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The relativistic ponderomotive hamiltonian is derived under as general 

conditions as possible. Arbitrary kp, E,,/E..L' w/Q, vic < 1, wave polarization, 

spatial modulation of the wave, and nonuniformities in the background electric 

and magnetic fields are introduced in a systematic way. This calculation is a 

modification of guiding center theory, because in addition to averaging over 

gyration, there is also an averaging over rapid oscillations of the wave. 

Therefore, as a by-product of our objective, we derive a new formulation of 

the relativistic guiding center motion • 
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I. INTRODUCTION 

The study of plasma stabilization by a population of energetic 

electrons is increasing in theoretical interest l due to the experimental 

advances in both open and closed magnetic field configurations. In 

present fusion devices, such as the ELMO bumpy torus and tandem mirrors, 

hot electrons are produced mainly by electron cyclotron heating, for which 

the electron energy is already reaching 1 MeV (y ) 2). Thus, heating 

studies must be done relativistically. 

:rhere are many proce'sses in plasmas that involve the concept of a 

ponderomotive force or potential, which represents the effect of high 

frequency fields on the slow plasma motion. Our derivation produces 

gener~l expressions for the ponderomotive Hamiltonian that applies to 

relat,ivistic: processes such as found in ELMO bumpy torus rings, thermal 

barriers in tandem mirror, CO2 laser fusion plasmas in Helios, free 

electron lasers, and so on. \ole find that relativistic effects introduce 

new terms in the expression for the ponderomotive Hamiltonian (see Ref. 2 

for the nonrelativistic expression) and, at the same time, reduce the 

magnitude of terms already existent in the nonrelativistic case. 

In the following analysis we attempt to be as general as possible. 

We allow for arbitrary kp, E m/E l' w/Q, vic < l, polarization, and 

spatially modulated wave. Nonuniformities in the background fields are 

introduced in a systematic way. To solve this problem, we use a 

Hamiltonian approach, because it would be virtually impossible by any 

other. Furthermore, the Hamiltonian .formulat.1on· has the advantage of 

expressing the vector evolution equations in terms of a single scalar 

function on phase space. As plasma problems become more complex, this 

advantage is all the greater. 
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This calculation is a modification of guiding center theory, because 

in addition to averaging over gyration, there is also an averaging over 

2-4 rapid oscillations due to the wave. For example, (i) the usual 

parallel acceleration Vn of the guiding center is modified by the wave 

(this is the usual idea of a ponderomotive force); (ii) the usual magnetic 

moment ~ is no longer constant, it must be replaced by ~ = ~ + (wave 

terms); (iii) the usual drifts are modified and now include wave terms. 

In Sec. II, before studying the nonlinear response ·of a relativistic 

particle to an electromagnetic wave, we derive the relativistic guiding 

center motion. The Hamiltonian formalism of the guiding center motion 

provides us with an unperturbed problem to which a time dependent 

electromagnetic wave is then added as a perturbation. In Sec. III, we 

introduce the electromagnetic wave and express the Hamiltonian in terms of 

the relativistic guiding center variables. In Sec. IV, we obtain the 

ponderomotive Hamiltonian by subjecting the Hamiltonian system to an 

averaging tranformation using Lie transforms. We show that the resulting 

Hamiltonian is indeed gauge invariant. In Sec. V we give a discussion of 

our results which is independent of the derivation in preceding sections, 

and which may be read by those who are not interested in the details of 

the derivation. In this section we apply our results to a calculation of 

the shift in the turning point of mirroring particles caused by the 

ponderomotive effects. Finally, in Sec. VI, we present some simplifying 

limits which might be useful in specific applications. 
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II. RELATIVISTIC GUIDING CENTER MOTION 

Before we analyze the ponderomotive effects of a wave, we must first 

study the motion of a particle when there is no wave. Th:i.s simpler system 

will form our "unperturbed system". In this section we will use unsub-

scripted variables to describe the unperturbed system, such as !, !; 

later, when we need to distinguish ~he background from the perturbation, 

we will append the subs.cript O. 

The unperturbed system is merely a matter of guiding center motion in 

the background fields E and B, but here we require both a relativistic and - ,... 

a Hamiltonian description of that motion. Relativistic guiding center 

motion has previously been studied by Vandervoort 5 and reviewed by 

Northrop,6 but in a non-Hamiltonian context. Thus, Vandervoort failed to 

present conservation laws for energy or phase volume. 

On the other hand, a Hamiltonian description of nonrelativistic 

guiding center motion has been given by one of us (RGL).7 It turns out 

that it is quite easy to generalize this work to relativistic motion, and 

that the algebra (to lowest order) is almost identical to the nonrelati-

vis tic case. The only differences are that one must use the relativistic 

definition of the momentum (with the factor of y), and that one must use 

the relativistic expression for the energy as the Hamiltonian. 

In a systematic theory such as the one we will present here, it helps 

to have an explicit ordering scheme. We let e be the dimensionless 

parameter which indicates the order of various terms in the guiding center 

expansion. ~-le attempt to use, as much as possible, only symbols which 

are 0(1), so that the order of a term will be indicated by the factor 

of en which explicitly appears with it. Physical formulas result hy 

setting e ~ 1. 
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The parameter e is introduced into physical formulas in several 

steps. In the first step, we understand the guiding center approximation 

to mean physically that the particle motion is dominated by the effects of 

the magnetic field, i.e., that B is "large" (in a sense that can be made 

more precise). In accordance with this, we replace B whenever it occurs 

by ~/e. (Actually, we will replace ~ by ~/e, since in a Hamiltonian 

theory we must deal with potentials.) As a result of this step, the 

gyroradius p = ymcv
1

/eB is replaced by ep, showing that the gyroradius 

is O(e). Similarly, the gyrofrequency becomes O(l/e), representing a fast 

time scale. 

Unlike !, we do nothing with ~ (or ~). Physically, this means 

that E/B = O(e), or that ~x~ drifts are of the same order as VB and 

curvature drifts. It would be possible to analyze stronger electric 

fields, but the case we are considering is most common in practice. 

Finally, we allow E and B to be slow functions of time, i.e., 

functions of • = et. Physically, this means that E and B can change 

appreciably on a drift time scale. 

We begin with the relativistic Lagrangian of a particle in 

configuration space, 

2 
L = -~+~v·A - eq" 

y ec .... ,.. 

in which e has been appropriately introduced. Here y is the usual 

relativistic quantity, 

(1) 

(2) 
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The canonical momentum is given by 

e o=-A+mu 
~ e:c'" 

in which u = yv is the world velocity (velocity with respect to proper ,.. ,.. 

(3) 

time). In the usual way in mechanics, the-Hamiltonian H may be derived 

from L. The result is 

(4) 

The theory of phase space Lagrangians is presented in Ref. 8 and 

applied to nonrelativistic guiding center motion in Ref. 7. Applying the 

same kind of analysis here, we find the phase space Lagrangian, 

L ~ £-i - H~ in the following form: 

- e· L(x~u,x) ~ (mu + - A)-x - H e 
,..., ""-# "'W ,.,. £c 'V ~ 

(5) 

This is identical in form to the phase space Lagrangian for a 

nonrelativistic particle [see Eq. (18) of Ref_ 7], except that the world 

velocity ~ has replaced the ordinary velocity ~~ and the Hamiltonian H is 

the relativistic version of the energy. Therefore the transformation to 

guiding center variables is algebraically identical to the corresponding 

transformation in the nonrelativistic case~ and only the interpretation of 

the symbols is different. For this reason~ we will skip the algebraic 

details of the transformation, which may be found in- Ref. 7, and merely 

summarize the resultso 

We let b be the unit vector along ~, and we decompose ~ into its 
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components u g and u
1

• We define perpendicular unit vectors a and c, 

rotating with the gyration of the particle, by ~ = u lib + u 1c, and 

a = b x c. The gyrophase e is defined implicitly by 

.. 
a = cose ~l - sine ~2 ' 

(6) 

c ... - sine ~l - cos e 1:2 ' 

.. .. 
in which ~l and ~2 are perpendicular unit vectors which do not rotate with 

the particle, and which satisfy ~l x ~2 = b. ~l and ~2 may have a slow 

dependence on time, since ! itself does. 

The guiding center variables are !, the guiding center position; 

Ua, the parallel world velocity of the guiding center; ~, the magnetic 

moment; U
1

, a variable which is essentially the gyroaverage of u
1

' and 

which we define to all orders in € by 

and QV, the gyroaveraged gyrophase. The guiding center variables are 

functions of the particle variables (x,u ,u , e), where e" is the .... n 1 

instantaneous gyrophase. Explicitly, we have 

mcu 1 .. 2 
X :s x - € -- a + O( € ) , eB 

U - u g + OC e) , 
n 

2 
mU

1 O( e:) ~ :s -- + , 2B 

(7) 
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® = 9 + O(e:) • (8) 

All fields on the right-hand sides of Eqs. (8) are evaluated at (~te:t). 

The higher order correction terms may also be computed, but we omit them 

here. Note that to lowest order the variables (u ,9) are identical to 
/I 

When the Hamiltonian is transformed to guiding center variables, the 

result is 

(9) 

The quantity r is the first term in an expansion of y in terms of guiding 

center variables, so that y = r + O(e:). r is a function of (~,e/l'IJ.)' 

given explicitly by 

2 

(1 
U /I 2 .• R 1/2 

r = +2 +~) 
c mc 

The fields ~ and B in Eqs. (9) and (10) are evaluated at (!,e:t). 

(10) 

As in the nonrelativistic motion, it is convenient to express the 

phase space Lagrangian and the equations of motion in terms of the 

* * * modified fields A B, and E. These are defined by 

* =A+~Ub A ,.,. e /I 

* B+~U B = 'V x b 
"" e· U 

* E - ~ U 
ob 

E = (11) ,.,. e II 01: 
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In terms of the modified fields, the guiding center Lagrangian is given by 

e 
L =

€C 
(12) 

This may be compared to its nonrelativistic counterpart, Eq. (2) of Ref. 

7. 

The equations of motion (the drift equations) are given implicitly by 

<5 f Ldt - 0 , (13) 

or explicitly by 

• 
11 "" 0 , (14a) 

eB 
"" cl'mc ' (14b) 

(14c) 

... * c VB 
€b x (-cE + - e )] ,.. e r ' (14d) 

* * in which Bg ~ b·B. Equation (14a) shows that 11 is a (formal) constant of 

the motion, and (14b) shows that the relativistic gyro frequency is 

Q "" eB/rmco Equation (14c) gives the parallel force on the guiding 

center, and Eq. (14d) shows the various drifts, as well as the fact that 
.... . 

U "" r b·X. 
I -

* The denominators Bg in Eqs. (14c) and (14d) are ordered in €, 

* A ... 

since BU ~ B + (€mc/e)Uu(b.V x b). If these denominators are expanded in 

powers of €, it is easy to produce the relativistic drift equations as 
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presented by Northrop. 6 

As they stand, however, Eqs. (14) possess exact conservation laws 

which their expanded counterparts do not possess. For example, the energy 

of the particle varies according to the equation, 

* OA d 2 a~ II aB e· 
- (e~ + mc r) =- e - +..t;; - - - X dt at r at c"" 

. --
at 

(15) 

which shows that energy is conserved in static fields. Similarly, one can 

show that angular momentum is exactly conserved in azimuthally symmetric 

fields, and that phase volume is exactly conserved in all cases. 

Finally, we may derive the Poisson brackets of the guiding center 

variables among themselves, as was done in Ref. 7 for the nonrelativistic 

motion. There is no work to be done here, because the results are 

formally identical to the nonrelativistic case [with ordinary velocities 

replaced by world velocities; see Eq. (43) of Ref. 71. The results are 

{® ,Il} e =---
e:mc 

(16) 

.. 
where bij is the tensor dual to the unit vector b, i.e., 

A 

bijV j 
.. - (b x Y,)i for any vector y • 

These brackets can be combined into a single formula for the Poisson 

bracket of two functions f and g, which are expressed in ter~s of the 

guiding center variables (X ,U ,11, ® ). The formula is .... n 
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e:c ,. + _1 * a~ Clf 
{f,g} = ----;;be(Vf x Vg) * B e ('Vf ~- 'Vg au) 

eB II mB II au II II 

(17) 

." 

This will prove useful in the perturbation analysis of the next section. 



IIIe TRANSFORMING THE HAMILTONIAN 

We now introduce an electromagnetic wave and study its ponderomotive 

effects. The wave is represented by the potentials ~1' ~l in arbitrary 

gauge, which are assumed to have the eikonal form 

- i~(~,t)/€ 
t1(~,t) = tIe + c.c. , 

~l(~,t) ~le 
i~(~,t)/€ 

(18) = + c.c. , 

where the over-tilde represents the slowing varying amplitude of the wave 

packet. We assume that ~1 and ~1 depend on (~,€t), i.e., that the 

amplitudes obey the same length and time scales as the background fields 

~ and~. This is roughly consistent with a bulk mode of an experimental 

device, for example. 

The local wave number k and frequency ware given by 

V~(x,t) , -
(19) 

For a wave of fixed frequency wO' we can set ~(~,t) = ~O(~) - UUt,"for 

some purely spatial eikonal function ~O(~). The factor of 1/€ in the 

phase indicates the orderings kp - 0(1) and w/a - 0(1). Once we have 

obtained the final results, however, we wil+ be free to take the 

simplifying limits of small k and/rir w. Our aim here is to be as general 

as possible. 
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Henceforth we will indicate the background fields with the subscript 

0, and the wave field with the subscript 1, as in Eq. (18). The remainder 

of the calculation is really a double perturbation expansion, the major 

one being in the wave amplitude, and the secondary one being in the 

guiding center parameter. To formalize this, we will introduce the 

dimensionless parameter ~, which indicates the order in the wave 

amplitude. Thus, we have ~"= $0 + ~~1 and A = ~ + ~1 for the total 

electromagnetic potentials. Physical formulas result by setting ~ = 1. 

At each order in ~, we expand the solutions in E. We have just done this, 

in Sec. II, for the order ~O; the ponderomotive Hamiltonian is obtained at 

2 order ~ • 

Let us return to Eqs. (1)-(5), which describe the exact dynamics of 

the particle, and let us now use the total fields $ and ~ (background plus 

wave). The exact phase space Lagrangian of the particle, corresponding to 

Eq. (5), is 

[ ( ) ( 2 4 + 2 2)1/2] 
e <PO + Ml + m c c u , 

(20) 

with appropriate factors of E and~. The exact equations of particle 

motion are contained in the variational principle of Eq. (13). 

It would be natural to write Eq. (20) in the form L = LO + XLI' in 

which LO would be precisely the guiding center system analyzed in Sec. II, 

and L1 would represent the perturbation due to the wave. In order to 

carry out a perturbation analysis of the total system, one would require a 

perturbation theory for phase space Lagrangians. Such a theory exists; it 

is described in Refs. 8 and 9, and it is applied to guiding center theory 
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in Ref. 7. Note that the perturbation ALI of Eq. (20) includes a term 

~l·~ in the first major term on the right-hand side~ as well as a term 

e$l in the Hamiltonian. • The term ~l·~ contributes to the symplectic 

structure, i.e., the structure of Poisson brackets (which in canonical 

variables would be represented by £·i). Thus, not only is the Hamiltonian 

perturbed, but also the Poisson bracket structure. The perturbation 

theory of Refs. 8 and 9 is quite capable of handling this, and indeed the 

present problem provides nearly an ideal application of that theory. 

Nevertheless, the most familiar form of Hamiltonian perturbation 

theory is the canonical theory,IO in which the Poisson bracket structure 

remains form-invariant and only the Hamiltonian is allowed to change. It 

is possible to bring Eq. (20) into a form in which only the Hamiltonian 

suffers a perturbation, so that a variant of the more standard Hamiltonian 

perturbation theory can be applied, instead of the less familiar phase 

space Lagrangian perturbation theory mentioned in the preceding paragraph. 

The advantage of this approach is its familiarity; the disadvantage is 

that it involves nonphysical variables, and that the results are not 

manifestly gauge invariant. 

In order to carry out this alternate approach, we define a velocity-

like variable ~ by 

mu = 
;:;:.0 

Ae 
mu + - Al • ,.. c ,.. 

(21) 

The new quantity ~ is not physical, in the sense that it changes when a 

new gauge is chosen for the wave fields $l'~l' However, in terms of ~ 

the Lagrangian of Eq. (20) becomes 

14 
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L = (m~ + :c~) • ~ - {e(~O + A~I) + [m
2

c
4 

+ c2(m~ - ~e ~1)2]1/2} • 

(22) 

Notice that now the perturbation appears solely in the Hamiltonian, and 

that the perturbed part of Eq. (22) is formally identical to the guiding 

center system of Sec. II, with the symbols ~,~,~ replaced by ~,~,~. In 

. 2 2 1/2 a similar notation, we will write YO for the quant~ty (1 + uO/c) • 

Because of Eq. (21), this is not the true y of the particle, nor is it 

gauge invariant. 

Our approach here is something of a hybrid, being a cross between the 

canonical theory of Ref. 10 and the phase space Lagrangian theory of Refs. 

8 and 9. In canonical theory, one must use the canonical momentum e, 
which changes under a redefinition of gauge for either the background 

fields ~O and ~ or the wave fields ~1 and ~1. In the phase space 

Lagrangian theory, one can, if one wishes, use purely physical variables, 

which are gauge invariant. In the present approach, however, the quantity 

~ is invariant under a change of gauge for the background fields ~O and 

~, but not for the wave fields ~1 and ~1 • 

To proceed, we first expand the Hamiltonian of Eqo (22) to second 

order in Ao The results are 

HO 
2 (23a) = e~O + mc YO , 

HI e [~1 
1 

(~·~1)] (23b) = --- , 
yoc 

15 



2 
[A2 __ 1_ 2 

H2 = e 
(~·~1) ] 

2YOmc 
2 ",,1 2 2 

yoc 

2 
[A2 1 A )2] e (23c) = +2: (~ x 

3 2 .... 1 .... 1 
2yO mc c 

Next, we transform this Hamiltonian to guiding center variables. The 

guiding center variables are defined by Eq. (8), except that now we use 

~ on the right-hand side, instead" of~. Thus, we are subjecting Eq. (23) 

to the transformation (~,~) + (~,UII'~' ®). The guiding center variables 

have all- the algebraic properties developed in Sec. II, most notably the 

Poisson bracket relations of Eq. (17). However, their time evolution is 

now modified by the wave terms of the Hamiltonian. For example, ~ is no 

longer a constant of motion, since it possesses rapid oscillations at the 

wave frequency Wo In addition, the guiding center variables are now gauge 

dependent, since they are defined in terms of ~. 

Transforming HI and H2 to guiding center variables is 

straightforward, although it is here that most of the work of the present 

calculation lies. The Hamiltonian transforms as a scalar, as Hamiltonians 

always do under time-independent transformations. "This means that we must 

simply elimina'te the particle variables in favor of guiding center 

variables in Eq. (23). [Actually, the transformation of Eq. (8) does have 

a slow time dependence, since the fields ~ and ~ depend on Et. But this 

only affects terms in the Hamiltonian which are higher order in E. which 

we neglect here.] 

We begin by transforming the phase factor of Eq. (18) to guiding 

2 center variables. The transformation equation is x = X + E£ + O(E ), with 
A 

£ = mc U
1 

ale BO' which gives 

16 
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exp[i<jJ(~,t)/e] = exp[i<jJ(~,t)/e: + i~:J2)[1 + O(e)] • (24) 

We let a be the angle between ~l (which depends on ~) and ~1 (which also 

depends on ~), so that we have 

A A 

~ = kllb + k1(cosa ~1 + sina ~2) (25) 

Combining these, we obtain the Bessel sum, 

i~ • .e 
e = 

u.( cr+- ® +1t/2) 
e Jt(k1P) (26) 

where all appropriate quantities are evaluated at (~,et) for use in Eq. 

(24). 

There is no work to be done to transform H
O

' since we have a~ready 

done this in Sec. II. The result is 

(27) 

with r defined in Eq. (10). 

As for HI' it is convenient to adopt the Fourier expansion, 

it ( ® +a+1t/ 2) i <jJ( X, t ) / e 
= L Hlt(~'U u,lJ.,et)e e '" + c.c. 

t 
(28) 

A .. 

We introduce a new triad of unit vectors, (b, k
1

, b x k
1

), in which 
A A 

kl = cosa ~1 + sina ~2. Using ~ := uOlib + U01C in Eq. (23b) and 

transforming to guiding center variables, we find the Fourier coefficients 

in the form 

17 



(Z9) 

in which J J. = J /k IP), v II = U IIfr, Q = eBOfI'mc, and everything is evaluated 

at (~,£t). There are 0(£) corrections to Eq. (28) which we neglect. 

As for the term HZ' it turns out that we will only need the part of 

it which is averaged over the rapid gyration and oscillation of the 

wave. After some algebra, we find the result in the form 

in which the overbar on HZ indicates the averaged part. 

We are now ready for the perturbation analysis. 
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IV. THE PONDEROMOTIVE HAMILTONIAN 

We now subject the Hamiltonian of Eq. (23) to an averaging 

transformation, based on the Lie transform perturbation theory of Dragt 

and Finn,ll as reviewed by Cary. 10 We will denote the averaged variables 

with an overbar, so that the averaging transformation has the form 

(~,U II'~' ®) "" (~,U II'~' ®). The purpose of the averaging transformation 

is to remove the rapid oscillations from the Hamiltonian H and to produce 

thereby the ponderomotive Hamiltonian K. 

We denote the Lie generators by WI' W
2

' ••• , and the Poisson bracket 

operators by L = {W }. The averaging transformation T is given in n n' 

terms of the L by 
n 

T = 

-1 
T 

... 

• o. , 

which, by expanding the series, becomes 

212 
T = I - ALI + A (-L2 + 2 L1) + ••• , 

1 + H' + ~2(L +.!..L2) + 
~1 ~ 2 2 1 •••• 

(31) 

(32) 

The averaging transformation is Z = TZ or Z = T- 1Z where Z and Z - -' 
represent the old guiding center variables and their averaged 

counterparts, respectively. 

We write K = KO + AKl + A2K2 + ••• for the new Hamiltonian. Then the 

transformation equations, as presented by Cary,lO are 

19 
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(33a) 

(33b) 

(33c) 

The notation on the left-hand side indicates the total time derivative 

along unperturbed orbits. 

Traditional applications of Hamiltonian perturbation theory have 

required canonical variables, and so also has the presentation of Cary. 

Our variables, however, are nonFanonical, as shown by Eqs. (16). 

Nevertheless, the entire formalism developed for canonical variables also 

works for noncanonical variables, with only two minor changes. 

The first is that one must use the appropriate noncanonical 

expression for the Poisson bracket, which in our case is given by Eq. 

(17). This expression is derived from the phase-space Lagrangian, as 

described in Refs. 7 and 80 The basic reason why it is possible to use 

the noncanonical bracket is that the Poisson bracket is an object with an 

invariant geometrical meaning in phase space, independent of the. 

coordinate system employed. No.ncanonical variables have now been used in 

this way for several applications. 2, 12- lI+ 

The second change concerns the use of time-dependent transformations 

and time-dependent Hamiltonians, such as we have here. It is possible to 

deal with an explicit time-dependence by introduCing time and energy as 

conjugate variables in an extended phase space with one extra degree of 

freedom, as has been done in several applications. 2 13 14 However, it 
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turns out that Eqs. (33) are valid as they stand, even for time-dependent, 

noncanonica1 transformations, so that the artifice of adding extra 

variables is not necessary. This is proved in Refs. 7 and 8, but it is 

plausible in any case, since the total time derivative, like the Poisson 

bracket, has an invariant geometrical meaning. Nevertheless, it is 

important to use the correct formula for the total time derivative. In 

our case, the total time derivative of a scalar Wn along unperturbed 

orbits is given by 

dW oW oW o\v 
( n) = ---.!!. + X -'VW + U ---.!!. + ~ n 
~ 0 ot n II oU II \BJ 0 ® ' (34) 

where ~, U II' and ® are given by Eqs. (14). The point is that this is not 

the same as 

(35) 

which is the correct expression for (dWn!dt)O only when the Poisson 

bracket structure is time-independent. This distinction is explained in 

Refs. 6-9. In our case, the time dependence of the Poisson brackets is 

slow anyway, so the difference between expressions (34) and (35) is of 

higher order in E than we shall need. Nevertheless, we are explaining the 

distinction, both for future reference and in order to be careful about 

our presentation. 

We begin by analyzing Eq. (33b). The term HI is given by Eqs. (28)

(29). As usu'a1, we demand that the generators Wn be purely oscillatory, 

in order to avoid secular terms. Then on taking the average of Eq. (33b) 

we find Kl = 0, since HI = O. The physical meaning of this is that the 
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wave causes only rapid oscillations at first order, with average of 

zero. A nonzero average appears only at second order. 

On taking the oscillatory part of Eq. (33b), we obtain an equation 

for WI' namely, 

dW 1 U.( ® +crt-1t/2) i <jJ(X, t) / e: 
(d't)o = - I HU. e e..... + c.c. (36) 

"tole solve this by positing the ansatz, 

(37) 

The factor of e: is only a matter of convenience. We use Eqs. (34) and 

(14), and we keep the leading order term in e: of Eq. (36). The result is 

i H 
U.( ® +crt-1t/2) i<jJ(X, t) / e: 

- e e ..... 
~ 1~ + WI = e: L. 
~ w - k "V" - .tQ 

c.c. (38) 

We move on to Eq. (33c), and again take the averaged part. This 

gives the ponderomotive Hamiltonian in the form 

(39) 

The first term, which we evaluated and displayed in Eq. (30), 

represents a simple average over rapid oscillations, whereas the second 

term represents the beating of two first order terms. Both contribute to 

the ponderomotive Hamiltonian. 

It is straightforward to evaluate the second term, using the Poisson 

bracket formula of Eq. (17). To lowest order in e:, we find 

(40) 



The ponderomotive Hamiltonian is a function of the averaged (overbarred) 

variables, as we have indicated. (The terms HZ' HIt' Q, etc. are all now 

evaluated at the overbarred variables.) In the nonrelativistic limit, Eq. 

(40) reduces to Eq. (5) of Ref. 2. If in addition we assume a uniform 

magnetic field, it reduces to Eq. (91) of Ref. 4. 

We will discuss this result presently, but first let us consider the 

averaged variables. As is usual in Lie transform theory, one need not 

derive explicit expressions for these if they are not needed; one can 

ob.tain considerable information from the Hamiltonian alone, and often this 

is sufficient. (In non-Hamiltonian approaches, however, one must carry 

around the averaging transformation in explicit form, whether it is needed 

or not.) For all six phase space coordinates, the averaging 

transformation is contained implicitly in the Lie generators W , through 
n 

Eq. (32) and the formula Z = TZ. 

2 
For example, for the magnetic moment we have !.I. = !.I. - ",{WI' !.I.} + O( '" ), 

or, explicitly, 

where we make the abbreviation 

t[ ® + a(~, t) + 1t/21 + cp(~, t ) Ie: (42) 

The 0(",) term of Eq. (41) removes the rapid oscillations in !.I. due to the 

wave and produces the variable !.I., which is a constant of the motion. 

(~ is constant because the averaged Hamiltonian is independent of~.) 
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Similarly, we find the following formulas for the averaged variables 

U
II 

and X: 

Ak II [\' HI i exp (iq, .. ~? 2 
UII=U II - L. k +c.C.]+O(A), 

m i W - II V II - iQ 
(43) 

(44) 

A similar formula exists for ®. Unlike~, the averaged variables 

X and U
II 

are not constants of the motion. But they are free of rapid 

oscillation due to the wave (as well as due to the gyromotion). Thus, 

X is a kind of combined guiding center and oscillation center 

- -coordinate. The variables ~ and U
o 

evolve according to a set of drift 

equations, which are like the ordinary drift equations, but with 

ponderomotive effects included. 

We have mentioned that the variables (X,U ,~, qy) are not gauge 
..... II 

invariant. Nevertheless, the averaged variable ~ certainly must be gauge 

invariant, because it is constant. Actually, all the averaged variables 

(X,Un,~,6D) are gauge invariant, because otherwise, a gauge 

transformation could introduce rapid oscillations at the wave frequency. 

In the appendix we show how this gauge invariance can be demonstrated 

explicitly. 

Since K2 is gauge invariant, we can express it in terms of the 

physical wave fields ~1 and ~l· To lowest order in e:, these have 

amplitudes [1 = (iw/c>f1 - i~~l and B = i~ x ~1. An easy way to express ..... 1 

K2 in terms of physical fields is to use radiation gauge, in which 

91 = O. The result is 
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k IQ 12 
(_II _0_ + e.t L)( .t 
m - mc - -

OU II Olk w - k IIV II 
) 

- .tQ 
(45) 

where 

(46) 

and where everything is evaluated at (R,UII'~) • 

. Another form of this is useful. We use partial fractions to clear 

the term in Q.t which is linear in .t, and which degrades the convergence of 

the series. We also use Faraday's law to simplify the result. We find 

(47) 

where 

A A A V .-oJ 
R = (k E)J + (b x k ) 0 (- _II J 13 + 2l.QfJ: ~ E ) 

.t 1 • -1 .t 1 c .t-1 w --1 
Olk 

(48) 

In Eqs. (45)-(48), J.t = J .t(k1P), and P 
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V. HOW TO USE THE PONDEROMOTIVE HAMILTONIAN 

This section may be read independently of the derivation of the 

ponderomotive Hamiltonian in the previous sections. Here we will describe • 

how to interpret and use the results we have obtained. For an alternative 

discussion of this subject, see the comments preceding Eq. (92) of Ref. 4. 

To fix ideas, let us consider for a moment a one-dimensional problem 

with no magnetic field. The basic physical notion of ponderomotive 

phenomena is that of a force. In simple cases, one can write the 

ponderomotive force as the gradient of a potential which depends on the 

position x of the particle (more precisely, the oscillation center) so 

that one then speaks of a ponderomotive potential. However, sometimes 

this potential depends as well on the velocity of the particle, and this 

circumstance has led to a certain amount of confusion regarding velocity 

dependent forces. 

The correct way to interpret the velocity dependent ponderomotive 

potentials which arise in various contexts is through Hamilton's 

equations. Thus, it is better to think in terms of the momentum rather 

than the velocity of the particle, so that Hamilton's equations, 

e • 
X = oH/op, p = -oH/ox, can be used. Then the ponderomotive potential is 

seen to be a correction to the Hamiltonian describing the particle motion 

in the background fields (if any), which is due to the nonlinear effects 

of the wave. Furthermore, it is recognized that the ponderomotive 

potential (or Hamiltonian, as we will say), affects not only the force 

• equation, p = - oH/Vp, but also the equation which relates the velocity 

• of the oscillation center to the momentum, x = oH/op. That is, the 

definition of the momentum is altered by the introduction of a ponderomo-

tive term, so that p no longer has its original form (e.g., p = mv in 



simple problems), but rather has an additional term. 

One of the advantages of the Hamiltonian formulation is that often 

the equations of motion, found by applying Hamilton's equations and taking 

the required derivatives, are vastly more complicated than the Hamiltonian 

itself. Thus, when consideration of the Hamiltonian alone will suffice, 

as in finding turning points, one need not deal with all the complexity of 

tne equations of motion. It will" be appreciated presently that this 

advantage is dramatic for the relativistic ponderomotive Hamiltonian, for 

which the equations of motion contain many terms. 

For the relativistic problem we are considering, Hamilton's equations 

in the usual sense cannot be used, because we have expressed things in 

terms of noncanonical variables. There is a great advantage in doing this 

for guiding center problems. Instead, one must use Hamilton's equations 

in Poisson bracket form. That is, if A is any quantity whose time 

derivative we desire, then 

dA OA 
d t = at + {A, K} , (49) 

where A = A(X,Uu,~,QD ,t) and where K = HO + K2 is the total ponderomotive 

Hamiltonian, given by Eqs. (9) and (45)-(48). Here we have dropped the 

overbars used previously, but the variables (X,U ,~,GD) are to be 
.... /I 

interpreted physically as guiding center variables, averaged over the wave 

oscillations. Usually we will want to take A as one of the guiding center 

variables themselves, so that the first term of Eq. (49) will vanish. 

The second term is the Poisson bracket ~erm, which is computed 

according to Eq. (17). Lest this formula seem strange, we poi.nt out that 

this is merely an application of the chain rule formula for Poisson 
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brackets. This rule is the following. If f and g are any two dynamical 

variables, and g depends on the collection of further dynamical variables 

{f ,g} (50) 

A similar formula applies if f depends on further variables. This formula 

is easily proved using the usual definition of the Poisson bracket found 

in mechanics texts. In our case the further variables (hk ) are 

represented by the guiding center variables themselves, and Eq. (16) is 

used. 

When these rules are applied to the background Hamiltonian HO' the 

usual relativistic drift equations are produced, as shown in Eqs. (14). 

But the term K2 causes ponderomotive corrections. Consider, for example, 

the parallel force equation, for which the usual notion of a ponderomotive 

force is most clear. (Note that in relativity, the force is the time rate· 

of change of the relativistic momentum, which in our variables is 

represented by mUD.) Then we have 

IlVBo 
= b • (e~ - -r-) - b e VK2 

(51) 

As for the background term, we have used Eq. (14c), but we have expanded 

things out to the dominant order in the guid{ng center parameter £, and we 

have indicated the background fields. The result is recognized as the 

usual parallel force on a guiding center. As for the ponderomotive term, 



a glance at Eqs. (45)-(48) shows that it is complicated indeed. [Note 

that r depends on ~ through the quantity B(~) in Eq. (10), and that even 

Vn depends on ~, because Vn = Un/r. Nonrelativistically, both these 

dependencies vanish, although even there we have Q = Q(X). We also note 

that there are efforts underway at present to derive a covariant form of 

the relativistic ponderomotive force in the limit of zero gyrorad~us.15 A 

covariant formulation of relativistic guiding center theory has previously 

been developed by Fradkin16 and Littlejohn. 13] We see here the advantage 

of having the result in Hamiltonian form. We' will presently discuss this 

ponderomotive term for some special cases. 

Next let us consider the guiding center drifts, ,which are also 

modified by ponderomotive effects. Proceeding as before, we find 

.... Un 1 aK2 
b (- + --) r m au u 

(52) 

The first term on the right-hand side is the parallel component of the 

guiding center velocity, which contains a ponderomotive correction. This 

correction means that the quantity V
R
, which is best interpreted in terms 

of the parallel momentum, is no longer uu/r. The ponderomotive correction 

terms which occur in the definition of the momentum are mathematically 

analogous to the term (e/c)~, which is added to mv to get the momentum in 

ordinary particle mechanics. 

The second major term shows the drifts, which consist of the usual 
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relativistic drifts plus a ponderomotive term. Note that the 

ponderomotive force affects the drifts in the same way as any external 

force (e.g., gravitational) would do, as one might expect. 

For another application of the ponderomotive Hamiltonian, consider 

the effect of the ponderomotive forces on the turning points of a 

mirroring particle. For this problem, let us suppose that the frequency 

w is constant in time, so that the ponderomotive Hamiltonian is time-

independent. Then there exists a form of energy conservation for the 

guiding center, namely, E = HO + K2 = const. The turning points are 

specified by V U = O. This is equivalent to U'I = 0, since the 

ponderomotiV'e correction to U
II 

does not enter to the order we require. 

Then the turning point is found by finding a root in s = XII of the 

equation, 

2~0 1/2 
E = (1 + -2-) + K2 ' (53) 

mc 

where K2 is evaluated at Un = O. If the turning point in the absence of 

the wave is sO' then the turning point in the presence of the wave (for 

the same value of E) is shifted by 

!J.( aB/as) , (54) 

where everything is evaluated at s = sO' U II = O. lole see here the 

usefulness of the Hamiltonian, apart from the equations of motion. In 

spite of the complicated nature o~ K
2

, it would be straightforward to 

evaluate Eq. (54) numerically. 

30 

". 



' .. 

VI. PONDEROMOTIVE HAMILTONIAN IN SOME SIMPLIFYING LIMITS 

Next let us consider the ponderomotive Hamiltonian in some 

simplifying limits. It turns out that our results contain the case of 

ponderomotive forces in a one-dimensional electrostatic wave (but still 

relativistic), and it is useful to consider this case for purposes of 

illustration. This is so because if we set ~ = 0, ~1 = 0, and ~11 = 0, we 

get essentially one-dimensional motion along the field line. It is 

easiest to use Eqs. (45)-(46) when taking this limit; the result can be 

written in the forms 

(55) 

TIlis result has been derived previously, in the context of a three-

dimensional, unmagnetized plasma [c.f., Ref. 4, Eq. (59)]. Apart from the 

factor. p3, this is recognized as the nonrelativistic ponderomotive 

potential in electrostatic fields. 'The parallel ponderomotive force, 

FU = mUu' is then found in the same way as shown in Eq. (51). It is given 

by 

(56) 

where we have dropped the background terms and where s = Xu. Note that 

the two terms may have opposite signs. 
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Another limit which is often useful is w/Q .... k n/k 1 «1. Here we 

must be careful, however; if w is so much less than Q that it becomes 

comparable to the bounce frequency, then it makes no sense to average 

simultaneously over the gyration and the wave oscillations, while at the 

same time to leave the bounce oscillations out. When w .... ~; a correct 

analysis will show bounce resonances in the denominators. Let us assume, 

therefore, that w is intermediate" between ~ and Q. [If we wish to be 

formal, we can treat w/Q and ku/kl as O(g,1/2), since ~/Q = O(d.] 

In taking this limit it is best to use Eqs. (47)-(48), since the term 

in Eqs. (45)-(46) which is apparently dominant in this limit actually 

vanishes. The result can be written in the form 

IJ-B O ) + _e~2~ 
_2 2 I'mk2 2 
rmc lc 

A 

Ib x 

(57) 

where 

(58) 

Evidently the third term of Eq. (57) is analogous to Eq. (55), but an 

exact correspondence cannot be established because we have assumed 

kg « kl in deriving Eq. (57), whereas Eq. (55) assumes kl O. The 

fourth major term of Eq. (57) is purely relativistic, as are several 

subterms. 

The limit El D B = 0 and kl = 0 is often found in applications, 111 

like in free electron lasers. In this case, we simplify Eqs. (45)-(46) 
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and obtain 

2 I~ 2 ( k V )V2 
e k II ~111 _a_ ur II II 1 

+ 2 au II [ 2 2 J 
2mw (urkllV II) -0. 

3
1
E' ,2 QV2 

+ 
e ~11 L [ 1 2 2 ] (59) 

2 aiJ. 2mcw (w-kIlV II) -0. 

This is the relativistic expression of the ponderomotive Hamiltonian of an 

electromagnetic wave propagating along the static magnetic field. Except 

for the r factors and for the term iJ.Bo/r2mc2, this expression is in 

perfect agreement with the nonrelativistic ponderomotive Hamiltonian. 
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VI. CONCLUSIONS 

In spite of the fact that this paper has dealt exclusively with single 

particle motion, we have completed the large majority of the work for a 

derivation of the nonlinear, relativistic gyrokinetic equation. This is 

because the Vlasov equation can be written in Poisson bracket form, 

lf + {FKl at ' r = o (60) 

and when this is expressed in terms of our doubly averaged variables, the 

result is the gyrokinetic equation. The only additional work to be done is to 

calculate the linear and nonlinear currents and charges, to complete the self

consistency. We will report on this application of our results in the future. 
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APPENDIX 

Let the gauge scalar be SI' so that the wave fields ~1' Al transform 

according to ~1 ~ ~1 - (l/c)oSl/ ot , ~1 ~ ~1 + VS 1• In order to preserve 

the eikonal form of the wave packet, Sl must have the eikonal form. Here 

we take 

i<jl(x,t)/E 
ES1(~,Et)e ~ + c.c. 

Thus, to lowest order in E, the amplitudes transform according to 

~1 ~ ~1 + (iw/c) SI' Al ~ Al + i~Sl. Next, because of Eq. (21), ~ 

transforms according to ~ ~ ~ + (Ae/mc)~cr(~,t), where 

i<jl(x, t) Ie: 
cr(~;t) = iSle ~ + c.c. 

(Al) 

(A2) 

Combining this with Eq. (8), we find the gauge dependence of the guiding 

center variables: 

X ~ X - AE (b x k)cr(x,t) 
BO ,..,.. 

(A3) 

On the other hand, the O(A) terms of Eqs. (41)-(44) also have,a gauge 

dependence, which is contained in the transformation rule 

(A4) 
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When we apply this to Eqs. (41)-(44), we find that the gauge dependence 

overall exactly cancels, leaving us with the gauge invariant quantities 

Similarly, we may consider the gauge dependence of the averaged 

2 
Hamiltonian, K = KO + A K

2
• Since this is a function of the averaged 

variables, which are themselves gauge invariant, K has no gauge dependence 

from this source. Furthermore, when the fields ~1'~1 appearing in K2 are 

subjected to a gauge transformation, we find after some algebra that K2 is 

overall gauge invariant. We might have taken this for granted, but the 

verification of gauge invariance provides a useful check on the derivation 

of K2 • tve note, however, that individually the two major terms of K2 

[H2 and the beat term, in Eq. (40)] are not gauge invariant; only their 

sum is. Thus, the division of K2 into these two terms has no invariant 

meaning, in spite of their rather different appearance. 
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