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ABSTRACT

The relativistic ponderomotive hamiltonian is derived under as general
conditions as possible. Arbitrary ko, E"/QL, w/Q, v/c < 1, wave polarization,
spatial modulation of the wave, and nonuniformities in the background electric
and magnetic fields are introduced in a systematic way. This calculation is a
modification of guiding center theory, because in addition to averaging over
gyration, there is also an averaging over rapid oscillations of the wave.
Therefore, as a by-prodhct of 6ur objective, we derive a new formulation of

the relativistic guiding center motion.
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I. INTRODUCTION

The study of plasma stabilization by a population of energetic
electrons is increasing in theoretical interest1 due to the experimental
advances in both open and closed magnetic field configurations. 1In |
present fusion devices, such as the ELMO bumpy torus and tandem mirrors,
hot electrons are produced mainly by electron cyclotron heating, for which
the electron energy is already reaching 1 MeV (y > 2). Thus, heéting
studies must be done relativistically.

There are many processes in plasmas that involve the concept of a
ponderomotive force or potential, which represents the effect of high
frequency fields on the slow plasma motion. Our derivation produces
genetg} expressions for the ponderomotive Hamiltonian that applies to
relativistic processes such as found in ELMO bumpy torus rings, thermal
barriers in tandem mirror, CO, laser fusion plasmas in Helios, free
electron lasers,; and so on. We find that relativistic effects introduce
new terms in the expression for the ponderomotive Hamiltonian (see Ref.AZ
for the nonrelativistic expression) and, at the same time, reduce the
magnitude of terms already existent in the nonrelativistic case.

In the following analysis we attempt to be as general as possible.
We allow for arbitrary kp, EB/EL’ w/Q, v/c < 1, polarization, and
spatially modulated wave. WNonuniformities in the background fieids are
introduced in a systematic way. To solve this problen, we use a
Hamiltonian approach, because it would be virtually impossible by any
other. Furthermore, the Hamiltonian .formulation has the advantage of
expressing the vector evolution equations in terms of a single scalar
function on phase space. As plasma problems become more complex, this

advantage is all the greater.



This calculation is a modification of guiding center theory, because
in addition to averaging over gyration, there is also an averaging over

2=4

rapid oscillations due to the wave. For example, (i) the usual

parallel acceleration V of the guiding center is modified by the wave

1
(this is the usual idea of a ponderomotive force); (ii) the usual magnetic
moment p Is no longer constant, it must be replaced by ; = u + (wave
terms); (iii) the u;ual drifts are modified and now include wave terms.

In Sec. 1I, before studying the nonlinear responsévof a relativistic
particle to an electromagnetic wave, we derive the relativistic guiding
center motion. The Hamiltonian formalism of the guiding center motion
provides us with an unperturbed problem to which a time dependent
electromagnetic wave 1s then added as a perturbation. In Sec. III, we
introduce the electromagnetic wave and express the Hamiltonian in terms of
the relativistic guiding center variables. In Sec. IV, we obtain the
ponderomotive Hamiltonian by subjecting the Hamiitonian system to an
averaging tranformation using Lie transforms. We show that the resulting
Hamiltonian {s indeed gauge invariant. In Sec. V we give a discussion of
our results which is independent of the aerivation in preceding sections,
and which may be read by those who are not interested in the details of
the derivation. 1In this sectién we apply our results to a calculation of
the shift in the turning point of mirroring particles caused by the

ponderomotive effects. Finally, in Sec. VI, we present some simplifying

limits which might be useful in specific applications.



II. RELATIVISTIC GUIDING CENTER MOTION

Before we analfze the ponderdmotive effects of a wave, we must first
study the motion of a particle when there is no wave. This simpler system
will form our "unperturbed system'. In this seétion we will use unsub-
scripted variables to describe the uﬁperturbed system, such as E, B;
later, when we need to distinguish the béckground from the pergurbation,
we will append the subscript O. |

The unperturbed system is merely a matter of guiding center motion in
the background fields E and B, but here we require both a relativistic and
a Hamiltonian description of that motion. Relativistic guiding center
motion has previously been studied by Vandervoort3 and reviewed by
Northrop,5 but in a non—-Hamiltonian context. Thus, Vandervoort failed to
present conservation laws for energy or phase volume.

On the other hand, a Hamiltonian description of nonrelativistic
guiding center mocion has been given ﬁy one of us (RGL).7 It turms out
that it is quite easy to generalize this work to relativistic motion, and
that the algebra (to lowest order) is almost identical to the nonrelati-
vistic case. The only differences are that one must use the relativistic
def;ni:ion of the momentum (with the factor of y), and that one must use
the relativistic expression for the energy as the Hamiltonian.

In a Sysfemacic theory such as the one we will present here, it helps
to have an explicit ordering scheme. We let & be the dimensionless
parameter which indicates the order of various terms in the guiding center
expansion. We attempt to use, as much as possible, only symbols which
are 0(1), so that the order ofva term will be indicated by the factor
of €" which explicitly appears with it.‘ Physical formulas result by

setting € = 1.



The parameter € is introduced into physical formulas in several
steps. In the first step, we understand the guiding center approximation
to mean physically that the particle motion is dominated by the effects of
the magnetic field, i.e., that B is "large" (in a sense that can be made
more ﬁrecise). In accordance with this, we replace E whenever it occurs
by B/e. (Actually, we will replace A by A/e, since in a Hamiltonian.
theory we must deal with potentials.) As a result of this step, the
gyroradius p = ymcvl/eB is replaced by ep, shoying that the gyroradius
is 0(e). Similarly, the gyrofrequency becomes 0(1l/e), representing a fast
time scale.

Unlike B, we do nothing with E (or ¢). Physically, this means
that E/B = 0(g), or that ExB drifts are of the same order as VB and
curvature drifts. It would be possibie to analyze stronger electric
fields, but the case we are considering is most coﬁmon in practice.

Finally, we allow E and B to be slow functions of time, i.e.,
functions of T = et. Physically, this means that E and B can change
appreciably on a drift time scale.

We begin with the relativistic Lagrangian of a particle in

configuration space,

me e
= e enme— — [ ] -
L ” + < v A=-ced, (1)

in which ¢ has been appropriately introduced. Here y is the usual

relativistic quantity,

Y= (1= w2y V2 (2)



The canonical momentum is given by

e
R=catmy, (3)
in which u = yv is the world velocity (velocity with respect to proper
time)., In the usual way in mechanics, the -Hamfltonian H may be derived
from L. The result is
H= mczy + e = [mzca + (CR -'% 5)2]1/2 +ed . (4)
The theory of phase space Lag}angians is presented in Ref. 8 and
applied to nonrelativistic guiding center motion in Ref. 7. Applying the

same kind of analysis here, we find the phase space Lagrangian,

L= R'é.- H, in the following form:

L(;g,g,ﬁ) = (mu + i—c' A)ex - H. (3)

the

This is identical in form to the phase space Lagrangian for a
nonrelativistic pafticle [see Eq. (18) of Ref. 7], except that the world
velocity u has replaced the ordinary velocity y, and the Hamiltonian H is
the relativistic version of the energy. Therefore the transformation to
gulding center variébles is algébtaically identical to the corresponding
transformation in the nonrelativistic case, and only the interpretation of
the symbols is different. For this reason, we will skip the algebraic .
details of the transformation, whi;h may be found in Ref. 7, and merely
summarize the results.

We let b be the unit vector along B, and we decompose u into its



components u‘I and ul. We define perpendicular unit vectors a and c,

rotating with the gyration of the particle, by u = u"b + ulF, and

~ A L)

a=b x c. The gyrophase 8 is defined implicitly by

- -~ A

a = cosé T sinb Ty s

(6)

¢ = = sing T cos9 Ty s

in which tl and 12

the particle, and which satisfy T x T, = b. T and T, may have a slow

are perpendicular unit vectors which do not rotate with

dependence on time, since B itself does.
The guiding center variables are X, the guiding center position;
UI’ the parallel world velocity of the guiding center; p, the magnetic

moment ; UL’ a variable which is essentially the gyroaverage of ul, and

which we define to all orders in & by

mU2

L .

and (), the gyroaveraged gyrophase. The guiding center variables are

functions of the particle variables (§,u ,uL,e), where 6 is the

n
instantaneous gyrophase. Explicitly, we have

mcu

eB

X=x-c L a+ 0(52) .



® =6+0Ce) . (8)

All fields on the right-hand sides of Eqs. (8) are evaluated at (x,et).

The higher order correction terms may also be computed, but we omit them

here. Note that to lowest order the variables (u",e) are identical to

w,, ®.

When the Hamiltonian is transformed to guiding center variables, the
result is

H = mc21" + e¢p + 0(e) (9

The quantity I is the first term in an expansion of y in terms of guiding

center variables, so that y = I' + 0(e). T is a function of (g,e",p),

given explicitly by

2 .
i} 1/2
I, 2uB
r=(1 +—+ 2) e (10)
mc

The fields ¢ and B in Eqs. (9) and (10) are evaluated at (X,et).

As in the nonrelativistic motion,‘it is convenlient to express the
phase space Lagrangian and the equations of motion in terms of the
modified fields éf, gf, and Ef. These are defined by -

* ~
A =A+EEysb,
~ ~ e I

* .
B —E+-§"§3U v xb,

* g -Eny BB
E =E U, 3e (11)

4
1]



In terms of the modified fields, the guiding center Lagrangian is given by

e * o £me 2
L = A X+ " - (e f mc ') . (12)

]

This may be compared to its nonrelativistic counterpart, Eq. (2) of Ref.

7.

The equations of motion (the drift equations) are given implicitly by

§ [Ldt =0, : (13) -

or explicitly by
p=0, (14a)
eB .
® ==z (14b)
° * *
mu'=i;g * [eE —%’5} , (l4c)
B
1
U B*
° ~ ~ *
)‘sn_i.[-—g—-#ebx(-ci +§-’%B)], (144)

*
in which B, = beB . Equation (l4a) shows that p is a (formal) constant of
the motion, and (14b) shows that the relativistic gyrofrequency is

Q = eB/IM'mc. Equation (l4c) gives the parallel force on the guiding

“ center, and Eq. (14d) shows the various drifts, as well as the fact that
ol 3 .
UI a [ boi. The denominators Bn in Eqs. (l4c) and (14d) are ordered in g,
* ~ ~
since B, = B + (emc/e)Uu(b-V x b). TIf these denominators are expanded in

powers of g, it Is easy to produce the relativistic drift equations as
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presented by Northrop. &
As they stand, however, Eqs. (l4) possess exact conservation laws

which their expanded counterparts do not possess. For example, the energy

of the particle varies according to the equation,

*
o4

ac

4
dt

20y 2o 20  p03B s
(ep + mc'I") = e + T3 < X (15)

ot
which shows that energy is conserved in static fields. Similarly, one can
show that angular momentum is exactly conserved in azimuthally symﬁetric
fields, and that phase voluﬁe is exactly conserved in all cases.

Finally, we may derive the Poisson brackets of the guiding center
variables among themselves, as was done in Ref. 7 for the nonrelativistic
motion. There is no work to be doné here, because the results are
formélly identical to the nonrelativistic case [with ordinary velocities

replaced by world velocities; see Eq. (43) of Ref. 7]. The results are

b
gec 1
{xi’xj} == e—'__*i »

By

1 *
®U)=—538 ,

mBI

e
{®’p'} E) (16)

~

where bij is the tensor dual to the unit vector b, i.e.,
bijvj = - (b x z)i for any vector V.

These brackets can be combined into a s{ngle formula for the Poisson
bracket of two functions f and g, which are expressed in terms of the

guiding center variables (E,U“,u,C)). The formula is



~ *
(F,)} = - £ bo(vE x vg) +—4, B . (ve 2 - vy
* * ~ ou oUu
eB mB i ]
] I
e 3f dg df dg
+ — =2 . == . 7
ac 2@ w0 @ an

This will prove useful in the perturbation analysis of the next sectiom.

11
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ITI. TRANSFORMING THE HAMILTONIAN.

We now introduce an electromagnetic wave and study its ponderomotive

effects. The wave is represented by the potentials ¢1, A

A in arbitrary

gauge, which are assumed to have the eikonal form

1¢(x,t)/ e
¢1(§)t) = ¢1e + CeCo Y

i¢(§,t)/a
e + ceCo (18)

A (x,t) = A
where the over—tilde represents the slowing varying amplitude of the wave

packet. We assume that 51 and g depend on (i,et), i.e., that the

1

amplitudes obey the same length and time scales as the background fields

-

EO and EO' This is roughly consistent with a bulk mode of an experimental
device, for example.

The local wave number k and frequency w are given by
k(x,t) = V(x,t) ,
w(i.t) == %::k (?s:t) ° o (19)

For a wave of fixed frequency Wys “We can set ¢(§,t) = ¢O(§) - ubt,'for
some purely spatial eikonal function ¢0(§). The factor of 1/e in the
phase.indicates the orderings kp ~ 0(1) and w/Q ~ 0(l). Once we have
ébtained the final results, however, we will be free to take the
simplifying limits of small k and/or w. Our aim here is to be as general

as possible.



Henceforth we will indicate the background fields with the subscript
0, and the wave field with the éubscript 1, as in Eq. (18). The remainder
of the calculation is really a double perturbation expansion, the major
one being in the wave amplitude, and the secondar§ one being in the
guiding center parameter. To formalize this, we will introduce the
dimensionless parameter A, which:indicates the order in the wave
amplitude. Thus, we have ¢ = ¢

+ X¢1 and A= + kél for the total

0 2
electromagnetic potentials. Physical formulas rgsult by setting A = 1.
At each order in A, we expand the solutions in £. We have just done this,
in Sec. II, for the order Ao; the ponderomotive Hamiltonian is obtained at
order Kz.

Let us return to Egqs. (1)-(5), which describe the exact dynamics of

the particle, and let us now use the total fields ¢ and A (background plus

wave). The exact phase space Lagrangian of the particle, corresponding to

"Eq. (5), is

22

+ M1 é = [eCoy + Ao)) + (mch r ZuHl/?

) ] ’

(20)

with appropriate factors of € and A. The exact equations of particle
motion are contained in the variational principle of Eq. (13).
It would be natural to write Eq. (20) in the form L = L

+ X
0 ALl, in

which LO would be precisely the guiding center system analyzed in Sec. II,
and Ll would represent the perturbation due to the wave. In order to
carry out a perturbation analysis of the total system, one would require a

perturbation theory for phase space Lagrangians. Such a theory exists; it

is described in Refs. 8 and 9, and it is applied to guiding ceanter theory

13
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in Ref. 7. Note that the perturbation AL, of Eq. (20) includes a term
él’% in the first major term on the right;hénd side, as well as a term
e¢) in the Hamiltonian. The term él'é contributes to the symplectic
structure,-i.e., the structure of Poisson brackets (which in canonical
variables would be represented by R'i)‘ Thus, not only is the Hamiltonian
perturbed, but also the Poisson bracket structure. The perturbation
theory of Refs. 8 and 9 is quite capable of handling this, and indeed the
present problem provides neérly an ideal application of that theory.

Nevertheless, the most familiar form of Hamiltonian perturbation
theory is the canonical theory,lo in which the Poisson bracket structure
remains form—invariant and only the Hamiltonian is allowed to change. It
is possible to bring Eq. (20) into a form in which only the Hamiltonian
suffers a perturbation, so that a variant of the more standard Hamiltonian
perturbation theory can be applied; instead of the less familiar phase
space Lagrangian perturbation theory mentioned in the preceding paragraph.
The advantage of this approach is its familiarity; the disadvantage is
that it involves nonphysical variables, and that the results are not
manifestiy gauge invariant. |

In order to carry out ﬁhis al;efnate approach, we define a velocity-

like variable u, by

Ae 2
= —— . 1
mu ] mu + A]. ( )

The new quantity is not physical, in the sense that it changes when a

~0

new gauge 1s chosen for the wave fields ¢1,Q'

1 However, in terms of Y4

the Lagrangian of Eq. (20) becomes



i»
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2,1/2

. 2 4 2 Ae
+—§O)-§—{e(¢o+x¢l)+[mc + e (myy - A } oo

1 (22)

Notice that now the perturbation appears solely in the Hamiltonian, and
that the perturbed part of Eq. (22) is formally identical to the guiding

center system of Sec. II, with the symbols ¢,A,u replaced by In

240250
2, 2,1/2
O/c ) .

Because of Eq. (21), this is not the true y of the particle, nor is it

a similar notation, we will write Yo for the quantity (1 + u

gauge invariant,

Our approach here is something of a hybrid, being a cross betwegn the
canonical theory of Ref. 10 and the phase space Lagrangian theory of Refs,
8 and 9. In canonical theory, one must use the canonical momentum P»
which changes under a redefinition of gauge for either the background
fiélds ¢0 and .

or the wave fields ¢1-and A In the phase space

4 2

Lagrangian theory, one can, if one wishes, use purely physical variables,
which are gauge invariant. 1In the present approach, however, the quantity
Y4 is invariant under a change of gauge for the background fields ¢0 and
éO’ but not for the wave fields ¢1 anq‘él.

To proceed, we first expand the Hamiltonian of Eq. (22) to second

order in A. The results are
H = e, + mczy (23a)
0 0 0°’

1
H1 - e[‘bl - YnC

" (ugal (23b)
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= ..—-e— 2 - _1 ° 2
By =3 Ay~ 7 (a7
2 2.1 2
T3 3 At G A (23e)
Yo me c

Next, we transform this Hamiltonian to guiding center variables. The
guiding center variables are defined by Eq. (8), except that now we use
u, on the right-hand side, instead of u. Thus, we are subjecting Eq. (23)
to the gransformation (5'20) > (%,U",u,@D). The guiding center variables
have ail-the algebraic properties developed in Sec. II, most notably the
Poisson bracket relations of Eq. (17). However, their time evolution is
now modified by the wave terms of the Hamiltonian. For example, u is no
longer a constant of motion, since it possesses rapid oscillations at the
wave frequency w. In addition, the guiding center variables are now gauge
dependent, éince they are defined in terms of Yy

»Transforming Hl and H2 to guiding center variables is
straightforyard, although it 1is here that most of the work of the present
calculation lies. The Hamiltonian transforms as a scalar, as Hamiltonians
always dé under time-independent transformations. ' This means that we must
simply elimiqate the particle variables in favor of guiding center
variables in Eq. (23). [Actually,  the transformation of Eq. (8) does have
EO and EO depend on et. But this

only affects terms in the Hamiltonian which are higher order in g, which

a slow time dependence, since the fields

we neglect here.]
We begin by transforming the phase factor of Eq. (18) to guiding

center variables. The transformation equatioh is x = X + EQ'+ 0(52), with

~

p = mc UL a/e Byo which gives



exp[i¢g(x,t)/¢€] = exp[i¢(X,t)/e + i&jg][l + 0(e)] . (24)

We let a be the angle between Ei (which depends on 5) and T (which also

depends on x), so that we have

k = kub + kl(cosa T, + sina 12) . (25)

1

Combining these, we obtain the Bessel sum,

ikep to  i8(at @ +n/2)

e e Jx(klp) , | (26)

==

where all appropriate quantities are evaluated at (X,et) for use in Eq.

(24).

-

There is no work to be done to transform HO, since we have already

done this in Sec. II. The result is
H = e, + mc2F (27)
0 0 ?

with T defined in Eq. (10).

As for H;, it is convenient to adopt the Fourier eipansion,

10 @+atn/2) 16(X,t) /e
Hl(')s’Uﬂ’u’®’t) = X Hll(i’uu’p"‘:t)e e + c.Co (28)
2

A~ ~A

We introduce a new triad of unit vectors, (b, k , b x kl)’ in which

.L,
A ~

kl = cosa 7; + sina 7,. Using ujy = ug b +uycin Eq. (23b) and

transforming to guiding center variables, we find the Fourier coefficients

in the form

17
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H, (X,U,,pet) = el 3 - SR [JVb+ (k +2i EI—J-L-ﬁxf{)]
1o R ot A S S AU T A1 ey IR

(29)

in which J, = Jl(klp)’ v, = U"/F, Q= eBo/ch, and everything is evaluated

at (&,et). There are 0(e) corrections to Eq. (28) which we neglect.

As for the term H it turns out that we will only need the part of

2)
it which is averaged over the rapid gyration and oscillation of the

wave, After some algebra, we find the result in the form

2
- e ~ 2 1 ~ 2 2im 2

H, = A1 - =5~ (uB,]4, |7 + au A, |7)]

2 7 2 1 22 olkiy 14y

2

e ~ 2 1 2~ 2 ~ 2
=3 7 U&7+ =5 [GBy + aUDIR, 17+ 28014, 171} (30)
I'me me

-

~

in which the overbar on H2 indicates the averaged part.

We are now ready for the perturbation analysis.
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IV, THE PONDEROMOTIVE HAMILTONIAN

We now subject the Hamiltonian of Eq. (23) to an averaging
transformation, based on the Lie transform perturbation theory of Dragt
and Firm,ll as reviewed by Cary.10 We will denote the averaged variables
with an overbar, so that the averaging transformation has the form
(§:U":N»C)) > (gﬁﬁu;ﬁ,Cj). The purpose of the averaging transformation
is to remove the rapid oscillations from the Hamiltonian H and to produce
thereby the ponderomotive Hamiltonian K.

We denote the Lie generators by wl, Wz, «s+, and the Poisson bracket
operators by Ln = {Wn, }. The averaging transformation T is given in

terms of the Ln by
2
T = oee exp(—}\ Lz)exp(-)\,Ll) Py
-1 _ 2 '
T = exp(ALl)exp(k LZ) coe s (3L

which, by expanding the series, becomes

2 1.2
T—I-)\L1+k(-L2+EL1)+“. .
-1 ’ 2 1.2 :
= ) -~ +ooeo
T .I+)\L1+>\(L2+2Ll) (32)

The averaging transformation is Z = Tg or Z = T-lz, where Z and Z

~

represent the old guiding center variables and their averaged

counterparts, respectively.

We write K = Ko + AKI + AZKZ + ... for the new Hamiltonian. Then the

transformation equations, as presented by Cary,10 are
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0= Ko - HO . '. (33a)
dw,
(-&—)0 =K -, | - (33b)
dw, )
(E'c—)o =K, -H, -3 L@H +K). (33¢)

The notation on the left-hand sidé indicates the total time derivaﬁive
along unperturbed orbits.

Traditional applications of Hamiltonian perturbation theory have
required canonical variables, and so also has the presentation of Cary.
Our variables, however, are noncanonical, as shown by Egqs. (16).
Nevertheless, the entire formalism developed for canonical variables also
works for noncanonical variables, with only two minor changes.

The first is that one must use the appropriate noncanonical
expression for the Poisson bracket, which in our case is given by Eq.
(17). This expression is derived from the phase-space Lagrangian, as
described in Refs. 7 and 8. The basic reason why it is possible to use
the noncahonical bracket 1is that the foisson bracket is an object with an
invariant geometrical meaning in phase space, indépendenc of the .
coordinate system employed; Noncanonical variables‘have now been used in
this way for several applications.?2s1271% |

The second change concerns the use of time-dependent transformations
and time-dependent Hamiltonians, such as we have here. 1t is possible to
deal with an explicit time-dependence by introducing time and energy as
conjugate variables in an extended phase space with one extra degree of

freedom, as has been done in several applicacions.2 13 14 However, it



turns out that Egs. (33) are valid as they stand, even for time-dependent,
noncanonical transformations, so that the artifice of adding extra
variables is not necessary. This is proved in Refs. 7 and 8, but it is
plausible in any case, since the total time derivative, like the Poisson
bracket, has an invariant geometrical meaning. Nevertheless, it is
important to use the correct formula for the total time derivative. 1In
our case, the total time derivative of a scalar W, along unperturbed

orbits is given by

~ i

dWn awn . . awn 6Wn
G o =3¢ * X W, *+ U, %0, * 0O 3 (34)
where i, 6 , and Q}are given by Egs. (l14). The point is that this is not

the same as

awn
- + {wn) HO} ’ (35)

ot

which is the correct expression for (dwn/dt)O only when the Poisson
bracket structure is time-independent. This distinction is explained in
Refs. 6~9. In our case, the time dependence of the Poisson brackets is
slow anyway, so the difference between expressions (34) and (35) is of
higher order in £ than we shall need. Nevertheless, we are explaining the
distinction, both for future refereéce and in ordér to be careful about
our presentation.

We begin by analyzing Eq. (33b). The term H1 is given by Eqs. (28)-
(29). As usual, we demand that tﬁe generators W, be purely oscillatory,
in order to avoid secular térmso Then on taking the average of Eq. (33b)

we find K, = 0, since ﬁl = 0. The physical meaning of this is that the

21



wave causes only rapid oscillations at first order, with average of
zero. A nonzero average appears only at second order.

On taking the oscillatory part of Eq. (33b), we obtain an equation
for Wl, namely,

aw 180 @ +atn/2) 19(X,t)/e

EEL)O =~ Hi,e e + c.c. (36)
2

We solve this by positing the ansatz,

12 @ +atn/2) i¢(X,t)/e

W, = ¢ E wll e e + c.c. (37)

The factor of £ is only a matter of convenience. We use Eqs. (34) and

(14), and we keep the leading order term in € of Eq. (36). The result is

-1, U@ +atn/2) 19X, t) /¢

W, = ¢ X — + c.c. ~(38)
1 i w k"V" 29

We move on to Eq. (33c), and again take the averaged part. This

gives the ponderomotive Hamiltonian in the form

- 1] ————— V
Ky = Hy, +5 (W),H;} . , (39)

The first term, which we evaluated and displayed in Eq. (30),
represents a simple average over rapid oscillations, whereas the second
term represents the beating of two first order terms. Both contribute to
the ponderomotive Hamiltonian.

It is straightforward to evaluate the second term, using the Poisson

bracket formula of Eq. (17). To lowest order in e, we find

2
k ‘ ;0
Ry=f,+ ] G+ 2 —2—). (40)
2 ) o w=-kV, - 2Q
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The ponderomotive Hamiltonian is a function of the averaged (overbarred)

variables, as we have indicated. (The terms H Q, etc, are all now

2° Hll’
evaluated at the overbarred variables.) In the nonrelativistic limit, Eq.
(40) reduces to Eq. (5) of Ref. 2. If in addition we aséume a uniform
magnetic field, it reduces to Eq. (91) of Ref. 4.

We will discuss this result presently, but first let us consider the
averaged variables. As is usual in Lie transform theory, one need not
derive explicit expressions for these if they are not needed; one can
obtain considerable information from the Hamiltonian alone, and often this
is sufficient. (In non-Hamiltonian approaches, however, one must carry
around the averaging transformation in explicit form, whether it is needed
or not.) For all six phase space coordinates, the averaging
transformation is contained implicitly in the Lie generators Wn, through
Eq. (32) and the formula Z = TZ.

| - 2
For example, for the magnetic moment we have p = p - X{Wl,u} + 0(AT),

or, explicitly,

2 Hll ()i,U",p.,t:) exp(i &)

- _ . _ e L 2
Tl e TRV =15 + coc. ] + O(X) , (41)
2 (]
where we make the abbreviation
o, =A@ + alX,t) + w/2] + (X,t)/e (42)

The O(A) term of Eq. (41) removes the rapid oscillations in p due to the
wave and produces the variable L, which is a constant of the motion.

(; is constant because the averaged Hamiltonian is independent ofd).)
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Similarly, we find the following formulas for the averaged variables

U" and g:
Kk" Hlxgxp(iél) )
U, =v,- .Co 43
Uy =Yy m[Ew—kv-m*CC]*O(?\), (43)
2 n
H, exp(id )
- - )
=%+ er [X (eCB b xk -'i ag ) ) Elk v _119) + C-c.] + 0(\°) .
o

2 0 ) l

(44)

A similar formula exists for G@. Unlike ;, the averaged variables

g-and U“ are not cgnstants of the motion. But they are free of rapid
oscillation due to the wave (as well as due to the gyromotion). Thus,
Z is a kind of combined guiding center and oscillation center
coordinate. The variables g and ﬁ“ evolve according to a set of drift
equations, which are like the ordinary drift equations, but with
ponderomotive effects included.

We have mentioned that the variables (ﬁsU“:H;GD) are not gauge
invariant. Nevertheless, the averaged variable E certainly must be gauge

invariant, because it is constant. Actually, all the averaged variables

(i,Un,p,CD) are gauge invariant, because otherwise, a gauge
transformation could introduce rapid oscillations at the wave frequency.
In‘the appendix we show how this gauge invariance can be demonstrated
explicitly.

Since KZ is gauge invariant, we can express it in terms of the

physical wave fields E, and B To lowest order in €, these have

1 1°

= (iw/c)é& - 1&31 and B, = ik x g

amplitudes g B,

1 1° An easy way to express
K2 in terms of physical fields 1is to use radiation gauge, in which

31 = 0, The result is
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e 21 = =2 2
Ky =7 UE|I" = 5 GBlE 17 + aly|E) 1) ]

Imw T"'mc

2
2k 1Q,l
[
R e O I (45)
w 2 aU" op w-= k"V" - AQ
where

Q, = &y - 37, +—k—l(u1kl+2ip§b xk )], (46)

and where everything is evaluated at (2,6",;),

. Another form of this is useful. We use partial fractions to clear

the term in Ql which is linear in &, and which degrades the convergence of

the series. We also use Faraday’s law to simplify the result. We find

2 uB
= e Y A-~ 2 ——L
Ky == [Ib <k |°(1 - =)
I'mo I"'mc
u? ~ ~ 2 ﬂi
+ Ib x k « B, |°(1 - )]+
202 L =~ 2.2
1
2
2 k IR,I .
I e 2 ) (47)
k| 2 U, o w-kV -1
where
v - 3J
- (L e Y o (=N o 2iQu R
Rp= (k EDJ + (b xk) o (-—J.F8 + E ). (48)

In Eqs. (45)-(48), Jl = Jl(klp)’ and p = (2mc2;/e2Bo)l/2.



V. HOW TO USE THE PONDEROMOTIVE HAMILTONIAN

This section may be read independently of the derivation of the
ponderomotive Hamiltonian in the previous sections. Here we will describe
how to interpret and use the regults we have obtained. For an alternative
discussion of this subject, see the comments preceding Eq. (92) of Ref. 4.

To fix ideas, let us conside; for a moment a one-dimensional problem
with no magnetic field. The basic physical notion of ponderomotive
phenomena is that of a force. 1In simple cases, one can write the
ponderomotive force as the gradient of a potential which depends on the
position x of the particle (more precisely, the oscillation center) so
that one then speaks of a ponderomotive potential. However, sometimes
this potential depends as well on the velocity of the particle, and this
circumstance has led to a certain amount of confusion regarding velocity
dependent forces.

The corréét way to interpretvthe velocity dependent ponderomotive
potentials which arise in various contexts is through Hamilton’s
equations. Thus, it is better to think in terms of the momentum rather
than the velocity of the particle, so that Hamilton’s equations,

x = dH/dp, 5 = -dH/dx, can be used. Then the ponderomotive potential is
seen to be a correction to the Haﬁiltonian describing the particle motion
in the baﬁkground fields (if any), which is due to the nonlinear effects
of the wave. Furthermore, it is recognized that the ponderomotive
potential (or Hamiltonian, as we will say), affects not only the force
equation, 5 = - JH/Vp, but also the equation which relates the velocity
of the oscillation center to the momentum, x = dH/dp. That is, the
definition of the momentum is altered by the introduction of a ponderomo-

tive term, so that p no longer has its original form (e.g., p = mv in
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simple problems), but rather has an addi;ional term.

One of the advantages of the Hamiltonian formulation is that often
the equations of motion, found by applying Hamilton’s equations and taking
the required derivatives, are vastly more complicated than the Hamiltonian
itself. Thus, when consideration of the Hamiltonian alone will suffice,
as in finding turning points, one need not deal with all the complexity of
the equations of motion. It will be appreciated presently that this
advantage is dramatic for the relativistic ponderomotive Hamiltonian, for
which the equations of motion contain many terms.

For the relativistic problem we are considering, Hamilton’s equations
in the usual sense cannét be used, because we have expressed things in
terms of noncanonical variables. There is a great advantage in doing this
for guiding center problems. Instead, one must use Hamilton’s equations
in Poisson bracket form. That is, if A is any quantity whose time
derivative we desire, then

dA 0A

dt = 2t + {a,K} , (49)

where A = A(X,Uu,p,() ,t) and where K = H, + K2 is the total ponderomotive

0
Hamiltonian, given by Eqs. (9) and (45)-(48). Here we have dropped the
overbars used previously, but the variables (i,U",p,C)) are to be
interpreted physically as guiding center variables, averaged over the wave
osclllations. Usually we will wanf to take A as one of the guiding center
variables themselves, so that the first term of Eq. (49) will vanish.,

The second term is the Poisspn bracket term, which is computed

according to Eq. (17). Lest this formula seem strange, we point out that

this 1s merely an application of the chain rule formula for Poisson
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brackets. This rule is the following. If f and g are any two dynamical
variables, and g depends on the collection of further dynamical variables

(h 9 ceey hn)’ then

1

n

(.8} = § (£,n) 3. (50)
k=1 e
A similar formula applies if f depends on further variables. This formula
is easily proved using the usual definition of the Poisson bracket found
in mechanics texts. In our case the further variables (hk) are
represented by the guiding center variables themselves, and Eq. (16) is
used.

When these rules are applied to the background Hamiltonian Hys the
usual relativistic drift equations are produced, as shown in Eqs. (14).
But the term KZ causes ponderomotive corrections. Consider, for exémple,
the parallel force equation, for which the usual notion of a ponderomotive
force is most clear. (Note that in felativity, the force is the time rate:
of change of the relativistic momentum, which in our variables is

represeﬁted by mUuo) Then we have

wl, = (U,Hy} + {U},K,}
N KB, - (51)
=b s (eEy - ) - beK, .

As for the background term, we have used Eq. (l4c), but we have expanded
things out to the dominant order in the guiding center parameter g, and we
have indicated the background fields. The result is recognized as the

usual parallel force on a guiding center. As for the pondercmotive term,



a glance at Eqs. (45)-(48) shows that it is complicated indeed. [Note
that T depends on X through the quantity B(X) in Eq. (10), and that even
vV  depends on X, because V

dependencies vanish, although even there we have Q2 = Q(X). We also note

s U"/F. Nonrelativistically, both these

that there are efforts underway at present to derive a covariant form of

15

the relativistic pondercomotive force in the limit of zero gyroradius.
covariant formulation of relativistic guiding center theory has previously
been developed by Fradkin16 and Littlejohn.13] We see here the advantage
of having the result in Hamiltonian form. We will presently discuss this
ponderomotive term for some special cases.

Next let us consider the guiding center drifts, -which are also

modified by ponderomotive effects. Proceeding as before, we find

§ = {E’HO} + {?S,’Kz}

~ Ty, 1%
=t (5 mauu)
+ 2 (& B+ 2y bevh - cE. + WK,) (52)
B Te 50 " Te " =0 2/ °

0

The first term on the right-hand side is the parallel component of the
guiding center velocity, which contains a ponderomotive correction. This
correction means that the quantity V", which 1s best interpreted in terms
of the parallel momentum, is no longer U"/P. The ponderomotive correction
terms which occur in the definition of the momentum are mathematically
analogous to the term (e/c)é, which is added to my to get the momentum in
ordinary particle mechanics.

The second major term shows the drifts, which consist of the usual
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relativistic drifts plus a ponderomotive‘term. Note that the
ponderomotive force affects the drifts in the same way as any external
force (e.g., gravitational) would do, as one might expect.

For another application of the ponderomotive Hamiltonian, consider
the effect of the ponderomotive forces on the turning points of a
mirroring particle. For this problem, let us suppose that the frequency
w is c¢onstant in time, so that the ponderomotive Hamiltonian is time-
independent. Then there existé a form of energy conservation for the
guiding center, namely, E = HO + K2 = const. The turning points are
specified by Vll = (0. This is equivalent to U“ = 0, since the

ponderomotive correction to U] does not enter to the order we require.

Then the turning point is found by finding a root in s = X“ of the

equation,
ZuBO 1/2
E=(1+ ) + K, , - (53)
mc
where K2 is evaluated at Uﬂ = 0. If the turning point in the absence of

the wave is Sy» then the turning point in the presence of the wave (for

the same value of E) is shifted by
FKZ
= e — : 54
bs = = eBioey * (54)

where everything is evaluated at s = so, U[I = 0, We see here the
usefulness of the Hamiltonian, apart from the equations of motion. 1In

spite of the complicated nature of K it would be straightforward to

2)
evaluate Eq. (54) numerically.
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VI. PONDEROMOTIVE HAMILTONIAN IN SOME SIMPLIFYING LIMITS

Next let us consider the ponderomotive Hamiltonian in some
simplifying limits. It turns out that our results contain the case of
ponderomotive forces in a one~dimensional electrostatic wave (but still
relativistic), and it is useful to consider this case for purposes of

0, we

illustration. This is so because if we set u = 0, B1 = 0, and Ell =

get essentially one-dimensional motion along the field line. It is

easiest to use Eqs. (45)-(46) when taking this limit; the result can be

written in the forms

e2|§l 1
= 5 - (55)
ml"3 (w - k"V“)

This result has been derived previously, in the context of a three-
dimensional, unmagnetized plasma [c.f., Ref. 4, Eq. (59)]. Apart from the
factor‘Pa, this is recognized as the nonrelativistic ponderomotive
potential in electrostatic fields. The parallel ponderomotive force,

F = nl is then found in the same way as shown in Eq. (51). It is given

I 0
by

2

e 1 d ~ 2
F = - [ — |E, |
! mI,3 (o - k"Vu)Z s '~1
2V"|§1I2 ok,
+ ], (56)

3 ds
(w. k"v")

where we have dropped the background terms and where s = Xu. Note that

the two terms may have opposite signs.
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Another limit which is often usefulvis w/Q ~ k"/kl << 1. Here we
must be careful, however; if w is so muéh less than Q that it becomes
comparable to the bounce frequency, then it makes no sense to average
simultaneously over the gyration and the wave oscillations, while at the
same time to leave the bounce osciilations out. When w ~ ws a correct
analysis will show bounce resonances in the denominators. Let us assume,

therefore, that w is intermediate between uS and Q. [If we wish to be

/2

formal, we can treat w/Q and k"/kl as O(s1 ), since mb/Q = 0(g).]
In taking this limit it is best to use Eqs. (47)~-(48), since the term
in Eqs. (45)-(46) which is apparently dominant in this limit actually

vanishes. The result can be written in the form

2
2 . . uB 2 . . U
K2 T 2 Ib x kl.§1|2 (1 - 02) + ez 5 |b x kl'illz(l - _5£§)
I'w Fzmc kalF I''e
2
e k 2 2
1 ;2 9 |R] _ e 23 2
+mk2 Jolk 10) 3u, (3= kuvu) 2 (r|r|%) , (57)
1 10
where
~ . A~ v“ -~ ~
R=k_1_.(§. +c—-be), (58)

Evidently the third term of Eq. (57) is analogous to Eq. (55), but an .

exact correspondence cannot be established because we have assumed

ku K kl in deriving Eq. (57), whereas Eq. (55) assumes kl = 0. The

fourth major term of Eq. (57) is purely relativistic, as are several

subterms.

The limit B, = E’l = 0 and k

11 = 0-is often found in applications,

L
like in free electron lasers. 1In this case, we simplify Egs. (45)=(46)



and obtain

2
|

2 SIE
mc

2
(ke V)V,

2mu3 6U“ (w—k“V")z—Q2

3% 2 2
-elEu' 5 Qv

2mcw2 O (w—k"V")Z-Q

+

5] - (59)
This is the relativistic expression of the ponderomotive Hamiltonian of an
électromagnetic wave propagating along the static magnetic field. Except
for the T factors and for the term pBo/szcz, this expression is in

perfect agreement with the nonrelativistic ponderomotive Hamiltonian.

-
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VI. CONCLUSIONS

In spite of the fact that this paper has dealt exclusively with single
particle motion, we have completed the large majority of the work for a
derivation of the nonlinear, relativistic gyrokinetic equation. This is

because the Vlasov equation can be written in Poisson bracket form,

F -

= * {Fkt = 0, | (60)
and when this is expressed in terms of our doubly averaged variables, the
result is the gyrokinetic equation. The only additional work to be done is to

calculate the linear and nonlinear currents and charges, to complete the self-

consistency. We will report on this application of our results in the future.
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APPENDIX
Let the gauge scalar be Sl’ so that the wave fields ¢1, A, transform

1

according to ¢, » ¢, = (1/c)dS,/dt, A, » A. + VS, . In order to preserve
1 1 1 ~

~1 1 1
the eikonal form of the wave packet, S1 must have the eikonal form. Here
- we take
‘ ~ i‘b(?j,t)/s
Sl(i’t) = sSl(i,et)e + c.C. (Al)

Thus, to lowest order in g, the amplitudes transform according to

~ ~ ~ ~ ~ ey O N .
o > 9 + (iw/e) Sl’ A1 > A1 + 1E§1. ext, because of Eq. (21), o
transforms according to uy > ug + (Ae/me)ko(x,t), where
- le(x,t)/e T
o(x,t) = iSle + c.c. (A2)

Combining this with Eq. (8), we find the gauge dependence of the guiding

center variables:

1('*,)5—% (b x k)o(x,t) ,

0
kek"
+
U, s 9%,
v e 2
p* pt+=— (u.k)alx,t) + O(A") . (A3)
BOC‘ ~) ~ T~

w/

On the other hand, the O(A) terms of Eqs. (41)-(44) also have. a gauge

dependence, which is contained in the transformation rule

ie T -
Hll > Hll + . Jlsl(m k"Vu 22) . (A%)
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When we apply this to Eqs. (41)-(44), we find that the gauge dependence

overall exactly cancels, leaving us with the gauge invariant quantities

(gsa" ’;)'

Similarly, we may consider the gauge dependence of the averaged b

Hamiltonian, K = KO + AZKZ. Since this is a function of the averaged

variables, which are themselves gauge invariant, K has no gauge dependence

from this source. Furthermore, when the fields XI’E& appearing in K2 are

subjected to a gauge transformation, we find after some algebra that K2 is
overall gauge invariant. We might have taken this for granted; but the
verification of gauge invariance provides a useful check on the derivation

of KZ' We note, however, that individually the two major terms of KZ

[ﬁz and the beat term, in Eq. (40)] are not gauge invariant; only their

sum is. Thus, the division of K2 into these two terms has no invariant

meaning, in spite of their rather different appearance.
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