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HIGHER MODES OF A BOTTLE 

Frank S. Crawford 

Lawrence Berkeley Laboratory 
University of California 

·Berkeley, California 94720 

ABSTRACT 

For nearly a century we have known how to predict the frequency 

of the lowest mode of a bottle with a long cylindrical neck, by means 

of a well-known model due to Helmholtz wherein the main volume acts 

like a massless spring and the mass of air in the neck moves as a 

whole. It has also been. widely believed that to predict higher modes 

one must take into account the inertia in the main volume, and that 

therefore the calculations are difficult. However, I have found a 

simple model that continues to neglect the inertia in the main volume 

(lla Helmholtz) but does not assume the air in the neck moves as a 

whole. Instead, I treat the neck as a distributed massive spring. 

With this model not only can I obtain the Helmholtz result for the 

lowest mode but I can also predict the frequencies of higher modes. 

The predictions of the model are beautifully confirmed by experiment 

for the lowest two modes, where I have tested them. Details of the 

calculations are given so that the theory can be understood by an 

undergraduate physics student. Further experiments are suggested 

that could easily be done in an undergraduate laboratory to find out 

whether the model breaks down at higher modes, where I have not 

tested it. 
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1. INTRODUCTION 

H you blow gently across the mouth of a jug or bottle you may pro

duce a tone by exciting the lowest mode. The frequency of this tone 

can be calculated by a well-known approximation due to Helmholtz. 
1 

In that approximation -the air in the main volume of the bottle acts like 

a massless spring. The air in the neck is assumed to move as a whole 

and acts as a mass attached to the spring. The approximation con

sists in a~suming all the moving mass is in the neck, and all the re-

turn force comes from pressure changes in the main volume. 

H you blow very hard across the mouth of the bottle you can excite 

higher modes. Once you have heard them by blowing hard, you can 

usually hear their faint presence even when blowing softly so as to 

excite mainly the lowest mode. 

I had always assumed that these higher modes were difficult to 

z calculate. However, while teaching Physics 4C at Berkeley I have 

recently found a simple model that is easy to work with and that gives 

predictions that agree with experiment to the extent that I have tested 

them. For a bottle whose main volume V 0 is large compared with 

the volume V of the neck, my model gives the Helmholtz formula for 

the lowest mode. But my result also correctly predicts the lowest 

mode frequency even for small ratios of V 
0 

to V, where the Helmholtz 

formula fails. My model also gives the higher mode frequencies which 

cannot be calculated at all by the Helmholtz technique. 
3 

My model applies to bottles shaped like that in Fig. 1. The neck 

is a uniform cylinder of length L, cross section A, and volume V. 

The main body of the bottle has volume V 
0

, and can have any reason

able shape.. Like Helmholtz, I neglect the inertia of the air in 

volume V 0 , because it does not move very much. Thus I treat V 0 
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as a massless spring. 4 Unlike Helmholtz, I do not assume that the 

air in the neck moves as a whole. Instead I treat the neck as a dis-

tributed massive spring. 

We shall show later that each of these two springs has an effective 

spring constant K that is inversely proportional to the volume of air 

in the spring: 

(1) 

Thus, for example, for an ordinary bottle with neck volume V small 

compared to the main volume V 
0

, the neck acts like a comparatively 

stiff spring and the body a comparatively weak spring. 

Z. QUALITATIVE PREDICTIONS OF THE MODEL 

Let us guess in advance of the detailed theory the results expected 

from the model for the two limiting cases: (a) main volume large 

compared with neck volume and (b) main volume small compared 

with neck volume. 

a. Large main volume: V 
0
/V > > 1 

Then according to Eq. (1) the neck is a stiff spring and the body 

is a weak spring. In the lowest mode the stiff massive spring (neck) 

moves back and forth as a whole, barely expanding and contracting, 

with the return force nearly all provided by the weak massless spring. 

This is nearly Helmholtz's approximation, and our result will be nearly 

Helmholtz's, with a small correction for the fact that the stiff spring 

does expand and contract slightly as it moves back and forth. 

In the second and higher modes the massive spring (neck) expands 

and contracts. Since the neck is relatively stiff, it hardly feels the 

weak spring (the main volume). Therefore the center of mass of the 

neck remains nearly at rest. Thus in the higher modes the neck os

cillates like a tube with both ends open. Our formula will therefore 
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predict modes like that of an open-ended tube, with corrections for 

the fact that the weak spring (volume v ol does have some influence, 

and therefore the center of mass of the neck does not quite remain 

at rest. 

We might have guessed these results without the model. From 

Fig. 1 we see that if V 
0 

is huge, the inner end of the neck opens into 

a huge volume and the neck should behave like a tube open at both 

ends.
5 

b. Small main volume: V 
0
/v < < 1 

Then according to Eq. (1) the neck is a relatively weak spring and 

the body is a stiff spring. In the limit that V 0 goes to zero the neck 

is a massive spring with the inner end fixed and the outer end free. 

In that limit the system is simply a tube with one end closed and one 

end open. Its modes are well known. For V 
0 

not quite zero, our 

formula should give a result not exactly that of a tube with one end 

closed, since the stiff spring V 
0 

does expand and contract slightly. 

Again, we can guess these limiting results without the model. H 

we fill the flask with v;ater until V 0 is zero we obviously have simply 

a tube (the neck) with a closed bottom end. 

These qualitative predictions agree with experiment. Using a 

500-ml volumetric flask I can, after some practice, blow the lowest 

three modes. The second and third modes have the same pitches as 

the lowest two modes of an open-ended glass tube having the same 

diameter and length as the neck. When I fill the main volume with 

water I find, as expected, that the first three modes have the same 

pitches as the first three modes of a test tube having the same dia-

meter and same length as the neck. 
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c. Transition between large V 
0 

and small V 
0 

Now that we have considered the two limiting cases, V 
0
/V> > 1 

and V 0/V < < 1, we can make a good guess as to the predictions of 

the model if we start with a bottle with V 
0 

large compared to V and 

then gradually decrease V 0 to zero by filling the bottle with water. 

The lowest mode (mode zero) will start out with a frequency f
0 

that agrees with Helmholtz's prediction. As we fill the bottle my 

model will start to disagree with that of Helmholtz when V 
0 

is no 

longer large compared with V. The pitch f 0 of the lowest mode 

will gradually increase until finally, when V 
0 

goes to zero, the fre

quency f0 will be f 0 = f00 , where f
00 

is the frequency of the lowest 

mode of a tube of length L with one end closed; then the tube length 

L is one quarter wavelength. The corresponding frequency is 

f 00 = c/4L, 

where c is the velocity of sound in air. 

The second mode of the bottle will start out, when V 
0
/V is large, 

as the lowest mode of a tube open at both ends and having the length 

of the neck. The neck length will be one half wavelength. Thus the 

frequency f 1 of this second mode (first overtone) will be u
00 

for 

large V 0 . As V O is decreased this mode will gradually increase 

its frequency until, when V 0 goes to zero, it has the frequency of 

the second mode of a tube with one end closed. The neck length will 

then be three quarter wavelengths, and the frequency will be 3 f
00

. 5 

3. ADVANCE SUMMARY OF THEORETICAL AND EXPERIM:ENTAL 
RESULTS 

The reader who wishes to skip (or temporarily postpone) details 

of the theory can now turn to Fig. 3 where the detailed predictions of 

my·model are plotted for the lowest mode, with frequency f
0

, and 

the first overtone, of frequency f 1 , as a function of V 
0

, for a 500-ml 

\_ 
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flask. The three limiting frequencies f
00

, 2 f
00

, and 3 f
00 

dis

cus sed above are also shown in Fig. 3. Helmholtz's prediction for 

f
0 

is also shown, as are my experimental results. 

4. THEORY 

a. Helmholtz's approximation for the lowest mode 

First I shall review Helmholtz's model. The mass in the neck is 

M =Po V, (2) 

where Po is the density of the air at equilibrium. We need to cal

culate the effective spring constant K
0 

of the volume V 
0

• When we 

have found K
0 

we will have found the angular frequency, 

(3) 

for the simple harmonic oscillator of Helmholtz's model. The air in 

volume V 
0 

satisfies the adiabatic gas law, 

p
0 

V 
0 
Y = constant. 

Here p
0 

is the pressure in the volume V 
0

, and y is the ratio of 

specific heats. Differentiating Eq. (4) gives that an increase in 

volume, l::.V 
0

, yields a decrease in pressure 

t::.po = - <YP/V olt::.V o· 

(4) 

(5) 

Now consider the motion of the air in the neck. If the air moves as 

a whole, a distance x to the right, the volume V 
0 

increases by an 

amount 

t::.V O = Ax. (6) 

The return force F on the air in the neck is due to the pressure 

differential between the air in volume V 
0 

and the air outside the end 

of the neck: 

(7) 

If we think of this force as due to an equivalent spring of spring con-

stant K 0 we must have 
F =- K 0x. (8) 

Conbining Eqs. 
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(5) to (8) gives 

2 
Ko = (ypoA )/vo. 

Then (3), (2), and (9) give 

/ 

2 I 2 wO = (ypO Po) (A /V 0 V). 

But, as is well known (and as we shall later review) the sound 

velocity in air, c, is given by 

2 
c = <YPol/ Po· 

The volume V of the neck is given by 

V = AL. 

Combining (11), (12) and (10) gives 

which is Helmholtz's formula. 6 

b. Spring constant for air in the neck 

•\ 

(9) 

(10) 

(11) 

(12) 

(13) 

In my model we shall need the spring constant for the air in the 

neck. The derivation follows the same steps as in Eqs. (4) to (9). 

We find, therefore, that 

K = (yp0 A
2

)/V. (14) 

Comparing (14) and (9) we see that Eq. (1) holds: The effective 

spring constants are inversely proportional to the volumes. 

c. Lumped-parameter model 

For conceptual clarity we start our calculation with a model 

where the massive spring (the neck) of spring constant K, length L, 

and mass M is thought of as a string of N masses and N springs in 

series. See Fig. 2. Each mass has value M
1 

= M/N. Neighboring 

masses are separated by distance L 1 = L/N. The tiny springs con

necting neighboring masses each have spring constant K
1 

that is 

related to K by 
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(15) 

To understand (15) we can use dimensional analysis: K has di-

mens ions dyne/ em, so KL has dimensions dyne, which sould be in-

dependent of the length of the spring. More directly: If N identical 

springs are connected in series and the combined spring is extended 

an amount x, then each component will be extended an amount x/N 

and will exert a force K 1x/N. But that is also the force exerted 

by the combined spring. Therefore the combined spring has spring 

constant K = K/N. Since N = L/L1 , that gives (15). 

d. Equation of motion for the model 

Consider one of the masses in Fig. 2. Call it mass n, where n 

is neither 1 nor N. (We will later consider the end masses, 1 and 

N, to obtain the boundary conditions.) Apply Newton's second law 

to this mass. Let ljJ be the displacement in centimeters of mass 
n 

n to the right, away from its equilibrium position. Then the spring 

to the right of mass n is stretched by an amount ljin+1 - ljin and 

pulls to the right with a force K1 (ljin+i - ljin). The sprfng to the left 

pulls to the left with a force K 1 (1ji - ljJ 
1

). The net force gives 
n n-

mass times acceleration: 

(16) 

Now we go to the continuous limit. Instead of the label n we use 

the label x which gives the equilibrium position of a mass. We 

also assume that neighboring masses suffer nearly the same displace-

ments, so that lji(x, t), which replaces ljJ (t), is a smooth function of 
n 

x. Then we set 

(ljin+i - ljin)/L1 

(ljin- ljin-1)/L1 

= (alji/ax)n+i' 

= ca~Ji I ax> 1. n-z-

(17) 

(18) 
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where the subscript (n+!) refers to the point midway between the 

equilibrium positions of masses nand n + 1. Then (16) becomes 

2 I 2 M 1 (a IJi at ) = K 1L 1 [ (a~Ji/ax) +.! - (alji/ax) 1.J 
n z n-z 

2 2 2 
= K 1L 1 ·(a ~Ji/ax )n' 

where the last step was analogous to Eqs. (17) or (18). 

e. Classical wave equation. Velocity of sound 

Equation (19) is the classical wave equation, 

a
2

1ji/at
2 

= c
2

(a
2

1ji/ax
2
)' 

with wave velocity c given by 

c
2 = (K1L 1) L/M1 = (KL) L/M 

2 V YP0 
L /M = YPo M = - ' 

Po 

(20) 

(21) 

where we used (15), and (14), (2), and (12). Thus we have derived 

Eq. (11) as promised. 

f. Standing wave solution. Relation between frequency and wave 
number 

We are looking for modes that produce tones. These are standing 

waves of the form 

lji(x, t) = cos (kx +a) cos wt. (22) 

Substitution of (22) into (20) shows that (22) is a solution, provided 

2 2 2 
w = c k • (23) 

In order to find the spatial phase constant a and the allowed values 

of the angular wave number k we must examine the boundary con

ditions. Once we have found the possible values of k (one for each 

mode), (23) will give us the corresponding frequencies. 

g. Boundary condition at x = L (the open end) 

Go back temporarily to the lumped parameter model and consider 

the equation of motion of the last mass, number N. It has a spring 

to its left but none to its right. Newton's law gives 
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Now go to the continuous limit: 

<<PN - .PN-1)/Li = (a.p/ax)x=L · 

• Then (24) becomes 

(24) 

(25) 

(26) 

. .. 

•-"' 

But in the continuous limit where N goes to infinity, each tiny mass 

M 1 goes to zero, whereas KL remains constant. Thus the left side of 

(26) goes to zero, and therefore we need 

(a.p/ax)x=L = 0 . (27) 

We can satisfy (27) by choosing a such that (22) becomes 

.P(x, t) = cos k (x-L) cos wt. (28) 

We still need to find the allowed values of k. Those are determined 

by the remaining boundary condition. 

h. Boundary condition at x = 0 (connection to spring K
0

) 

Consider the first mass, n = 1. Its equation of motion (see Fig. 2) 

is 

In the continuous limit we have 

<P2 - <P1 = Li (a.p/ax)x=O 

also, K 1 L 1 = KL, and M 1 = 0. 

Thus (29) becomes 

o = KL (a.p/ax)x=O - K 0 .p • 

Substituting the solution (28) into the condition (30) gives 

KL (a/ax) [cos k(x-L)] - K 0 cos k(x-L) = o 

at x = 0, i.e., 

K(kL) sin kL- K
0 

cos kL = 0 

i.e., 

(29) 

(30) 
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kL tan kL = K 0/K = v /V 0 I· (31) 

Equation (31) is our desired result. It gives the allowed values of 

kL. The corresponding mode frequencies are given by Eq. (23): 

~-f_= __ w/_2_~ __ =_<c_/_2_~_L_>_<_kL __ ) __ ~l· (32) 

where the kL values to insert in (32) are the solutions of E q. (31 ) . 

5. THEORETICAL RESULTS FOR LIMITING CASES 

Equations (32) and (31) give the general results for the model. 

Since (31) has an infinite number of solutions there are an infinite 

number of modes. We shall only consider the lowest two modes, 

which we call mode zero and mode 1. In order to compare the model 

with the qualitative discussion in Sec. 2 we shall here reduce the 

general formulas (32) and (31) to simpler forms, for the two 

limiting cases of comparatively large main volume, and comparatively 

small main volume. 

a. Large main volume: V 
0
/V > > 1 

(1) Lowest mode. 

For V/V
0 

< < 1, the smallest value of kL that will satisfy (31) 

has k = k
0 

such that k
0

L < < 1. Then we can approximate 

tan k
0

L :::: k
0

L. 

Then (31) gives 
1 

k L:::: (V/V )2 
0 0 

Then (32) gives 

(33) 

Comparing this with (13) we see that we have recovered Hehnholtz' s 

formula. Conceptually the derivations are very different. Helmholtz's 

derivation does not involve the concept of a wavelength at all, in the 

neck. Since in his derivation all the material of the neck moves 
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together, you might think that that would correspond to infinite 

wavelP-ngth, i.e. to k
0 

= 0, in my model. But that is not exactly 

so; k
0 

is only zero for V /V 
0 

= 0, which would give f
0 

= 0. Rather 

than k
0 

= 0 we should say "k
0 

small compared with 1/L'1 corresponds 

to Helmholtz's result. 

We can obtain a small correction to Helmholtz• s formula by taking 

the next approximation to tan k
0
L, for k

0
L < < 1: 

tan k
0

L = k
0

L[ 1 + ( 1/3) (k
0

L)
2 

] 

That gives 

(2) Next-to-lowest mode 

(34) 

For V /V 0 < < 1, Eq. (31) is satisfied for infinitely many values 

of kL. For all of them, tan kL is small and positive. The smallest 

such value gave k
0
L, as discussed above. The next-to-smallest value 

of kL we call k
1
L, with tan k

1
L small and positive. That occurs 

for k 1L slightly larger than 1r: 

k 1 L = 1r + €, 0 < € < < 1 • (35) 

Then 

and 

Then (31) gives 

11'€ = V/V O. 

Then (35) gives 

Then (32) gives 

f
1 

= (c/1rL) k
1 

L = (c/2L) [ 1 + (1/11'
2

) (V /V 
0

)] . (36) 

But we recognize c/2L as the frequency of the lowest mode of a tube 
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of length L open at both ends. Equation (36) thus agrees with our 

earlier qualitative prediction in Sec. 2, where we gave the name 

2 fOO to c/2L. Equation (36) also gives a small correction term 

that takes into account that V 0 is not infinite. 

b. Small main volume: V 0/V < < 1 

(1) Lowest mode 

For V/V 
0 

> > 1, Eq. (31) will have solutions where tan kL is 

large and positive. The lowest such value is for k = k 0 such that 

k
0

L is slightly less than i 1r: 

Then 

and 

Then (31) gives 

Then (37) gives 

Then (32) gives 

(37) 

fO = (c/21TL) (k
0

L) = [ c/(4L)] [ 1- (V 0/V)] • 

(38) 

We recognize c/4L as the frequency of the lowest mode of a tube of 

length L closed at one end and open at the other. This verifies our 

earlier qualitative conclusion in Sec. 2, where we gave the name 

f
00 

to c/4L. 

(2) Next-to-lowest mode 

The next solution of Eq. (31) for V /V 
0 

> > 1 comes when tan kL is 

... 
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again large and positive, namely at k == k 1 such that k 1L is 

slightly less than (3/2)1T: 

k
1

L == (3/2)1T - E, 0 < E < < 1. 

Then 

tan k
1

L ==tan [ (3/2)1T- E)z 1/E, 

and 

Then Eq. (31) gives 

31T/2E == V/V O. 

Then (39) gives 

Then (32) gives 

f 1 == (c/21TL) (k1L) == (3c/4L) [ 1- (V0/V)) • 

We recognize 3c/4L as being 3f
00

, the frequency of the next-to

lowest mode of a tube of length L open at one end and closed at 

the other. This bears out our qualitative guess in Sec. 2. 

(39) 

(40) 

It is interesting to compare (40) and (38). We see that for small 

V 
0
/v the same correction factor, 1 - (V 

0
/V), occurs in both the 

lowest mode and the first overtone, and so these have a frequency 

ratio of 1 to 3, as in an ideal tube with one end closed. Therefore 

the factor 1 - (V 
0
/V) may be regarded as a common correction 

factor for the effective length . 

6. COMPARISON OF THEORY AND EXPERIMENT FOR ARBITRARY 
vo v 

Equation (31) is exact, for the model. But does the model agree 

with experiment for arbitrary V 0/v? I have compared the predic

tions of the model with experiment for the two lowest modes, over 

the range V 
0
/v == -10 to zero. My bottle was a 500 milliliter volumetric 
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flask 
7 

with a long cylindrical neck of length 16.5 em, diameter 

1.8 em. For the length L, I added an end correction of 0.6 times 

the radius, at each end. (The inner end should perhaps instead have 

had a correction of 0.8 R, since it is close to being a "flanged" 

end. 
5

) Thus, for L, Itook17.5 em, and for V, I took 46.0 cm3. 

The volume V 
0 

was varied from 486 em~, with the bottle empty, 

to zero, by adding measured amounts of water to the flask. For 

each value of V 
0

, I determined the pitch of the two lowest modes 

as follows: I tuned my flute to an A-440 tuning fork. I blew on the 

bottle to produce one or the other mode, then played the closest note 

to that, on my flute, that I could, using my ear as judge. I believe 

I can estimate to the nearest quarter tone, with an error of about plus 

or minus an eighth tone. (When the flask was nearly empty the 

lowest mode was below the flute range, so I played the corresponding 

note an octave higher on the flute.) After determining the note by ear 

with my flute (interpolating between half tones where necessary) I 

looked up the frequency in the Handbook of Chemistry and Physics. 

Then I plotted my experimental values of frequency versus V 
0
/v for 

the two modes. The experimental points are shown on Fig. 3. It is 

important that I committed myself to my experimental values before 

plotting the theoretical curve, and did not repeat the experiment 

after plotting the theoretical curve, because I could easily be prej-

udiced by perhaps a quarter tone if I knew the 11 expected" pitch. 

The theoretical curves were plotted as follows. The factor 

c/(21TL) appears in both the Helmholtz result, Eq. (33), and in my 

result, Eq. (32). 4 For c I took 3.32X10 em/sec, for L, 17.5 em. 

That gives c/ (21TL) == 301.9 Hz. For the Helmholtz formula I then 

simply plot Eq. (33) versus V 0/v. For my model one would expect 
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to choose a given value of v0/V, then solve (31) for kL, then use 

(32) to calculate the frequency f, then plot f. Actually, it is easier 

to go the other way: Choose f, find kL from (32), and calculate 

V ofv from (31). 

Figure 3 shows the comparison between theory and experiment. 

It is apparent that theory and experiment are in excellent agreement. 

Thus the model works, at least for the two lowest modes of this 

bottle. 

Of course, there must be modes that my model cannot encompass, 

4 
where the inertia in the main volume cannot be neglected. 

With my crude experimental technique I was only able to investi

gate the lowest two modes. It would be interesting to investigate 

higher modes using a more powerful technique, say a tone generator 

and a microphone to detect resonances. How far can this model be 

pushed? Where does it break down? Does it break down for the 

reasons Rayleigh suggested? 
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Footnotes and References 

1. Lord Rayleigh, The Theory of Sound, (Dover Publications, 1945), 

Volume 2, p. 187. 

2. For years I had been discouraged by a statement in Ref. 1, p. 189, 

where Rayleigh states, 11 The simple method of calculating the pitch of 

resonators with which we have been occupied is applicable to the gravest 

mode of vibration only, the character of which is quite distinct. The 

overtones of resonators with contracted necks are relatively very high, 

and the corresponding modes of vibration are by no means independent 

of the inertia of the air in the interior of the reservoir. The character 

of the modes will be more evident, when we come to consider the vibra-

tions of air within a completely closed vessel, such as a sphere, but i!.._ 

will rarely happen that the pitch can be calculated theoretically. 11 

(The italics are mine. ) 

3. I have not seen any predictions or calculations on higher modes 

of a bottle. Besides Ref. 1, I searched in the following sources: 

Philip M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw

Hill, 1968); P. Morse, Vibrations and Sound (McGraw-Hill, 1948); 

H. Olson and F. Massa, Applied Acoustics, (P. Blakiston and Son, 

1939); Robert Randall: An Introduction to Acoustics (Addison-

Wesley, 1951). 

4. Rayleigh would not expect my model to work at all for overtones, 

since I neglect -the inertia in the main volume. See Ref. 2. 

5. There will be small 11 end corrections" to the effective length of 

the tube. The outer end of the neck is a 11 free'' end. The inner end, 

being flush with the wall of the main volume, is closer to being a 

11 flanged" end. End corrections are discussed in Ref. 1, pp. 188, 202. 

At an open end, one should add 0.6 R to the effective length, where R 

is the tube radius; at a flanged end, one should add 0. 8 R. 

'f._ 
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6. My Eq. (13) is equivalent to Ref. 1, p. 187, Eq. (4). The 

correspondence between my notation and Rayleigh's is: 

w
0 

= 2TTN, c=a, A = C1, L = L, V O = S. 

7. Pyrex No. 5581 unstoppered volumetric flask, 500 ml. 

") 

.,. 
; 
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FIGURE CAPTIONS 

Fig. 1. Bottle with main volume V 
0

, and a cylindrical neck of 

length L, volume V, and cross section A. The volume V 
0 

can be 

varied from its rp.aximum value to zero by filling the bottle with 

water. 

Fig. 2. Lumped parameter model. The main body is a massless 

spring of spring constant K 0 . The neck is a distributed massive 

spring consisting _of N identical masses M 1 separated by N identical 

springs each of length L
1 

and spring constant K
1

. 

Fig. 3. Theory and experiment. The smooth curves labeled f
0 

and 

f
1 

give the predicted frequency for the lowest two modes of a bottle 

with effective neck length 17.5 em, as a function of the ratio of 

main volume to neck volume, for the model discussed. The pre-

diction of Helmholtz for the lowest mode is also plotted. The 

plotted points are experimental values. The frequency labeled 

f
00 

has value c/4L and is the lowest mode of a tube of length L 

closed at one end and open at the other. The frequency labeled 

2£
00 

is the lowest mode of a tube of length L open at both ends, 

and is the first overtone of the bottle, when V 0/v is very large. 

The frequency labeled 3f
00 

is ,the first overtone of a tube of 

length L closed at one end and open at the other, and is the 

first overtone of the bottle, when V 
0
/v is very small. 
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~--~======~==~LEGAL NOTICE----~------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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