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A solution for the electromagnetic fields scattered from a two-dimensional 

inhomogeneity in a conducting half space has been obtained for an incident TM 

mode plane wave; the magnetic field is polarized parallel to the strike of the 

inhomogeneity. The approach has been to determine the scattering currents 

within the inhomogeneity using an integral equation for the electric fields. This 

solution is similar in concepl to earlier studies of TE mode scattering from lwo-

dimensional inhomogeneities, and it completes the analysis of the scattering of 

arbitrary plane waves using the integral equation approach. For simple bodies 

in the earth integral equation solution offers significant computational advan-

tages over alternate finite element or finite difference methods of solution. 

Introduction 

Quantitative interpretation of magnetotelluric surveys depends at present 

on the availability of efficient forward modeling algorithm. To date two major 

numerical techniques have been used to obtain the scattered fields from buried 

inhomogeneities in plane wave fields; methods solving the governing differential 

equation which generally Ilses a finite eJemp.nt or finitf' rlifference approach and 

methods which solve an integral equation formulat.ion of the problem. 
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For two-dimensional inhomogeneities a solution for incident fields with the 

electric field parallel to the strike of the inhomogeneity (TE mode solution) has 

been developed by Hohmann (1971) using the mtegral equation approach. For 

a perfect conductor an integral formulation, for surface scattering currents, 

for the TM mode (magnetic field parall~l to the strike of the inhomogeneity) has 

been developed by Parry (1969). General two-dimensional solutions in the pres­

ence of an arbitrary mode plane wave (mixed TE-TM) have been obtained by Ryu 

(1971), Swift (1971), and Rijo (1977) using either a finite element or finite 

difference technique. 

To our knowledge the TM integral equation solution for the general case 

has not been presented. The solution presented here thus completes the 

analysis for the scattering of 'arbitrary mode plane waves from two-dimensional 

inhomogeneities using the inlegral equation approaeh. Apart from significant 

computational advantages in forward modeling of simple geologic bodies for 

magnetotelluric analysis, this solution is important for evaluating the results of 

alternate numerical methods used for more complicated geologic models. It is 

becoming evidpnt that for many of the current numerical modeling schemes, 

there are no convincing checks on the accuracy of the solution. It is impera­

tive therefore that several solutions be obtained by differing methods and be 

compared until confidence is attained in these solulions. 

Formulation of two-dimensional integral equations 

In their general form, Maxwell's equations are written as follows: 

'1 x E = jw~R + M i (1 ) 
.. ;., ~ 

'lxH = {a+jwd E + ji (2) 

• 
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where yi and Ji are impressed magnetic and electric currents. Throughout the 

paper an e iwt time dependence is assumed. Harrington (1961) has shown that 

a generalized integral equation solution can be obtained by rewriting (1) and 

(2) as 

nxE- . H-+M-S+M-i 
v = JW~l 

(3) 

(4) 

where lis and JS are scattering magnetic and electric currents representing the 

inhomogeneities in the half space of electric and magnetic constants 

al"u1.andtl (Figure 1). Equating the right hand sides of (1) and (2) to those of 

(3) and (4) respectively. we find that the scattering currents are zero every-

where except for the inhomogeneous region. in which 

where 

-S -
J = l:.aE 

(5.1) 

(5.2) 

In the absence of active sources and magnetic inhomogeneities. equations (3) 

and (4) become 

(6) 
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(7) 

The total field can always be written as the sum of the incident (i) field. the field 

that would exist in the absence of the inhomogeneity. and the scattered field 

(s). such that 

(8) 

(9) 

and consequently Maxwell's equations for the scattered fields are written as 

(10) 

(11 ) 

Equations (10) and (11) lead to a vector wave equation for the scattered field ES 

in the inhomogeneous region 

( 12) 

The solution for (12) can generally be written in the form of an integral as 

[S(r.) = J J. ~E(r;r') • JS(r ' ) ds 

S 

(13 ) 

and corresponding magnetic field can be written as 
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HS(r) = f f GH(r;r ' ) • jS(r') ds 

SI 

(14) 

where f' and f' are the vectors describing the positions of observation and 

~ource respeclively. G(f' ;1") is a two-dimensional Green's lensor defined as the 

scattered field at T caused by a unit current density located at T' . 

One way of obtaining G(l' ;1") is to find a single vector potential1f and relate 

it to the scattered fields defined by 

-S 2- -
E = k 7T + V(V· 7T) (15) 

-S H = -
(0 + jw£) V x 7T (16) 

where 1T is the electric Hertz vector satisfying the inhomogeneous Eelmholtz 

p.quation. 

= -
-S 
J 

0+ jw£ 0 (X - X I) 0 (Z - Z I) ( 17) 

in Cartesian coordinates. The parlicular solution for (17) is shown in Appendix 

A as 

-p 
7T kX(X_X') dkx 

(18 ) 

where 

u = (k 2 _ k2) 1/2 . 
X . 

The homogeneous solution 1fs for (17)· IS subject to the boundary 
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conditions and it satisfies 

( 19) 

The total vector potentials in the homogenf!ous half space generated by 

current elements in it are given by Appendix A. 

00 

= _ j W]..l J X f 1 [-U 1 I z - Z I I -U 1 ( z+ z I )] 
TIl X 2 2 U e + RTMe 

kl 0 1 
cos kX(x-x ' ) dkx 

(20) 

~ Jz oof 1 [-Ul1Z-Z ' I -u l (Z+ZI)] 
= - 2TI 2" U e . - RTMe cos kX(x-x ' ) 

kl 0 1 
(21) 

where 

and Jz and Js are the scattering current densities directed in x and z respec-

lively. 

From equation (15) and (16) and by the definition of Green's function. the 

=K . =H • 
elements of Green's tensors G (1';1') and G (1';1') can be written as 

GE ( 2 .2), = kl + ax2 TIl x xx 

(22) • 

GE l , .. } ..... 

= --TIl 
zx azax lx (23) 
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kl a I -- -- TI 
jWjJ az 1 x (24) 

E l I Gxz = axaz TIlz (25) 

-

GE = (k2 + L) u' (26) zz 1 az2 lz 

2 
GH 

= 
kl a -.- - TIl (27) yz JWjJ ax 1 z 

, , 
where the primed potentials 7Tlz and 7Tlz are just the potentials due to a unit 

current densities of Jx and Jz respectively. One can easily verify the reciprocity 

principle by substituting (20) and (21) to (22) through (27). 

=E ' 
With G (1';1') provided the total field at l' satisfies the' following integral 

equation 

E(r) = Ei (r) + J J ~E(r;rl) • jS(rl) ds 
Sl 

(28) 

=H ' 
and with G (r;r), the magnetic field is written as 

H(r) = Hi (r) + J J ~H(r;rl) • jS(rl) ds 
(29) 

SI 

Numerical computation of the scattering current JS in equation (28) is ini-

tiated by dividing the inhomogeneous region, S', into a finite number of rec-

tangular cells, Figure (I), sllch thiit a conslant currenl densily over' each cell 

can be assumed. With this assumption the integral equation (28) can be 



rewritten as 

where 

E. = E ~ + I 60 . ( r~ . . E.), ; = 1, N 
1 1 j=l J lJ .J 

E = (r~EX;j r· . 
lJ 

rzx;j 

The elements composing r9 are integrated Green's functions, for example, 

rE ., = J f GE ( r . ; r I) ds 
ZX1J ZX 1 

$1. 
J 

where the integration is carried out over the jth cell of S', 

8 

(30) 

(31) 

(32) 

Using the quasistatic approximation, k 0:':::0 , we can reduce the factor RTII 

to 

for all kx (33) 

It can be shown that the integrations in k% leads to the following analytic 

(34) 
'TTl 

lx 

(35) 

• 
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where Ko is the modified Bessel function of the second kind of order zero, and 

The evaluation of r is given by Appendix B. Special care is taken for the 

situation where the Green's function becomes singular. Rewriting the results 

for the electric fields. 

E rxxij 

E r .. 
ZX1J 

E r .. 
XZ1J ~~~ :~ [Ko(jklrll + Ko(jklr2l] IXr IZb 

X£ Zt 

rE .. = jw
2

J.1 S 
ZZlJ k ij 

where 

1 

s .. = 1, 
lJ 

s .. = 0, 
lJ 

for 

for {X.,Z.} 
1 1 

and 

outs; de of s I. 

J 

(36) 

(37) 

(38) 

(39) 

dz i 



and 

t2 
f(t) I = f(t2) - f(t,) . t, 

10 

(40) 

The notntions xl 'XT ,z,' and z/) nre shown in Figure 1, and they are consistent 

with those used in Appendix B . 

. Equation (30) can now be rewritlen in a numerically equivalent matrix 

form as 

K • E - - Ei ( 41) 

where the elements of K are given by 

K .. !::.a. 
E o .. , i,j , ,N = r .. = 

lJ J lJ lJ 

with 

0 .. =c ~) . for i = j lJ 

and 

O;j =(: :). for i 1 j 

The electric field in the body can now be formally written 

-, i 
E=-K ·E (42) 

where the incident field Ei can be easily computed in the dbsence of the inho-

mogeneity. The scattering current J8 is then simply given by equation (5.2). 

• 
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The electric and magnetic fields outside of the body are obtained using the 

same equations (28) and (29) by substituting the scattering current obtained in 

the foregoing section. The Green's function is evaluated at the earth'!'; surface. 

Equation (30) is slightly modified to 

(43) 

and for the magnetic field 

HIs r kJ' • J , 
z =0 k 

(44) 
k = 1 ,M 

where 

C;Xk
j 

E ) rE I r xzkj 
= 

kj z =0 rE k r zxkj zzkj zk =0 

(45) 

rH I = (r~Xkj rH ) 
kj z =0 yzkj z =0 

k k 
(46) 

and M is the number of fi~ld points on the surface, 

It can be shown that the integraled Green's functions evaluated at the sur-

face are as follows; 

dx' 
(47.1) 

for Zt > 0, and 

rE I 
xxkj z =0 

k 
dx' (47.2) 



rE I 
xzkj z =0 

k 

~ , K (·k ) 
'IT k2 0 J ,rO , 

with To in (47.1). (47.2). and (48) defined as 

It should be noticed that 

= rH I 
yxkj Z =0 

k 

Scattering in a two-layered earth 
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(48) 

= rH I 
yzkj Z =0 

k, 

= a . (49) 

Consider the case of a conductive body buried in the lower half space of a 

two-layered earth. The vector potentials in the first dnd second layers are 

given in Appendix A. Rewriting the results by making use of the quasistatic 

approximation. k 0:::::0. 

00 

TT' = - ~ -' J U2 , R • 
, X 2TT k2 2 TM 

, 0 u, 
(7)0 ) 

00 

TT,'Z - - ~-' J -' 'R 2TT k2 u, TM 
, 0 

( 
u,z -U,Z) -u2z' 

e - e e cos k (x-x' )dk 
X X (51 ) 

TT' 
2x 

-u 2(z+z'-2d) 
e cos k (x-x') 

x 

(52) 
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(53) 

where 

u2d 
sech u,d , e 

RTM = 

(~~y u 
+ ~ tanh u,d u, 

(~~y -u2 - tanh u,d 
2 u, 

RTM = 

G~Y u2 + - tanh u,d 
u, 

and d is the lhickness of the firsl layer. The Green's funclion in each layer is 

given by equalions (22) lhrough (27). The scattering currenls are compuled by 

using 1T~% and 1T~% in the lower half space in the usual manner discuss~d in lhe 

homogeneous half space case. 

The integrated Green's functions lo be used for the formulalion of equa-

tion (30) are given in Appendix E as 

E r .. = 
XX1J 

~s 
2 ' . 

k lJ 
2 

(54) 
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E r ., 
YX1J 

j w~ _, K ( j k r) 
2n k2 0 2 

2 

(55) 

E r ., (56) 
XZ1J 

Z [\X' K; (jk2r )j 
x 

E jw~ S w~ J b I r r .. = 
- 2nk2 Z dz' (57) ZZlJ k2 ij 

2 t x£ 

00 

[ -u z' ] xr zb 
+ jw~ -' J kx 2 -u2z. 

2n k2 2" RrM 
e 1 e 2 sin kx (x i-x' ) / / dk 

u
2 

x 
2 0 x£ Zt 

Once the elements of Green's tensor are computed the electric fields in the 

body are found by (42) and finally the scattering currents are computed by 

(5.2). These elements can not, in this case, be integrated analytically and con-

sequently time consuming numerical integration in k% must be carried out. 

The electric and magnetic fields on the surface are computed in the usual 

manner. However, the Green's function to be used for the surface fields differs 

from that used in the lower half space. The elements of integrated Green's ten-

sors evaluated at the k th field point (Xk ,zk, = 0) are giv"i,l) by Appendix B. 

00' [' ] E . 1 Rrt1 -u2z 
r k'/ = - ~ - J -- e cos k (x -x') xz J Z =0 n k2 u2 x k 

k 1 0 

dk x 
(58) 
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= rH I 
yzkj z =0 

k 

= rE I 
zxkj z =0 

k 

= rE I 
zzkj z =0 

k 

= O. (59) 

Substituting these elements into equations (43) and (44). we obtain the total 

electric and magnetic fields on the surface. 

Numerical Results and Conclusion 

The numerical solution developed in this paper is compared to the one 

obtained by Ryu (1970) using the f)nite element melhod. The model used for 

this purpose is a half space in which a rectangUlar conductor of 200m x 50m is 

burieq 50m deep to the lop of lhe conduclor. The resistivities used are 1 ohm-

m for the conductor and 100 ohm-m for lhe half space. At the frequency of B 

hertz the finite element solution has been obtained on a grid in which' the con-

ductor is simulated by 16 cells of equal size (25m x 25m). At this frequency the 

cell size used for the finite element solution is considered fine enough, with its 

skin depth of 177m. to ensure the accurate numerical solution. Compared to 

the finite element solution. a number of integral equation solutions has been 

obtained using increasingly more cells for the conductor. The result has been 

plotted. Figure 2. in terms of the apparent resistivity and the impedance phase. 

The integral equation solution converges to the finite element solution as the 

number of cells used int:reases from 4 cells to 48 cells. The convergence rate is 

relatively slow compared to the one for the TE-mode solution (Eohmann. 1970) . 

. ,j .• " 

in which a cell size of a quarter of the skin depth would result in a reasonably 

good numerical solution, The major re'aSOll for the slow convergence of the 

T\f-mode numerical solution is because of the assumpt.ion we used in which 
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electric fields are constant in a cell. Unlike the TE-mode situation where there 

is no charge. the discontinuous normal electric fields at cell boundaries create 

. charges. The Hertz potential of a constant current. by which the electromag­

netic field is computed in this paper, does not include potentials due to thus 

created charges, and eventually affects the quality of the numerical solution. 

The effect of the cell boundary charges can be somewhat reduced through the 

approach in which an explicit scalar potential is employed to represent fields 

due to charges. Hohmann and Ting (1978) used a scheme by which the concen­

trated boundary charges are uniformly distributed over a volume extending 

from the center of one cell to the center of the next cell. 

The next model compared is a conductive dyke with varying dip angles as is 

shown in Figure 3. A dipping boundary of the conductor is simulated by stack­

ing small rectangular conductors in sueh a way that the overall dip angle is 

preserved. For frequencies of 8 hertz and 100 hertz, the finite element solution 

and the integral equation solution result in identical apparent resistivity 

profiles when the conductor (20m x 50m) is vertical. With the dip angle of 45° 

however. a maximum of 10% difference in peak to peak apparent resistivity can 

be observed for both frequencies. For the integral equation solutions the con­

ductor has been simulated by 10 cells of equal size; 10m x 10m. Considering the 

slow convergence rale illustraled by Figure 2. the numerical integral equation 

solution for the dipping conductor, with its increased boundary surface. may 

not have reached its full convergence. 

Using the integral equation for the modeling of electromagnetic scattering. 

one is immediately confined to a model finiLe in ex lent in an otherwise layered 

half space. Il is unfortunate that the available Green's functions are limited to 

those for the layered half space. 'However. this geometrical restriction offers 

the integral equation technique its major advantage; it is necessary to solve for 
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the scaUering current only in the inhomogeneous region. 

Another usefulness of the integral equation approach is that it offers an 

easy access to the derivatives of the field qUantities, a procedure necessary for 

the inversion of the field data (Weidelt, 1975). Rewriting equation (30) with Aaj 

substituted by (aj - a) in the expression: 

E, = E ~ + I (OJ' - 0) (r~,. E ,) , 
1 1 j=l lJ J 

; = 1,N . (60) 

The derivatives of ~ with respect to the conductivity of the l til. cell can be writ-

ten as 

~ E aE 'J r ... ~ , 
lJ aO~ 

~ = 1 ,N • (61) 

Equation (61) is N linear equations for each component from which the deriva-

tives of the electric fields in the body can be obtained. The derivatives of the 

surface fields with respect to the conductivities of each cell can be found by 

oE-
substituting -, _1 into the similar equation derived from (43) as 

daL 

E aE. ~ 
\ 

rkj izk=o· ao£)' 
(62) 

~=l,N. 

Substitutions of Hand rH into equations (60), (61), and (62) will produce the 

derivatives of the surface magnetic fields with respect to the conductivities of 

each celL For each iteration in the inversion process the same Green's 



functions will be used resulting in a fast iteration time. 
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FIGURE CAPTIONS 

Figure 1. A simulation of a two-dimensional inhomogeneity 

by N rectangular cells. 

Figure 2. Convergence test for the integral equation 

numerical solution. 

Figure 3. Comparison between solutions for a dipping conductor. 

Figure A.l. An N-Iayered earth with the scattering current 

J8. in the ith layer. 

Figure 8.1. A rectangular current cell. 

21 
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APPENDIX A 

Consider an N-Iayered half space upon which a TM-mode plane wave is 

incident. A two-dimensional conductive inhomogeneity can be represented by a 

distribution of current elements over the cross sectional area oriented perpen-

dicular to the strike. Suppose that a point current of density J'S is located at 

(x',z') in the ith layer as shown by Figure A.l. Rewriting equation (17) in the 

ith layer 

-s 
-......;J~-O(X_XI) 8(Z-Z') 
a; + jws; 

Fourie"r transforming (A-1). we obtain the primary potential as 

-j(k x'+k Zl) 
-p 

(kx,kz) ~jS e X z 
n; - -

u~ + k2 k. 
1 1 Z 

where 

k~ = (w2~e:; - jo;w~) 1 

2 u. 
1 = k2 

X 
k~ 

1 

~ = ~O = ~1 = = J.lN . 

Inversely transforming (A.2) in k z (Erdelyi. 1954). 

.. ~, '. 

-u·lz-z11 
e 1 

u. 
1 

Equation (19) can be rewritten in each layer as 

(A. 1) 

(A.2) 

(A.3) 
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j = O,N . (A.4) 

The solutions for (A.4) in k z space are written as 

(A.5) 

where the directions of unit vectors ~ and the coefficients Aj and Bj are all 

subject to boundary conditions with initial constraints. 

AO ( kx) = B (k) 0 N X - • 

1. Homogeneous hal! space 

From (A.3) and (A.5). after dropping parantheses 

in the air (A.6) 

in the earth (A.7) 

where 

ex = 
-jk Xl -u Zl 

_ jWlJ J e X e 1 
2k2 X 

1 . ~-.' 

From equations (15) and (16). we have 

(A.B) 



ES d7TX - - 'k z J x az 

HS = 
k2 d7T x 

y - jWl1 az . 

Matching boundary conditions at z = O. we obtain 

From (A.11) and A.12). 

where 

B = o 

Al = ~ R 
U1 TM 

Hence. thp. vector potential in the half space is 

24 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 
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In much the same way. the z-directed vector potential in the half space can 

be derived as 

k (X - X I ) d k (A.16) 
X X 

2. Two-layered half space 

Let us suppose that. the inhomogeneity is in the second layer. 

The potentials in each layer can be written by using equations (A.3) and 

(A.5) as 

= BO 
uoz 

in the air 1TOx e , 
(A.17) 

-u z ulz 
1Tlx = A e 1 + Ble , in the first layer 1 (A.1S) 

in the source region 
(A.19) 

where 

a = -
-jk Xl -u Zl 

~J e X e 2 
?k2 X '- 2 

Matching boundary conditions at z = z 1. and z = z 2 by substituting 7Tz into 

equations (15) and (16). we obtain at z = z 1 = O. 
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for E~lz=o 
(A.20) 

for H~lz=o 
(A.2l) 

and at 2 = 22 = d I 

for E~lz=d (A.22) 

for H~ I z=d (A.23) 

From equations (A.20). (A.21). (A.22). and (A.2-3) 

(A.24) 

(A.25) 
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(A.26) 

(A.27) 

where 

The vector potentials in the first and second layers are written as 

(A.28) 

-u ZI 
e 2 cos k (X-Xl) dk 

X X 

_ ;W~ J x J.r:p 1 [-U2 IZ-Z
I I 

7T --~ - - e 
2x 27T k2 u2 2 0 

2 -U2(Z+ZI-2d)] 
+ RTM e • cos k (X_Xl) dk 

X X 

(A.29) 
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By following similar algebraic procedures, we can easily arrive at the fol-

lowing vector potentials in the first and second layers. 

-u Zl 
e 2 

(A.3D) 

(A.31) 
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APPENDIX B 

The integration of the Green's function over the area occupied by the jth 

cell of rectangular shape is evaluated at an arbitrary position (xi ,zi) . 

a. Green's functions for the homogeneous half space 

Rewriting equation (34) and (35), we have 

7Tlx = ex [KO(jkl r l ) + KO (j kl r 2)] 

7Tlz = ex [Ko(jklrl ) - Ko(jkl r2)] 

where 
ex=_~_l 

27T k2 . 
1 

Throughout the article, the following relationships are used 

:z f(r l ) = - a~1 f(r l ) 

:z f(r2) = a~1 f(r2) . 

(B.1) 

(B.2) 

(B.3) 

Figure B.! shows the geometry of a rectangular cell in the half space. The 

field point (xi ,zi) is arbitrary. If the field point is in the cell, an arbilrary circle 

II of radius R is drawn about the field point. The vectors ~, i = 1. 2, denote the 

unil vectors outward normallo the region Si' i = 1,2, over which the integration 
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is carried out. 

1 CE (- .-') • %%ij" T ,T 

From equations (22) and (B.!) 

r~Xij = a U ~~ + :x22~ rKo(jk1 r 1) + KO(jk1 r 2)] dx' dz·. 

J 

(BA) 

If the field point is in the jth cell. sj is divided into SI and S2 . The primary 

potential Ko(jk IT 1) is singular in S1' The following equation holds for the vec-

tor potential ff in the non-singular region S2' 

By using (B.5). equation (B.4) may be rewritten 

E r .. 
XX1J 

- a II ::2 KO(jk1r1) ds 

52 

- a II a
2
2 Ko(jk1r2) ds 

5 ~ az 
J 

= 11 + 12 + 13 • 

(B.5) 

(B.6) 

The first part of II may be evaluated in a manner similar lo lhat used by Rich-

mond (1965). 

a k~ II Ko(jk1r1) ds = 21Ta [jk1RK1(jk1R)-11 

51 

(B.7) 
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The second part of 11 may be evaluated in the following way; because of the 

symmetry, 

a JIr a2

2 KO(jk, r, )1- ds 
Lax .J r=ro 5, 

from equation (17) 

Integration on both sides in SI evaluated at T = To yields, 

ds 
r=r a 

by (E.7) 

Hence 

(B.B) 

12 - - a II ::2 Ko(jk,r,) ds 

52 

- - a II V • i z :z Ko(jk,r,) ds 
" 

52 z. - Z I 

jk,a I , 
K,(jk,r,) 

~ 

• "2 d£ - - 1 
r, z 

.. ;., ~ £, 

jk,a I z. - Z I 
1 

K,(jk,r,) 
~ 

"2 d£ 1 • 
r, z 

£2 



32 

along lz . we have 

- - 0, for Xl Xr i z "2 = = xi' · 
- - for Zl i z · n2 = 1 , = zb 

- - Zl i · n2 = -1, for = Zt' z 

hence 

(E.g) 

Similarly. 

(B.IO) 

In case the field point is outside of the jth cell. it can be easily shown that 

(B.ll) 

Finally from equation (B.?) through (B.ll) 



where Sii is defined by 

s". :: 1, lJ 

S .. :: 0, 
lJ 

2 GE (-.-') . zzij T ,T 

for Xn < Xl" < xr and z < z < Z 
N t i b 

for (x.,z.) 
1 1 outside of sj " 

From (23) and (B.I) 

By (B.3) 

r~xij = (l II az7~xl [Ko(jk1r1) - Ko{jk1r 2)] ds 

s~ 
J 

From (24) 

By (B.3) 

33 

(B.12) 

(B.13) 

(B.14) 

(B.15) 



H 
ryxij 

E .-' 4. GUij(T,r) 
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(B.16) 

From equations (25) and (B.2) 

(B.1?) 

By (B.3) 

(B.18) 

5 G E (-.-') 
• %%ij T ,r 

From equation (26) 

(B.19) 

As usual. the area Sj is divided into two regions Sl and SZ' Then by equation 

(B.5) 

= a If (k~ + ::1 KO(jk1 r 1) ds - ex If ::2 KO(jk1 r 1) ds 

5, 52 (B.20) 

- a II ::2 KO(jk1r2) ds • 
I 

5j . 



The similar technique used for r~ yields 

E r .. = - 2m::L S.. -
ZZlJ lJ 

H .-' 6. Gyzij ft ,T ) 

From equation (27) 

Again by (B.3) 

. H 
ryz;j 

b. Green's functions for the two-layered half space 

1. Green's functions in the lower half space 

Rewriting 1TZz and 1T~z from equations (52) and (G3) 

00 

35 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

f 
1 2 -U 2(Z+Z') 

a2 U RTM e cos kx (x-x I) dkx (B.25) 
0 2 



where Ct
2 

- - ~_1 
27T k2 

2 
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and d is the thickness of the first layer. The notations used for the geometry of 

a rectangular cell is given in Figure B.1. 

The evaluation of primary potential Ko(jk2T) is the same as was discussed 

in the previous section with k 1 substituted by k2 in the expression, By using 

equation (B.5) and the relationships similar to (B.:3). we obtain 

r~Xij = II a~~x ~2~ ds 
S. 

J 

[ 
-u Z I ] 

e 2 cos k (X._XI) 
X 1 

Zb 

I dk 
Z X 
t 

(B.26) 

(B.2?) 



E 
rxz;j 

E 
rzz;j 

II a
2 

I = axaz 7T2z ds 

= 

= 

s~ 
J 

Xr Zb 
Ct2 KO(j k2r) I I 

Xt Zt 

00 2R I J ™ -u 2z; [-U2Z + Ct2 -u- e e cos 
o 2 

~{ (k~ + ::2) TI2% ds 
J 

27TCX ... S .. 
~ lJ 

2. Green's functions on the surface 

k (x.-X 1
)] x 1 

Rewriting 1T;z and 1T;z from equations (50) and (51) 

00 

(r Zb 
I dkx 

xt 
Zt 

I I 1 U (U Z -u Z) -u Z I 
iT lx = Ct l RTM u~ \e 1 + e 1 e 2 cos kx(x-x I) dkx 

o 1 

where 

37 

(B.28) 

(B.29) 

(B.30) 

(B.31) 
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a = jWl1 1 
1 - 27T k2 

1 

Integrations of Green's functions at the k th field point (xk ,zk = 0 ) are 

found to be 

rE I = -II a
2

2 7T~X ds (B. 32) 
xxkj zk =0 

51. az 
J 00 lR -u Zl 

kx(Xk-X I
)] 

X zb 
= -2a1 I kTM [e 2 sin I r I dk z x o x x£ t 

rE I II i I = axaz 1Tlz ds (8.33) xzkj zk =0 
S~ 

J 00 1 
~ -u z' ] xr Zb I RTM e 2 cos kx(Xk-x

l
) i I . dkx = 2a1 -u-

o 2 x£ Zt 

rE I = r~Zkj I zk =0 zxkj zk =0 
= 0 (B.34) 

= 0 . 
(B.35) 

The last two results for the vertical (z) electric field and the horizontal 

(y) magnetic field are consistent with those concluded for the homogeneous 

half space case. 
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jth cell 

z 

XBL 845-1794 

• 

Figure 1. A simulation of a two-dimensional inhomogeneity 

by N rectangular cells. 
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Figure 2. Convergence test for the integral equation 

numerical solution. 
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Figure 3. Comparison between solutions for a dipping conductor. 
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Figure A.1. An N-layered earth wilh the scaltering currenl 

J •. in the ith layer. 
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(Xl, Zt) 
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• 

-nl 
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n2 

• 

XBL 845-1798 

• 

Figure B.l. A rectangular current cell. 
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