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Abstract

A solution for the eléctromagnetic fields scattered from a two-dimensional
inhomogeneity in a conducting half space has been obtained for an incident TM
mode plane wave; the magnetic field is polarized barallel to the strike of the
inhomogeneity. The approach has been to determine the scattering currents
within the inhomogeneity using an integral equation for the electric fields. This
solution is similar in concept to earlier studies of TE mode scattering from two-
dimensional inhomogeneities, and it completes the analysis of the scattering of
arbitrary plane waves using the integral equation approach. For simple bodies
in the earth integral equation solution offers significant computational advan-

tages over alternate finite element or finite difference methods of solution.

Introduction

Quantitative interpretation of magnetotelluric surveys depends at present
on the availability of efficient forward modeling algorithm. To date two major
numerical techniques have been used to obtain the scattered fields from buried
inhomogeneities in plane wave fields; methods solving thé governing differential
equation which gencrally uses a finite element or finite difference approach and

methods which solve an integral equation formulation of the problem.



For two-dimensional inhomogeneities a solution for incident fields with the
electric field parallel to the strike of the inhomogeneity (TE mode solution) has
been developed by Hohmann (1971) using the integral equation approach. For
a perfect conductor an integral formulation, for surface scattering currents,
‘for the TM mode (magnetic field parallel to the strike of the inhomogeneity) has
been developed by Parry (1969). General two-dimensional solutions in the pres-
ence of an arbitrary mode plane wave (mixed TE-TM) have been obtained by Ryu
(1971), Swift (1971), and Rijo (1977) using either a finite element or finite

difference technique.

To our knowledge the TM integral equation solution for the general case
has not been presented. The solution presented here thus completes the
analysis for the scattering of arbitrary mode plane waves from two-dimensional
inhomogeneities using the integral equatioﬁ approach. Apart from significant
computational advantages in forward modeling of simple geologic bodies for
magnetotelluric analysis, this solution is important for evaluatin.g the results of
alternate numerical methods used for more complicated geclogic models. It is
becoming evident that for many of the current numerical modeling schemes,
there are no convincing checks on the accuracy of the solution. It is impera-
tive therefore that several solutions be obtained by differing methods and be

compared until confidence is attained in these solulions.

Formulation of two-dimensional integral equations

In their general form, Maxwell’'s equations are written as follows:

= .= =] (1)

VxH = (o+ juwe) E +J (2)



where M! and J! are impressed magnetic and electric currents. Throughout the
paper an e/* time dependence is assumed. Harrington (1961) has shown that
a generalized integral equation solution can be obtained by rewriting (1) and

(2) as

i (3)

(4)

where M® and J® are scattering magnetic and electric currents representing the
inhomogeneities in the half space of electric and magnetic constants
oy My ande, (Figure 1). Equating the right hand sides of (1) and (2) to.those of
(3) and (4) respectively, we find that the scattering currents are zero every-

where except for the inhomogeneous region, in which

M = Juluy- ) (5.1)

-S _ -

where
= - + 3 -
Ao (02 o]) Jw(ez s])
In the absence of active sources and magnetic inhomogeneities, equations (3)

and (4) become

- UxE = jw’p““]'n (6)



VxH= (o]*'Jwe]) E+
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The total field can always be written as the sum of the incident (i) field, the field
that would exist in the absence of the inhomogeneity, and the scattered field

(s), such that

=s (8)

RS, (9)

x
1]

and consequently Maxwell's equations for the scattered fields are written as

(10)

(11)

Equations (10) and (11) lead to a vector wave equation for the scattered fleld E®

in the inhomogeneous region
VxVxE®- k2E*= —jou,>® (12)
The solution for (12) can generally be written in the form of an integral as

(13)

and corresponding magnetic field can be written as
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W (F) = ” (FFr) - IS ds (14)

where 7 and 7 are the vectors describing the positions of observation and
source respectively. G(F;F ) is a two-dimensional Green's Lensor defined as the

scattered field at ¥ caused by a unit current density located at 7.

One way of obtaining E(F;?', is to find a single vector potential 7 and relate

it to the scattered fields defined by

ES = k%7 + 9(V - 7) (15)
HS = (0+ jue) Vxm (186)

where 7 is the electric Hertz vector satisfying the inhomogeneous Eelmholtz

equation.

2, - J3
+ k ) T = —mG(X'X') 5(2‘2')

2 (17)

(v

in Cartesian coordinates. The particular solution for (17) is shown in Appendix

A as

[0y }

LN )
2m

~l

S < '
Jl e ulz-2 |cos kx(x-x') dk (18)
2 ) u X

where

u-= (k 2-k2)]/2 .
X !

The homogeneous solution #° for (17) is subject to the boundary



conditions and it satisfles
(19)

(V+Kkd) 78 =0.

The total vector potentials in the homogeneous half space generated by

~

. d -u,|z-2'| -u,(z+z")
= . Juwu X ] ) 1 .
——-j _T [% + RTMe ] cos kx(x-x ) dkX (20)

u
10

current elements in it are given by Appendix A.

o«

A -u,|z-2'| —uq(z+z')
-~ Z 1 1 1 '
nem B [T T e e e
10
where
2

2
= kouy - kug
R -
LU S
+
0“1 * kyug
and J; and J; are the scattering current densities directed in x and z respec-
tively.

From equation (15) and (16) and by the definition of Green's function, the

=E . .—:H D
elements of Green's tensors G (¥;7 ) and G (7,7 ) can be written as

22
E 2,22, (=2)
xx  \"1 T 2] Mix
9X
E _ 82 '
(23)

sz 323X "1x



H &

= o _L i |

G_yx Juu 9z M x (24)
2

E _ % '

Gz = 3x3z Mz (25)

2

E 2 3

6o = (k& + 25 ) 26

2z 1 822 12 (28)
2

GH = ..k_] i '

¥YZ  juwn ax ”]z (27)

where the primed potentia.ls ﬂiz and Tl’iz are just the potentials due to a unit
current densities of J; and J, respectively. One can easily verify the reciprocity
principle by substituting (20) and (21) to (22) through (27).

With EE(T;?') provided the total fleld at ¥ satisfies the following integral

equation

E(F) = E'(F) + ” E(Rir) - () ds (28)

=H ’
and with G (¥,7 ), the magnetic field is written as

- - -5, - “H,- - (29)
H(r)=H(r)+”G(~ .
Sl
Numerical computation of the scat'tering current J® in equation (28) is ini-
tiated by dividing the inhomogeneous fegion. S, into a finite number of rec-
tangular cells, Figure (1), such that a constant currentl densily over each cell

can be assumed. With this assumption the integral equation (28) can be



rewritten as

E.=E.+ ] 4o (rg - E ), i=1,N (30)
1 J=] 1] J
where
E E (31)
E rxxij szij
. =
1 E E
Tzxij 221/
The elements composing Fg are integrated Green’s functions, for example,
32)
E = E(F.;7') ds (
SRR NONCRLS
St

where the integration is carried out over the jth cell of S
Using the quasistatic approximation, £y=0 , we can reduce the factor Rqy

to

RTM =1, for all kx . (33)

It can be shown that the integrations in k; leads to the following analytic

results for n’;, and n’iz

. 1 [ (34)
mix =g 2 [Kolikmy) ¢ Ko(jkl"z)] |

e

coo oz dw [ .
e T g7 [l - Ko(Jklrz)] (35)
1



where K; is the modified Bessel function of the second kind of order zero, and

po

ry = (x - x')? + (z- z')2-1

1/2

ra = -(X-X‘)Z + (z+2')2m/2

3 -

The evaluation of [ is given by Appendix B. Special care is taken for the

situation where the Green's function becomes singular. Rewriting the results

for the electric ﬁeids,

FE

XXij

zxij -

xzij

221

where

1J

1J

Jwu S
k2 iJj
]
X z
r|z.-z' z2.+2" b
_ _wy 1 : - - . '
Znk; f r Klkn) - = KLk ' dx
XQ, : zt
N[0T - . r ‘b
Xo %t
. b S -
= . Jun 1 : . r b
Xy 24
dwd g
k2 ij
1
Z
b X -X‘ X -x' Xr
- W 1 : i ,
2Trk] j r K](Jk]r]) r K](Jk]l"z) dz
z, X,
1, for x2 < xi < xr and zt < Zi < zb
0, for (xi,zi) outside of sj

(36)

(37)

(38)

(39)
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and

f(t) = f(t,) - f(t;) . | (40)

The notations z;,z,,2;, and 2z, are shown in Figure 1, and they are consistent
with those used in Appendix B.
-Equation (30) can now be rewritten in a numerically equivalent matrix

form as

- g | (41)

K+ E

where the elements of K are given by

- E _ -
Kij Aoj rij éij’ i, 1,N
with
1 0
§.. = i = 3
ij 0 : s for i =3
and

. = for i #j
The electric field in the body can now be formally written
-1 i (42)

where the incident field E! can be easily computed in the absence of the inho-

mogeneity. The scattering current J®is then simply given by equation (5.2).
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-The electric and magnetic fields outside of the body are obtained using the
same equations (28) and (29) by substituting the scattering current obtained in
the foregoing section. The Green's function is evaluated at the earth’s surface.

Equation (30) is slightly modified to

E ' = E1l + ,;: PE S (43)
k L ki o J

N (44)
Hkl - H" £ 3o S 0%, k=M
Zk=0 zk=0 J=1 z,=0
where
E E
E Fxxkj I‘xzkj (45)
rkj’ i
zk=0 I,E FE
zxkJ z2zkj zk=0
H ' H H
T, . = (r . T .
kJj Zk=0 ( yxkj yzKJ)Zk=O (46)

and M is the number of field points on the surface.

It can be shown that the integrated Green’s functions evaluated at the sur-

face are as follows;

E o “b
o WU z' . . (47.1)
rxxkj‘ _n Tk j {r Kl(Jk]ro)] ‘ dx
z,=0 1 X 0
2 - %t
for 2z, > 0, and
E j r
= M LU.L L 3 ]
I‘xxkj| = 2t Tk J [r‘ K](Jk]ro)] dx (47.2)
z, 0 kq 1 X 0 z,
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for z; = 0 and z,<1,<7;.
X z
. b
E oo den 1 s r ' (48)
szkj' _ -~z Kolikyrg) |
zk-O k] Xz
2 “t
with 7, in (47.1), (47.2), and (48) defined as
r = [(xk_ x)2 4 Z.2]1/2
It should be noticed that
E E ' H H
. = . = . = . =0 . (49)
rzxk:, Fzzk\]’z.=0 Tyxkg'zk=0 I1ysz Zk=0

zk=0

Scattering in a two-layered earth
Consider the case of a conductive body buried in the lower half space of a

two-layered earth. The vector potentials in the first and second layers are

given in Appendix A. Rewriting the results by making use of the quasistatic

approximation, k4=0,
(50)

Uyz  -uyz -uzz'
RTM (e +e ) e cos kx(x-x')dkX

Uz -uyz -uzz'
RTM (e -e ) e cos kx(x-x )dkx (51)

Tl =
1z 2n k% Uy
o Jun ] . (1 2 “up(z+z'-2d) .
o > .;? KO(Jer) + j e RTM . e cos kx(x-x ) dkX
2
2 0
(52)
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(63)

. - +z'-2d)
A VI B P O I N1 i
) KO(Jer) J m R e cos kx(x-x"') dxx

e sech u]d

—1 - — tanh u,d
2 Ky U 1

™ k2 2 u,
—] + = tanh'u]d

and d is the thickness of the first layer. The Green's function in each layer is

given by equations (22) through (27). The scattering currents are computed by

using 7y, and 75, in the lower half space in the usual manner discussed in the
homogeneous half space case.

The integrated Green's functions to be used for the formulation of equa-

tion (30) are given in Appendix B as

X z
. -2 b
E :M __(Lip_ r 21 z 1 !
Texiy = 72 Sij ™ 2k [ 7 Ky (Gkyr) dx (54)
k 2 ‘X z
2 L t
o 2 \ X 2
R -u,2z -u,z r b
+ %ﬁ}-lg J kTM e 21 [? 2" sin kx(x.-x')] dk,
k2 g X xg zt



xr zb
55
s ™ - B2 Kglikyr) | | =)
ks Xy %t
o 2 . X z
R UnZ: [ -UnZ q r ;b
yodon T ™ 27 | 2 cosk(x-x')—l' l dk
270 L t
X Z o 2
b . R u,z.
E - _ Jwn T r Juwp 1 ™ 271 56
| 2 L %t 2°0
_uzzl Xr Zb
[e cos k_(x.-x' ] ] dk
X 'z X
2 t
z X
: b [x.-x' . r
E o Juwu . i - .
L 213 2 Sij Zk; jz [ - K](szr)-l l dz (57)
2 t X
‘ "k “U,z; [ ~u,z' Xp 2
Juu 1 [ “x 2 2% 2% . .
o sz u2 RTM e [e sin kx(xi-x )] l dk
2 072 X %y

Once the elements of Green's tensor are computed the electric fields in the
body are found by (42) and finally the scattering currents are computed by
(5.2). These elements can not, in this case, be integrated analytically and con-

sequently time consuming numerical integration in k; must be carried out.

The electric and magnetic fields on the surface are computed in the usual
manner. However, the Green's function to be used for the surface fields differs
from that used in the lower half space. The elements of integrated Green's ten-

sors evaluated at the k" field point (zg.zi, = 0) are given by Appendix B.

w ]
. R -u,z!
E _jen 1 R RS .
P zkj yeo T 2 J m [e cos k, (x,-x ):l
k 1 0

Zh

xr
dk (58)
X

Xo %t
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H _ H _E _E -0

T A _~A =T . r . = . (59)
yxkjiz, =0 yzkj Zk=0 zxkJ zk=0 zzkJ Zk=°

k

Substituting these elements into equations (43) and (44), we obtain the total

electric and magnetic flelds on the surface.

Numerical Results and Conclusion

The numerical solution developed in this paper is compared to the one
obtained by Ryu (1970) using the finite element method. The model used for
this purpose is a half space in which a rectangular conductor of 200m x 50m is
buried 50m deep to the top of the conductor. The resistivities used are 1 ohm-
m for the conductor and 100 ohm-m for the half space. At the frequency of 8
hertz the finite element solution has been obtained on a grid in which the con-
ductor is simulated by 16 cellé of equal size (25m x 25m). At this frequency the
cell size used for the finite element solution is considered fine enough, with its
skin depth of 177m, to ensure the accurate numerical solution. Compared to
the finite element solution, a number of integral equation solutions has been
obtained using increasingly more cells for the conductor. The result has been
plotted, Figure 2, in terms of the apparent resistivity and the impedance phase.
The integral equation solution converges to the finite element solution as the
number of cells used increases from 4 cells to 48 cells. The convergence rate is
relatively slow compared to the one for the TE-mode solution (Fohmann, 1970),
in which a cell size of a quarter of the skin dept'h::fwould result in a reasonably
good numerical solution. The major reason for the slow convergence of the

TM-mode numerical solution is because of the assumption we used in which
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electric fields are constant in a cell. Unlike the TE-mode situation where there
is no charge, the discontinuous normal electric fields at cell boundaries create
"charges. The Hertz potential of a constant cu>rrent, by which the electromag-
netic fleld is computed in this paper, does not include potentials due to thus
created charges, and eventually affects the quality of the numerical solution.
The effect of the cell boundary charges can be somewhat reduced through the
approach in which an explicit scalar potential is employed to represent fields
due to charges. Hohmann and Ting (1978) used a scheme by which the concen-
trated boundary charges are uniformly distributed over a volume extending

from the center of one cell to the center of the next cell.

The next model compared is a conductive dyke with varying dip angles as is
shown in Figure 3. A dipping boundary of the conductor is simulated by stack-
ing small rectangular conductors in such a way that the overall dip angle is
preserved. For frequencies of 8 hertz and 100 hertz, the finite element solution
and the integral equation solution result in identical apparent . resistivity
profiles when the conductor (20m x 50m) is vertical. With the dip angle of 45°
however, a maximum of 10% difference in peak to peak apparent resistivity can
be observed for both frequencies. For the integral equation solutions the con-
ductor has been simulated by 10 cells of equal size; 10m x 10m. Considering the
slow convergence rate illustrated by Figure 2, the numerical integral equation
solution for the dipping conductor, with its increased boundary surface, may

not have reached its full convergence.

Using the integral equation for the modeling of electromagnetic scattering,
one is immediately confined to a model finile in extent in an otherwise layered
half space. It is unfortunate that the available Green’s functions are limited to
those for the layered half space. "Eowever, this geometrical restriction offers

the integral equation technique its major advantage; it is necessary to solve for
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the scattering current only in the inhomogeneous region.

Another usefulness of the integral equation approach is that it offers an
easy access to the derivatives of the fleld quantities, a procedure necessary for

the inversion of the field data (Weidelt, 1975). Rewriting equation (30) with Ao;

substituted by (oj — 0) in the expression:
E. = E| + ? (c.-0) (rg.. E ) i=1,N (60)
Ty iy i T

The derivatives of E; with respect to the conductivity of the L#* cell can be writ-

ten as

k. N - 3E,
_1_:.' E . - FE .___\]_ = 6
. (Tiz EQ) + j§1 5= \ IS5 5at) 221N (61)

Equation (61) is N linear equations for each component from which the deriva-
tives of the electric fields in the body can be obtained. The derivatives of the

surface flelds with respect to the conductivities of each cell can be found by

ok,
substituting — into the similar equation derived from (43) as

oy
\ (62)
ok = { JE .
a__k_lsz___ FESLI ‘O'EQ, + ) (o.,-0) I’i[ _0--——J—, L = 1,N .
02 zk— =1 J J zk— aog

Substitutions of H and 'l into equations (60), (61), and (62) will produce the
derivatives of the surface magnetic fields with respect to the conductivities of

each cell. For each iteration in the inversion process the same Green'’s
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functions will be used resulting in a fast iteration time.
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FIGURE CAPTIONS

Figure 1. A simulation of a two-dimensional inhomogeneity

by N rectangular cells.

Figure 2. Convergence test for the integral equation

numerical solution.

Figure 3. Comparison between solutions for a dipping conductor.

Figure A.1. An N-layered earth with the scattering current

J®,in the 1*" layer.

Figure B.1. A rectangular current cell.
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APPENDIX A

" Consider an N-layered half space upon which a TM-mode plane wave is
incident. A two-dimensional conductive inhomogeneity can be represented by a
distribut'}on of current elements over the cross sectional area oriented perpen-
dicular to the strike. Suppose that a point current of density J° is located at

(z',2") in the i*® layer as shown by Figure A.1. Rewriting equation (17) in the

itk layer
2. .2\ - J°
(V +k_|) 1T1. = - -OTTJ—LGS-: 6(X'X ) (S(Z"z ) | (A1)

Fourier transforming (A-1), we obtain the primary potential as

-j(k. x"+k_z")
e (k k) = - A gs e : “e)
j X’z k2 u2 + k2
i i v4
where

2 2 .

k'i = (w ME; - Jc:].wu)

2 _.,2_ 2

uj = kx ki

H = 110 U] = = UN .

Inversely transforming (A.2) in k; (Erdelyi, 1954),

' (A.3)
ik gt ~Us|Z-z
kax e | l

u.

1

=P - jup IS
Tri (kX,Z) = - 2 J e
, -Zki

Equation (19) can be rewritten in each layer as
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(v2+ k2) =0, 30N (A.4)

The solutions for (A.4) in k; space are written as

(A.5)

-s ‘ -uJ.z u;2
L = . + . i .
™ AJ(kx)e BJ(kX)e i

where the directions of unit vectors ‘?,3 and the coefficients AJ- and BJ- are all

subject to boundary conditions with initial constraints.

AO(kx) = BN(kx) =0.

1. Homogeneous half space
a. I*=1J.1,

From (A.3) and (A.5), after dropping parantheses

UOZ
Tox = Bg € ~ »  in the air , (A.6)
a U-]Z 'U-IZ i
T = I‘T e + A]e s in the earth | (A.7)
where
. -jk. x' -u,z'
a = - J—‘-‘% Je * e !
X
2k
1
From equations (15) and (16), we have
ES = - yon (A.8)



o
ES = - jk X
Jky 53
HS = _&2_ aﬂ_x
y Jwp 3z

where

2 2

i Ml '

™ 2 z
Koty * kqYg

Hence, the vector potential in the half space is

[+

24

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

RN -u,|z-2"] -uqy(z+2') |
N T O A 1 1 ! (A.15)
Ty = oy k2 I I [e + Rpye cos kx(x x") dkx .

10
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b. I* = J.1,
In much the same way, the z-directed vector potential in the half space can

be derived as

©

J

- Jup 1
Mz 2 u

~uy|z-2"| -uq(z+z')
] [e ! - Rpye | ] cos k (x-x')dk, (A16)

7:'N|C4
— PN

0

2. Two-layered half space
Let us suppose that the inhomogeneity is in the second layer.
a. I = Ji,

The potentials in each layer can be written by using equations (A.3) and

(A.5) as
T (A.17)
Tox = BO e, in the air
-Uy2 uy2
Ty = A]e + B]e s in the first layer (A.18)
o UZZ -UZZ .
Tox = 0o © + A2e s in the source region
2 (A.19)
where
: -jk x'  -u,z'
Q= - M J e X e 2
okz X
2

Matching boundary conditions at 2 = 2, and z = z, by substituting m, into

equations (15) and (16), we obtain at z = z; = 0,
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2 s (A.20)
Bgug = U7 (Ay+By),  for Elf g .

2

kounBn = kjuq (-A;+B,) for H

000 - "1M1 1 le =0 (A.21)

2
k,u 1 :
B. = 2a 221 Rem o (A.24)
0 k2 u
u 0
1Y
2 2
e gf2i2 1 (Y0 ko),
1.7 %%2, Uy \u 2] "M (A.25)
19 1Tk
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kzu u k2
_ K¥2 1 (Y, S
Ry TR AT Rrm (4.26)
17 1
2u,d 1 .
,=ae 2 L_Z_ ZRTM (A.27)
where
u2d
]R e sech u]d

™ "S Up kg up (U kg
;? k?; + ;7 tanh u1d + ET UT-tanh u]d + ;?
1 1 \ 1
2 2 2
ks fu k u, fu k
2 {70 0 2 0 0
— + tanh u,d} - — {— tanh u,d + =
2R ] k?— ug ;]Z ] U (u.l 1 k?
™G U K uy Yo 5
FW+Ftanhu1d +-u—]— qtanhu]d+k—2
1 ] 1

o _Jjwu Yx J u_2 ]R
1x 2m ;2' u ™
1 0 '
X ) (A.28)
u k T4 u k -u,z| -u,z'
0 0 ] 0 0 1 2
— + e +[— - e e cos k_(x-x') dk
up 2 up 2 X X
1 1
N -u,|z-2" -u,(z+z'-2d)
“2x=-J2£nEf2-J I‘lz— e 2 + ZRTM e 2 + COS kx(x-x') dkx .
20 (A.29)
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b, =13,
By following similar algebraic procedures, we can easily arrive at the fol-

lowing vector p-otentials in the first and second layers.

(A.30)

=_J_w£1]_£ ]—]R
Mz " 2n K2 Uy ™
1 0
2 2
u k U2 u k -u,z| -u,z'
UQ+_%e] - u_o-—g—e L 2_ cos k (x-x') dk,
1 k 1 k
1 1
| (A.31)
A P -u,|z-2z' -u,(z+z'-2d) : ‘
S _dwn Tz [ o3[ _2 2 . -x'
T2z T T 7w 2 J iy |° ™ cos kylxox?) diy
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APPENDIX B

The integration of the Green's function over the area occupied by the j*

cell of rectangular shape is evaluated at an arbitrary position (z;,2z;) .

a. Green's functions for the homogeneous half space

Rewriting equation (34) and (35), we have

o (B.1)
Mx [0(3"1”1) + Koldkyr 2)]
where
= - dwn 1
* 2r (2
1
Throughout the article, the following relationships are used
2 o
'3—)(' f(r]) - T X’ f(l"])
3 S .3 .
-53(- f(rz) = X f(rz) (B°3)
3 - 3
3z () = = 5z flny)
3 . 0
—E)Yf(rZ) -—a?-f(rz) .

Figure B.1 shows the geometry of a rectangular cell in the half space. The
fleld point (z;,2z;) is arbitrary. If the field point is in the cell, an arbitrary circle
L, of radius R is drawn about the fleld point. The vectors fi;,1 = 1, 2, denote the

unit vectors outward normal to the region S;, i = 1, 2, over which the integration
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is carried out.
1. GE(7:7)

From equations (22) and (B.1)

2
E - 2 a ’ 3 s 1 i .

If the field point is in the 7% cell, S]'o is divided into S; and S, . The primary

potential Kq(jk7,) is singular in S,. The following equation holds for the vec-

tor potential  in the non-singulaf region Ss.

(vV¥+k?) 7 =0 (B.5)
By using (B.5), equation (B.4) may be rewritten
s k2+i K.(jkyry) ds (B.6)
xxij = © 172 0hn |

2 s
- ” 27 Kglikyry) ds

2
3% .
J - - KO(Jk]rz) ds
J
I

The first part of I; may be evaluated in a manner similar to that used by Rich-

mond (1965).

2 ) . ‘
a k] JJ KO(Jk]r‘]) ds = 2ma [Jk]RKl(Jk]R) - ]] (B.7)
>
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The second part of I; may be evaluated in the following way; because of the

symmetry,
i )-I d 2 (ko] ds
a || |—= Knlikqr __s=a”— JKI™ /- -
” 3x2 o' ™ ]_,r=r0 822 011 r=tq
31 3
from equation (17)
(Vz + kz) akn(jkiry) = = 2ma &§(r-r')
- 1 0t%1M

Integration on both sides in S; evaluated at ¥ = 7, yields,

o y L%;- Ko(jk]r]):ll:=;0ds = -k ” [Ko(jk]r])] s

e
0
1 5

- 210

wnm>—

f s(r-r )
r=r
'l 0

= 2mo

2
o H [17 KO(jk'lrl)] __ds = - jkymaR Ky(3kqR) - (B.8)
3% r=r |
s o
1
82 :
12 = - jI 3_2 KO(Jk]?‘-‘) ds
z
32
= - q v-TaK(JkY‘)dS
z 3z 011
. 52 z*i-z . 3 -
= - ko o R U
')
1
. z, -2' . . -
L
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along [, , we have

. o= =X
i n, = 0, for x

; ® nz = ]s for Z

= -1, for z
hence

= - jk]'rraR K-I(jk-lR)

(B.9)
Xp Tz.-2 1%

. 1 . v 1
_ Xy 1

Similarly,

—
"

2
3= - JJ iﬁﬁ Ko(jk]rz) ds (B.10)
>3

’ [Z#Z' ( ) ®
jkya I K, (jker ' dx' .
), T T

In case the field point is outside of the j”‘ cell, it can be easily shown that

(B.11)

Finally from equation (B.7) through (B.11)
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(B.12)

£ ) Xp z;-2 ‘ zi+z' _ Zy
rxxij = - 27a Sij - Jk]a Jx —7?—— K](Jk]r1) - —71;—-K](Jk]r2) l dx
L

t
where S;; is defined by
Sij =1, for Xg < Xj < Xy and Zy < 2; <z
Sij =0, for (xi’zi) outside of Sj .
2. GE (77
From (23) and (B.1)
: 32 j j (B.13)
rzxij = a JJ 3Zax [KO(Jk]r]) + KO(Jk]FZ)] ds . .
S,
J
By (B.3)
E 32 . 4 ]d (5.14)
T2gij = @ ” 325k [Ko(J"l‘“]) - Kolikyrp)] ds :
>3
Xr  %b
= q [Ko(jk]r]) - Ko(jk]rz)] ’x ‘z
gt
3. Gyli.ij(f;f")
From (24)
ka
! Syt iy | 2 j j ] B.15
ryxij Jwu JJ 32 [KO(Jk]r]) + KO(Jk]rZ) ds, ( )
]

By (B.3)



2
H __;L : ]
Fyxij  Jwu I 32" O(Jk]r]) Ko(\]k]rz) ds
J -
X

ak z

1
|—'N

(&)

2 %t

4. GzE;u (f;f')
From equations (25) and (B.2)
E 32 : (jk )] d
Txzij = @ JI a5z [Koldkgm) = Koldkyrp)] ds
>

By (B.3)

1y = o [Kolakyry) + Kolikrp)] |

From equation (26)

I‘E = k2+i [K('kr)--K('kr)]ds
zzij = @ 17572 Lo I 0\I%"2

35

As usual, the area S; is divided into two regions S; and S,

(B.5)

> | >

U 3 K (fkyr) d
-a <= Kq(jkyr S
2 02

2

r b
- JX [g0(3k1r] ; KO(Jk]rz)] | dx' .
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(B.16)

(B.17)

(B.18)

(B.19)

. Then by equation

E 2, 3° 32

(B.20)



The similar technique used for foﬁ yields !

3 . b xi-x' .
Fzzij = - 270 Sij - Jk]a Jz __F;—— K](Jk]r1)
t
xi-x' ) Xp .
- _—FE_— K](Jk]rz) ’ dz
X9

6. Gszij(? ;7—")

From equation (27)

2
I'H =.c.x_'fl 'a—[K('kY‘)-K('kr)] ds
yzij = Jau || ax [MoY1M 0\ -
S.
J
Again by (B.3)
- H ak% zb ) Xr
t ')

b. Green's functions for the two-layered half space
1. Green’'s functions in the lower half space

Rewriting 5, and 75, from equations (52) and (53)

. . T g, up(z+z') .

Tox = %o KO(szr) + a, j a—z— RTM e cos kxv(x-x ) dkx
0

. . 12, TUplzz) .

Moy = Oy KO(szr) - o J GE RTM e cos kx(x-x ) dkx

35

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)



= _ Jwu 1
2r

where '
% 2
2

2.2 tanh u]d

1 2u,d
e2

>

2
k2 u
1

u
™ K u2
—= + — tanh u,d
k? Uy ]

2
Ry = 5
2
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. and d is the thickness of the first layer. The notations used for the geometry of

a rectangular cell is given in Figure B.1.

The evaluation of primary potential Ky(jk,7) is the same as was discussed

in the previous section with k; substituted by k, in the expression: By using

equation (B.5) and the relationships similar to (B.3), we obtain

Sj
xr zi-z . Zb
= - 2‘n’a2 S1J - szaz jx K](szr) - dx!
) Z¢
o 2 . X b4
R u,z. -u,z' r b
a, j kTM e 21 [? 2 sin kx(xi-x') I | dk
0 X - 'xy lzy
2
E . 3 '
r'zxij JI 3zZox "2x ds
3
. Xp Zp
oy KO(Jer) ‘x Iz
' t
® 2 ' X z
R “U,2Z. -u,z r b
- o [ — e 271 [é 2 cos k (x.-x')] dk
U, X'
Xo "%

0

(B.26)
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2
E _ 3 '
Txzij = JI 5x3z "2z 9
35
- Xy Zb

2 ¥4

t

© 2 X 4
Rey -UnZ: [ -UsZ' r b
+ a, [ _TM 2n [e 2" cos kx(x].-x')] I I dk,, (B.28)

u
0 2 Xy zt
2
E _ AN i
T2zij = ” <k2 * 322> Moy 45
5
= - 2‘"&2 S_ij
Z [x].-x' : )] Xy )
-jkaI K (k,r ‘ dz'
22 r 1 2
z, Xy (B.29)
® Ky 2 -UyZ; -uzz' _ xr' Zy
- a, J ? Ry © [e sin kx(xi-x')] ‘ . dk
0 u | X %t

2. Green's functions on the surface
Rewriting 7;, and m,, from equations {50) and (51)

©

. 1 Uy f U2 -Uyz -uzz' (B.30)
Tix = J RTMT(e +e )e cos k_(x-x') dk
. o | X7 X
Vo 1 1 uyz  -uyz -uzz' .
Tz = % J RTM u_]' <e -e e cos kx(x-x ) dk (B.31)
0

where



38

y e sech u]d

us
+ — tanh u,d
u] 1

Integrations of Green's functions at the k% field point (z;,2;, = 0 ) are -

found to be

2
E - . 3
I‘xxkj’zk=0 - i' 372 T 98 (B.32)
J 1 . X, z
; RTM L PYa ' r “b
= -2a1 n e sin kx(xk-x ) dk
X X, 12
0 L “t
2
E _ 3 '
rxzkj‘zk=o ) JJ 3xaz Mz 95 (B.33)
S
J
© ]RTM '“22' Xp 2y
= Za] J —u——-[% cos kx(xk-x‘) l I ‘dkx
0 2 Xp 24
E _E _
rzxkj’zk=0 rzzkj’zk=0 0 (B.34)
H - pH : _ (B.35)
ryxkj,zk=0 Tyzkj 2,=0 =0.

The last two results for the vertical (z) electric field and the horizontal
(y) magnetic field are consistent with those concluded for the homogeneous N

half space case.
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