Seks,

R E&WE IVE D
~ RENCE
RADIATION LABORATORY

LIBRARY AND

LBL-1788

e\

) PART I: AN ESTIMATE OF THE POMERANCHUKON RHO CUT

FOR PI-NUCLEON SCATTERING

. Mark Dubovoy
(Ph.D, ,the'sis')" '

June 4, 1 973

,f

'.'PART I FIXED POLES AND FESR FOR K'p SCATTERING

For Reference

Not to be taken from this room

ﬂ

) |

Prepared for the U. S. Atomic Energy Commlssmn
under Contract W - 7405 ENG 48



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Govemment or any agency thereof or the Regents of the
University of California.



~-iii-
pConténts
Part I: An Estimate of the Rho-Pomeranchukon Cut for
N Scattering . . . . . . . .o oL L
." Abstract . . . . . . . . .. o000
.I. Nonsense-Wrong Signature Zeroes in Inclusive Reactions .
v- . " A. Appearahce of NWSZ in Inclusive Reactions
1. Dual Model . . . . . . ; e e e e e e
2. TFeynmen Graph Model . . . . . . . . .i;
5. Double 0(2,1) Expansion

B. Processes that are Useful to Test for the Existence

of NWSZ
Ty ' C. How Finite Missing Mass Sum Rules (FMMSR) ﬁay be
Ay ‘Useful to Test the Existence of NWSZ . . .

o II. An Estimete of °(t
_ &p, (t) ’
III. An Estimate of the P-p Cut for N Scattering . . . .

A. An Estimate of the P-p Cut Contribution to the

>~ Total 7N Cross Section . . . . . . .

. B. Caléulgtion'of Nonforward Cuts . . . . . . .

- C. Estimate of the Polarization for x~p Charge

T, .

- Exchﬁnge Scatﬁering Ce e .

B ‘Conclusion . -

T Acknowledgments . . . e v 4 4 o4 e e e e e e e e

o Footnotes and References . . . . « « « & v « « + o« « o o « &
Figure Captions . . . . . . . . . . o ¢ ¢ v o0 . .

[ ¥4

o\ \R W

15
25
34

zh
Lo

)

b9

50
51
55

-iv’.

Part TI: Fixed Poles and FESR for K'p Scattering . . . . . . . . 72
Abstract . . : C e e e e e e e e e

I. Introduction " o .73

II. Analysis and Results . . . v . ¢ v v ¢ v v ¢ = o o« « o « T3

A. Amplitudes and FESR . + . « + + v « o = v o v v v v v« T3

B. Imput . . . . . . . .. .0 .’. B

C. Results Neglecting the Contribution of Fixed Poles e TH

D. Results Including One Fixed Pole . . . . . . . . . . . .75

III. Conclusions . . . . . . . . . v . .. . 76
Acknowledgments . . . . . . . L o e e e e e e e e W TT
Footnotes and References . . . . « « v o = o + v v v v o w v e o TT



i
“

2

l.‘)

A

-1- LBL-1788

PART I: AN ESTIMATE OF THE POMERANCHUKON-RHO CUT

FOR PI-NUCLEON SCATTERING*

Mark Dubovoy
Lawrence Berkeley Laboratory

University of California
Berkeley, California . 9h720

June 4, 1973

ABSTRACT

We show that it is plausible té find Nonsense Wrong Signature
Zeroesv(NWSZ) in inclusive reactions. We briefly review how they
appear in certain models, and then give some model independent argu-
ments that make their existence in certain cases a strong possibility.
In particular, by using Finite Missing Mass Sum Rules (FMMSR) we show
that the triple-Regge residue. gppp(t) probhbly has a NWSZ at t = O.
We then propose a parametrization of gppp(t) for small t and
proceed to estimate this particular coupling phenomenologically.

Using our estimate. of gppp(t) we estimate the contribution
of the p-P cut to the total xN cross section and calculate the
polarizétion iﬁ ‘n_p charge exchange scattering as a p-pole p-P cut
interference. - We find that it is poésible to obtain a fairly good fit
to the polarization for values of our.parameters that are consistent
with experiment, and furthermore, we find that our fit to the polariza-

tion is very sensitive to the small t behavior of gppp(t).

-

I. NONSENSE-WRONG SIGNATURE ZEROES IN INCLUSIVE REACTIONS

Due to the work of Muellerl in which inclusive cross sections
are related to a certain discontinuity of the three-to-three forward
amplitude, much interest arises in the Reggé properties of three-to-
three scattering amplitudes. In particular, it is interesting to
study whether certain properties that we are familiar with from two-to-
two scattering amplitudes are still retained in certain kinematical.
regions of three-to-three ampliﬁudes., v

In this section we will specialize in the problem of Nonsense-
Wrong Signature Zeroes (NWSZ) in inclusive reactions, where they
appear and why, what processes are useful to test these idéas,»and
finélly, how Finite Missing Mass Sum Rules (FMMSR) may help us test
the former ideas wheg certain experimental data are not available.’

In what follows, Qe shall use an extension'of.the conventional

Let us consider the
2
)

definitions of nonsense and wrong signature.

reaction a + b — ¢ + anything, and define s = (pa +P,)%;

¥ o = (o, + p, - p,)°.

c Thewaiagram for this reaction

t = (p, - 1,

~in the triple Regge 1imit3 is shown in Fig. 1. The signature factor

In
in this case is given by

T+ exp{-in@s(o) - al(t) ;dQ(t) }
BT CR O RN IR €9)

where 1 1is the product of the three signatures of reggeons 1, 2,
and 3 respectively. Since in all the diagrams we will deal with, 1 =1,
we see that &(t) becomes infinite when a5(0) - oy (t) ~ay(t) = -2,

b6, We will-call this a right-signature point, whereas
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0,(0) = @ () - ay(t) = -1,-3,°5,e0 . (1)
will be referred to as & wrong-signature point. Notice that when
Eq. (1) is satisfied, &(t) is finite. Also, following the usual
definition of nonsense,2 we see by looking at the triple-Regge vertex
that both sets of points menﬁioned above are nonsense.

A. Appearance of NWSZ in Inclusive Reactions

1. Dual Model

In the duai resoﬁance model one can study single particle
distributions, and actﬁally evaluate these distributions explicitly in
certain kinematical regions.' 7

Let us consider again the reaction
a +b — ¢ + anything

and define the invariant variables as usual:

2 2

2]
[}

(pa. + Pb) t = (Pb - Pc)

2
(pg + Py - R -

=
I

c

The relevant diagram for this reaction in the triple-Regge region5

(which will be the interesting kinematical region in our case) is

shown in Fig. 1. Gordon and Veneziano5

obtain an explicit formula for
the cross section of this process by calculating the discontinuities
of elastic six-point functions in the tree approximation. 1In

particular, fbr a diagram of the form shown in Fig. 2 they use the

amplitude

“4-

‘ 1
<« -1 "ot -1 -a, -1
Bélb)zfj[dxdydzxs y ° z-aM (l-x)Jt
0

<, -1 - -a,-1 t+20
x (L-y) " @-2) % (1-xz) O

. t+2n -
X (1-yz)  °(1-xz) O

. - 02
where we have defined s = (p; + pé) 3 a3(0) = Qg3 al(t) = ae(t) =

a(t) = ., a(s) = a, os) = ag, and a(Mz) = 0

Then, by taking the 1limit when Re Qs Re a_, and Re aM -~

s
with Re as/Re y — and the discontinuity across the ay cut, one

ends up with the explicit expression

a.-1
0 2 4 2
do as a v
dch/pcO S w
l<<ﬁ(3as

t fixed

<)

2
n (L + a, - aat)

-2 ' : .
a, £ % ,
x a; cos [nx(t)/2]

where ¥ is the coupling constant. From the factor TI(1 + ay - Eat)
in the denominator of this expression, it is clear that the dual
émplitude exhibits zeros when ao - a:t = =1,-2, ¢ . [These zeroes

are nonsense zeroes analogous to the ones that appear in two-to-two

amplitudes as will be shown later. 8ince the Gordon-Veneziano model

© is’ an exchange degenerate dual resonance mod&l, “there are nonsense

zeroes at both right- and wrong-signature points.
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2. Feynman Graph Model

Chang, Gordon, Low, and Treiman6 have performed a simple model

calculation, based on a single type multiladder Feynman diagram where

nonsense zeroes &lso appear. Their model is based on the diagram of

Fig. 3, where the boxes describe off-mass-shell 2 — 2 amplitudes for
which they adopt the Regge properties corresponding to ladder graphs.

The Regge trajectory function associated with momentum transfer t 1is
o(t), and the unsignatured amplitude associated with the corresponding

two boxes is taken to be

[k - B2

sin (%)

R =

% .ﬂtQie: (k- + Pl - P2)2’t> .

Analogously the trajectory function associated with momentum transfer

zero is ays and the amplitude associated with the corresponding box
is

[(k +p +p, + 92)2]a° 5 o
BO(ZK +p - py)%,(k + o - py)7) -

8in ﬂao

Without going inté the details of their calculation, we briefly mention
the results. Chang et al. obtain an explicit formula for the single-

particle inclusive amplitude A in the asymptotic region when

va = 6
- 0 , == 0w,

M

i.e., the asymptotic limit of the triple-Regge

- region. Their method of calculation consists of taking the above

mentioned limit, and then to use a spectral representation based on

the identity

'
t
@
Q
i

o« "
a
1 ' S N )
;[ ds(s'-s-iej 1<a<o
o

6

in order to carry out the k integration in the'Feynman diagram.
Noticing that this identity does not hold for «a > O, one must do an

analytic continuation after the k-space integration-has been carried

out.

The final formula Chang et al. obtain is as follows,

= e
| (Me)a_0<;—2-> ®rlo, +1) I(L - 20,)

2 .2
165" -sin e (1 + ay - 2at)

—~
A S/M2—)oo
Mo o

-a.-20

‘du x) dx), 8(u + x), - 1)u. 0

2. 2 2 2
x dP’-l dp.2 D(Pl oM Jt)

20 -1
2 2 t
x [tx u+p” x +p° ul -

where the variables 'u, My Moy and X, are integration variables
defined in a convenient way, and p 1is a double-spectral function.6
Again, we can see that in this model the factor T(1 + a, - )
appears in the denominator, so that in this model one expects the same

result as in the dual model: vanishing of the amplitude when

ap - oy = <1,-2,ee . ' (2)

3. Double 0(2,1) Expansion

A much better plausibility argument for the existence of NSWSZ
in the amplitude of a single partiéle inclusive prbcess, in the triple-
Regge region (as long as the existence of Nonsense;Wrong-Signature
fixed Poles is neglected), can be found by performing a double 0(2,1)
Here the advantage lies in the fact that the argument is

expansion.

essentially model independent.
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One can define functions that play a completely analogous role

to the one the more familisr e-functions, or functions of the second

kind play in the usual reggeology of two-body reactions. 1In particular,

if one defines

D(£ +1 - ip) wpn _in/2(841) _ ip,. .
L o e G (3 sinh ¢)

Qu)_(é)
a ()= & ()

where the continuation to z = i sinh ¢ is made above the singularity
at z =1, it has 5een shown by Jones et a.l.7 (hereby referred to as
JLY) that one can make generalized 0(2,1) expansions for asymptotic

growing amplitudés, and in particular if one defines

Ao,e)

f (a:é) =
»  (cosh a)xl(cosh g))\2

where Kl and xe are such that fx(a,g) is square integrable in

& and sinh ¢ then one can make a Mandelstam-Sommerfeld-Watson

transformation, the result being [see Eq. (2.13) in Ref. 7]

~iiie :
3
as 24 + 1 (1) l* cosh
f)\(g) = - (5) (tan nl) (£) dp, + cos £n>
et
o nMe+na*1?m
() -

cos 2y ['(-£) T(~-ip + £ + 1) (in + £ + 1)

cosh pn
cos Zn u,

Equation (3) continﬁeézﬁext'page

0 [

i

Equation (3) continued

xr(z+1) M)

T cos &nx I'(-Z) T({ip + & +Li) r(iip + 2 +1) , (3)
where -
ey - [ aemnd one : . ‘
0 |
and
Py - & e ) 4l L (-8) £,() | -
0 i

As in the two-to-two body case, using thg symmetry properties

of JLY's d-functions around Re £ =

-1 curvive.

-'%; one can easily see thet only
the terms containing a 4 Actually the JLY expansion

is similar to the usual 0(3)
8,9

expansion in terms of e-functions, and

as a matter of fact

& () - o? UES MRS BRI

n F(E + 2‘3)

14 ~Laiy- . 2
x(z+l)21“(z- 1)72 1u81F(5+1p+1,z+1,2£1-2,_-l—_—;>

(ba)

and



i

.

i

(3

iE_g-l

-i 2 - .
ip+f+l 8 [(4 + 1 Q- z) 2 (z +l)lu/?

2
eoig,0(®) = (D) T(2Z + 2

3 ry -;:‘ - .
x [P(¢ -ip +1) I(4 +1iu +1)]2 F (} +ip+1, £ +1, 22 + 2:1 2 :)
-z

(bv)

so that comparing (4a) and (4b) we see that the JLY d-functions diffef

from the usual e-functions by a normalization factor of

. . _1'
fr(s - ip +F%Z i(i)t‘lp + 1)12 exp(%n/2(5_+ li) (_l)%iu-2(£+l)‘
' (5)

{we shall omit the phase factor from now on, since it is irrelevant for

our argument). This is not unexpected, since one can go continuously
from the group 0(2,1) to 0(3). Let us therefore extract this
factor, and change .the normalization of the JLY d-functions to match

that of the usual e-functions. This implies that this facﬁor has to

"~ be included in our amplitude, but the amplitude now satisfies the

usual partial wave unitarity equation, whereas before it did not, due
to the spurious factor in Eq. (5). After this is done, we can substi-
tute in the asymptotic form of Eq. (3) where upon substitution of Eq.

(ka) [with the factor in EqQ. (5) extracted] and repeated use of the

-identity

r{@) = x[sin ¢ (1 - a)]-l

the factor f in front of aﬁl)(l). is such that

Now, in the triple-Regge region we have (see Fig. 1

-10-

foo [sin (2 + in)sin =(£ - ip)]_l/e[r(iu + 4 +1)r(-ip + £ + 1)]'5/2 .

} from the interpre-

tation of the index u as an analytically continued helicity index,

£ = a3(0) _

ip = -oy(t) - al(t)

so that if £ is either integer or half integer or if ip is either

integer or half integer

f o 1/{sin (2 + iW)[r(ip + z +1) I{-ip + £ + 1)]5/2]'

= lsin xlog(0) - (%) - al(t)ll'llr(aj(O) - oy (t) - ap(t) + y

x g0 + oy (t) + ay(s) + D)y/?
and therefore as a5(0) - ag(t) - al(t) - -N with N a positive

integer, f has a square root zero. In this case, one c&n use exactly

the same analyticity argument as in two-body reactions, to establish

the existence of the NSWSZ.ll If neither £ nor ip are integer or

helf integer, then we have & linear zero. We see that the usual

arguments for the existence of NSWSZ in two-body reactions follow

through for single particle inclusive reactions and therefore unless

the triple-Regge residue has a fixed pole at the point of interest,

we expect to find a linear NSWSZ for inclusive reactions, whenever
a5(0) - az(t) - al(t) o =l,=% =5, -

if the triple-Regge signature 7 = +1.
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Two comments are in order at this stage: First, that in the
Feymman diagram model we have neglected nonplanar diagrems. If one
includes nonplanar diagrams (analogous to third double spectral

function effects in two-body processes) singularities may appear which

actually cancel the zeroes of the amplitude when
as(o) - al(t) - ag(t) = =1,-3,--.

i.é., precisely. at the wfong-signature points.12 Second, that if one
neglect; nonpianar diagrams, or if one assumes that our argument using
the JLY expansion is correct (and one neglects multiplicative fixed
poles) then the result for the ex?stence of the NWSZ is consistent
with the vanishiné of the tripie pdmeranchukon vertex at t =0 if
‘aP(O) =1. ° | g
. B. nProcesses that are Useful to Test for
the Existence of NWsZ

As we have seeﬁ in the former chaptef, the existence of NWSZ
in inclusive reactions implies that the triple pomeranchukon coupling -
is“zero at t = 0 if aP(O) = 1. This is consistent with earlier
results by_other’methoc}s,13 as long as aP(O) = 1.. Therefore, if we

had extensive data in the triplé-Regge‘region for different values of

t, as well es different energies and missing masses for the reaction
P+P - p+ anything

we could hopefully isolate the different Regge terms, and test for the

existence of a NWSZ. For example, if one could isolate a P'PP

vertex, in which the P' is the trajectory at momentum transfer zero,

if we assume _aP,(O) = 0.5 and a?(t) =1 + 0.3t then we expect a

-12-

0
Notice that the value of to depends on the pomeranchukon trajectqry

NWSZ to appear at = t. =~ -0.8 since at this value aP,(O) - axp(tQ)F?'l.

slope.

Now, let us consider instead disgrams of the form shown in

‘Fig. k. If a3(t) = az(t), then Eq. (1) is satisfied at t =0 for

any trajectory ai(t), and therefore if we are at a point of wrong
(triple Regge) signature we expect & nonsense zero at t = 0. Notice .

that for three boson trajectories the equality 7, T Ty = +1 where _

P a3 >

: ﬁz represents the signature of the reggeon a is indeed satisfied.

Therefore, let us try to isolate diagrams that satisfy the former
conditions, by taking suitable combinations of reactioné. We introduce
the following nétation: o(b; cla) represents (deo/dthe) in the
triple-Regge region for the reaction & + b = ¢ + anything where ¢

is a fragment of 'b. Then, if we consider the combination
- +
ples pln ) - olps plx)

we obtain the diagram of Fig. 5a, and we see that this diagram

satisfies all the conditions we want, and therefore we prediqt
o(ps p|x’) = o(p; plx") when t =0 - (®)

where we have ignored nonleading triple-Regge terms.

There are a couple of points that need further clarification.

In the triple-Regge region3 - - _

aaf

o & s al(t)«le(t) M2 aj(o) : (6;)., ..
; = (%) - — -

(Y3
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than s
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(see Fig. 1). What we have referred to as nonleading diagrams are

 diagrams like the ones shown in Fig. 5b, and it is clear from Eq. (6a).

that as-long as (s/Mz) is  large enough, the nonleading terms will
be negligible; however, one might object that at the values of (s/ME)
and M? currently available in experiments, such diagrams may be
importqnt. In particular in Fig. 5b, the npp‘ coupling is very large,
so if the triple-Regge coupling is not small, this diagram might be

non-negligible, even for fairly large values of (s/ME). Therefore,

we must be aware of the fact that Eq. (6) holds only if the nonleading

‘triple-Regge terms are negligible, an assumption that should be
further investigated when more detailed fits and values for triple-

Regge couplings are available.

Another point that needs to be made clear is that from Eq. (6a)

slone we know that if we keep M2 large and fixed, and let. s grow,

ap(t)mp(t)-e

+
p(ps plx’) - olp's plx~) 1like s

‘Therefore, what EG. (6) really means is that in the neighborhood of

t = 0, the two distributions should approach each other much faster

aP(t)+ap(t)-2.

' The data for the n~. reaction are already availa.ble,lh

unfortunately the data for the ﬂ+ reaction are still unavailable.
We expect that in the near future'éne will be able to test Eq. (6)
directly, and find out whether there is a NWSZ at t = O for this
particuiar exampie. |

If the NWSZ does not appear, we can interpret this in several
ways: Either there is a nonsense-wrong-signature fixed pole which is

multiplicative and cancels the zero, or the triple-Regge residue is

~1h-

singular like % as t —;O, or the nonleading terms still have a

sizeable contribution to the cross section.

One can find other combinations that will isolate diagrams of
the wanted form, for example if one assumes weak exchange degeneracy

= binati
(GP, ap) the combination

;

o(x"3 x~Ip) - p(x*s x*Ip) /
isolates a diagram similer to Fig. 5a (simply réplacer P e x .in this
diagram). This combination has the added advantagé that because of
G~parity conservation it»does not allow any of the reggeons to be a n,
a fact thaﬁ greatly reduces the number of nonleading diagrams; gnd
actually gets rid of the most dangerous ones. Therefore, this
particular combination will be very useful to us later on.

Instead of isolating the o exchanges, one can isolate the w
exchanges (provided the ¢ is neglected with respect to the w) and

then combinations of the form

p(n; nfk7) = p(n; nlk") + p(p; pIK7) - o(ps plx")
orr

o(ps 2I5) + o(ps pIA) - p(ps plp) - o(p5 PIn)

isolate diagrams similar to Fig. 5a, but with w exchanges instead of

o) eichanges These last combinations however, are obviously much

harder to test.
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C. How Finite Missing Mass Sum Rules (FMMSR) where the. T, are the usual Regge signatures,

' . ~inc. (t) . . ‘
may be Useful to Test the Existence of NWsSZ £ (t) = [7, +e i ]/(%in my,(t)) 5 B 1, B d s, B k are the
i i kS - - -
i : _ be be aa
Since we do not have enough date to test relation (6) directly

. ’ usual two-body scattering reduced residues, and g (t) is the
the question arises whether one can use other data that might be
. triple reggeon vertex. We can actually lump some factors together,

available and still try to test this relation. This can indeed be :
’ and write the right-hand side as
done, under certain assumptions. ILet us define the following

quantities:

' : ' ()4, (t)-1
T , ‘ (r.h.s) = Z 1+ (-1)n+l n)al( )+aJ( )1

, T T5 "k j N
v = p(p, -p) = %(Mz -t - mae) o ' i’j’_k
, &, (0)+n rijk(t)
n o= Pa-(Pb + Pc) = %(sa.b -8 v— __mb2 ',mc2) x ak(oy Tnon+ 1 - ai(t) - aj(t)
In a completely analogous way to the way in which one dérlves the usual " where we;haQe_absorbed the §i’s end the two-body residues into the
. finite energy sum rules for two-body reactions, one can derive FMMSR Y. We see that these sum rules relate the low missing mass region wiﬁhl
in the inclus;ve case_h The resulting right moment (1.e., without the triple-Regge region, just'like'finite energy sum rules relate the 7
fixed pole terms) sum rules at fixed M and t are as follows, ‘ high- and low-energy regions in the 2-body case.

Assuming particles b and c¢ are identical and choosing

" n & = 1, we are left with
av v |[E =Z(a + b + th :
c dp = ¢ + anything) .. .
0 . ¢ ) N
&a ‘
dv v QEC-&;— = (l+TiTka).
n+l Tk
+ (-1) By d (a +c¢cob+ anything) Y i,3,
' | ey &0
- 1+ () n,% (£)10y(t)-1 x (2 - Ty
Ty %) @ . W G0) G, (%) - &, () 7 2
i,d,k
' Since we want to isolate the diagram of Fig. Sa, we take the
ak(0)+n
N

Ei(t) ﬁj(t).g (t) s (t) & 5 (t) B (O) appropriate llnear comblnatlon and obtain

ak(o) +n+1 - ai(t) - aj(t) | .
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N on ) . -

a » E o (x"p = p + anything)
vy L outgoing proton dp TP-Pp g

0 . B proton

D
N d .
- Eoutgoing proton dB (K+P - p + anything)
N pproton _ -

a (0)a

1 ap(t)“ir(f)‘1‘ NP ngé(t) '. o
"\ ¥ G T0) = & (E) - G (E) ¥ 2 (7

We have again neglected nonleading triple-Regge diagrams in Eq. (7).

If we can determine 7? p(t) from Eq. (7) we just have to
see whether 1% p(t) has a zero for t = 0 or not. .In order to
apply this method, what we need are data for the low missing mass

region, as opposed to trying to test Eq. (6) directly. As a first

_approximation, one can try to saturate the left-hand side of Eq. (7) .

with the quasi two-body low missing mass reactions only. Since we
are intéreéted in P, P', and p exchanges only, the relevant low-
energy diagrams are as shown in Fig. 6. Now,as is well known from

the single particle inclusive kinematics,

(" ) dtdvr?

and in our approximation,

—
dgc N N do

; Zi*, dt _
dth2 'R la+b— c+R

' A\
s -5 - 5 ) F
R

a+bes c+R

x. 5(1, - VR)

-18- )

In this approximation, the £.h.s. of Eq. (7) simply becomes:

do , _ - do
(£.h.s8) = (%;){}n [af (x"p = pr”) - & («*p —>pn+)]
do - do +
+ vAl [Ef (x"p > pA) ) - g (n*p Ay )]

v

do , . - do +
Ay [B.T (" =pA; ) - g (' -~ pA; )]

so fhﬁt with accurate elastic scattering and A-production data in
xp reactions 6ne can calculate the (£.h.s.) of Eq. (7) in a very
simple way; and therefore test whethef Yfpé(t) has a linear zero
at t = 0.
Since at the present timg,vthere are no data available for the
reaction 5'*p —9A+p (from now on -A will represent either Al- or
| Ae), we will try to relate thié reactipﬁ to the reaction n”p —A7p
by assuming that there is only Pomeranchukon exchange in exotic
channels, thus giving rise to certain exchange dégeneraéy conditions.
We will also make a slight digression, and show how this can be
combined with 8U(3) actually to predict a certain F/D ratio. The
relevant. s-channel eiotic reaétions, as well as thé exchange degeneracy
condifions that we will use repeatedly are shown in Fig. 7; . . »

Let us denote by (Rab) the coupling of reggeon R to

particles a and Db, and let us also define

fp = (Rep)(Rx-A%)

then we see that
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t)-1 a (t)-1
dc , _ S aPn( o
T (r"p -»A"DP) = £, + T s + fp s

2
= {fp + fp(l + k) Sa(t)-l1
where we have assumed the exchange degeneracy condition

a(t) = ap,(t) = Ao(t) and we have defined

f

= 2L _ ﬁP'zg%iP'n'A*)_
ko= fp _- opp M on A+ . . (8)

From the SU(2) relation

0+

0 _, -
(pn"a*) = -(px'4")
we can write
Qg_( *p -aA*p) = |f  + £ (-1 + k) sa(t)-l :
at \" = P o' )

so thgt i? we know fP’ fp and x we can determine the cross section
for A" production. We will now try to determine the former three -
quantitites from the A~ production>data by using the exchange
degeneracy conditions of Fig. 7 as well as exact SU(5).symmetry. For
simplicity we will first assume £hat w is pure octet and ¢ is

pure singlet. Later on we will show that our result holds even if
there is w-¢ mixing, and is independent of the mixing angle.

From exchange degeneracy we can write:

éP'2§} ~ =w29‘ iP'E§! w
ppp - opp wpp - opp

and using exchange degeneracy again,

i
£
3
+
'
)

-20-

('pp)(P'x"A,")

kK = _ - swpp (wk™k™)  (pr=xt)
[ (opp) (pr™ay™)] PPP)  (prk*k~) (P'xnt
_ p) (uk'k”) (P'k*k") .
PP (p'k*k")  (pk'K")
so that -

ka+k’!

PPP/ (k™)

K = -

- 1
and by using SU(3) Clebsch-Gordan coefficients, 2

M’ = 3 . - - ) -
(pk*k") v

Therefore, the only thing we are left to calculate is  (wpp)/{ppP).
We will assume only (electric) vector coupling, since we are interested
in the forward direction and then the qu term can be neglected. The

' ; 16 ’
expression for electric VBB coupling is well known, and we have

[S

where the coupling is «a times the D coupling plus (1 - @) times
the F coupling. Therefore, our final result for exact SU(3)

symmetry, without w-¢ mixing is . -

K = L‘a-}- (9) &

Equation (9) implies that if we know o we know K.

£ Y
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Instead of calculating Kk in this manner however; we will do

the converse: we can calculate # from exchange degeneracy alone,

and predict .  Indeed,

(P'ep) (P'x7A,") (®'pp) (pnn")
CGemp) (oA (o) (')

(®'pp) (P'x ") (o "x ")
= - — 422

- +
(ppp) (o x) (P'nx)
or
K = - P! P'rn
opp) (prx

~ which can be calculated directly from experimental data

the Michaeel et al. compilation one obtains

K .=. —5.5’4 .

While from the Rarita et al. data, the result is
kK = =5.57
The prediction for a 1is

apredicted ~ =0.62

This value is in reasonable agreement with other estimates.

We wish to show now that this result holds even if w-¢ mixing

is included. In this case we write:

(10)

'17,18 From

19

~P0

1 —_ ‘o

P = f8_51n 0 + fl cos ©
W = w8 sin © + wl cos ©
¢ = wg cos @ - w, sin ©

Because of c-invariance, if @ is a pseudoscalar meson,
(v, @ ® - o .

Also, since the

{wepp) cos 9 - (w,pp) sin ® = O
8P 1
or,
) cos ©
(w;pp) = (wgpp) s o
which tells us that
2
. ) cos 9
(upp) = (ugpp) sin @ + (wgpp) Frg-
(wgpp) 5 o wgPP
m(SJ.n © + cos 9) = sin ©
On the other hand, from Eq. (11),
(wkk) = (wakk) sin @
8
and therefore
(wp)(uik) = (wgpp)(ugkk)

so that our result for « holds with

of the value of the mixing angle.

(pp¥) coupling is known to be very small, we have

w-@ mixing included, regardless
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Now that we have our numerical value for Kk, we have to
determine fP and - fp from the experimental data for A_ production.
We would like to mention at this point that although it is not obvious
that the value of & is the same for the Al and A2 cross sections,
if the A, is a member of the 1t SU(3) meson nonet, the vaiue of
k 1s the same in both cases. This can be verified by changing A2
to Al in Fig. 7, and going through the same procedure leading to
Eq.{(lO). Although the value of —; in Bq. (10) is the same for the

Al‘ and the A2 reactions? it is important éo potice that fP aﬁd

f ° are in principle different for the A, and A, reactions.

P 1
The formula

— ' do . _-Bt -
a? = Ate

with B = (8 & 1)(GeV/c)2 seems to fit the A, production experimental
cross sectionelh In other words, the helicity flip amplitude seems
to dominate, and for t = 0 at Piap = LO GeV/c the A, produétion
cross section is extremely small.
i Furthermore, at t =VO, v, = 0, so that the only term that

contriputes to the FMMSR is the A, term. Then, from Eq. (7), we

" see that if we saturgte the £.h.s. of fhe FMMSR with quasi-two body
low miésing mass reactions as we have done, we expect prp(o) to

vanish only if the difference

do - - do + + .
g (kp-rA ) -gg (rpopA) = O - (12)

at t = 0. The experimentel data are by no means conclusive at the

present time, however, we mention that from pure reggeology one

-2l

expects r?pp(o) to venish only when the 4.h.s. of Eq. (12) goes to
zero faster than s-% as s .increases; on the other hand, if the
intercept of the p-trajectory is 1/2 one expects this difference to
go to zero exactly like s_% (for t = 0). Therefore, Y?pp(o)
vanishes as long as the p-trajectory decouples from Aln in the
forward direction. This last statement is consistent with experimentzo
so that we believe th§ﬁ there is a very good chaqpe fhat a NSWSZ is
indeed present in 1§p°(o).' }

Later on we will show still another way of meking the
existence of the NSWSZ plausible, so we rest this subject for the time
being, by reminding the reader that our approximation of saturgting
the £.h.s. of the sum rule with resonances might prove to be a bgg
one. Perhaps there are other/ 3n states we are unaware of, or maybe
even the saturation scheme might prove not to be a good approximation,
however, with tﬂe tools available to us, this is the best we can do

at the present time.
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1I. AN ESTIMATE OF gPp (t) where 1, 2, and 3 refer to the three reggeons, and we have omitted

We have seen in Chapter I that it is very‘plausible that particle labels for the time being. ' We see from Eq. (1) that under

p ' _ .
gPp (t) has a NWSZ at t = O. In view of the above, as well as some our assumptions the t dependence is given_by

other reasons outlined below, we propose the following parametrization

» 2 (ar+al)t log(s/Mz) (¢, +c,)t

i i - i . . d"a 12 12
of this triple-Regge residue, for smgll tf ® e e ngB(t) (15)
. dat i

gPpp(t) - a' t et . ' - {(13)

where ai(t) = ai(o) + ai t. Equation (15) clearly shows évstrong

We know of course, from our former discussion, thatthe difference exponential,cutoffvin t, so that if one integrates inclusive

- - +. o+ : distributions over all values of t, the small t region dominates.
p(x"3 «7[p) - o(x™; n*lp) : : :

We consider, in particular, Q; = aP, a, = a, = ap. Let us assume

3

if measured accurately for many values of t would give us the 0.5 +t =and integrate Eq. (lh)

now that aP(t) =1 and ap(t)

- : : o) . s :
t-dependence of gPp (t) ,whether Eg. (13) is valid or not, however, over the triple-Regge region in t . and M2 to get the contribution

since these data are not available yet, we will assume that Eq. (13) to the total cross section coming from this particular diagram, and

is valid and we will try to estimate a';, Unfortunately we do not denoted by ©
2

know the value of 7, and therefore from now on ¥ will be considered ] . 2
as a free parameter. In Chapter III it will become obvious why we have

M2 2
o = [ | dd;z alt|af _
introduced this extra parameter into the picture. ' 2 : I at T
- . i Ml Itmin

Let us therefore give another motivation for our paremetriza-

tion in Eq. (13), and then show how we can estimate a'. S M2

)
7 Tl e.c VR,
et o ok B dft] g (t) Bp(t) ép(O) ,gP? ( )(-ME)

[--]
Let us assume that a usual two-body Regge residue .ei(t), can = —— ;5—
: M12

be parametrized as Bi(t)A= si(o) e where t is in GeVe. We ltminl
: : ” ‘ - 16
know that the contribution of a particular triple-Regge diagram to : (16)
the cross section can be written asB where we have denoted the limité of integration in the missing mass as

Ml and M2, and tmin can be obtained from the inclusive kinematics.
1

dgc

atam”

It

. X . . 2
(M) The general expression for t , (see Fig. 8) is

2 2
| (k) Lo (f_gﬁ) / 1.“.2__'0_) L (16a)

. oy (£)H,(t)  og(0)
S
o al(g) Bo(t) 85(0) glg5<t><;2-)



-27- ' -28-

c + log@)

It is important to note that M22 'is a finite fraction of s, whereas

M12 is just the mass of the minimal cluster allowed by the kinematics a

such that a triple-Regge expansion is still valid. Therefore

) s
y 5 \ ’ _ b = ¢+ log<E> s
—5— — const. ) . '
> as s —mo . o ' then,
M_]s-_ -0 - S N : | - g = -(p(0)p '(‘O)' g. (0) g/l6ns%>
y ) . \"p P .
. . ‘ . . . 2
With thede properties in mind, if we now write : : : Ml

Bp(t) BP(tj = 3p(o)‘ep(o) et

offmlod

) » . ) | . o o . c + log(%> L .

e
° = 16,tsz> / <M2 ) Idtl B, (0) sP(O) B,(0) &5 (t)
first order term and write

' 2
M

2. 2
M2/ v 0 =™ - (ﬁp(o) BP(O) sp(O) g/l6ns%>‘/‘2

(B0 (O)B (0) al
(2" (D e

Equation (16) becomes

Even though in the reactions we will be considering tmin is so small

that one ca_n approximate the exponential by 1, we will keep the

1+ [c + 1og(i§)] t .

- x -e(c+log(s/M2)>_t

Let us first assume that gppp(t) = constant = g and define

c flog(-}-}

Upon performing thé M2 1ntegrafién we obtain

i



: Gppp(t) = a't for small t then the zeroth order term in t
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, 2
0 o} 0 1
U_SBD()BP()ﬁP()gS {:log(—)-ug)\-—Ml—+l

>\-1\

=)

161 s

. where we have used Eq. (16a), neglected m° with respect to M?, and

we have defined

We see that as s =% and t -0 0. does ndt behave as

ap(o)fl
¢ = const. x s

because we have an extra factor of 1og(log s) Ai.e., . log b coming

~ from the zeroth order term in tmin'

' On the other hand, had we assumed that gppp(t) -0 as t -0

we would not have encountered this problem. For examplé; if we assume

min
(denoted by 00) becomes

N

which does have the right asymptotic behavior (again, the first order

a (0) aP(O) B (0)

term in tmi poses no problem, as the reader can easily verify)
Finally, in the next chapter we will see that'uhen we try to
calculate the contribution of the p-P cut to thé togéi aN cross
section, the integrals.involved diverge, unless gppp(t) vanishes at
least as t& (e > 0) when t =0, and furthermore, analyticity

excludes a fractional power behavior as t - 0. In view of all the
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reasons mentioned above, we believe that EQ.(13) is very likely to

hold for small +t.

Let us now estimate the value of a'. It is a matter of

straightforward algebra té show that the product of the

| p and P
signatures gives
_ - sin[ - a 2] .
vRe{gp(t) ,gP*(_t)}. - ﬂ(ap )/]
(cos( —9> sm( %))
vwhich for our trajectories gives
Re(t (t) gP‘*(,t)) Y for small +t.
Therefore,
ColnT; rf-lp) - o(x’s «tlp) = K’
o ap(t)«x (6)
= P
<16 2) mp( ) B (8) B (0) & (t)(M2
a (0)
(o) °
On the other hand; from the date on Regge residue522 we'know'that

2t 2
Bop(t) B () @ €, where t is in gev,

©K' = _L . | 2t s 1.5+t
"t : (hn82> ﬁ’mP(o) Bnnp(o) E'ppp('O) e gPpo(t( M"E

x of)E
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s0 that if we call where x 1is the well-known Feynman variable x = (P'/P. ) and the

o asterisk represents c.m. quantities. Since from kinematics,
K = K'|at]
It . | . 2
mn g'_o_.= dUdt_ b1 F
’ af atad s(x)
’ all t

and use Eq. (13),

K 1is obviously just the difference between two F distributions, and.

K = -(l/hnse) B8 P(o) B, (o) B (O) 55/2 (M2)-l 1. , it turns out that we do have thé data w'e<need25 and we can estimate
. ot o . _ _
a'. The data are presented &t Py ~ 8 GeV/c, and what is given

x {f exp[(@og(s/Me) + 2+ i)t]/(;og(s/me) +2 4 i) : . is the F distribution for each reaction as a function of x. Due

' to the fact that the difference

2 . —®
- exp[(log(s/M ) +2+ T)t]/@og(s/Mg) +2 4+ *r)e » . o . 4
A bt ‘ o(x5 n7|p) - o(x*; x*|p)
: min

Finally, from the inclusive kinemgtics, for these particular reactions, . is comparable ﬁo‘(and sometimes even smgllgr than) the experimentai

error in the distributions themselves, our estimate for a' is very

<M2 ) ( > ' rough. Furthermore, since we would like to keep M2 large and -
q £y

s/M2 large, and at the same time p(x~; n~|p) - p{n*; n*|p) 1larger

so that if s/M‘ is 3 or U, we see that tmin ~ 0 and then than the experimental errors, the range of data we can use is greatly

restricted. For x > 0.8, the experimental errors are as large or

1 2 - larger than the difference of the distributions; while for x = 0.6
ko= e 08 (0) 8, (0) 520 e/l 5 v 2 92 . ser P o

s s -s/M2 is already becoming small (s/M2 ~ 2.5). Therefore, we choose
(7) = 0.7 (i.e., M2 = b.5b GeV2, s/M2 = 3.55) for our estimate. We

Notice that for a certain value of K, |a’| increases as ¥ mention that estimates of &' at.different values of x are consis-

increases. ) ‘ il tent with the values of a' obtained at x = 0.7. )

From the above, we see that if we know K we can estimate a'. From Eq. (17) eand the experimental data we obtainl

A quantity usually measured in inclusive experiments is - “ o

—— B - - - E - - h — —

a'/(}og(s/M?) + 2+ i)e = 0.92 + 0.69 GeV

)



which gives

a' = -9.61 7.2 GeV_u for FY =0
a' = -16.5 f 12.L4 Gev'LL ' for v =1 |
a' = -25.h.119.0 cev for Y =2
a' = =36 27 Gev'LL , for Y= 3‘
.etc.

We conclude this chapter by reminding the reader that with
our conventions, gppp(t) is in GeV-?, and our normalization
coincides with that of Rajaraman,eh and also by mentioning that even

though the errors are very large, our estimate will still enable us

to study the p-P Regge cut in the next chapter.
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III. AN ESTIMATE OF THE P-p CUT FOR N SCATTERING

Regge cuts have been discussed in the past by many authors,25
and more recently, a great deal of interest has arisen in actually
trying to obtain the magnituée of the discontinuiﬁy across them and
apply this result to phenomenological anal'yses.26’27

In the present chapter we will assume that Gribov's formula28
holds for the P-p cut in xN scattering, and using this formula as .
well as our resulfs of pré&ious chapﬁens we will try to estimate the
contribution of the cut to physical observables like the total cross

section and the polarization in xN charge exchange scatterihg. Our

calculation is in a way similar to that of Muzinich et al.,27 50 we

"urge the reader to femiliarize himself with this work which is

particularly useful to us because it also contains a very detailed -

derivation of Gribov's formula for the discontinuity across the cut.

A. An Estimate of the P-p Cut Contribution to the
Total N Cross Section

Gribov's formula for the discontinuity across a two-reggeon

cut is derived by studying the asymptoticvbehavior of the Feynman

‘diagram shown in Figs. 9§ and 9b. There is no proof that this formula
holds for strong interactions in general, since it was derived‘only
for a particular Feynman diagram. However, we will assﬁme that
Gribov's formula is valid for the p-P cut in xN ‘scattering (see
Fig. 10). We shall Qot derive the formula in the present work, but
we refer the reader to the paper by Muzinich et a.l.27 as well as the
review article by Collins.29
A few comments are in order at this point. Some authors

disagree with Gribov's sign for the discontinuity across a two-reggeon

cut. Abarbanelio isolates N-reggeon irreducible amplitudes using the
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unitarity relation and the multiperipheral model of production and

2,
obtains a sign opposite to that of Gribov. Chew)l

argues on physical
grounds that Abarbanel's sign is correct. On the other hangd, White32
seems to agree with Gribov'é sign by d§ing an independent calculation.
The basic difference between reggeon calculus and field theory computa-
tions, ahd the simple unitarit&.construction thréugh pble contribﬁtions
is that reggeon calculus and field theory calculations sllow considersa-
tion of two-reggeon contributlons to the full elastic ‘amplitude, and
the total dlscontlnulty of these amplltudes 1ncludes ‘terms which do

not arise in the unitarity construction.35

Let us now return to our estimate of the p-P cut. In what v

follows, we will use the usual A' and B amplitudes for N

scattering as defined by Singh.3h In terms of A'

quantities are given by

op(s) = 2Ima(s, t = 0) (18)
P
do 1 m 2 t 2
lst) = S\ 1-—5 ) lal
. Lp ) hm / )
(_t2.> _(hig___)_ | (19)
Ay -t) .
»*
B(s,t) = sin 9 Im(A BY (20)
l6nsz
where s 1is the invariant square of the total energy, p is the

pion lab. momentum, p*. is the c.m. momentum, © is the c.m. angle

‘and B, experimental
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m is the nucleon mass and P(s,t) is the polarization parameter

defined relative to the normal 5} X 5} where p; and Py are the

initial and final pion momenta. The contribution of the forward cut

to Im A' is given by27'29
0 .
In AL (s, o) (ﬁ)[ at g (6) Ny () Npy | pN(t)v
. ap(t)ﬂp(t? | |
X E— ) (21)
o/ |
where27’35
B ()spp(t)
, =2 2
NPn—) pn(t) = f AP:r—’ pﬁ(M b)) aM _-‘1 +a F(,g§ ap(t) -Qa ﬁ
. o b : e
1+ (0 t)a (t) o
) +a (0) o )-qp( ) (2)
-2
Yo 0
- _ B (0) (t)
NPN—» pN(t) A]'»"N-_—» pN(M2 ’t) dM2 Ol gp

1+a (0) - aP(tI -Q (‘7

5 iﬂb(O‘)-aP(t)*ap(t),‘

X @) P (o)

Here M~ = W - t - mﬂ2 (M is the missing mass) So =1 GeV2,

B and B

ot are the usual nonflip two-body residueé, and
n .

pNN

) > Re(tt ]

PQ:
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where gi is the usual signature factor. The sbsorptive parts of the

Prx —»pn and PN —oN reggeon-particle amplitudes are represented by

T ! %2 .t), respectively; N can be
%ﬂﬁpﬂ(M ;t) and APN——M:JN(M :’): b H
» recognized as the residue of the nonsense wrong-signature fixed pole
in the appropriate‘ reggeon-particle scattering amplitude at
v e J = O(.P(t) +a (t) - 1 (for forward cuts both reggeons are at the
P

s 35
same mass). Equations (22) and (23) are obtained from the FMMSR.

Notice thaf, the integrals involving gPpp(t) diverge unless gPpp(t)
vanishes at least as € (e >0) when t =0, a res-u_lt we mentioned
before. |
Since we are only interested in a rough estimate of thé cut,
- we will make the following approximations.: We assume otp =0.5 + t,
30 = ;.56 Then, | ‘

-y,

{cos ”(aP + ap)/2 - 4 sin x(op +ap)/2]
i -

o gpg = = <
3 p .
: i sin —ﬂ:g cos —29-

1,

S so that

sin 1(((1P + ap)/2

~ -l for smell t;

, Rele g ) = -
_ Pp’ o
= _ ' sin—ﬂz.gcos—gQ

-y on the other hand, we will assume that APn-) or is dominated by the

syt pole, and APN——) oN

mind, we can write

is dominated by the N pole. With this in

- =2

A (B2 ,t) aM° = By (t) B (%) (2ha)
Pr Prxt prst
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N’ |
’Jr Aoy 7 78) = Bo(6) B () (o)
0 .

and choose 1\7102 =1 in the rest of the calculation. Equations (2ka)
and (24b) might seem a little bit surprising, for example one might

ask about higher contributions like A and A, in Eq. (2ka) or,

1
N contributions to Eq. (24b). Let us therefore -forget about the cut
for one moment, and show that Eqs.(2ka) and (24b) are indeed a
reasonable approximation. TFirst, let us calculate the contributions

of the A, and A, to the integral in Eq. (24&). From the data of

1
Antipov et a.l.lb' we know that for the reaction x~p —>A2-p the cross

section can be parametrized as

- et with B = 8 GeV'2 and A=9ooub/Gth.

Analogously, for the reaction =x~p -»Al'p one has .

%g = ae®™  with b =6.7GeV? and a = 218 wb/Gev:.

We immediately see that ‘Ag Vprodﬁction is dominated by the flip

amplitude, and for small t the -A2 confcributiéﬁ is expected to be
negligible. 1In oz;der to estimate the Ai
a logical (although phenomenologically unfounded) extension of Carlitz-
37 '

contribution, we shall use
Green and Zee's P-P' universality.”' Using the same notation as in
Chapter I for Regge couplings, we will assume that
-+
(= Al P) (ppP)

-+ = ~ 1l . v (25)
(«"a,'P')  (ppP') g
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Furthermore, we saw in Chapter I [see Eq. (10)] that in the exchange

degenefate case
.
(opP" ) (x A, P")

k= = 5.5 . . (26)
" lome) A )

Since Antipov et al.'s data are measured at s = L0 Gevz; we will
assume. that P-~exchange dominates differentiel cross sections, so that

at t =0~

Feron® = osser™ - () [ REm)

from here and the known value of ppP’ we can calculete (“-A1+P)
(up to a sign) and then using Eqs. (25) and (26) we can estimate

(pn-Al+). In our normalization we find
(Prx)(pnn) = 34 while [(Px A ")(on"A,")| ~ 0.k

By an entifely analeogous reasoning, the A2 contribution
to Eq. (2ka) is also shown to be negligible:
|2

Ipn-Aé+ - 0.61

' *
Now, regarding the N contribution to Eq. (2Lb), from the data of

»
Foley et al.58 for the Roper N (1400) production the cross section

is given as

%—i—’ Qr_p - n'N*(lhoo)) o 6.k x 321t G

%% G'p - ;:*'N*(luoo))’ - 6.2 x PO gey

~40-

s s 31 GeV2. Therefore, at t = 0

do
at

(x D >x N9 (%;{-)lfp + fp(l + k)' s.-%l2

. .
%g (=D - «'V¥)

"

1 42
(m)lfp + fp(-l +k) s 2|

where we have assumed aP,(O) = ap(o) =1/2, we-havé'writtén

= (xxR)(NN*R) for any reggeon R, and we have defined

H

P,
f
p

k =

P

If we now use universality again (i.e., f. i~ P') ve have
do , - - o , +  + # -3 -1
167({&—1_: (xp>n N*)-_R (n‘p —)‘ﬂN) s ka[fp(s2+s ]

Since"fP is known, we can calculate fp and we. find

(MNP)(NNp) ~ 35

lowR) (W o) [~ 0.36

* ;- )
so that the N contribution to Eq. (24b) is of the order of 1%.. The
contributions of othér_ N resonances turn out to be negligible too,
and actually even smaller than the contribution of the N (1400). - For

example, by using the samevreasoning as-above we find for N*(i600),
» *
[(MNP)(NN p)] =~ 0.26

™ v : »
and so on. Actually, for N (1400) one can estimate (NN p)
: »
independently from the N production charge exchange data,Bg—and
the result is identical to the one we just mentioned. Therefore, we

feel that BEq. (24) is a reasonable approximation, and we can now get

back to the estimate of 0, = p x Im Al (s,0).
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Once Eq. (2L4) is established, we see that knowledge of
gPpp(t) is all we need to calculate O, and this is precisely the
triple-Regge residue we estimated in Chapter II. Since the experimen-
tal errors in the determination of a' are fairly large, and we do
not know the value of ¥, we present bur results as follows: we
choose a' = -9.6 GeV_u which is the central value for y = O, (see
our discussion at the end of Chapter 2), and then we plot the ratio
(Uc/opole) as a function of s, for diffefent,values of 7.

Here Upole is the p-pole contribution to thé 7 p - total

cross section. We should mention that in our calculation we have

parametrized the two-body Regge residues as simple exponentials:

' 2t
BPNN(t) = BPNN<O) €
t
Ponnlt) = B (0) e
BQNN(t) = BpNN(O) et (nonflip residue)

B () = B (0) &

P

This parametrization is consistent with the Regge fits we are using“g .

and the fact that we have simple exponentials will become extremely
useful.for computational purposes below.

our result# are shown in Fig. 11. We have not said much
about the a' dependence of the cut yet. We will talk about it in
detail after we calculate the polarization for =N charge exchange
scattering. 1In the meantime, let us see what happens vhen one wantg
to calculate the contribution of the cut to ihe B amplitude, what

to do about nonforward cuts, etc.

Lo

B. Calculation of Nonforward Cuts
Whén we wish to calculate other observables, like for exzample,
the differential cross section or the polarization we must know the B
amplitude also. Calculating the forward contribution of the p-P cut
to the B amplitude does not pose a big problem. We can write
equations entirely analogous to Egs. (21), (22), and (23), with the

only basic difference that we take the to be the flip residue

Bom ‘
instead of the nonflip residue. For example, if we define

M=l
Eom = Ponm

question, we have

where h 1is the change in helicity at the vertgx in

l 1 » 1 t
v Im Bcut(s’o) = 32ns s NPﬂ—épn(t) NPN;*pN( )

-00

. laP
]
X S—
(; O;)

(8)10c (£)

" where v B and,

N! (t)

Pr— ox

Npﬁ_,oﬂ(t) ~ ,apﬂﬂ(t) B o t)

1+d (oj (t)= (t).
5p“ﬂ(0) gPQF(t) . o) *1P fo)

SR R e N ) (M,")

and,

, o () 25 7 (¢)
Nopo on(t) = Zppy(t) Bl (E) - T a_(0) - ap(t) ~ o (e

» l«xQ(O)-ap(t)«xp(t)
x (M)
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Again, can be approximated by a simple funetion. It turns out

1
BpNN
that

' (t) = constant
Bam(t) | K
is a good approximation for small t.ho This approximation will of

course break down for |t| near 0.5 Gev?

since we have not included
the usual nonsense wrong signature zero whem «  vanishes, however,
the approximation is fairly good for, say [t] < 0.3 GeVz.

So far, we have been able to calculate forward cuts in terms of
fairly simple functions, and integrals that éan be done analytically.
On the other hand, we know from kinematics that the polarization
vanishes at t = 0, therefore we w6uld like to calculate the contribu-
tions of nonforward cuts to the A' and B amplitudes. This is &
slightly more complicated problem, however, we shéilisoqn see that
as long as all oﬁr Regge residues are exﬁressed in'terms of
exponential functions, we still get an analytic expression for the
cut.

.When t # 0, instead of having a single integral over t, we

27-29,41

have a double integral. Let us forget about factors

multip;ying the integral, and just say that we have an integral of the

form

H(t) = (%) fdtl fdt2 8(-2) [A(tl,t2,t)1"5' g, (%) 8,(t,)

(27)
where

- . ) -
A(tl,tz,t) = + 27 -2ttt att,

The functions and g, are

&1
Egs. (22) and (23). Therefore,

T, t,
i°i
gi(ti) = €
Equation (28) only reflects the
Regge residues by exponentials,
expression for the integral in
be able to calculate nonforward

In order to evaluate the

following change of variables:

(tl + t2) N .
_—-2__--K = uj

22 -1 - 0, we have

0 +1
H(t) = (3) du

J o -1

Lly-

essentially the N functions of

let us assume that

i=1,2 . (28)

fact that we can approximate all our
so that if we can obtain a‘clOSed

Eq. (27) when Eq. (28) holds, we will
cuts analytically. |

integral in Eq. (27), let us make the

%
tl =u+g+ (ut)2 2

(t; - tp) | :
—l-——%—=z’ t2=u+;i--(ut)%z
(2(ut)2]
which implies that
N
(l - 22)% _ ['A(tl:tzyt)]z
[2(ut)?]

remembering thet the phase space boundary is given by A = 0, i.e.,

4z g, (t;) gy(t,)(1 - 22

which upon substitution of Eq. (28) becomes,



1e

\ =h5e
0 +1 P
H(t) = 1 du ——JE§——-T exp;(r + o )lu + t)
n 2,2 1% |
(1 -2z%)
-0 -1
3
+ (ut) (ri - Yé)z
o] p 7 i -
(7, +7,5) (utt/h) (ut)2(1, -1, )cos@
172 1 12
= e x - ag e
ﬂ
- 0
where z = cos §. Put now u = -v, all the integrals are knownh2 and
we have
o« B
=(r+1,) (v-t/k) 1
H(t) = . 1o0(7, - 1,)(~vt)?]
0
- 5 -
y (r=1)°t
LSRN Wy
= ——
ntrn
so0 that finally,
YiYé'
eYi+7é - : : . v
H(t) = ——r . ' (29) -
ntr : ' .

Equation (29) is preciseiy what we wanted. It tells us that as long
as we use exponential functions, the only difference between forward
and nonforward cuts is the extra "nonforward correction factor"
LR
71+Yé
e We are not quite done, however. 1In Egqs. (22) and (2%)

we were able to use the triple-Regge residue of inclusive reactions,

because the calculation of a forward cut guarantees that the mass of

L6

one of the three legs in a triple-Regge coupling is zero. When we

go to nonforward cuts, however, this is no longer true, and the use

of the triple-Regge residue of inclusive reactions is no longer
Jjustified. Since we are interesfed in small values of t,

(]t] <0.3 GeV2), and we have to make some assumption about the value
of this triple-Regge coupling, we will assume that fhe coupling is the
same even when all three teggeon'masses are nonvanishing,.in other

words, we will keep on using gPpp as the coupling, even though as
we said before this is not justified.
C. Estimate of the Polarization for

n~"p Charge Exchange Scattering

We have seen in the former section that we are able to estimate

" the contribution of the p-P cut for both the A' and the B

amplitudes as long as t is small. In this seétion we will assume
that the polarization in x~"p charge exchange scattering is produced
by the combined effect of the pspole &and the p-P cut,hB so that
once we know the cut contribution to the amplitudes we can immeéiately

calculate the polarization from Eq. (20). Our results will obviously

depend on the value of T we'choose, and furthermore, théy are .

© extremely sensitive to the value of a', as can be seen by'recalliné

from Egs. (21), (22), and (23) that the cut contribution to the
'amplitudé has linear.as well as quadratic terms in .a" In fact, thés?
terms have opposite signs, so changing  a' will greatly affect thg
cut contribution, and perhaps even the sign of the cut contribution.
This effect is further enhanced by the fact that in Eq. (20) either
products or squares of amplitudes appear, so that one has terms of

order as large as (a')h, and several terms have opposite relative
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signs. We also notice that as |a'| beéomesllarger_aﬁd larger, the
quadratic terms in a' must dominaterthe ampiitudes, and then the
amplitudes become so large in magnitude that the cross section as
calculated from Eq. (19) becomes much larger than the experimental
value. In particuler, if the cut contribution to the B amplitude

is too large, we see from Eq. {19) that as t goes away from zero,
do/dt will become too large, and this might bring down the value of
the polarization considerably, as soon as we move away from t ; 0.
This phenomenon can actually be seen in the graphs that we will present
shortly. 'We also remind the reader that_if we decide to calculate the
polarization for -t « 0.5 GeV2, our aﬁproximation for ‘BANN. breaks
down, and again 949 from Eq. (19) becomes too large. Therefofe, the

dat
predicted polarization beyond say -t = 0.3 Gev2 cannot be taken .
seriouély. | . ;
As for the s-dependence, our model predicts.a decrease
proportionel to {1log s)-l as s increases. '

- Because of ourvuﬁknowp parameters, as well as all our
assumptions, we do not feel that it is usefulvto present very
detaiied numerical predictions. Instead, we present the results at
Prap = O GeV/c -fdr several.typical values of é';_ Y, andv t in
Fig. 12. We see that it is possible to obtain a faiily goodvfit to
the data. We have also compared the éross sections to those of
Glacomelli et al.™ For the highest values of |a'| vpresented the

predicted-cfoss sections are too large. However, when we get a good

fit to the polarization data, the cross sections are also reasonable

(say, within 30% of the experimental data). 8ince in terms like

18-

oo sin(x(a - @ )/2) : |

In € (8.t pr =
B c
(COS 5 cos T

the slope of the pomeranchukon trajectory is im.portant,LS we have
taken Qb =1+ O.}t._ Notice that this affects very little our fo?mer
estimate of the cut amplitudes}.56 -

The experimental data shown in Fig 12 are thosé of Yokosawa,u6

and we see that the s dependence of our model is also consistent

with the data (see Fig. 12¢).

e
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CONCLUSION
We have studied the possibility of the existence of NWSZ in
inclusive reactions in Chapter I, both in specific models as well as
in & model independent way. 1In particular, we showed that it is very
likely that . gppp(t) has a NWSZ at ¢ = 0. With this basis, we

estimated gPpp(t) for small t in terms of an unknown parsmeter ¥

and a parameter a' which is determined up to order of magniﬁude only,

due to experimental errors. Then, in Chapter III we showed how to esti-

mate the p-P Regge cut contribution to nN scattering in terms of
gPpp(t) and under certain approximations we estimated the polarization
for x"p charge exchange scattering. We found that it is possibie to
-get a fit consistent with experiment for certain values 6f Y and a'
whichAafe also consistent with experiment. Even though our calculation
is very rough (and we caution the reader not to take our numbers too
seriously), we feel that the resﬁlts are encouraging, even though much
work needs to be done both, theoretiéally and experimentally to
determine whether Gribov's formula is valid in general, and whether
the 5 p —»non polarization is indeed produced by the type of pole-
cut interferenqe we have worked yith. ) |
Mpré important thaﬁ the precise numerical resulté however, is
the fgct thﬁt we have shown the possibility that triplé-ﬁegge residues
might be very closely conhected with physical observables (like the

polarization) in two-body reactions. This we feel is our most

interesting result.
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FIGURE CAPTIONS
Diagram for the reaction a + ﬁ - ¢ + x 1in the triple-Regge
region where c¢ 1is a fragment of b.
Dual model diagram used by Gordon and Veneziano to obtain an
explicit formula for the cross section.
Féynman diagram that gives an explicit expression.for the
single particle inclusive ampiitude in the triple-Regge
region.
Triple-Regge diagrams where a NWSZ is expected.
(a) Diagram obtained by subtracting p(p; p|x*) from
o(p; pln7). »
(b) Two of several nonleading diagrams obtained by subtrac-
ting p(p; plx*) from o(p; plr-)-
Quasi-two body reactions used to saturate ﬁhe z.h.s. of Eq.
(7). |
s-channel exotic reactions and exchange‘é§genéiacy conditions
they imply.
of mass u

A particle ™" colliding with a particle "a"

of mass m, and fragmenting into a particle "c¢" of mass p.
(a) A diagram vhich when summed over all possible numbers of
rungs gives rise to a Regge cut.

(b) The Feynman diagram of Fig. 8a with the ladders

replaced by Regge poles Rl and R2.

o=P cut in N scattering.

Ratio of o pole to p-P cut contributions to UT(n-p)» as

a function of s and 7.

Fig. 12.

~56-
x°p charge exchange polarization data, and predictions of
our model. (a) for v =2; (b) for v =1; (c) experimental

data at 8 GeV/e.
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Finite-Energy Sum Rules and Fixed Poles for K +p Elastic Scattering*

M Dubovoy -
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 1 October 1971)

Assuming that exchange degeneracy is exact, the residue of the Pomeranchukon trajectory
for K*p elastic scattering is calculated from finite-energy sum rules and the low-energy

phase shifts.

It is shown that in order to be consistent with some recent results on s-chan-

nel helicity conservation for Pomeranchukon-dominated processes, at least one fixed pole
must be included in the B amplitude, and in particular, this consistency is achieved by in-

troducing a fixed pole at J=0,

1. INTRODUCTION

It has been suggested by Gilman ef al.! that s-
channel helicity conservation might be a general
property of all Pomeranchukon exchange ampli-
tudes.

Furthermore, some recent work by Langacker?
shows that s-channel helicity conservation is very
likely to hold approximately at high s for elastic
processes, as a simple constraint of parity conser-
vation and unitarity. If one assumes that exchange
degeneracy is exact, one has only Pomeranchukon
exchange in K 'p elastic scattering, and therefore
this process seems to be ideally suited for study-
ing s-channel helicity conservation. We will as-
sume throughout that the Pomeranchukon is a sim-
ple Regge pole, and that the trajectory is given by

ap(t)=1. » 1)

The whole analysis has also been carried out using
a slope of 0.3 GeV ~? for the Pomeranchukon tra-
jectory®; however, the final results are practically
identical to those obtained by using Eq. (1). This
implies that even if the Pomeranchukon cut is in-
cluded, our conclusion remains unchanged.

I1. ANALYSIS AND RESULTS
A. Amplitudes and FESR

We employ integer-moment finite~energy sum
rules (FESR) of the standard form.* The notation
for the kinematics of the reaction K*p -~ K 'p is
shown in Fig. 1. The amplitude can be written in
terms of the invariant amplitudes A, B as

M(s, t, W) =u(@' ) [=A(s, t, )+ 3iy - (a+9')B(s, ¢, w)]u(p).
Here the differential cross section is given by

da_.____ 2
dtf ~ 6dnsp? M.

It is a matter of straightforward calculation to -
obtain the s-channel helicity nonflip and flip am-

plitudes
o = —co536 [2mA + (2Est/? - 2m?)B), @
: 2
g..=~sinz0,(2EA +2mwB),

as well as the ¢-channel helicity nonflip and f11p
amplitudes

AI
Ses =)y E

¢1/2 (3)
RAS T

where E and w are the c.m. energies of the nucleon .

and the kaon, respectively, and ¢ =42p,%q,*sin?¢, is
the Kibble function. We have introduced the defini-
tions

A =(4n? =1)A + m(s = u)B. . 4)

It is convenient to use the variables v=s—u/4m
and ¢{, Amplitudes with even or odd behavior under
v— —v may bé formed in an obvious way,

APy, )=3[A' (v, 2 A' (-, 1)],
B3, t)= 4 B(v, ¥ B(-v, 1)],

and one can derive the followmg sum rules for
these amplitudes®:

1 U1 n+1 () y
—rs f V" Im A v, Hdy
o

v, o .
53 a(t) (v \s®
T af(t)+2n+2\p, ’

(5a)

where the a;(f) are all the Regge trajectories con-
tributing to the amplitude A’*), and where v, is
just a scale factor. Analogously,

1 vy n . _ a{(t) Z_l_ o (t)

v 2n+1-/0. 4"ImA (V, t)dV—Z‘ a"(t)+2n+1 Vo ’
(5b)

1 no Y _ bi(t) (v MO
y zR-lo‘ 14 ImB( (V, t)dll-—-‘z ‘m(V(,) ,

1

(5¢)
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K+

Proton

FIG. 1. Kinematics of the réaction. u=kaon mass,
m =proton mass.

and
1

2n+1

) .
f ' B Im BN, tdv
Yy °

_ i) (n\®
_Z‘.:a{(t)i+2n+l<v—o> ’
(5d)

The amplitude A’ is given by 4’=4"" + 4", so
that one is tempted to simply add (5a) and (5b) to
get a sum rule for the full amplitude A’; however,
one immediately notices that whereas (5a) involves
an odd-moment sum rule, (5b) involves an even-

moment sum rule. This problem can be overcome

by taking a wrong-moment sum rule for one of the
amplitudes (say, A’C) and allowing for the possi-
bility of nonsense-wrong-signature fixed poles.”
We would like to remind the reader that a fixed
pole in the partial-wave amplitude at a nonsense
value of J with the wrong signature has no effect
on the asymptotic behavior of the physical ampli-
tude.

When we write the sum rule for A4’, we will have
contributions from both o; and a; as well as con-
tributions from the fixed poles, and due to ex-
change degeneracy the contribution coming from an
a] will be canceled by the contribution of an ex-
change-degenerate partner «;, except for the
Pomeranchukon contribution, which is the only one
that survives. The sum rule is therefore simpli-
fied and it reads

1 “1 R
S,= —amrg f V2" Im A’ (v, f)dy
8! 0
R : ap(l) <ﬂ>UP(I) .
T ap(t)+2n+2 \y, +F.P. (6a)

Here F.P. represents the fixed-poles contribution,
which we have not written explicitly since we will
discuss it later. Similar considerations lead to

-

<t
q

(wrong-moment sum rule for B©)
L m | )
S!= -?f Y ImB(v, Hdv
WwJe

_bp(t) [\
-—Lap(mz"(u—:) +F.P. (6b)

It is worth mentioning at this point that the possi-
bility of fixed J-plane poles not associated with

“the third double-spectral function at right-signature
- points has been proposed by Finkler.®! These poles

do contribute to the asymptotic behavior of the
scattering amplitude, and in particular to the real
part of the physical amplitude.®~!® Unfortunately,
from our FESR formulas [for instance (6b)] it is
impossible to tell whether F.P. is generated by a -
wrong -signature pole in B or by a right-signature

pole in B™.

B. Input

We use as input the low-energy phase-shift anal-
ysis of Kato et al.** (hereafter referred to as
“Yokosawa’s solution”), which seems to be the
most recent and accurate at present. In particular,
we use their solution I, which seems to be favored
with respect to solution II.!% In this solution the
S, /, phase shifts are repulsive.

Since attractive S, ,, phase shifts have also been
proposed in the past, we also performed our anal-
ysis using solution II of Ayed e! al.'® (hereafter re-
ferred to as “Bareyre’s solution”), which is a
typical solution of this kind, and has been used by
Meyers and Salin in their work on K "p scattering.!”
This solution, however, does not show the correct
threshold behavior, and furthermore is incompati-
ble with forward dispersion relations.'®

In the case of Yokosawa’s solution, a linear in-
terpolation for the phase shifts has been performed
between 6, = 0 at threshold and 6, at p,, =0.52 GeV/c,
which is the lowest value of the momentum in
Yokosawa’s analysis. This interpolation is con-
sistent with S-wave dominance and k#%*! behavior
of phase shifts at low energies, and as a matter of
fact it turns out that the contribution from the low-
energy part of the integrals in the FESR’s is quite
small, and therefore the results are insensitive to
this interpolation.

The cutoff values used for the upper limits of the
integrals in the FESR’s are those values of v cor-
responding to (a) p_ =2.53 GeV/ in the case of
Bareyre’s solution, and b) b, =189 GeV/c in the
case of Yokosawa’s phase shifts.

C. Results Neglecting the Contribution
of Fixed Poles

Throughout this section, we will assume that the
fixed-poles contribution is negligible in all our sum
rules, and we will do our calculations using S, and

_nL-
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S! in (6). To leading order in s, the condition for
s-channel helicity conservation is that the ampli-
tude A vanish, or, from Eq. (4), that the energy--
independent dimensionless ratio

REM?I. v ' (N

AI

In the case of Bareyre’s solution, and for small ¢,
we obtain R~ 1. A plot of R for different values of
¢t is shown in Fig. 2 for Yokosawa's solution. The
values of R for Yokosawa’s solution are clearly in-
consistent with s-channel helicity conservation.

As we will show later, however, different moment
FESR’s are not compatible with each other unless
one introduces at least one additional J-plane sin-
gularity. :

D. Results Including One Fixed Pole

If one assumes that there is only one fixed pole
in a certain amplitude, one can in principle calcu-~
late its position and residue by using different
moment sum rules; however, in practice this met-
hod is highly unreliable because one has to calcu-
late certain ratios that are very sensitive to small
errors in the sum rules.!® Therefore, we will not
attempt to calculate the position and residue of the
fixed pole in this fashion.

On the other hand, we can still estimate very
roughly the magnitude of the relative contribution
of the fixed pole to the sum rule as follows?®:
Assume that the fixed pole has a trajectory ¢ and
a residue y. Let us also assume that €#0. Then,
using the fact that a(f)=1, from (6) we have

roprp e X[y
So=b @ l’04’5("0)’

aip Y (¥
=00+ ().

so that the quantity

1.0 T T T T
0.8+ .
R
0.6
0.4
0.2 L 1 i Il
o] O.l 0.2 0.3 04 05
-t (Gev?)

FIG. 2. R as a function of ¢ for Yokosawa's solution
I, without including fixed poles.

3s{ -S4 :
3S; +S; - '
should give us a good idea of the relative contribu-

tion of the fixed pole to the B amplitude. The same
argument holds in the case €=0, for which

i

B R.C

Si=0p(02 +7, . - ®
[

S=bp() k. (9)
3y,

By the way, from the above formulas we see that

if there is a fixed pole at J =0 in B, one should use
the sum rule S and not S;.in computing b,. It is
now obvious that for A’ one has a relative contribu-
tion given by ’

, _3850=55
RC. T BS, +3S,°

The results are shown in Fig. 3, and it is evident
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-1
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R.C. \\
=0.2r Borey've
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6 4 1 1 i
0 0.10.20.30.40.5
-1 (GeV?)

FIG.3. (a) By 8sa function of ¢. (b) A
as a function of ¢.



that there is a negligible relative contribution to
A’, whereas there is a very sizeable contribution
to B, for both sets of phase shifts.

One might interpret this contribution as coming
from broken exchange degeneracy; however, the
very flat K *p total cross section indicates that ex~
change degeneracy holds very accurately for this-
process (at least at £=0). _

An alternative interpretation (which, by the way,
happens to be consistent with Finkler’s predictions)
is that the additional contribution comes from a
fixed pole at J =0 in the B-amplitude sum rule;

i.e., we use (9) to calculate b,(¢), and combine this
with (8) to obtain y. Once these quantities are
known, one can easily calculate R [see Eq. (7)] by
using the asymptotic behavior of A’ and B in Regge
theory. Furthermore, one can calculate the ratio
[see Eq. (2)]

R 8e=/s2sini6,
&++/co8%0,

Xm

for any large value of s. We show our results in
Figs. 4—6. All the results are shown at the cutoff
value of the FESR integrals, and in Fig. 6 we also
include a plot of R’ for s=10 GeVZ. Bareyre’s
solution is clearly incompatible with s-channel
helicity conservation. For Yokosawa’s solution,

120 T T T Bl

e}

100

Y (Gev?)

20

A i

L‘ 1

8OO ol 0.2 03 04 05
-1 (Gev?)
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Y (Gev'?)
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1 ) 1
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FIG. 4. (a) Residue of fixed pole for Bareyre's solu- -
tion. (b) Residue of fixed pole for Yokosawa's solution.

- Yokosawo

Bareyre

0.5

o I R B
0 0.1 02 03 04 05
<t (Gev?)

FIG. 5. R as a function of i, including one fixed pole
at J=0,

" Ris seen to be very close to 1, and R’ is very

small and decreasing as s increases, in agreement
with some earlier work on KN scattering.?’ Our
results are in sharp contradiction with those of
Meyers and Salin after we introduce the fixed pole
at J=0. It is now only fair to ask what happens if
instead of using (6), one uses a wrong-moment
sum rule for A’” and a wrong-moment sum rule
for BY. We find that if one does the calculation in
this manner, there is no evidence of a fixed pole at

= -1, and furthermore, all our previous results
are essentially unchanged.

II1. CONCLUSIONS

As we have mentioned before, the repulsive S, ,,
wave solution seems to be favored at the present
time, and therefore we will draw our conclusions

Cutaff

0.2
R .
O -~
. s=10Gev2
0 1 1 A 1
0 0. 0.2 0.3 04 0.5
-t (GeVv?)

FIG. 6. R’ as a function of ¢ and energy in Yokosawa's
solution, including one fixed pole.
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from the results given by Yokosawa’s solution. ‘We
would like to point out that Yokosawa’s solution is
a typical solution of this kind, and very similar
solutions have previously been proposed in the lit-
erature.!” Therefore, we expect our qualitative
results to hold not only for Yokosawa’'s phase
shifts, but also for the other similar S, ,, repulsive
phase~shift solutions.
The FESR’s indicate that in order to have s-chan-
" nel helicity conservation for K *p elastic scattering,
at least one fixed pole must be included in'the B
amplitude, and in particular, s-channel helicity
conservation is achieved by introducing a fixed
pole at J =0. Furthermore, there is no evidence
of fixed poles in A’. Unfortunately, we cannot test
_ Finkler’s prediction, since we have no way of de-
termining whether our pole has right or wrong sig-
nature; and for that matter, we may even have a
combmatxon of both types of poles contributing to
our FESR’s.

' A final remark is in order here. Yokosawa’s
sclution seems to indicate some evidence for an
exotic baryon resonance with strangeness +1. If
this is the case, and if duality holds for this type
of resonance, the fixed pole introduced here may
be reinterpreted as one or more very low lying
ordinary Regge trajectories with fairly large re-
sidues.
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