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ABSTRACT 

A numerical solution for electromagnetic scattering from two 

dimensional earth model of arbitrary conductivity distribution has 

been developed and compared with analog model results. A fre-

quency domain variational integral is fourier transformed in the 

strike direction, and a solution is obtained using finite elements 

for each of a finite number of harmonics or wave numbers in 

transform space. The solution is obtained in terms of the secon-

dary electric fields. The secondary magnetic field is computed 

numerically by integrating over the scattering currents, in har-

monic space and then finally inverse fourier transforming. 
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Introduction 

An important class of electromagnetic methods used in exploration geo-

physics are those which use sources of finite dimension such as current loops 

or grounded wires. Used mainly for the detection of discrete conductors such 

as massive sulfide are deposits. a wide variety of ground nnd airborne dipole 

systems have been discussed in both time and frequency domchns -(Ward. 1980). 
~ 

The interpretation of the data from surveys using these systems has generally 

relied on theoretical solutions. using either simple models in free space or scale 

model results. again often in free space. For many exploration problems. espe-

cially in areas with host rocks of high resistivity. the free space models have 

been etIective for interpretation. When greater depth of exploration is 

required. through conductive surface layers or in conductive host rock. a much 

more accurate interpretation is required. Such interpretations must account 

for the shielding etIects of the surroundings. and for the current gathering, or 

channeling effects of the conductive target on the induced currents in the host 

rock or overburden. 

Considerable insight into some of these problems has been gained with a 

series of model studies using a finite. thin, rectangular plate either in free 

space (Annan. 1974). under a conductive overburden (Lajoie and West. 1976). or 

more recently. in a conductive host and under a surface layer (Weidell. 1981; 

Hanneson.1981). 

Another model which has met with some success is the three-dimensional 

finite conductor. usually a reclangular block. in a conductive host and with a 

surface layer. Such solutions by EohmanIl (1975). Weidelt (1975). ~eyer (1977). 

Pridmore (1978). and Lee et al (1981) are useful for simple confined conduclors 

at frequencies for which the dimensions of the body are on the order of the 

skin depth. For complex shapes or for higher frequencies the computing costs 
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become prohibitive even on the largest computers. 

Geologic models in which the electrical parameters are invariant in the 

strike direction also constitute an important class of targets in electromagnetic 

exploration. They are particularly appropriate for dipole methods bccause the 

fields fall off so rapidly from the source, that an elongated target may be satis

factorily represented by a two-dimensional equivalent. Such a representation 

is often not valid for line sources or for plane wave inducing fields. 

A finite element formulation for the case of a dipole source over a two

dimensional conductivity distribution was offered by Ryu (1971). Since mag

netic fields are continuous in a region without magnetic susceptibility con

trasts, problem was formulated initially in terms of unknown magnetic fields. 

The equations were Fourier transformed in the strike direction and solutions 

for a two-dimensional model were oblained as a function of wave number in the 

strike direction. Inverse transformations then yield the solution in x, y. and z. 

There are numerical difficulties with this approach near the earth-air interface 

'caused by rapid changes of the gradients of the magnetic field. Lee (1978) 

reformulated the problem in terms of electric fields and succeeded in obtaining 

solutions for some simple models. Stoyer and Greenfield (1976) published a 

finite difference solution using a coupled transmission sheets analogy. 

The accuracy of these numerical solutions has been in doubt since there 

was nothing to which they could be compared to. In the present study we have 

analyzed the numerical solutions at length. tested a variety of algorithms and 

most importantly have compared lhe numerical results to scale model results. 

For the range of frequencies and parameters for which the solution is valid the 

resulting program has been useful in analyzing a number of important explora

tion problems. 



Formulation of the Variational Integral 

Using Maxwell's equat.ions, 

v X E =_ aB 
at 

v X B = J + aD at . 

and the constitutive relations and Ohm's Law. 

B=~B 

D = cE 

J = aE. 

St.ratton (1941) has shown that 

- !ExB..fjds = J aE·Edv + ~J lr £'E·E + H:.B.H]dV, 
s at 2 2 . 

v v 

4 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where fj is a unit vector outward normal to the surface S enclosing v (Figure 1). 

Integrating the right hand side of equation (6) in time, and adding the source 

energy due to a current source J$' we can write the total electromagnetic 

energy, I, contained in vas, 

I(E) = flr k; E·E- 12 (VxE)·(VxE) + -.l_E'Js jdV. 
2CJ ~ 2CJ J.L ] CJ 

v 

(7) 

The variational integral is written in terms of E. and a time dependence ej(.Jt is 

.' ·i,' used. The propagat.ion const.ant. is given by. 

, J 

'" 
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The stationary principle (Morse and Feshbach. 1953) imposed on the variational 

integral. equation (7). results in the following vector wave equation for the elec-

tric field E; 

(8) 

thus confirming the correct E field behavior in v. 

The presence of a finite source. J$' a grounded electric dipole or a loop of 

wire of finite radius. often creates numerical problems simply because it is 

difficult to integrate. This can be easily avoided by using the principle of super-

position to write E in terms of a primary part. Ell. and a secondary part. :Es
• i.e. 

(9) 

and substituting into the variational integral. J(E). Then. 

I(EP + ~) (10) 

Taking the variation of the right hand side of equation (10) with respect to ~. 

we find 

(11 ) 
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where Dok2 is the square of the propagation constant of the actual medium sub-

tracted from the square of the propagation constant. k b • of the background 

medium for which the primary field. EP. is computed. The first term on the 

right hand side of equation (11) vanishes since the integral is independent of 

ES
. Applying the vector identity. 

v'AxB = B'VXA - A·VxB, 

and the divergence theorem. the second term becomes 

The volume integral is identically zero since the integrand is always zero. 

Assuming that the secondary electric field is prescribed on S, the surface 

integral also vanishes. Hence the effective variational integral for the secon-

dary field is 

( 12) 

, I .., 
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The current source, JS, has been removed from the integral. As a result, it can 

be shown that the variation of I(ES), with a proper boundary condition satisfied, 

leads to the wave equation 

(13) 

One can derive the same equation directly from Maxwell's equations by initially 

decomposing the fields into the primary and secondary parts. 

Harmonic Variational Integral 

If the medium of interest is 2-D, we can reduce the varialional integral. 

equation (12), to a 2-D problem in harmonic space using Fourier lransforma-

lion. To begin. we have chosen a magnetic dipole source oriented in the direc-

tion perpendicular to the strike. Wit.h reference to Figure 1. it is assumed that 

the strike is parallel to the y -axis. Using the Fourier integral and appropriate 

symmetry conditions, we can write 

P(X,y,Z) 

Q(x,y,Z) 

CD 

1 J A 
- P(x ,ky ,z )coskll Y dky 
rr 0 

... 
i J Q(x ,ky ,Z )sinky y dkll , 
rr 0 

(14-1 ) 

(14-2) 

where P and Q represent field components which are symmetric and asym-

metric in y, respectively. Instead of directly substituting these Fourier 

integrals into the variational integral. we may first approximate them by 

P(X,y,z) 

Q(X,y,Z) 

1 N,... - L P(x ,"Ii ,Z )cos 71i Y 
L i=O 

·N", 
LL L Q(x,1Ji,Z) sin71iY, 

t = 1 

(15- 1 ) 

(15-2) 
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i 
where, TJi = 1Ty,i = O,l ......... N. and it is assumed that field quantities are 

periodic in y with a period of 2L. Upon substituting equations (15) into the 

variational integral and carrying out integration along y from -L to L. we find 

N 
I(E) = 10 (E:) + L: ~ (En I (16) 

i=l 

where after dropping (x .TJi.Z), 

~(En ( 17) 

[ a~ _ J·TJ E S ]2 + 2~k2(- EEES + EPEs - EPES\j]dXdZ ax \ % % % Y Y z z • 

and .Ig (E:) is the zero harmonic variation integral in which thc electric field is 

polarized only in the direction parallel to the strike. 

Yormulation of the Finite Element Equation 

The 2-D model cross section is simulated by a rectangular mesh. The unk-

nown electric fields are then s~quentially assigned to each node. Using a bil-

inear base function, the eleclric field wilhin a rectangular element is wrillen in 

terms of yet to be determined electric fields at four corner nodes. Thus, each 

scalar component of the electric fields is given by 

;.,' 
4 

P;s = L NjEJ, ( 18) 
j =1 

where lvj is a shape function (Zienkiewicz, 1977) and E} is the unknown elect.ric 
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field at the jth node of the element. Substituting equation (18) into the varia-

tional integral and performing integrations over the region covered by the 

mesh. we obtain the following approximat.ion t.o the i th harmonic variational 

integral; 

l z;"'$ TKEs + r;-oS TK EIJ 
2L L s • ( 19) 

where K is the total system matrix for ES 
I and Ks is the source matrix. Follow-

ing the variational principle. the condition for which the variational integral 

becomes stationary. we find from equation (19) that 

KE;5 + S o. (20) 

where the column matrix S represents Ks EIJ. With the secondary electric field 

prescribed at the boundary. equalion (20) may be partitioned into 

(21 ) 

where the subscript i indicates that the variable atlached to it is defined inside 

the boundary. and the subscript b is for variables on the boundary. Then the 

ith. harmonic !;econdary electric field may be obtained by solving the upper 

portion of the partitioned matrix equation (21): 

(22) 

The solution to equation (22) implicitly assumes that the secondary elec-

tric field is continuous everywhere. However. since the current must be con-

tinuous. the electric field normal to an internal boundary between elements of 

ditTerent conductivities is discontinuous. Consider an arbitrary boundary 

separating elements of ditTerent conductivitie!;(]\ and (]z . Then. by Ohm's law 



10 

and the principle of superposition. the normal component of currents satisfies 

(23) 

" . where Yi = (]i + J CJl:i . Hence. the normal component of the secondary elec-

tric fields at one side of the boundary can be explicitly written in terms of the .j 

other, Le. 

(24) 

This relation' can be easily implemented in the finite elemenl equations. Sup-

'pose that E1 is chosen to represent the normal component of electric fields at 

a particular inhomogenous node Then. when we formulate the electric field 

within the element of conductivity (]2 ' the normal component of electric field. 

E~ . may be replaced by the right hand side of equation (24). As a result. the 

solution to the finite element equations contains E1 . 

Numerical Results 

The two-dimensional earth is simulated by a mesh consisting of finite rec-

tangular elements of varying conductivity. The size of the mesh is of primary 

importance, for it dictates the accuracy of the numerical solution. Due to the 

limitations of the affordable computer, a mesh size of 55 X 18 nodes, Figure 2, 

has been used for all the models presented in lhis paper. The mesh generales 

the system malrix, K, of order 2970 wilh half bandwidlh of 60. A symmetric 

decomposition lechnique wilhout inlerchanges (Reid. 1972) is used lo solve lhe 

syslem matrix for lhe secondary eleclric field. 
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Tn order to calculate magnetic fields in harmonic (ky) space we first 

employed the simplest technique in which the necessary derivatives of electric 

fields are numerically obtained and substituted into 'VxE. The next step is to 

inverse transform these secondary harmonic fields using the Fourier integrals 

given by equation (14). The harmonic field is interpolated by a number of 

piece-wise quadratic functions in wave numbers space. Then the Fourier 

integral may be approximated by 

P(Z,y,z) 
U( 

1 fA - L P(s ,Ie.".z )coslc.y ydky 
1T i i, 

(25-1) 

Q(z ,y ,z) (25-2) 

where and li = 1]2i _ 1 • ui = 1]2i + 1. with Til = 0 . 

The number of piece-wise integrations has been typically 7. which requires 

15 harmonic solutions. 

To test the numerical technique we computed results for a simple model 

used in scale model studies of an airborne prospecting system. The scale 

model, Figure 3. represented a vertical slab 12 m wide. 60 m high. and approxi-

mately 1.0 km in strike. The slab was 2.63 ohm-meter. and it was placed in a 

half space of 100 ohm-m. The response was obtained for a coaxial helicopter 

boom system in which the transmitter and receiver were separated by 12 m 

and the boom was flown over the target at a height of 20 m from the surface of 

the half space and in a direction perpendicular to the strike. The results for 

the real and imaginary responses at 32 Hz in parts per million (ppm) are shown 

in the curves in Figure 3. The agreement between the scale model and numeri-

cal results is good for the quadrature response; the peak of the anomaly is 

about 15% below the analog result. and it is quite possible that the measured 
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resistivity of the model could be in error by 10%. 

The real response, however, i~ erratic and differs from the tank model 

result completely. The problem lies in the computation of the magnetic field for 

which the numerical derivatives (differences) of the electric fields were used. 

To illustrate the numerical difficulty we have computed magnetic fields analyti-

cally over a simple half space and comparison s are ma.de to those numerically 

obtained. 

The electric fields in transformed, harmonic. space over a half space can 

be calculated analytically (Lee. 1978) at t.he four corners of a hypothetical 

finite element rectangle. The magnetic field may be computed from vxE 

numerically at the center of the rectangle. This can be compared with the true 

magnetic field computed analytically at the same point. 

For this example we have selected the same half space (100 ohm-meter) in 

which the conductive vertical slab was modeled. A horizontal magnetic dipole of 

moment unity is located at- x=O, 20 m above the surface. Using the same fre-

quency of 32 Hz, we have calculated the secondary electric fields at four corner 

nodes of a rectangle in the air. For a wave number of kll = 0.0005 these fields 

are 

Ey • (1.918x 10-8 - j 3.744xI0-8) (1.910XI0-8 - j 3.74IxI0--8) 

Ez :: (-7.845 x 10~) .. x-&-18------~ (-7. 668 x 10-8 ) x.24 . 

... ~ ... ' 

za-IO z a-IO 

Hx. (-4.855xI0-8-
j 25.86.'0-8 ) 

x-18 ,-0 
(1.980 x 10-8 - j 3.1'96110-9) 

( -8.339110-8) 

8 
.-22 
1--5 

(1.970xI0-8- j 3.79IxI0-8) 

(-8.058 x 10-8) 

I 

'" 
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Notice that Hz is analytically obtained and displayed at the center of the rec-

tangle. With the assumption that the electric field would behave linearly within 

the rectangle. one can numerically compute the secondary magnetic field Hz as 

H = ~Ijk E ---. f dEy 1 
z (..)f..L l Y %. dz 

= (-4.851-j25.88)Xl0- B Amp/meter. 

The numerical result is remarkably close to the one analytically computed. As 

the wave number increases however. this agreement disappears. At 

kll = 0.0625 . the field diagram looks like 

Ey • (3.7341l10-12 _j 2.0091l10-7) (1.4591l10-12 -j 1.6561l10-7) 

Ez • (-2.1341l 10-7) ..---------e (-1.6501l10-7) 

Hx = (-2.7761l10-13 -
j 4.:308 Il 10-1°) 

Gg 

(6.636.'0-12 -j 3.870.,0-7) 

(- 3. 9851l10-7) 

(9.7311l1O-13 -j 3.0361l10-7) 

(-2.841.10'"7) 
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At this frequency the real part of the Hz is negligible as i<; shown at the cenler 

of the rectangle. By taking the numerical derivatives of the electric fields the 

horizontal component of the magnetic fields is readily obtained as 

Hz = (1.566xlO-6 -j5.101X10-10) Amp/meter. There is virtually no ima

ginary part for Ez' therefore, the imaginary part of the numerical R:c comes 

from the vertical derivative of the real part of the electric field E1I . For 

k1l» ! k I the field behaves as e -kj • where p is the distance on the x -2 plane. 

Over a vertical distance of 10 m the electric field amplitude would decrease by 

approximately 50% ( = e -0.625) away from the surface of the earth. Conse

quently, the numerical derivative of the electrical field itself generates consid

erable amount of error. In our example the imaginary part of the numerically 

computed Hz is about 20% larger than the analytically obtained one. The real 

part of the Hz comes from the difference between the cross derivatives of the 

electric fields ~ and Ez . With a 20% numerical error associated with each of 

the derivatives, the error contained in the difference would be cumulative. As a 

result the enhanced error itself becomes the real part of the numerical solu

tion because the true solution has negligible real part when the harmonic 

number (k1l ) is large. 

Although this illustration has used the field from a uniform half space, 

similar numerical errors would be expected for the numerical derivatives, and 

their differences, of the scattered electric field from an inhomogeneity. One of 

the immediate consequences of the analysis is shown in Figure 3. The problem, 

regrettably, is fundament.al since it is not practical comput.ationally to decrease 

the elemenl dimensions to increase the accuracy of the derivative at large kll 

values. 

One way of minimizing this type of numerical error is to obtain the mag

nelic field from an integral over lhe currents in the half space rather lhan from 
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the derivatives at a point. Assuming t.hat the lateral inhomogeneity is finite in 

extent. the secondary magnetic field may be obtained by 

JrI(x,ky,z) = jeBJ(x.x' ,ky,z,z' )·J.(x' .ky,z' )dx' dz' (26) 
s 

where eHJ is the dyadic Green's function for the magnetic field and the 

"scattering current" J. is given by (Harrington. 1961) 

J. = ~uE. 

The scattering current is non-zero only at places where the conductivity of the 

inhomogeneity u a is differenl from the background conductivity ub 

Using the integral (26) for the magnetic field computation, two important 

internal checks have been made for the numerical solution. Figure 4.a and 4.b 

show the convergence test and a check for the reciprocily principle. respec-

tively. over the model discussed earlier. The convergence test was made by 

varying the number of cells used for the vertical slab in the finite element solu-

tion. Except for the slight oscillation near the center of the profile the numeri-

cal solulions converge nicely to the analog result. The number of cells used for 

the test were 4, 8. and 18. and the frequency was 32 Hz. 

The reciprocity check was carried out by comparing the secondary mag-

netic fields H: andH; . due to magnetic dipole sources M7; andM~ , respectively, 

in their reciprocal positions over the same model and frequency. Both for the 
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real and imaginary parts of the solution the magnet.ic field H; due to the dipole 

source M% shows slightly largE:r peak anomalies. but. nevertheless, the overall 

reciprocity check is reasonably good. 

The analog results for the tank model were obtained at frequencies of 32 

and 263 Hz. These results are shown in Figure 5 along with the corresponding 

numerical solutions. The results at 32 Hz, especially for the quadrature part, 

are almost identical and there is a small difference of a few ppm in the real 

part. The result at 263 Hz shows an excellent agreement for the real part. The 

quadrature part of the numerical solution. however, shows the peak anomaly 

about 15% less than that of the analog result. The good result for the real part 

at this frequency is an encouraging sign for the numerical code developed here 

because of the fact that as the frequency increases further, the real part of the 

solution will dominate over the quadrature part. 

Unfortunately. the flexibility of the finite element method for representing 

arbitrary conductivity distributions is lost when this integral appr.oach is used. 

If the integral over scattering currents in the entire half space were used, the 

computing costs become prohibitive because of the time consuming operation 

of the Green's function integrations. If only quadrature response is required, it 

appears that satisfactory results can be obtained for half spaces of arbitrary 

conductivity distribution using the numerical curl operation. especially if the 

calculation point is above t.he interface. If the complete response is required 

the conductivity inhomogeneity must be confined to some reasonably compact 

subvolume of the finite element mesh to keep the computation within bounds. 

Even in this latter case, the conductivity inhomogeneity cannot be too 

close to th~' field computation point. For example, the program cannot be used 

for the computation of fields on the surface if the inhomogeneity is close to the 

surface near the computation point. 

"', 
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Figure Captions 

Figure 1. A general geophysical electromagnetic system. 

Figure 2. A finite element grid and notations used for the 

description of a rectangle. 

Figure 3. Numerical model result with the use of numerical 

derivative. 

Figure 4.a Convergence test of the numerical solution. 

Figure 4.b Reciprocity check between numerical solutions 

of reciprocal configurations. 

Figure 5. Comparison between analog result and numerical 

result with the use of Green's function. 

Diagram 1. Display of harmonic fields in a rectangle for 

ky = 0.0005. 

Diagram 2. Display of harmonic fields in a rectangle for 

ky = 0.0625. 
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Figure 2. A finile elemenl grid and nolations used for the 

description of a rectangle. 
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Figure 4.a Convergence test of the numerical solution. 

Figure 4.b Reciprocity check between numerical solutions 

of reciprocal configurations. 
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Figure 5. Comparison between analog result and numerical 

result with the use of Green's function. 
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Ey = (1.91ax 10-8 - j 3.744XI0-8) (1.910XI0-8 - j 3.74IxI0-8) 
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Diagram 1. Display of harmonic fields in a rectangle for 

ky = 0.0005. 
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Diagram 2. Display of harmonic fields in a rectangle for 

ky = 0.0625. 
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