated collisions with the wall and most of the par
ticle transfers, and thus modify drastically the dissipation formulae? 

The answer is NO, insofar as one is using a mean-field model, in which the 
particles are assumed to move in a common (time-dependent) potential well. The 
reason is that, according to Liouville's theorem, non-interacting particles 
moving in such a potential automatically make room for each other in phase 
space. If they are started off with a distribution in phase space that re
spects the exclusion principle (e.g. 2 particles per h3 of phase space for nu
cleons) then Liouville assures us that the classical equations of motion will 
see to it that the exclusion principle will never be violated in the subsequent 
time evolution. This is obvious from the statement of Liouville'S theorem in 
the form: "representative points in phase space behave like an incompressible 
fluid." This means that if you follow the motion in phase space of a cluster 
of a given number of points bounded by a cell of a certain volume then, in the 
course of the time evolution, this volume will not change (only the shape of 
the cell may become distorted). 

To remind you of the essence of the argument, consider the six-dimensional 
phase space of a particle moving in an arbitrary (time-dependent) potential, as 
described by some general Hamiltonian H(t). For a swarm of N such particles-
provided they do not interact--we may continue to use the six-dimensional phase 
space, rather than the full 6N-dimensional phase space that would otherwise be 
necessary. The motion of each of the N particles is then represented by the 
motion of a point in phase space. The velocity of a point in this phase space 
is given by Hamilton'S equations 

(31) 

where qkis one of the generalized coordinates and Pk its conjugate momentum. 
Consider the two-dimensional sub-space of just qk and Pk and consider a small 
rectangular cell defined by qk,Pk and qk + Aqk' Pk + APk' so that the area of 
the cell is AqkAPk. Now the velocity of the qk-edge of th~ cell is qk and of 

the (qk + Aqk)-edge is ~k + A~k' so in a time dt the length ~f the cell in the 
qk direction will have changed by 
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(32) 

Similarly the length of the cell in the Pk direction will have changed by 

(33) 

It is clear that we can carry through the same argument with all the pairs of 
conjugate variables and thus arrive at Liouville's result that the volume of 
the cell in phase space is exactly preserved in virtue of Hamilton's equations 
of motion. So the particles make room for each other very nicely and do not 
show any tendency to violate the exclusion principle. 

The condition for the validity of this result is that we stay with the 
mean-field idealization. If the particles interact by (residual) two-body 
forces then, for the discussion of the effect of such interactions, the exclu
sion principle is, of course, crucial. 

A2. SELF-CONSISTENT DRIFTS AND THE CONSERVATION OF LINEAR AND ANGULAR MOMENTA 
The Wall Formula for the rate of dissipation of collective energy looks like 

this 

dE f· 2 - df = pV (n - D) da (34) 

• Here n is the normal velocity of the surface element da of the deforming vessel 
containng the gas and D is the normal component (at da) of the drift set up in 
the wall-directed particles of the gas by the motion and deformation of the 
vessel, as specified by ~.7 

The Wall Formula is sometimes referred to as if D were absent, in which case 
a nonsensical result is arrived at: since n2 is a positive definite quantity 
even for pure translations (or for uniform rotations of a non-spherical vessel) 
the implication would be that a translating or rotating system would continue 
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to dissipate energy until it came to rest. (This is sometimes described as a 
conflict between the Wall Formula and Galilei invariance.) That there is no 
such paradox implied by eq.(34} is clear: for a uniform translation and rota
tion the gas will soon acquire a drift that follows faithfully the motion of 
the vessel, and n - 0 will be zero. 

But now comes the non-trivial question. How does one actually evalute 0 

when the container is translating, rotating and deforming at the same time? 
-+ In general, 0 will be a function of positionr on the surface and a functional 

of the state of motion of the surface, as specified by ~, say 0 = D(;,~]. In 
ref. 7 a prescription was given for calculating the drift, based on assuming a 
plausible functional form for D(r,n], namely a drift pattern that would be gen-

-+ 
erated by a translation with some velocity V together with a rotation with some 

-+ -+ * -+ A A angular velocity n, i.e. 0 = (V + ~l X r) • n, where n is the unit vector along 
-+ -+ 

the normal at do. The quantitites V and n are regarded as vector parameters 
that are determined by the requirement that the linear and angular momenta of 
the gas should not change in time. This requirement is equivalent to the de
mand that the total force and total torque exerted by the container on the gas 
should be zero. You may verify that this is expressed by the two equations 

-+ -+ -+ AA 

(V + n x r) • n]n do = 0 (zero force) 

n)[~ - (V + ti x ;) • n]do = 0 (zero torque) 

-+ ..... 
These are two simultaneous vector equations for v,n which may be written 

~ ~ ~ ~ -+-+ 9 
where A, B, C, 0 are dyadics and a,b are vectors given by 

~ 

A = f"do nn 
~. 

f
A -+ A 

B = . do n r x n 
~ -+ 
C = f do r x nn 

~ -+- A--+- A 

o = f do r x n r x n 

a = do nn -+ f . -+ • -+ 
b = J do n r x n 

[If one wishes, one may write down the formal general solution of eqs. 
( 37) , ( 38) as 

(35) 

(36) 

( 37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

.' 
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Here B-1 denotes the inverse of the dyadic B, etc. 
interest, the situation is much simpler, and V and 
spection directly from eqs.(37),(38).] 

In many cases of practical 
~ n can be, read off by in-

In the case of the Wall-and-Window formula one has to determine two drifts, 

D1 and D2, one for each of the two pieces. With the same prescription as be-
~ ~ ~ 

rore, one has now to determine two pairs of vector parameters, v1,n 1 and V2' 
n2• Again, the condition which determines these parameters is that the line
ar and angular momenta of the fragments should not change, apart from the ex
pected changes induced by the actual forces (conservative and dissipative) 
acting between them. This means that there should be no net force or torque 
exerted on a fragment by the wall part of the Wall-and-Window formula belonging 
to that fragment. 

The bottom line is that, with the drift terms included, there is no "viola
tjon of Galilei invariance." 

A r~lated misunderstanding that has generated some confusion is the conten
tion that, as it stands, the Wall formula dissipation would always have to van
ish identically, because ~ - D represents the relative motion of the wall and 
the gas next to it, and this has to vanish by the well-known hdyrodynamical 
boundary condition. (Attempts were actually made to remedy this supposed dif
ficulty by introducing into the wall formula an adjustable parameter). This 
misunderstandin~ is based on an incorrect interpretation of D as the drift of 
all particles near the wall rather than the drift of the wall-directed parti
cles near the wall. 7 Given the correct interp~etation of D, there is no reason 
to look for arbitrary modifications of the Wall formula. 
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