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TOPICS IN STATISTICAL MECHANICS 

Veit Elser 

ABSTRACT 

This thesis deals with four independent topics in statistical Imechanics: 

(1) The dimer problem is solved exactly for a hexagonal lattice with 

general boundary using a known generating function from the theory of 

partitions. It is shown that the leading term in the entroW" depends on 

the shape of the boundary. 

(2) Continuum models of percolation and self-avoiding walks are intro

duced with the property that their series expansions are sums over linear 

graphs with intrinsic combinatorial weights and explicit dimension depen

dence. 

(3) A constrained SOS model is used to describe the edge of a simple 

cll~ic crystal. Low and high temperature results are derived as well as the 

detailed behavior near the crystal facet. 

(4) The microscopic model of the A-transition involving atomic permuta

tion cycles is reexamined. In particular, a new derivation of the two

component field theory model of the critical behavior is presented. Results 

for a lattice model originally proposed by Kikuchi are extended with a 

high temperature series expansion and Monte Carlo simulation. 
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DIMERS ON A HEXAGONAL LATTICE 
WITH BOUNDARY 

1 



Implicit in the notion of a thermodynamic limit is the idea that 

bulk properties are insensitive to the precise nature of the boundary 

conditions imposed. An instructive example is provided by the dimer 

problem on a square lattice. When the dimers are required to occupy 

every site of the lattice the problem can be solved exactly both for the 

case of an m X n rectangular boundaryll2 as well as for the m X n torus2 • 

With either choice of boundary conditions one finds a bulk entropy per 

dimer: 

1 2( 1 1 1 ) -log Z f'.J - 1 - - + - - - + ... 
~mn 1r 32 52 72 

m, n ....... 00 

In this note it will be shown that the above statement does not 
hold for the dimer problem on the hexagonal lattice. An exact solution 

has been known for some time3 but only for the case of toroidal boundary 

conditions where one does obtain a bulk entropy (N=number of dim,ers): 

1 2 f.1r/3 
N log Z f'.J 1r 0 log(2 cos x) dx 

(1) 

= .338314 

If instead the problem is formulated in a general hexagonal region (to be 

described below) it is seen to be equivalent to the combinatorial problem 

of "plane partitions" 4 • Fortunately, the generating function for plane 

partitions is known. When the result is applied to the dimer problem it 

will be seen that a bulk limit of the entropy does not exist. 

Figure 1 shows a typical dimer configuration. The dimers are 

placed along the edges of the lattice and are represented by double bonds. 

Since the maximum dimer density corresponds to each site being the 

endpoint of exactly one double bond, the resulting configurations are 

equivalent to the possible KekuIe structures of carbon-carbon bonds in 

graphite. 
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Consider now a description in terms of the dual triangular lat

tice. The hexagonal lattice sites are mapped into thec.enters of triangles; 

the double bonds now joining adjacent triangles in the triangular lat

tice. Since every triangle is joined to exactly -one adjacent triangle, the 

dimer configuration is equivalent to a tiling of the triangular lattice with 

"triangular dominoes" , or rhombi (see Fig. 2). 

The tiling description will now be mapped into a three-dimensional 

structure. The three orientations of rhombi can be generated by projecting 

faces of a cube into a plane perpendicular. to the cube's main diagonal. 

Figure 3 depicts a collection of unit cubes ananged in one octant of a three

dim~nsional coordinate system (portions or the planes x, = 0, Y= 0 and 
z = 0 are shown as well). By projecting only the "non-hidden~' surfaces of 

Fig. 3 into the (111) plane, we produce the tiling pattern of Fig. 2. The 
arrangement of unit cubes at integer points of the coordinate system 

follows uniquely from the tiling pattern. We proceed by building up 

layers of cubes. The dashed line from A to A' in Fig. 2 instructs us 

how to build up the layer for 0 < y < 1. It consists of stacks of 
3, 2 and 1 cubes in the z-direction as we proceed in the positive x

direction. The dashed line AA' is found by connecting opposite sides of the 

rhombi. Similarily, the layer 1 < y < 2 is generated by following line 

BE', etc. It is easy to see that the stacks of cubes always have non

increasing height as we proceed in the positive x-direction. H instead 

we had analyzed the configuration in terms of layers of constant x (by 

proceeding from C to C', etc.) we would have found that the heights of 

the stacks of cubes are also non-increasing in the positive y-direction. 
Figure 4 shows the heights of the stacks of cubes in the x-y plane. We 

have just shown that dimer configurations of the original hexagonal lat
tice correspond uniquely to the assignment of integers 0, 1, 2 or. 3 to a 

3 X 4 table such that both rows and columns form non-increasing se
quences. 
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The general problem described above, of counting the number of 

sets or k x I integers {Zij} satisfying 

0< z-- < m - 'l.3-

Z -- < Z-+l -'3 - , 3 

is the problem of plane partitions treated extensively by MacMahon4 • 

From the three-dimensional representation of Fig. 3 it is clear that the 

counting of configurations is completely symmetric with respect to per

muting k, I and m. In our case, k, 1 and m measure the sides of the 

hexagon shown in Fig. 2. Moreover, the number of dimers belonging to 

the three different orientations are simply k ·1, I· m and m· k. MacMahon 

discovered the generating function for plane partitions: 

klm 
Gklm(X) = L PMX M 

M=O 

Fk+l+m(x)Fk(X)Ft(x)Fm(x) 
-

Fk +t( x )F,+m( x)F m+k (X) 

Here PM is the number of configurations subject to the constraint 
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For example, 

We will evaluate Gkl"; for x = 1 when k, I and mare all large. 

Setting x = e- t we have, 

n-l 

logFn = L(n - p)log(1- e-Pt ). 

1'=1 

In the limit t ...... 0 for n large but fixed, 

1 /.nt 
log Fn f",J t2 . 0 (nt - u) log(l - e-U)du 

1 
f",J 2"n2 log nt • 

Substituting into the expression for G kim we find: 

Skim = IOgGk~m(1) f",J Ns(x, y, z) 

N = kl + lm+mk 

s( x, y, z) = ( 1 ) [x2 log X + y2 log Y + z2 log z 
2 xy+ yz +zx 

- (1- x)2Iog(l - x) - (1- y)2Iog(1- y) - (1- z)2Iog(l- z)] 

n = k + 1+ m, 
k 

X=
n' 

I 
Y--- , 

n 

m 
Z=

n 

We observe that first of all the boundary completely determines 

the orientational distribution of the dimers. Moreover, t'he specific entropy 
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given by the function s( x, y, z) is not a constant but clearly depends on 

the shape of the boundary. The maximum entropy per dimer is obtained 

w hen the boundary is a regular hexagon: 

3 s(!,!, !)= 2"log3 - 210g2 = .2616241 (2) 

Since the dimer configurations considered here are a proper subset of those 

counted in the toroidal problem, the entropy (2) could not have been 

greater than (1). 

In order to understand the difference between the square and 

hexagonal dimer problems when boundaries are present we focus on the 

nature of configurations near a single straight boundary. In Fig. 5, line 

10 describes the boundary and has no dimers crossing over it. Line 11 
may be crossed by at most one dimer, line 12 by at most two, and so on. 

Now if at some distance away from the boundary, say near the line 11c' the 

dimer configurations were representative of a bulk sample, then a fixed 

fraction of Ilc would be crossed by dimers. By the previous remark t.his 

requires that k be proportional to the length of the boundary. Thus the 

region between 10 and Ilc where the dimers are not representative of bulk 

properties does not become negligible when we take the thermodynamic 

limit. We see in Fig. 6 that the square lattice has a very different behavior. 

Already at line 11 the number of crossing dimers can be close to the bulk 

value. 
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Introduction 

The importance of dimensionality in statistical mechanics has 

motivated the study of a number of systems where the dimensionality D 
is a freely adjustable parameter. Two examples are the D-dependence of 

momentum (loop) integrals in field-theoretic models l and the series expan

sions for models defined on aD-dimensional hypercubic lattice where D 
also appears explicitly2. This paper introduces models of percolation and 

self-avoiding walks where series expansions exhibit a D-dependence in yet 

another way. 

The basic idea is to exploit a well '--known property of gaussian 

integrals3 • Let Xl, ••• , xn be D-dimensional cartesian coordinates of n 

points and let C be a simple connected graph having n vertices labeled 

1,2, ... , n. If we associate each edge of C with the pair of vertices it 

connects, then 

where r(C) denotes the number of spanning trees of C. Thus, if a problem 

can be formulated in the continuum in such a way that the cluster integrals 

appearing in series expansions are always of the above type, the task is 

reduced to combinatorics. This strategy has been used previously by Ford 

and Uhlcnbcck4 in their study of a gas of particles having the pairwise 

interaction -,OV(r) = log(l- exp(-ar2)). 

12 
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Percolation 

Consider the percolation problem defined on a set of N points 

Xl,"" XN distributed uniformly at random inside a D-dimensional volume 

V. Clusters are defined by establishing connections (adjacency) between 

certain pairs of points. Specifically, points Xi and Xj are connected by an 

"edge" with probability exp( -a(xi - Xj)2). Here a plays the role of the 

bond probability and controls the size of clusters when one maintains a 

fixed density p = N IV. Equivalently, fixing a and varying p .reproduces 

the site-type problem. 

Our approach to analyzing this model will be to obtain the so

called "cluster numbers" 5. A k-cluster is defined to be an edge-connected 

set of k points having no edge connections with any of the other N - k 

points. Dividing the average number of k-clusters present in the volume by 

.1V gives the cluster numbers nk(xl, ... , XN). Averaging this quantity over 

all ensembles of points gives the cluster numbers appropriate to a uniform, 

random distribution of points: 

We will obtain nk by considering Pk, the probability that a given 

point, call it Yl, belongs to a k-cluster (again, averaged over ensembles). 

The cluster numbers then follow from nk = Pklk. There are 

(N-l) 
k-l 

(2) 

ways of choosing the other k - 1 points of the cluster, call them Y2, ... , Yk. 

Once chosen, the set of possible k-clusters that can be formed fall into 

a one-one correspondence with the set of simple connected graphs on k 

(labeled) vertices, e k. For a particular graph C E e k with vertices labeled 

1, ... ,k, one associates the following probability factor with each pair of 

13 



vertices 1 < i < j < k: 

p. .. (C) _ { exp(-a(Yi - Yj)2) 
'tJ - 1 _ exp( -a(Yi _ Yj )2) 

if i and j are adjacent; 

otherwise. 

(3a) 

(3b) 

The probability of the cluster configuration is given by the product of these 

factors multiplied by 

N-Ic k N-k 

IT IT [1-exp(-a(zi-Yj)2)] = IT (l+f(Zi)) , 
i=1 j=1 i=1 

where Z1, ••• , ZN-k are the points not included in the cluster. In the limit 

N -+ 00 with p and k fixed, the integrations over the positions Zl, Z2, ... 

can be evaluated in closed form. However, in following the strategy of 

utilizing expressions involving only gaussian integrals, we will be interested 

in expanding in powers of the density: 

= 1 + p / dDz1 f(zd + ~: / dDz1 / dD Z2 f(zdf(Z2) +... (4) 

When (4) is multiplied by the factors (3), the binomial coefficient 

(2) (with N -+00, k fixed) and averaged over the positions Y17 • •• , Yk , one 

obtains the probability Pk(C) that Y1 belongs to a Ie-cluster with topology 

specified by C. Summing Pk(C) over all possible connected graphs C e C k 

and taking into account the relationship between nk and Pk we arrive at 

the expansion 

nk = pkk~l L {nf:
o 
~~ / dDY2··· / dDYk / dD

. Zl··· / dDzn 

. CeCk 

15:i:gSk Pij{Cl i~ !(Zil} 
(5) 

14 
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where, 

k 

f(z) = II [1- exp( -a(z - Yi)2)J - 1 . 
i=l 

"Ve see that (5) is a sum of terms of the form (1); the coefficient 

of 

p 1T' = Xk+n - 1 
[ ( )

D/2jk+n-1 

a 

involving contributions from connected graphs having k + n vertices. vVith 

this in mind, we will consider an expansion of the generating function 

00 

F(x, y) = L: yknk(~) 
k=l 

organized in the form 

00 x
m

-
1 

{ ( 1 )D/2 } 
F(x, y) = I: m! L: T(C)· W(C; y) , 

171-1 . C E em 
(6) 

where W( C; y) is a polynomial of degree bounded by the number of ver.tices 

of C. 

We now turn to the problem of evaluating W( C; y) for some graph 

C E e k+~. III particular, consider the contributions to the coefficient of 

yk. These are due to various graphs NEe k that characterize k-cluster 

topologies as well as the different ways these graphs might be embedded in 

C. To be precise, let N be a subgraph of C (written N C C). Denote by 

C - N the subset of C where all the vertices of N as well as the edges 

incident to them have been deleted. If C - N is not empty then C - N 

is a subgraph of C. A subgraph N C C that corresponds to an acceptable 

cluster embedding will be called a nucleus and has the properties: 

15 



(i) N is connected; 

(ii) C - N has no edges. (Equivalently: the vertices of N 

constitute a covering of C; i. e. at least one end of every 

edge of C is a vertex of N.) 

The vertices not iq the nucleus should be identified with the points 

Zl,"" Zn outside the cluster, which by (5) are not mutually interconnected 

by gaussian factors. In (5), the nucleus belongs to a distinguished subset 

of the k + n vertices of C. If we relax this condition on the embedding we 

will be overcounting by the factor (ktn). To compensate for this we divide 

by the same factor in the end. 

For a given cluster embedding Dr nucleus 1Y· C C, there are three 

types of edges e of C. First, if e E N then e contributes a gaussian factor 

with a plus sign according to (3a). Second, if the endpoints of e belong to 

N but e ~ N then (3b) applies and the gaussian factor comes with a minus 

sign. Third, if one of the endpoints of e belongs to C - N then the origin 

of the relevant gaussian was (4) and also carries a minus sign. The parity 

of the contribution due to a particular nucleus N C C is thus 

where c( G) denotes the number of edges of G. 

We can now put together the total contribution of a term in (5) 

coming from a particular nucleus N C C: 

"" " + x y (l)€(C)-€(N) . + 00 k+n-l k 1 ( 1 )D/2 
L...., Y nk = . . . - -- ... 
k=1 k! n! (";;n) r( C) 

l,+n-l ( 1 )D/2 = ... + x _ (_l)€(C)-€(N)yk + ... 
(k+n)! r(C) 

. Summing all those terms involving a particular graph C gives the weight 

16 



-. 

polynomial 

ltV(C;y) = L (_ly(C)-E(N)yll(N) , (7) 
nuclei 

NeC 

where 1I( G) denotes the number of vertices of G. 

The generating function (6) may also be expressed as a sum over 

nonisomorphic connected graphs, 

xv(C)-l ( 1 )D/2 
F(x, y) = L O"(C) r(C) W(C; y) , 

nonisomorphic 
C 

where 0"( G) is the order of the symmetry group of G. The first few terms 

of this sum, up to graphs with four vertices, are given in Table 1. 

We will now prove two theorems involving the weight polynomial 

W(C; y). These are simple consequences of the following lemma: 

Lemma 1. LetC be any nontrivial, simple, connected graph and 

let v be any vertex of C. Then, 

(_l)E(N) = 0, (8) 
nuclei 

{N e C I v EN} 

where the summation is over all nuclei containing v. 

A proof is given in the appendix. 

Theorem 1. Let C be a simple connected graph with at least one 

cut vertex v. Then .W(C; 1) = o. 

Proof . . Let N e C be a nucleus of C. Suppose v fl N. Then, 

since N is a nucleus v is adjacent only to vertices of N. Now N is connected 

so we conclude that C - v is connected contrary to the statement that v 

is a cut vertex. Thus v E N and the statement of the theorem follows 

immediately from (7) and Lemma 1. 

17 



Theorem 2. Let C be a nontrivial, simple, connected graph. Then 

Proof. 

d 
dyW(C;l)=O. 

= L L (_1)f(N) 
v E C nuclei 

{N ~ C I VE N} 

=0 

There is another way of understanding the statement of Theorem 2. 

Let P/inite be the probability that a given point in the percolation problem 

belongs to a finite cluster. Then 

00 

P/inite(X) = L knk(X) 
k=l 

d = dyF(x, 1) 

= 1, 

with only the trivial graph contributing to the sum (6). This agrees with 

our expectation that P/inite = 1 on the interval 0 < x < xc, where Xc is 
the critical density. 

To obtain a nontrivial series we consider the mean cluster size, 

18 



S(x), which is unity at x = 0 and diverges at x = Xc: 

Xl/(S)-l 1 D/2 

{ }

_l 

= L - W(S;I) 8'S' v(S)! C(S)) 

Here the weight }V(S;l) is nonzero only for graphs without cut vertices 
o 

("stars") by Theorem 1. Below are the first few terms: 

The formal D = 0 limit of S( x) is readily evaluated since now the 

gaussian integrations do not involve 7(8) but are simply ± 1. A convenient 

starting point is (5) where we first argue that the summation over connected 

graphs C E e k collapses to the single term involving the complete graph 

[( k. Any graph with two nonadj acent vertices would have contained a factor 

(3b) yielding two equal terms of opposite sign upon integration .. Counting 

up the terms produced by the fact,ors f( zd we then have, 

k-l 
X -x 

- k! e 

S(X)",-l = 1- e-
x 

• 

x 

(D =0) 

19 



'Vhile D = 0 is not a physically interesting case, this result 40es provide a 

useful check on the coefficients of S(X)-l for general D. 

Self-Avoiding Walks 

Let Xl,"" xn be a sequence of points i:!1 D-dimensional space 

visited by a self-avoiding walk of n - 1 steps beginning at the point Xl' As 

in the percolation problem, we would like to express the idea of a "chain" 

as well as the "excluded volume effect" in terms of gaussian factors. This 

can be done using the following partition function (n > 2): 

Zn-l = C~/2r-l ! dDX2"""! dDxn 

n-l 

II exp( - (x i-X i+ d2
) II [1 - exp( - (x i- xi)2)] 

i=l li-il>l 
(9) 

The first product above realizes the chain constraint and by itself reproduces 

the behavior of the unrestricted walk if one identifies Zn with the number 

of walks of length n - 1. The second product, over all nonconsecutive pairs 

of points, enforces the excluded volume constraint and renders the problem 

nontrivial. 

Observe that every term of (9) has at most one gaussian factor 

connecting each pair of points. If we imagine writing out the n! copies of 

(D) generated by all permutations of the labels on the points and dividing 

by nt, the resulting sum in graphical language becomes: 

( )

D/2 
Z,,-l = ~ "" (_l)€(C)-n+1 h(C) _I_ 

n! ~'T(C) 
CECn 

(10) 

20 
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Here h(C) counts the number of hamiltonian paths in C, i.e. the number of 

permutations of the vertices v( 1 )v( 2)· .. v( n) such that v( i) and v( i + 1) are 

adjacent in C for 1 < i < n. 'Ve can improve upon (10) by using the fact 

that a general connected graph can be decomposed into a tree of nontrivial 

stars connected at cut vertices. lVIoreover, for hamiltonian connected graphs 

(h( C) > 0), such a tree must always be a linear chain. Thus, if we define 

the generating functions 

00 

G(x) = L Zn xn 

n=1 

" (_1)1:(8)-11(8)+1 (1 )D/2 
z(x) = L." h(S) - XIl (8)-1 

nontrivial V(S)! . -reS) 
stars 

S 

then, 

00 

G(x) = L Zk 
k=1 (11) 

_ z(x) 
- 1- z(x) . 

To understand (11), consider a particular sequence of nontrivial 

hamiltonian stars 8 1, ••• , 8k and choose hamiltonian paths for each one 

with beginning and ending vertices (VI, Ul), -••• , (Vk, Uk). In order that C = 

8182" ,Sk has a hamiltonian path beginning at VI and ending at Uk the 

stars must be glued together in a unique way; namely at the cut vertices 

Ul = V2, U2 = V3,"" Uk-l = Vk~ :Moreover, it is also clear that -r(C) = 
-r(Sdr(S2)' . ·-r(Sk) irrespective of the detailS of the decomposition. Finally, 

one can check that the counting of vertices and excess edges (minus signs) 

is correct. 
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The series z( x) begins: 

( I)D/2 [(I)D/2 (I)D/2 ( 1 )D/2] 
z(x)=x- 3 x2 + ~ 4" +3 8' - 16 x3 + ... 

Values of h( C) have been included in Table 1. 

We again observe that the formal D = 0 limit is easily evaluated. 

Considering (9) with D = 0 we see that Z" = 0 for n > 2. Thus, 

G(x) = x 

(D =0) 
x 

z(x) = + 1 x 

Conclusion 

A particularily interesting question concerns the nature of the sin

gularities of the generating functions discussed above as the dimensionality 

is varied. If we formally set D = 00, the singularities are simple poles: 

1 
S(x)=l_~X 

G(x) = x 
1- x 

(D = 00) 

This result is not unexpected and indeed the dominant singularity is believed 

to remain a simple pole provided D > Dc. The value of the critical dimen

sion depends on the particular problem and it is believed that Dc = 6 for 

pcrcolation6 , and Dc = 4 for self-avoiding walks7 • Evidence of such a 

critical dimensionality might be obtained from numerical work with the 

series expansions for S(X)-l and z(x). 
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Appendix 

Proof of Lemma 1. We will use induction on 1I( C). There is 

exactly one simple connected graph with two vertices, C2. If we take v to 

be either one of the two vertices then the nuclei that contain v are v itself 

and C2 giving 1-1 = 0 in (8). Now suppose the statement holds for all C 

with lI(C) = 2,3, ... , n-l for some n>3. Let Cn b~ ~,ny simple connected 

graph with lI(Cn ) = n and let {v,u} E Cn be any tw,o vertices connected 

by an edge e E Cn • The proof will proceed by decomposing 'fl1l' the set of 

nuclei N C Cn that contain v. \Ve begin by defining the sets 

'fl l = {N E n 11 left Nand U E N} 

n2 = {N + e IN E 'fld . 

Clearly, 'fl2 C 'fl 1l and moreover, 'fl t n n 2 = 0. Thus, 

L (_I)€(N) = L' (_ly(N) + L (_I)E(N)+l 

N E nl Un2 N E nl N E nl (12) 

= O. 

The set of nuclei in the complement, n 11 - (n 1 Un 2)' is decom

posed further: 

n3 = {N E 'fl 1l I u ft N} 

n 4 = {N E n 11 - n2 leE N} 
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For N En 4, suppose that N - e is a nucleus. Then, (N - e) + e = N E 

112 , a contradiction so N - e cannot be a nucleus. This requires that N - e 

consist of two components, V(lV) containing v and U(N) containing u. Let 

v(N) be the vertex set of V(N) and denote by n(u) the set of vertices of 

Cn adjacent to u. 

vVe are now prepared to perform a decomposition of 'fI 4: 

ns = {N E n41 n(u) C v(N)} 

It is clear that for N E 'lIs, U(N) = u and u is adjacent only to v in N. 

By deleting both u and e from these nuclei we have the following set: 

'fIa = {N - u- e I N Ens} 

It is easily checked that 116 c n 3 and rJ 3 C 'fJ 6 so that 'fI 3 = 'fI a. This 

establishes a one-one correspondence between rJ 3 and 'fI 5; the nuclei of 

n 5 having one additional edge. The sum over nuclei N E 'fI 3 Un 5 thus 

vanishes in the manner of (12). 

Finally, we consider the remaining nuclei N E n 4 - rJ s. Define: 

v = {V(N) I NE r/4 - r/5 } 

11v = {N E r/4 - r/5 1 V(N) =- V} 

For a particular V E V, it is readily verified that Cn - V breaks up into a set 

of, components {Wl, ••• , Wk, Cu(V)} where Wl, •.. , Wk are isolated vertices 

and Cu(V) is a nontrivial graph containing u. lVloreover, it is also easily 

checked that the possible U(lV) for N E 11 v are precisely the nuclei of 

Cu(V) that contain u. Since'v ft Cu(V), 2<v(Cu(V»)< n and we can 
apply induction: 
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= L (_l)f(V)+l 

VEV 

=0 
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C u(C) r(C) W(C;y) h(C) 

0 1 1 y 1 

0---0 2 1 y2_ 2y 2 

L 2 1 y3 _ 2y2+y 2 

~ 6 3 _2y3 +3y2 6 

U 2 1 y4 _ 2y3 +y2 2 

L 6 1 1l - 3y3 + 3y2 - Y 0 

~ 2 3 _2y4 + 4y3 _ 2y2 4 

0 8 4 _3y4 +4y3 8 

ISl 4 8 4y4 _ 6y3 + y2 12 

~ 24 16 _6y4 +8y3 24 
" 

Table 1 
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THE EQUILmRIUM SHAPE OF CRYSTAL EDGES 



1. Introduction 

It is well known that ,the large scale equilibrium shape of·crystal 
surfaces is best characterized· by facets. A realistic facet, however, is'never 
infinite in extent and must meet other facets at finite intersection .angles 

to form edges. Consequently, edges are a generic feature of the crystal 
surface the properties of which we would like to know. 

For the simple-cubic crystal structure, a statistical mechanical 
model of the edge is provided by the partition function 

ZN(n,m;{J) = E exp(-{JE2:
t
zIY2:z - Y2:Z+11) (la) 

{Y2:z} 

where the sum is over all ,the 'n X N sets of in~eger variables {Y2:z} that 
satisfy the constraint: 

o < Y!z < Y2z < ... < Ynz < m z=l, ... ,N. (lIb) 

The Boltzmann factor of (la) is precisely that of the usual SOS model 
for the special case that the height variables Yfiz are monotonic in the 

x-direction as implied by (lb). Another way of describing the interface 
as it is cut by a plane of constant z is in terms of a lattice path taking 

n steps in the +x-direction and m steps in the+y-direction. Using this 
interpretation the Boltzmann weight of (la) is just the sum of positive 

areas between consecutive lattice paths. Moreover, it obviously follows 

that ZN(n, m; {J) = ZN(m, n; {J). 

The free energy appropriate to (1) is given by (L = n + m): 

lim (NL)-llogZN(pL,(l- p)L;{J)= -F(p,{J). (2) 
N-oo 
L-oo 

Here p is the density of steps in the +x-direction. As p -to 0(1) we approach 

the facet having x = const (y = const) . 
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The equilibrium shape of the crystal edge is obtained by the 

Wulff construction 1 • In order to proceed we have to be able to count 

the number of atoms in the crystal phase. We do this separately for each 

layer of constant z and begin by choosing a completely filled quadrant of 

atoms as a reference configuration. As pointed out above, such an edge 

can be represented as a semi-infinite sequence of +y-steps followed by 

a semi-infinite sequence of +x-steps. For convenience, we consider each 

~-step as a particle and each y-step as the absence of a particle on a linear 

lattice. The reference configuration has all the sites to the right of the 

origin occupied and the remaining ones empty. Other 'configurations can 

be generated by moving a finite number of the already existing particles. 

The statement of particle conservation can be expressed as 

0= E(ne- 1)+ Ene (3) 
e>o eso 

where { is the coordinate along the linear lattice and ne is the occupation 

number (0 or 1) of site { (see figure 1). 

To understand the general situation it is enough to follow the 

consequences of moving a single particle by one lattice unit. One discovers 

that a motion in the positive(negative) {-direction corresponds to the 

creation( annihilation) of a crystal atom at the interface. The number of 

atoms removed from the filled quadrant can thus be written as 

JI = - E {(ne - 1) - E ene . (4) 
e>o e<o 

When JI is large and the configuration is more appropriately described by 

a density of particles p(e), we use the continuum forms of (3) and (4): 

(3') 

( 4') 
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We can now apply the Wulff construction and obtain the functional 

W[p 1 = 1: (>.(e - eolP{el - F(p,Pl)de 

where the Lagrange multipliers ~eo and ~ apply to constraints (3') and 

(4') respectively. The equilibrium shape can now be found by maximizing 

W[ p] subject to the conditions: 

lim p(e) = 0 
(--00 

The functional W[ p] is extremized for. the choice 

which can be inverted (locally) to yield p as a function of e. However, we 
will see in subsequent calculations that for {3 > o. 

{} . 

. {}p F(O, (3) = -to 
{} 

{j P F(I, (3) = to 

{} .' 

-to < {JpF(p,{3) < to (0 < p < 1) 

where to > 0 isflnite. This means that in general, 

t < -to 
-to"< t < to 

to < t. 

(5) 

(6) 

The parameters eo and ~ are related to the position and scale 

of the edge respectively;. their values are determined by equations (3') 
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and (4'). The coordinate e has the geometrical interpretation of being 
measured along an axis rotated 450 with respect to the original x and 

y axes of the crystal (see figure 1). If in some range from e to e + Ae 
the lattice path makes n steps in the +x-direction and m steps in the 

+y-direction, the change in position AT/, perpendicular to the e-axis is 
just m - n. Consequently, 

~TJ m- n 
-= =1-2p. 
~e n+m 

Finally, upon substituting the rescaled variables t = A:e and 8 = }..T/, the 
edge proflle is given by the expression 

s(t) = {(1- 2p(u»)du + const. (7) 

In the following sections the free energy (2) w.ill be calculated in 

the limits f3 -+ 00, {3 -+ 0, and p -+ O. These results can then be used to 
obtain the low and high temperature limits of the edge profile as well as 
the behavior in the region where the surface joins a facet. 

2. L.ow Temperature Expansion 

The partition function (1) can in principle be expressed in terms 
of a transfer matrix M as 

The elements of M are simple, however, only in the limit {3 -+ 00 when 
they can be expanded ih powers of e- fJ • If we let L = n + m· then the 

'states' appropriate to M, as discussed in section 1, are the configurations 
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of n particles on a linear lattice of L sites. The matrix element between 
two such states is unity when the states are the same and e-fj if the states 
differ by the displacement of one particle by one unit. If we neglect the 
other matrix elements which are O(e-2fj ), then M is naturally written in 

the form 

. 'l;! L-l,' , . 

M= 1 + e-fj E (a!+1 ai +a!ai+l) + O(e-2fj ). (8) 
;=1 

The operators at and a are the usual bosonic creation and annihilation 

operators with the additional properties 

This is necessary since we require that M acting on a state never produce 

a state with two particles occupying the same site. 

When M is written as the exponential of a hamiltonian the 

free energy (2) can be expressed in terms of the lowest n-particle energy 

eigenvalue E(£, n): 

L-l 

HI = -e-fj E (a!+1 ai + a!ai+d 
i=1 

F(p, {3) == lim L -1 E(L, pL) . 
L-oo 

By use of the Jordan-Wigner transformation2 the operators intro
duced above can be written in terms of fermionic operators with the result 

that the operators in HI are now interpreted as fermionic.· Since we have 

effectively hard-wall boundary conditions, the hamiltonian is diagonalized 
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by the canonical transformation 

L 

a~t) = ..jf E sin{t:f:\-) b~t) 
k=l 

L 

HI = -e-fJ E f{k)bibk €(k) = 2cos{#r) 
k==l 

with ground state eigenvector and energy given by: 

" E{L, n) = ..... e- fJ E €(k) + O(e-2fJ ) 
k==l 

We see that the form of the free energy as a function of p agrees with the 

claims made in section 1. Using equations (5) and (6) we have 

pet) = .!. cos-1 ( . t) 
1r to 

with the edge proftle given by (7): 

(-to < t·< to) 

t < -to 
-to < t < to 

to < t. 

(9) 

It is apparent from (9) that the density p(t) has square-root 

singularities at t = ±to (see flgure 2). Since set) is essentially the integral 
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of pet) this implies that the edge profile joins the facet with a fi/2 behavior. 
The square-root singularities of p can be traced to the fact that the present 
form of the free energy satisfies 

{J2 
-F(O,{J) = 0 
{Jp2 

{J2 
(J 2 F(I,,8) =0. 

p . 
(10) 

As will be shown later, the above holds for all finite temperatures so that 
the fi/2 behavior of the surface near the facet follows in general. 

To illu.strate the nature of the expansion we· will also calculate 
the O(e-2,,) term of the -free energy. It is first necessary to extend 

the transfer matrix (8) to include operators that· generate two units of 
particle displacement. Most of these operators appear in the product !H~ 
where H1 is the O(e-") piece of the hamiltonian. Being the product of 
two 'hopping' operators (al±1 ai)(a}±1 aj), these terms are correct except 
possibly when their subscripts overlap. To correct for these possible 
mistakes, we subtract out all the overlapping products and add in the 
correct terms. The latter are 

a!ai-1a!+1ai + h.c. 

a!+1a,ala'-1 + h.c. 

(11) 

(12) 

where (11) moves two particles each by one unit while (12) moves a single 

particle througb two units. Following the above strategy, the transfer 
matrix can by written as 
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1 
M=·l-Hl+-H~ 

2 

L-l 

+e-2~ E [alai-lal+lai+al+laia!ai-l·+h.c.] 
i==2 

The Jordan-Wigner transformation replaces the pairs a!± 1 ai by correspond
ing fermionic operators so that once again we may interpret all the operators 
as fermionic. Taking the logarithm of Mwe obtain the hamiltonian 

In one of the simplifications the number operator was replaced by n, the 
number of particles. It is now a straightforward problem to evaluate the 
correction to the ground state energy by taking the expectation value 
of H2 in the zeroth order ground state. This part of the calculation is 

relatively unenlightening so we merely give the final result: 
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F(p, {3r=~ 2 sin(1tp)e-p 
'IT 

+ [1'<1- p) + 2P2-; 1 sin(21rp) - :2 Sin2(1rp)]e-2P 

+ O(e-3,8). (13) 

As a simple check we' note that the correction is symmetric about p = !. 
It can also be verified that this term satisfies equation (10). 

3. High Temperature Limit 

We will concentrate again on the e and TI coordinate system 

introduced earlier. The set of lattice paths or cross-sections of the interface 

may be thought of as random walks TIl (e), ... , TI N( e) with e as a common 

'time' parameter. For each step in time the particle positions TI.( e) change 

by ± 1 with the Boltzmann weight acting as an attractive force between 

consecutive particles. In the limit {3 -+ 0 the particles can drift very far 

apart so that over short periods of time the fluctuations in the positive 

area between two consecutive paths are unimportant. In other words, for 

periods of time that are in some sense small compared to the separation 

between consecutive particles, the random walks are free. 

We have to be careful however, to remember the global constraint 

that during a time ~e the random walk makes on the average exactly pll e 
steps in the +x-direction: This is evident from the boundary conditions 

(la) of the partition function. However, for our present purposes it will be 

more convenient to let the boundaries be free while introducing activities 

p and 1 - P respectively for motion in the +x and +y directions. To 
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recover the original partition function (1) we must then divide by 

which merely adds the constant 

p log p+ (1 - p) log( 1 - p) (14) 

to the free energy. 

Now suppose that the particle positions are 1/1,"" 1/N at some 
initial time eo and 1/~, ... ,1/'N at some later time eo + ~e. For ~e ::> 1 

but fixed as {j ~ 0 we will be able to sum over the configurations at 

intermediate times and thereby obtain a transfer matrix. In this limit it 

will almost always be true that 

so that the Boltzmann factor is relatively constant and can be taken 
outside the summation. In terms of the e and 1/ coordinates we see from 
figure 1 that this factor is given by 

{ 
N-l } 

exp - i{j~e ~ l1/i - 1/i+tI . 
,=1 

(15) 

\Yhat remains is just the sum over N independent random walks 
having specified endpoints and the activity factors discussed above (41/, = 

1/~ - 1/i): 

Since ~e > 1, it can be shown that each term in the product is strongly 

peaked at 41/i = (1- 2p)~e. If we change from the 1/-coordinates to the 
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new set Zi =l1i - (1- 2p)e, then (16) takes the asymptotic form: 

nN 
1 {(Is - Zi)2 } . .. exp -- . 

i==l v'81l'p(l- p)i1e 8p(l- p)~e 
(17) 

From the Gaussian factor in (17) it is clear that the z, are effectively 
continuum variables. Changing to the Zi variables in (15) and taking the 

product with (17) we end up with the transfer matrix: 

( 
l' )N/2 { N (t..-Zi)2 

K(z, I; ~e) = 81rp(1- p)~e exp ~ k 8p(~ - p)~e 

This result is indistinguishable from the short-time kernel 

K(z, z'; t) = lim (z/l exp(-tHN)jZ) 
f-O -

with continuum hamiltonian 

where t = i1e. 

The validity of this derivation depended on having the mean 
separation between consecutive particles be large. This is a statement 

about the ground state wavefunction that we can now test. Suppose the 
mean separation is of order I, then p~ is of order 1-2 • Since the kinetic 
and potential parts of·the hamiltonian' have the same order of magnitude 
in the ground state we have that 

p(l- p) 'V PI 
l2 
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or 

(
P(1 _ p»)1/3 

,~ fj >1. 

Since this breaks down for p -+ 0 and p -+ 1, the present approximation 
cannot give the behavior of the surface near the crystal facets. 

Recalling that the free energy (2) was defined per unit of €, we 

see that this is just EN / N where EN is the ground state energy of HN. 
The f3 and p dependence of EN can be made explicit by the rescaling 

. (P(1 _ p»)1/3 
z=2 x 

fj 

N N-l 
- 1~ 2. ~ 
H N = - L.J Pi +L.J IXi - Xi+ll . 

2. 1 . 1 ,= s= 

If the ground state energy of H N is EN and 

then, remembering to include (14), our final result is: 

F(p,fj) = plogp + (1- p)Iog(l- p) 

+ eo(p(1 _ p)fj2)1/3 fj <. p(1 ~ p). 

The exact value of eo is not known but it is easy to obtain the variational 
bound 

eo < 1.0188 
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using the trial wavefunction 

N-1 

\110 = II ~x, ~ x,+d . 
- ,=1· 

4. Low Density Expansion 

We will consider once again the transfer matrix M introduced 

in section 2. However, rather than derive· an approximate hamiltonian as 

was done for the low temperature expansion, w~ will try to compute the 

largest eigenvalue of M directly. In terms of the original Y:u variables, 

the eigenvalue equation takes the form 

Anm\ll(Yt,· .. ,Yn) = Lexp(-PE: tly,- ~I)W(y'l, .. ·,y'n) (18) 
y'eR. 

w here by y' E R, we mean that the sum is over the region 

The free energy is now given by 

lim L-1 10gApL (1-p)L = -F(p,P)· 
L-oo 

(19) 

We can view (18) as a kernel for n particles moving on a linear 

lattice of m + 1 sites. At low particle density the separations I y, --.; ~ I 
are of the order p-1 so that there is little interaction among the particles 

when p-1 <: mIn or p <: p. In this limit (18) approaches the diffusion 

kernel for n particles that are prevented from moving through each other. 
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The eigenvalue equation (18) defines the eigenfunction 'li(y) also 

when the point y = (Yl, •• . , y,,) lies outside the region I.. It is therefore 
valid to write equations for 'li(y) that sample points outside this region. 

One such equation involves the second order difference operator 

v f(x) = cosh,8 lex) - ![f(x + 1) + f(x - 1)] 

with the property: 

V exp ( - ,8lx - xII) = sinh,8 6:e:e' • 

If we apply this operator n times on (18) we obtain the equation 

where 

A"m V 1"'V" 'li(y) = (sinh,8)"O(y)(I(y) 

O(y) = {~ Y E I. 
otherwise. 

(20) 

A different sort of equation using the first order difference operator 

8f(x) == f(x + 1) - f(x) 

follows from the identity: 

= 0 for x~ < x~ . 

Since the above inequality is satisfied by each pair of consecutive variables 

~ < ~+1 in the summation region I., we can derive from (18) the 

boundary conditions (i = 1, ... , n - 1): 
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Equation (20) together with the set of boundary conditions (21) 
are reminiscent of some one-dimensional many-body problems that can 
be solved exactly using the Bethe- ansatz method3 • In particular, if we 
take the limit f3 -+ 0 while still maintaining p <: f3, the product of the 

operators V in (21) exponentiates to give 

( 
n ()2) i ( 2 )n ' 

exp -f3-2~ ()!i! .(y) = A R O(y).(y) 
. ,=1 Y. nm f/ 

since the momentum components of \II(y) are of the order p <: f3. In the 

same limit the boundary conditions (21) become 

( () - ~ - (3).(y)1 '= 0 
aYi+l ()Yi Yi ~ Yi+l 

i= 1, ... ,n-l 

giving us the full set of equations that define the problem of the 'delta
function gas' 4. 

The exact equations (20) and (21) can in fact also be solved 
using the Bethe-ansatz. Unfortunately, however, this solution does not 
satisfy the original eigenvalue equation (18) except in the limit of vanishing 

density. In order to understand this rather remarkable failure it is perhaps 
instructive to consider in detail the two-body problem first. 

When the two particles are free to move on an infinite line of 
lattice sites we have to solve the equation 

A.(Yl,Y2) = L exp(-f3IYl - 11'11- f3IY2 - 11'21 ).(11'1,11'2)' 
y~Sy~ 

The center of mass motion can be eliminated using 
I 

.(Yl, Y2) = exp( ikYI )R(Y2 - Yl) 

where now, in terms of the relative coordinate r = Y2 - Yl > 0, the 
,eigenvalue equation becomes: 

00 

AR(r) = L K(r - r')R(r') (22) 
"=0 
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00 

K(u) = K(-u)· = E exp(-Plvl- Plu + vl.- ikv). 
"==-00 

Equation (22) is of the kind that can be solved using the Wiener

Hopf method. Since this method is explained at length elsewhere (see for 

example ref. 5) we will only give the final answer. Although the form of our 

wavefunction is exact, the constants that appear have been approximated 

for the case that A is in the vicinity of the maximum eigenvalue. These 

wavefunctions are best characterized in terms of two small momentum 

values PI and P2: 

'I1(Yb Y2) = exp(ipIYI + ip2Y2) - exp(i¢)exp(iP2YI + ipIY2) 

where, 

and, 

+ A exp( Z'~(pi + P2)(YI + Y2) - b(Y2 - yt}) (23) 

¢ = C(P1 - P2) + O(p2) 

. (e-b - e-fJ)2 2 

A = z (1- e-b)(I- e- fJ )2(PI - P2) + O(p ) 

b = -log(l- 4v( VI + 1v - l»)+O(p) 

C = 1 + VI + ; - iti( VI + ~ - 1)-1 

V == (sinh~)2 . 

(24) 

We see that the first two terms of the wavefunction (23) have 

exactly the Bethe- ansatz form with the phase shift given by ¢. However, 

there is also an exponentially decaying term that describes a 'bound-state' 
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piece of the wavefunction. It is this term that spoils the Bethe- at'&Satz. One 
would also expect analogues of this term to arise in the general n-body 
problem. We can nevertheless make some progress by taking advantage of 

the fact that relative to the plane-wave terms, the bound-state amplitude 

is small: 

A "" O(p) "" O(p) . 

The first term in a low density expansion would thus proceed along the 

Bethe- at'&Satz lines while pretending A = o. The question is then the 
following: to what order in momentum may we keep terms in the phase 

shift ¢ ! We conjecture that it is valid to retain the terms up to O(p) but 
cannot provide a simple proof of this claim. Some evidence in favor will 
appear at the end of this section. 

The boundary conditions implicit in (18) due to the endpoints of 
the lattice are not ideally suited to the present discussion. We therefore 
modify the original problem by wrapping the lattice into a circle of m 
points. This should not affect the thermodynamic limit and allows us to 
impose the periodic boundary conditions 

(25) 

One of the terms appearing in the wavefunction • is the product 
of n plane waves: 

exp(iPIYl + ... + ipnY,,) . (26) 

By suitably normalizing. the coefficient of this term can be set equal to 
unity. Other terms in • obtained from (26) by permuting the momenta 
will have coefficients given by appropriate phases. For the permutation 
that shifts the momenta in an n-cycle the phase can be deduced trivially 

since by (25) the term (26) becomes 

exp(ipnm)exp(ipnYl + ipIY2 + ... + ipn-lY,,). (27) 
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In the usual Bethe- an8atz problem one generates the same per
mutation by the sequence of transpositions 

- exp(i¢(Pi-l,Pn»)exp(iPnYi-l + ipi-1Yi) (28) 

w here the phase shifts ¢ are obtained directly from an equation of the type 
(21). In the present situation, however, we use the result (24) of the two
body problem. Equating the phase in (27) with the accumulated phase 

from (28) we end up with the set of equations (Ni = integer, n = odd): 

Pim = L ¢(P"Pi) + 21rNi 
'-Fi 

= -cnpi + c LP, + 21rNi. , (29) 

A nontrivial ground state wavefunction is found by choosing a 
distinct set of momenta that satisfy (29) and maximize the eigenvalue 
Anm. Recalling the action of the difference operator 

Vexp(ipy) = (cosh,8 - cosp)exp(ipy) , 

the eigenvalue, according to (20), is just 

A _lIn ( sinh,8 ) . 
nm - • 

i=1 cosh,8 - cos Pi 

From (29) we see that (to this approximation) the momenta are equally 

spaced. The maximum eigenvalue results when these are chosen sym
metrically about P = 0: 

21rNi( n 2 ) Pi = m 1 - c m + O(p ) 
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- !(n - 1) <N, < !(n - 1) . 

Using (19) we arrive at our final result: 

F(p,P) . -PIOgCO:~~~ 1) + ;tOSh~ _ 1)p3 + 2(1- C)p4) 

+ O(p5) . (30) 

The first term above is simply related to the free energy of a 
single particle on an infinite lattice, while the O(p3) term reflects the 

impenetrability of the two adjacent particles. These terms are insensitive 
to the precise nature of the interaction among the particles except that 

these are short range and hard-core. The O(p). dependence of the phase 

shift flrst appears in the O(p4) term of (30) and required the solution of the 
two-body problem. Presumably the O(p5) term will involve the inclusion 

of three-body effects. 

A useful check on our result (in particular the O(p4) term) follows 

from the observation that (30) and the low temperature result (13) have 

a common region of validity. Indeed, it can be verified that an expansion 
of the coefficients of (30) in powers of e-/J agrees with the expansion of 
(13) in powers of p. 

Finally, we observe that the O(p2) term vanishes for all values of 

the temperature, thus confirming (10) and our claims about the behavior 
of the surface near a facet. 

After the completion of this work it was pointed out to the 

author that the t3/ 2 behavior near the crystal facet has been discussed 
previously6. 
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Figure Captions 

Fig. 1: Two lattice paths and their particle representations. 

Fig. 2: The particle density in the low temperature limit. 
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THE LOOP GAS PICTURE 
OF THE LAMBDA TRANSITION 
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1. Introduction 

At present, the X-transition in helium is by far the most.ac

curately measured phase transition in nature. In an extremely difficult 

experiment that is in fact sensitive to the tiny pressure . inhomogeneity 

due to the gravitational field, Lipa and Chui1 have come within 5 X 10-8 

K of the X-point. The major theoretical issue at stake is the value reported 

for the specific heat exponent: 

(lexp = -0.0127 ± 0.0026 . 

The ~-transition is believed to belong to the family of critical phenomena 
characterized by a two-component order parameter. A renormalizatJion 

group calculation with the ¢>4 field theory representative of such models 

yields the exponent2 : 

(ltbeory = -0.007 ± 0.006 . 

The agreement is in fact quite good since a priori there is not even a good 

reason why (l should be so small. 

The usual way of arriving at a two-component or 'n = 2 model 
for the X-transition is to identify the complex amplitude of the superfluid 

wave function as the order parameter3 • This also points out a peculiarity 

unique to helium; namely, the physical impossibility of measuring the 

order parameter. To the uninitiated it must seem that the phase transition 

is somehow a conspiracy of the mathematics. 

It is of course possible to give very sound physical arguments 

to supplement the remarks given above. The only problem is that there 
are many intervening steps and concepts that have to be defined and 

elaborated upon. To the physicist it would be desireable to know directly 

w hat the atoms are doing. 
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The microscopic basis of the ~-transition was first proposed by 

F. London4 and presented in more detail by Feynman5 • While these early 

investigations were important in exposing the basic mechanism of the ~:. 

transition, the relationship of these ideas to the modern, comprehensive 

theory of critical phenomena has not yet been made clear. The present 

work makes a modest effort in establishing this connection. 

2. Ideal Bose Condensation in Configuration Space 

The fact that the partition function for the ideal Bose gas can be . 

evaluated in configuration space has been discovered by several people6,7, 

including the author. The advantage of this method over the usual momen

tum space approach is that our insight about the nature of the condensa

tion can easily be carried over to real helium. 

Fora system with N identical bosons in a volume V, we consider 

the symmetrized states 

(2.1) 

w here the sum is over all permutations 

and the particle positions have been denoted collectively by x: = (Xl, ... , X N ). 

The partition function is then given by 
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Z = Tr e-flH 

= -.!.. f d3Xl'" f d~ (xlse-flHlx)s 
N! Jv Jv 

= -.!.. LZ(P) 
N! p 

where, using (2.1), 

When H is the hamiltonian for the ideal gas, 

N 2 
H=~~ 
. ~ 2 ' 

i=l m 

(2.2) 

(2.3) 

the matrix element in (2.3) is just the diffusion kernel for N noninteractJing 

particles: 

(2.4) 

w here ~ is the thermal de Broglie wavelength 

h 
~=----

v'21rmkBT 

According to (2.2) the partition function is given in terms or 8 

weighted sum over permutations. Since all the terms in the :sum are posi

tive, it is natural to ask which permutations give the greatest contribution. 

A permutation can be changed by relabeUng the particles but this clearly 

will not affect the value of (2.3). We need therefore concentrate only on 
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the character ot the permutation that is unaffected by relabeling: the cycle 

structure. We implement this idea by writing 

(2.5) 

when P contains nl I-cycles, n2 2-cycles, etc .. To compute the"value ot 

(2.3) it is now only necessary to know the numbers n1, n2, .•. . These :are 

in general any set of non-negative integers that satisfy" the constraint 

N 

N = E knlc. 
k=l 

(2.6) 

Let us now calculate (2.4) for permutations of:the type (2.5). For 

each set of particles that comprise a cycle, the integrations are independent 

of all the other particle positions. Consider the case of a cycle of k 

particles, where k is not too large (Ylc = Yo): 

(2.7) 

Geometrically, we are integrating over the configurations of a closed chain 

or loop, the links of which are separated by a distance of order ~. When 

k I'.J 0(1) the size of the loop is much smaller than :the volume V. It 

is then justified to replace the integration over the loop's center of mass 

position by the factor V. 

We will now proceed under the assumption that the important 

permutations are composed entirely of small cycles. We will see later that 

this assumption leads to sensible results for temperatures above a certain 

critical temperature. Below this temperature there are large loops where 

(2.7) no longer applies. For Jow, we observe that 

(2.8) 
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with relative magnitudes that are expected to decrease rapidly with the 
cycle lengthk. 

Taking the product of the factors (2.7) for each of the cycles in 

P, we can write the partition function in the form 

(2.9) 

where the sum is subject to constraint (2.6) and the combinatorial factor 

('(nl, n2,"') counts the number of permutations having the cycle decom
position (2.5): 

(2.10) 

Rather than do the actual sum in (2.9) it is sufficient, c~nsidering (2.8), 

to find the particular set of values of the numbers nj at Wihich the sum 
is strongly peaked. Implementing the constraint (2.6) with a Lagrange 

multiplier jJ, the maximum occurs when 

(k = 1,2, ... ) - (2.11) 

provided JJ > 0 satisfies the equation 

00 e-p1c N)..3 

E-=-· 
1e==1 k3/ 2 V 

(2.12) 

Extending the sum in (2.12) to infinity is justified if it turns 

out that JJ "-J 0(1). In that case b9th (2.11) and (2.12) have sensible 

thermodynamic limits. Upon taking N -+ 00, V -+ 00 with NlV = p 

we see that nle "-J O(N) and decays exponentially with k. Moreover, 

if we consider (2.12) at high temperatures with)" -+ 0 we see that JJ 
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becomes large. According to (2.11) we then have nl ~ N with the ot'her 

cycle numbers negligible. Of course, the preponderance of I-cycles at high 

temperatures agrees with our concept of the classical partition function 

where the amplitudes of nearby particles do not interfere very much. 

As the temperature is lowered, the admixture of larger cycles 

is increased. Ultimately we will encounter a difficulty' because the right

hand-side of (2.12) can be made arbitrarily large whereas the left-hand

side cannot. Consequently, our equations do not give a sensible result for 

temperatures below a critical temperature given by 

This problem arises because we have not allowed for the pos

sibility of very large cycles. Therefore, let us suppose that No particles 

belong to large or 'macroscopic' cycles and the remaind~r, N' = N - No, 

belong to small or 'finite' cycles. The terminology has been chosen to dis

tinguish between those cycles that stay finite in the infinite volume limit 

and those that scale in size with the volume. For the ideal gas the two 

sets of particles do not interact and the partition function can be written 

as the product 

ZIBG = Zo Z' . 

Since the previous analysis for the case of finite cycles applies to 

Z', we can borrow our results with N replaced by N'. In particular, we 

will be interested in the logarithm of (2.9) when the cycle numbers (2.11) 

have been substituted: 

{
V 00 -Pk} 

10gZ' = N' JJ + A3N' E e 5/2 ' 
k=1 k 

(2.13) 
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where jJ is now determined by 

f: e-plc = N'),..3 

1e==1 k3/ 2 V 
(2.14) 

Earlier we argued that (2.14) ceases to make sense below a certain critical 

temperature. Alternatively, we could have concluded that there is an 

upper limit on the number of particles: 

N' < N(T) = 2.612 :a (21rmkB T)3/2 . (2.15) 

For the strict inequality we have p > 0 while at the upper limit jJ = O. 

From equations (2.13) and (2.14) it is easy to :derive the relation 

{J , 
{IN' log Z = jJ 

which shows that p can be identified with the (negative) chemical poten

tial. As long as jJ > 0, the value of Z' can be increased by adding more 

particles. A possible external source of particles is the set of No particles in 

Zo. Before we can decide whether it is advantageous to transfer particles 

from Zo to Z, we have to evaluate Zo. 

By definition, the cycles appearing in Zo are all macroscopic. 

Alternatively, we can say that the number of cycles in Zo is not macro

scopic (i. e. much less than O(N»). Therefore, unless the contribution of 

each cycle in Zo goes like the exponential of N, the limit N ..... 00 of 

N-1 log Zo will vanish. 

To show that this is indeed the case one has to be more careful 

about evaluating (2.7). The first step is to realize that the contribution of 

a cycle is just the trace of a single particle kernel: 
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f tPXI ... f d3xk {XII exp ( -p ::}X2) ... {Xkl exp ( -p {m}XI) 

= f tPXI (xII exp ( -Pk::}ZI) 

= Lexp{-fjkE.}. 
E. 

The flnal sum is over the single particle energy levels. Since the spacing 
of low lying energy levels is O(V-2/ 3) or O(N-2/3), we consider two 

cases. First, if k <: N 2/ 3 the sum can be replaced by an integral and 
one obtains (2.7). If instead, k :> N2/3, it is sufficient to .keep just the 

flrst term. Since the ground state energy is of the same order as the level 
spacings, we obtain the estimate 

k-cycle r-.J O( exp( -ckN-2/ 3 ») 

Thus we see that not even the longest cycles (with k "J O(N» enter as 

O( exp( - eN» factors in Zo. 

The fact that the number of cycles in Zo is much less than.N, 
has lead to the conclusion that the free energy contributed by Zo is not 

extensive. In other words, the particles in Zo have effectively zero per
particle free energy in the thermodynamic limit. This means that as long 
as jJ > 0 one can transfer particles from Zo to Z, and thereby increase 
the value of the total partition function. The largest partition function 
is attained when the inequality (2.15) is saturated. Accordingly, the total 
free energy comes from a subset N(T) of the particles while the remaining 
particles have the role of a 'condensate'. 

We will now show how the basic property of the· condensation 

can be extended to an interacting Bose liquid such as helium. A useful 

starting point is equation (2.2) since it makes no reference to the·detailed 
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interactions among the particles. In principle, it is possible to evaluate the 

Schrodinger kernels (2.3) that define z(P) for various permutations P. We 

can then regard (2.2) as an effective partition function for permutations. 

Guided by our experience with the ideal Bose gas, we use a particular 

property of this partition function to define a criterion for condensation: 

"Bose Condensation" 

"Typical permutation 

contains a 

macroscopic cycle" . 

By 'typical' we mean that the relative probability of 'atypical' permuta

tions go to zero in the thermodynamic limit. Similarly,;a proper definitiion 

of 'macroscopic' also requires the thermodynamic limit. 

The appearance of macroscopic cycles below the critical tempera-

. ture in the Bose liquid can be compared with the appearance of magnetic 

domains below the Curie temperature in the ferromagnet. The singular 

onset of some macroscopic property is recognized as a general feature of 

critical phenomena and usually has immediate physical consequences that 

can be measured in the laboratory. Unfortunately, no experiment 'Will ever 

be able to observe macroscopic cycles in superfiuid helium. These cycles 

are, after all, only a mathematical artifice. We recall that the average over 

permutations was necessary only because initially we decided to give each 

particle a fictitious identity. The analog of the non-physical nature of the 

'order parameter' in the more familiar approach shows up in the impos

sibility of directly measuring the phase of the superfiuid wavefunction. 

3. Oft' Diagonal Long Range Order 

In the last Section the Bose condensed phase was characterized 

by the appearance of macroscopic cycles in the effective partition function 

59 



for permutations. Previous rigorous definitions of the :condensation have 

relied on the notion of off diagonal long range order (ODLRO)8. By 

illustrating ODLRO in graphical terms we can show that the two ideas 

are in fact equivalent. 

The basic mathematical object considered bY'ODLRO is the so

called 'reduced' density matrix: 

The criterion for condensation is the statement: 

lim p(x, x') = const > o. 
1%-%'1-00 

(3.2) 

This behavior is in contrast to that of the non-condensed phase where 

p(x, x') decays exponentially as a function of the separation Ix -' rl. 

The particle states in (3.1) are symmetrized and the matrix 

element can be written as a sum of terms involving permutations as in .the 

,previous section. The only difference is the presence of the positions x and 

x' that are not shared between the two vectors. Thus, whereas the range 
of each permutation is the set of N + 1 particle positions {Xl J ••• , XN "X}, 

the image of each permutation is the set {Xl' ... ' X N , X'}. Graphically, 
each permutation can be represented by a collection of cycles and a chain. 
For every permutation ~, the chain begins at X and continues to P(x), 

p2(X), etc .. This sequence must stop at pk(x) = x, for some k, since 

x, is not in the range of P. The remaining positions all belong to cycles 

since each of them is an element of both the range and image of,P. 

The reduced density matrix p( x, x') measures the likelihood of 
having the points x and x, connected by a chain. In the condensed phase, 

criterion (3.2) tells us this probability approaches a fixed, nonzero yalue 

as the points are separated by a large, in fact, macroscopic distance. 
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This statement is not so very different from our earlier observation about 

macroscopic cycles. Namely, in the condensed phase rt~ere is a nonzero 

probability that two widely separated particles, picked:at random, belong 

to the same cycle. 

4. The Dilute Hard Sphere Gas 

The actual A-transition differs in essential, details from .the c:on-
, 

densation of the ideal gas. Even though the basic mechanism of Ithe c:on-

densation can be discussed in general terms without reference to the inter

actions among the particles, it is nevertheless the case that the interactions 

contribute significantly to the mathematical signature of the phasetransi

tion. In order to appreciate the effects of interactions 'we will consider a 

dilute gas of hard spheres. 

For an interparticle potential of the form 

IXI - x21 > a 
IXI - x21 < a, 

the quantum mechanical two-body problem can be solved .exactly. The 

two-particle kernel is given by the expression 

(r.x'.1 exp {-p[ :~ + :! + V(XbX.)]}X1X.) 

= :0 exp {- ~[(Xl - r.>" + (x. - X~)2] }[l- aF(y,!lH O(a2)] 

(4.1) 

where 

y = X2 - Xl y' =.x~ - x~ 
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are the relative coordinates and 

"J Iyl + Ivi {m [ .. J 2 "J 2]} F(y, y ) = Iylly'l exp - 4{j (lyl + Iy D - (y - y ) • 

We expect Bose condensation to occur when the distance between nearby 

particles, p-1/3, is comparable with the thermal wavelength A. Using the 

fact that the gas is dilute, or pa3 <: 1, it follows that a <: A near the 

A-point. It was for this reason that we retained only the s-;wave piece of 

(4.1). 

We now propose the following approximate partition function: for 

the dilute gas of hard spheres: 

ZDa = N
l 

, E z(P) 
'P 

z(P) -_ { d3x1 ... { d
3

xN lIN {m (' )2} Jv A3 Jv A3 i=1 exp - 2{j Xi - XPi 

(4.2) 

II {l- aF(Xi - Xj,XPi - XPj)} .• 
i<j 

This partition function correctly accounts for all possible pairs ot two

particle scatterings. The kinds of quantum mechanical effects that have 

not been included involve scattering processes that do not factor into the 

product of two-particle scatterings. Such effects are e~ected to be small 

in the dilute gas limit. 

As in the problem of the ideal gas, it is advantageous to decom

pose each permutation into a product of cycles. In the high temperature 

phase when there are no macroscopic cycles, the configurations resemble 

a gas of 'loops' in space. Each loop is a closed chain of particle positions 

connected by 'links' which interact weakly. Thus, in addition to inter

actions among different loops, an individual loop may have interactions 

among its own links. 
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It is possible to evaluate (4.2) approximately along the lines of a 

Mayer expansion. In analogy with the ideal gas, one assumes there are nl 

1-cycles, n2 2-cycles,etc. and maximizes the free energy as a function of 

these Ilumbers subject to tbe constraint that the total number of particles 

is unchanged. To lowest order, the interactions of the hard spheres will 

add contributions to the free energy proportional to n', and n,nj' These 

terms correspond to a single interaction between two links, either on ,the 

same loop or on two difrerent loops. 

Fortunately, the 'cluster integrals' required to compute t'he inter

actions can be evaluated exactly. We do not supply these details because, 

not surprisingly, the final answer for the free energy agrees exaotly with 

an earlier calculation by Huang9 using a different method: 

N-1)ogZDG - P = p~3 [/5/2 - 2~ /~/2 + o(aIAf)] (4.3) 

1 = p~3 [/3/2 - 4~ 1t/2 ia/2 + O(aIA)2)] (4.4) 

where 

00 e-plc 

fn/2 =-= E -. 
. Ie==l kn/ 2 

Equations (4.3) and (4.4) are the direct counterparts of equations (2.13) 

and (2.14) respectively, of the ideal gas (here we consider only T > Tc 
where Nt = N). 

Although we said earlier that the partition function (4.2) should 

accurately describe the dilute hard sphere gas near the phase transition, 

we will· now argue that the expansion outlined above breaks down in 

that region. In the original partition function each link has some small 

probability of interacting with one of the nearby links. In othe.r words, 

an equilibrium configuration will involve some probability of interaction 
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per particle. The 'Mayer expansion' of (4.2), however, has assumed that 

the number of interactions per loop is small. The correction .terms in (4.3) 

and (4.4) take into account only one interaction per loop, independent of 

the size of the loop. On the high temperature side of the phase transitiion 

the distribution of loop lengths is exponential, 

nk 1 [e-III; 1 - = -' -'+O(a/'A) 
N p'A3 k5/2 ' , 

with a characteristic number of particles per loop given by p,-1. In the 

vicinity of the 'A-point where this number diverges, any finite expansion 

in the number of interactions per loop is bound to fall seriously short of 

the actual number of interactions. 

The kind of configuration where the 'loop' expansion would apply 

is shown schematically in figure 1 (interactions are represented by dots). 

Since the probability for any link to interact is of order a/'A while the 

number of links per loop is of order p,-1, we require 

if the total number of interactions per loop is small. As long as the 

correction terms in (4.4) are small, the behavior of pnear' the ideal gas 

critical temperature is given by 

p( t) "J (const )t2 

where t = (T - Tc)/Tc is the reduced temperature. Consequently, if 

then our expansion no longer makes much sense because the configurations 

are no longer 'loop-like' but appear as shown in figure :2. 
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The correct way of analyzing (4.2) in the vicinity of the critical 

point is suggested by figure 2. Here, a typical loop can experience a fair 

number of interactions with itself as well as with other loops so that the 

overall pattern is quite complicated. Our mental image of the situation 

is considerably simplified if instead of thinking in terms of loops we now 

focus on the interacting link-pairs. Since the interactions are very weak 

these pairs appear as a dilute gas and are interconnected 'by very long 

chains of non-interacting links. 

Although short chains and small non-interacting loops are also 

present, we expect the phase transition to be mediated by the long chains 

and loops. A particular advantage of long chains and loops is that they al

low two useful simplifications that will be used in the following discussion. 

First, it is adequate to express the number of links in such objects:in terms 

of continuous variables. Second, the cycle numbers nk for k very large :are 

essentially either 0 or 1 and do not lead to combinatorial complications. , 

A single interaction between two long chains can be represented 

bya vertex with four oriented edges as shown in figure 3. The vertex 

defines four subchains having t1, ... , t4 links with arrows indicating the 

sense in which particles are permuted along the chains. For the moment, 

we will consider the endpoints of the chains to be fixed at Xl, ••• , X4 and 

integrate over the positions of the other particles. Using the interaction 

-aF(y, y')where y and y' are as shown in figure 3, the integration can 

easily be carried out when the numbers tl,"" t4 are large. The most 

convenient form of the answer leaves .the integration over 'the center of 

mass position of the interacting links, z, still to be performed: 

-32i' :2 f d3 z IT L(Xi - z, til 
.=1 

(4.5) 

where 
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1 {m(X-Z)2} L( x - z, t) = exp - R • 
A2y'41l"t3 2,., t 

Although we have succeeded in isolating the effect of an inter

action between two long chains, we do not propose to evaluate the parti

tion function'by writing down all possible 'graphs', i.f!. ways of coupling 

together terms of the form (4.5). Rather, we will show that these graphs 

are effectively generated in the perturbative expansion of a 'particular ;" 

field theory. 

We begin by 'amputating' the 'legs' of the vertex (4.5). Combining 

two such legs gives us a close relative of the propagator (t = tl + ' 
t2): 

~(z - z', t) = f d3x L(x - z, tdL(x - z', t2) 

1 {m (z - z')2} 
= 41l"~ t3/2 exp - 2f3 t . 

(4.6) 

(Our way of distributing constant factors between the legs and the verte~ is 

chosen for later convenience.) In the flnalform we would like to have only 

integrati<?ns over the vertex positions remaining. Therefore, one sho.uld 

sum (4.6) over all values of t, the number of particles in the chain. Since 

the total number of particles at our disposal is fixed, we have to include a 

chemical potential jJ in the summation. The resulting propagator has the 

familiar form when written in momentum space: 

L1(q) = f d3ze-if, 10
00 

dt .-pl L1(z, t) 

1 
(4.7) 

It is also possible to have very large loops that do not interact at 

all. The contribution of such a loop of k particles is given by equatJion (2.7) 
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which we must remember to divide by k to avoid overco.unting (earlier, the 

same factor occured as kn1c in (2.10». By including the!chemical potential 

p, we can sum over all configurations of any number of loops of all sizes: 

v f dt e~lIt 1 (V f·. dt e- lIt )2 1+-· --+- - --. + ... 
A3 t t3/2 2! A3 . t t3/2 

. { V f dt e-
lIt

} =exp - -- . 
A3 t t3/2 

(4.8) 

.. 
We now proceed to rewrite this in a more suggestive form: 

V f· dt ~ = f Vd
3
q [00 dt ex {-t(L 2 )} 

AS tt3/2 (21r)3 JO(l) t p 2m q + p . 

The lower limit of the t integral is 0(1) since a loop must contain at least 

one particle. However, this limit is irrelevant since we are really interested 

in the divergence at the t -+ 00 limit when q -+ 0 and p -+ 0: 

[00 ~ exp {_ t (Lq2 + p)} I'V _ log( q2 + M2) . 
JO(l) t 2m 

Substituting into (4.8) gives the desired formal result: 

exp {~ f d: :3~t} - exp {-f ~~; log(r + M2)} 
= [det(-{J2 + M2)]-1 . 

There still remains the problem of taking into account the orien

tations, i.e. the directions in which the particles are permuted in the 

. graph. It will be convenient to assign the labels 1 and;2 to the endpoints 

of each edge in such a way that the arrow associated with the edge points 
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from 1 to 2. If we define the matrix 

then the propagator from position/label (x, a) to (y, b) iis given by 

where L1(x - y) is the fourier transform of (4.7). 

At each vertex an endpoint labeled 1 will be coupled ·with an 

endpoint labeled 2. This rule can be expressed in the usual way involViing 

functional derivatives with respect to a two-component current Ja(x}: 

1 ab 6 6 
( )

2 

v(x) = 8" e 6Ja(x} 6Jb(X) 

w here it is implied that v( x) acts on the generating functional 

We now have all the necessary ingredients to write the expression 

for the general graph having any number of interactions and any number 

of non-interacting loops. The sum of all these graphs constitute the piece 

of the dilute gas partition function that we believe isrelevant to the phase 

transition: 

where 
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and 

(4.10) 

The change of variables 

has the effect of simplifying (4.9) by replacing eG6 everywhere it appears 

with 6G6 • In terms of the transformed current, Zo [ JI] can tbe written as 

the functional integral 

Zo [ JI] = f [ dt/J ] exp {- So + J d3x JI . ¢} 

where 

and ¢ is a tw~component field. (We note that the determinant in (4.10) is 

in fact tbe square of the Gaussian-integration factor for single component 

fields.) The functional derivatives can now be carried out and we recognize 

(4.9) as just the order by order expansion of a field theory with quartic 

interaction: . 

SDa = So + Iv tf4x h(;· ;)2 . 

Supplemented with thede1lnitiollof p in terms of the number of particles, 

8 . 
- 8 p log ZDG = N , 
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our translation of the dilute gas partition function into a field theoretic 

model is now complete. 

The two-component tjJ4 field theory is believed to be the correct 

model of critical. behavior even for real (strongly interacting) helium. Our 

derivation applies in the dilute gas limit where we have shown it is possible 

to obtain concrete expressions for the parameters in the action. Implicit 

also in the definition of a field theory is the spatial cut-off which in,our case 

can be directly traced back to the thermal wavelength ~. We emphasize, 

however, that our main interest has been the method of deri1Jation which 

is considerably different from the one usually given .in the literature3 • 

One particularly nice feature of our approach is that it points out the 

similarities and differences of the condensation in the ideal gas. 

5. The Origin ot n= 2 

In the last section we have seen yet another way of-deriving the 

two-component or n = 2 field theory model of the ~-transition. The 

diversity of the methods used in deriving this field theory point out the 

fact that there are many, essentially correct ways of thinking about liquid 

helium. We will try to exhibit this diversity by tracing Ithe various origins 

of n = 2. 

The most direct derivation observes that the phase of the con

densate wavefunction is the order parameter of superfiuidity3. Since the 

phase is a planar spin, the critical behavior belongs to the n = 2 category. 

The lattice gas approach of Matsubara and Matsuda l Ois slightly 

more mysterious. One first argues that due to the hard core interactions, 

the states of liquid helium can be adequately represented by the states 
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of the lattice gas having (at most) single occupancy at each site. By 

associating the 0 or 1 value of particle occupation with the up or down 

state of a spin, it is easy to verify that corresponding matrix elements or 

alai + aJai and the spin-! operator O':z;(i)O':z;(j) + O'y(i}O'y(j) agree. The 
former is the kinetic energy operator of the lattice gas while the latter 
gives the interaction of the spin-! xy model. The quantum . nature of the 

spin is not expected to infiuence the critical behavior so that once again 

we have planar spins or n = 2. 

In the loop gas approach, the details of which have been given 

in Section 4, the n = 2 is reflected in the two possible ways of beginning 

a game of musical chairs. We have seen that the partition Ifunction s.um 

involves all possible arrangements or permutation cycles in :space. In .ad

dition to the specification of the atomic positions, however, it is important 

also to keep track of the sense in which the atoms are permuting . .It is this 
'extra' multiplicity that is responsible for the n = 2 of the field theory. 

6. A Lattice Model of the Loop Gal 

In Section 4 we considered the effect of interactions among the 

helium atoms in the dilute gas limit and obtained a field theory model 

that is believed to give .the observed critical behavior. A different way 
of introducing interactions was first proposed by Kikuchi 11, based on the 
earlier work of Feynman5 • The Feynman-Kikuchi (FK) model is defined 

on a regular lattice and is motivated by considerations of the equilibrium 

distribution of helium atoms. 

In calculating the partition function (Schrodinger kernels, etc.) 

it is not actually necessary to average over the positions of all the atoms. 

It is sufficient to pick just one arrangement of atoms that is representative 
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of an equilibrium configuration. Of course, the equilibrium configurations 
can only be known once the kernels are computed and the pattern of per

mutation cycles is favorable. However, a much more naive 'consideration 
suggests the equilibrium distribution of atoms in helium is ;verydifferent 
from that of the ideal gas. The hard sphere character of the helium 
atoms first of all requires that the atoms never come within a hard sphere 
diameter's distance of each other. Moreover, if we imagine each helium 
atom enclosed in a 'cell' formed by its hard sphere neighbors, then the 

properties of the ground state wave function of the enclosed atom lends 
additional weight to configurations w here atoms are well separated. This 
last argument applies of course only when the thermal wavelength of the 
atom is at least as large as the interparticle distance (which:is the case at 
the ~-point). 

The elegant idea of the FK model is then to choose one configura
tion where the atoms are well separated. For convenience one chooses .the 
complete set of sites of a simple cubic lattice. It should become evident 
later that the regularity of the arrangement of atoms will not introduce 
spurious effects. 

Having already made one approximation, we proceed to make 

two more. Since we are only interested in the range of temperatures 
w here the thermal wavelength is roughly one lattice unit, it is' unlikely 
that atoms are permuted between distant sites. We therefore impose 
the restriction on the allowed permutations that every 'atom be permuted 
either to its original site or to one of the six nearest neighbor sites. The 
final approximation concerns the evaluation of the Schrodinger kernels. 
When the atoms are well separated, the permutation of a given atom 
should not b~ too much affected by what the other atoms are doing. It 
is therefore only necessary to know the relative values of the kernels for 

permuting zero or one lattice unit. It these were free kernels the ratio 

would be 
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one lattice unit {ma2 }_t 
zero lattice units = exp - 213 = e 

where a is the lattice spacing. Although it is not correct to use the free 

kernels, the ratio above (however we compute it) just defines a parameter 

in our model. The behavior with respect to changing the rescaled tem

perature t is expected to be correct qualitatively since Ifor large t when it 

is difficult for atoms to permute very far, the ratio is small. 

. With the three approximations considered, the evaluation of the 

. helium partition function is reduced to a statistical mechanics problem in

volving perml,ltation cycles on a cubic lattice. Geometrically, a configura

tion can be visualized as a set of closed paths on the edges' of the lattice 
" 

such that every site is visited by at most onepath (and once only). The 

set of sites that are not visited by a closed path represent all the atoms in 

1-cycles. The weight ot a configuration is the product of the kernels for all 

the particles. Since the particles in nontrivial cycles contribute the faotor 

e-t relative to the particles in I-cycles, the total weight is just e-tL where 

L is the total length of path. Of course, in summing over configurations of 

paths one should count the two possible orientations of each (nontrivial) 

cycle separately. 

The 2-cycle is a special case because it involves a path that back

tracks on itself. All the larger cycles are of the usual.non-backtracking, 

self-avoiding variety. Kikuchi analyzes his model using mean field tech

niques and is able to incorporate the 2-cycle iIi the calculation. In the· 

present work we choose to throw out the 2-cycle because it complicates a 

Monte Carlo algorithm. Whether the 2-cycle is thrown out or not should 

have little effect on the critical behavior which we believe 'is due to the 

large cycles. 

An interesting comparison with an entirely different lattice model 

of the A-transition can be made if the FK model is expressed in terms of 

explicit edge or link variables Ii. By letting each link take on the values 

73 



o or ± I, we can represent both the presence of a path and its orientation 

(using the sign). To this we -must add the constraint that (I) there is zero 

'link flux' into any site and (2) no more than two active (ls= ±I) links 

impinge on any site. The FK partition function can now be written in the 

form 

ZFK = E exp {-t Ei 11.1} . (6.1) 
Ii = O,±I 

constraints: (1), (2) 

This bears a strong resemblance to the duality transformed xy model 

studied recently by Dasgupta and Halperinl2: 

I. = integer 
constraint (1) 

(6.2) 

The restriction to integers with absolute value bounded by one in (6.1) is 

qualitatively compensated for by the use of the squareJn the exponential 

of (6.2). The configurations of the dual xy model may also be thought 

of in terms of a collection of closed paths but with the difference that 

paths may overlap 'causing the absolute value of some links to be greater 

than one. In taking the square, the 'energies' of paths do not add linearly 

creating an effective repulsion that favors paths which do not overlap. 

The important configurations are therefore very similar to those of the 

FK model. 

In the original paper on the FK modelll , Kikuchi obtains clear 

evidence of a phase transition using mean field methods. Unfortunately, 

the specific heat develops a finite discontinuity in contrast to the nearly 

logarithmic singularity observed in real helium. We would like to now 

show by using high-temperature expansion and Monte Callio techniques 

that the phase transition appears to be of the correct -type. In addition, 

we would like to point out the role of large loops by presenting evidence 

of their sudden appearance just below the critical temperature. 
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At high temperatures the important configuratiollB appear as a 

dilute gas qf small loops (4-, 6-, 8-cycles, etc. in the FK model). If the . 

various kinds of Sill all loops are interpreted as molecular species, then the 

relevant approximation method is the Mayer expansion for a non-ideal, 

multieomponent gas. Because no two loops in the gas are permitted to 

share a site in the lattice, the cluster integrals involve counting the number 

of ways of placing various kinds of loops in space so that this c:onditiion 

is violated. For a particular order in the calculation, one has to ~valuate 

all the cluster integrals where the combined length of all the participating 

loops is a certain value. As an example, the work required Ito obtain the 

term of order sixteen ranges from the counting of all the self-avoiding 

closed paths of length sixteen to the equally tricky task of counting all 

the ways of arranging a connected set of four 4-cycles. By i.mplementing 

and carefully checking the required counting algorithms on a computer, 

it has been possible to carry out the expansion to order eighteen. 

Since only the even terms are nonzero, our expansion for the free 

energy per particle has relatively few terms (z = e-t ): 

N- 1 log ZFK= 6z" + 44z6 + 216z8 + 744z10 + 4484z12 

+ 93984z14 + 1579518z16 + 21632354iz18 

+ ... 
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Unfortunately, the series for the specific heat exhibits large o.sci!!ations.ap.d __ ~ __ 

various Pade extrapolations indicate nearby singularities in the complex 

z-plane. Such slow convergence to asymptotic behavior is a not uncommon 

phenomenon in the loose-packed lattices13 (such as the simple cubic). 

Rather than extending the series to higher order, it is perhaps more 

worthwhile to develop the loop gas expansion on a close-packed lattice. 

Nevertheless, for a range of extrapolation techniques we find a singularity 

on the positive real axis that is within 5% of the critical point determined 



by Monte Carlo simulation. Although positive, the specific heat exponent 

we obtain is small and ranges rrom 0.05 to 0.1 . 

Figures 4 through 6 show typical configurations or loops at the 

temperatures t = 1.3, 1.4, and 1.6 in a FK model with 103 sites. These 

were generated by Monte Carlo simulation using the Metropolis algorithm. 

The algorithm changes co~gurations by trying to introduce an elemen

tary 4-cycle (or the two possible orientations) at all possible plaquettes in 

a sweep or the lattice. Five distinct kinds of changes are possible: (1) a 

4-cyc1e can be created,(2) a 4-cycle can be annihilate:d (by adding to it" 

the oppositely oriented one), (3) an already existing cycle can be modified, 

(4) two cycles can be merged, and (5) a single cycle can be split into two. 

Of course, any change must also be consistent with tJhe constraint that 

the paths are self-avoiding. 

When the density of active links is sumciently large, just a few 

of the local update processes described above are capable of generating 

very large loops by joining together smaller ones. It is therefore not 

inconceivable that below some critical temperature tc a cert.ain fraction 

of the lattice sites will be visited by macroscopic loops. As discu!ised 

in Section 2, this fraction should have a thermodynamic limit and is 

called the 'condensate'. Although the notion of a macroscopic loop is 

only well defined in the limit of an infinite volume, it is still possible to 

obtain accurate est.imates of the condensate fraction /0 from Monte Carlo 

simulations on a finite lattice. 

We have used two different methods of estimating the condensate 

fraction on a 203 lattice. Both methods assume that for t < tc the infinite 

volume limit of the density of finite loops varies with their length according 

to 

)
" 1 

Pic I"V (const k 6 

(Recall that for the ideal gas 6 

(k -+ 00) . (6.3) 

~.) The two methods differ in the 
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kinds of quantities that are measured. The first method relies on the total 

number of active links, N·, which includes 'finite' as well as 'macroscopic' 

cycles. The contribution due to finite cycles is found by:directly measuniIl:g -

the cycle numbers nk for k = 4,6,8, ... and extrapolating to the form 

(6.3) for large k. H we let N be the numbel' of lattice sites, then-the first 

estimate is given by 

fo=N- 1(N.- Eknk- f kNPk). 
k=4 k=K+2 

At the temperatures studied it was found that in going from K = 40 to 

K = 50 the value of fo changed by less than 1.5%. 

- In the second method, the average lengths of the first, second, 
... rth-Iongest loops, or L, were obtained. H macroscopic loops were 

absent and the distribution of large loops in our finite lattice was given 

by (6.3), then it is easy to show that 

_ r(r - (0 - 1)-1) 
L, = (const) _ ....... -~. ---

r(r) , 
(r=I,2,3, .... ). 

In trying to match Monte Carlo measurements to this form it soon be

comes clear that a much better fit is achieved (especially for larger r) with 

the replacement L, -+ L'+8 where s ,-v 4 and varies _slightly with tem

perature. We interpret this to mean that the first s or so :longest loops 

are macroscopic and the population of large finite loops really only begins 

with loops smaller than these. The second estimate lof the condensate 

fraction is thus 
8 

-1 ,",fo = N L.., L, . 
,=1 

It was found that a change of ± 1 in s produced a change of less than 5% 

in fo. 
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The two estimation methods were found to agree within the 
uncertainty of the second method for the range of temperatures shown 

plotted in figure 7. The point with fo = 0 is not a true measurement but 

has been included to show the location of the peak in the specific heat 

curve at tc ~ 1.44 . The other data points each involved some 2.5 X 104 

sweeps through the lattice. 

In contrast to the condensate measurements, the 'measurement 

of the specific heat is relatively straightforward, being just the fluctuation 

in the number of active links: 

The Monte Carlo data obtained on a 203 lattice with 6.4 X 104 sweeps 

per data point are shown plotted in figure 8. 

A detailed analysis of the Monte Carlo data in tenms of critical 
exponents, etc. has not been attempted. Instead, we submit the qu.alita
tive behavior of the data as strong evidence that the .FK model has a phase 

transition of the 'critical' type. From here one might proceed, for example, 

with a high statistics finite-size scaling study to confirm the logarithmic 

character of the specific heat singularity. 

The most important lesson to be learned from Monte Carlo simuhr 

tions of the FK model is that analogous simulations of real helium might 

not be very different. A more correct model would have to evaluate the 

Schrodinger kernels in the presence of complicated interatomic potentials. 

In principle we know how to calculate these things; in practice it is certain 
to be very time consuming. However, these complications have nothing to 

do with the large number of atoms. Perhaps a 'first principles' calculation 

with only a few atoms can be carried out and used to improve the original 

FK model. In addition to giving the critical behavior at the.A-point, such 

a model would then also have something to say about the actual value of tc. 
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