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ABSTRACT

Generalized optical theoremé and generalized Steinmann relations
for 33 processes are described. These results follow from the field-
theoretic formalism of Bros, Epstein, and Glaser. The theorems express
in terms of physical-region scattering functions the ais¢ontinuity of
any 3+»3 scattering function across any basic cut, which is a channel-
energy cut that runs from the lowest normal threshold to plus infinity.
Previously thesé discontinuities had been expressed, in general, only
in terms of the analytic continuations of scattering functions.

A remarkable property is found: the discontinﬁities have the alge-
braic structure they would have if the basic cuts were éuts in independent
variables. Moreover, a generalized version of the Stéinmann relations
holds: the double discontinuity across any pair of.indépendently—treated

crossed basic cuts vanishes. The original Steinmann relations have a

much narrower scope.



The generalized Steinmann relations are used to express compactly
in terms of physical-region scattering functions any single, double, or
higher-order multiple discontinuity of any 3-+3 scattering function across
any combination of basic cuts, evaluated on any specified side of each of
the remaining basic cuts. All these basic discontinuities are expected
to enjoy Regge asymptotic behavior. Although only basic cuts are mention-

ed, there is no neglect of the effects of other cuts.



GENERALIZED OPTICAL THEOREMS AND STEINMANN RELATIONS
Recent developments in the theory of high-energy reactions have been
ekploitiﬁg>to an increasing extent the physical—region discontinuity struc-
ture of multiparticle scatteriﬁg amplitudes. Thi§ structﬁre emerges from
the basic assumptioné of either field theory or S-matrix theory, and imposes

precise and rigorous constraints on the dynamics of high-energy processes.

This‘line of development was initi;ted by Mueiiefi; who showed in
effect hdwvimpo;tant properties of high-energy inclusive cross sections
can be derivéd by combining the inclusive optical.theorem with the ;ssump-
tion that the basic discontinuities of multiparticlé écattering functions
enjoy Regge;aéymptotic behavior. The inclusive optical theorem, which is
one element of the physical-region discontinuity structure, equates the
inclusive éroéﬁ’section for the process a + b + ¢ +banything to a multiple
of a certain basic discontinuity of the scattering function for the process
a+b+c>a+b+c. The basic discontinuities'aré:discontinuities across
basic cuts, which are the normal-threshold cuts that start at the lowest

normal threshold in the channel energy and extend to plus infinity.

The extensive developments initiated by Mueller's work have so far
exploited mainly the particular discontinuity formula embodied in the
inclusive optical theorem. However, the assumed Regge behavior places

theoretical constraints on all basic discontinuities. These further



constraints have aiready_been partially exploited. For example, DeTar

and Weis2 have used . them, togethet with the Steinmann relations, to deduce
the form of double and triple Regge vertices, and wéis3 has noted im-
portant physical consequences of the associated Régge factorization
property. However, to fully exploit the Regge properfies of all the

basic discontinuities it is probably necess&ry to have expressions for them
in terms of physical scattering functions. For it is these expressions that
directly 1link the theqretical constraints to the:baéic physical and theo-

retical quantities of the theory.

A general formula for basic discontinuities has been derived by us
in an earlier work4, and this formula has proved usefuls. However, it
has three undesirable features: | | .

1) I£ expresses the basic discontinuities in_térms of analytic
continuations of scattering functions, rather than in terms of
the physical scattering functions themseives.

2) It covers, for the 33 caée, only 2282 of thé 65,536 possible
functions.

3) It is an off-mass-shell result.

These three points will now be discussed in more detail.

The first point is that the basic discontinuity equation obtained
earlier generally expresses discontinuities in terms of various unphysical

boundary values of analytic continuations of scattering functions, instead



of in terms of the physical scattering amplitudes themselves. Thus the
formula involves a host of new unphysical functions, namely the unphysical
boundary values of the various scattering functions in terms of which the

discontinuities are expressed.

To avoid introducing these unphysical functions, we have used the

6,7 to express all basic discon-

formalism of Bros, Epstein, and Glaser
 .tinuities of all 33 processes in terms of physical séattering amplitudes
alone. TheldefiVation of these formulas, which are generalizations of the

ordinary and inclusive optical theorems, will be presented in a later work.

The second point is that the basic discontinuity formula derived
earlier covers; for the 343 case, only 2282 of th¢’65;536 possible
functions, as will now be explained. The physical'reéion of an arbitrary
3+3 amplitude is cut by sixteen basic cuts: §ne tbtal—energy cut, three
initiai subenergy cuts, three final subenergy cuts( and nine cross-energy
cuts. If'ohe coﬁld independently speqify’whether the limit was to be
taken from aﬁove or below each of these sixteen cut$ then there would be
‘216 = 65,536 different possibilities. Stated differéﬂtly, if these 16
cuts lay in a space of 16~corresponding dimensions, thén there would be

65,536 functions, one corresponding to each possible combination of sides

of these cuts.



The sixteen basic cuts are not independent in thié sense, for the
sixteen channel energies are linear combinations of the energies of the
six'partiélgs of the problem, and these six energies»ére themselves sub-
ject to the requirement of energy‘éonservation. Qo#séquently, there
are not 65,536 regiéns, but only 2282: the sixteeﬁ ¢hannel—energy cﬁts
divide thé.five;dimenSional space‘of complex energies into 2282 disjoint
regions. These regions are called cells. The Bros-Epstein-Glaser
formalism, upon which the earlier work was based, deals specifically with
those real boundary values that can be defined asilimits taken from points
within these cells. Accordingly, the basic discontinﬁity equation derived
earlier cbvérs only those discontinuities that are defined as the differ-

ences of the real boundary values taken from adjacent cells.

‘This limitation to discontinuities formed from differenees of the
2282 cell fun¢tions is awkward. For it means that before applying the
basic discontinuity formula one must check.tp-see'whether there is a
pair of adjacgnt cells that corresponds to the discontinuity in question.
It turns Qut,'for example, that there is nd‘cell thatilies below just

one single subenergy cut and above all other cuts.

The number of basic discontinuities expressed by the earlier formula,

i.e., the number of pairs of adjacent cells, is far smaller than the number

15 L . . il
16 x 2 that would arise from evaluating the discontinuities across each
on each side

of 16 independent cuts/of each of the other 15 remaining independent cuts.



However, it.is a remarkable fact that the basio discontinuity equations

for the 3+3 case} when expressed in terms of physical.scattering functions,
extend coherentlj:to ail 16 x 215 discontinuities: i.é., if all the un-
physical noundary values occurring in the 3+3 discontinuity formulas are
 expressed in terms of physical scattering functions, then the basic dis-
oontinuity equation, as stated in ref. 4, can be applied to all 16 x 215 dis-
continuities without regard to the cell—function limitation. The many expres-—
sions that can be obtained from these discontinuity formulas for each of the
65,536 functions‘all agree by virtue of the unitarity relations. This means
that the sixteen basic cuts can be treated, insofar as these discontinuities

are concerned, just as if they were cuts in sixteen independent variables.

This_result.implies the validity of generalizeo Steinmann relations.
The original Steinmann relations, which assert that the double discontinuity
across any pair of crossed cuts vanishes, were denived8 in a framework that
strictly_enfo;ces the constraints that link the various channel energies.
Thus the o:iginal Steinmann relations cover only those double discontinuities
that are formed from differences of cell functions. For the 3+3 case, in
particular, the original Steinmann relations cover oniy those double dis-
continuities in which each of the four functions used_to form the double
discontinuity is one_of the 2282 cell functions. .These four cell functions
must correspond to four cells that all lie on the same sides of all the

other basic cuts.



In recent‘work on high-energy scattering procésses important use has
been made 6f a generaiized version of the Steinmanﬁ'telations. In these
generalizéd Sﬁéinmanh'relationsvthe basic cuts are treated as if they
were cutsiin'independent variables and the vanishingYOf the double dis-
continuity aéfoss pairs of crossed cuts is imposed.ﬁifhout regard to the
cell function limitation. DeTar and Weis2 have uéed‘these generalized
Steinmann'rélations to deduce properties of double'apaAtriple Regge
vertiéés. Halliday9 has used them tb check the compatibility of multi-
Regge amplitudes with unitarity. Weislohas used fhém_ﬁo show factoriza-
tion propefties of multi-Regge amplitudes. .Cardyqﬁhd Whitellhave used
them to show that thé Pomeron-particle-particle vérte*Ithat controls

total cross sections need not vanish.

The generalized Steinmann relations can be regarded as an abstraction
from dualérésonance models, in which they hold. _Oi they can be regarded
as appliéaﬁions of a conjecture by Olivelz. However)vthe_rigorous'status
of dual—regonance models is not yet clarified, aﬁd,dlive's conjecture was
formulated”in a framework in which unitarity waSICOnsidered only below the
four-particle threshold, and all non-normal—thresﬁéld cuts were ignored.
Tﬁese appréximations are not justified at high enéréies. Our results show
that the generalized Steinmann relations for 3-3 prbchées follow without

approximation directly from basic field-theoretic principles.



-9~

The géneralized Steinmann relations allow the aiscontinuity formulas
for 3-3 prdcesses to be summarized in a compact‘way.> Let J represent any
subset of éhe set of sixteen indices j that label'the sixteen basic cuts.
By virtue of the independent-cut structure one can define MJ to be the
scattering function evaluated bélow each of the cuts jeJ and above each of
the rémaining.cuts. Here above and below are defiﬂed with reference to
the physical side: the physical scattering function is defined to lie
above all ¢uts; Thus M = M¢, with ¢ the empty set,_is the physical scat-

tering function.

Let Jk = gJulk}. Then the function MJk defined by

M = M -M . (1.1)

is the discontinuity across the cut labeled by k, evaluated below all the
cuts labeled by the jeJ, and above all the remaining cuts. The termi-

nology used here is that apprbpriate to the situatién”in which all sixteen

cuts are independent.

Let K be a set of indices j, and define

J J Jk - (1.2)
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»Theﬁ, by induction on K, the function MJKk is the mﬁltiple—discontinuity '
across ﬁhe Set‘of cuts labeled by the se£ Kk = K\J{k}}fevaluated below
all the cuts lébeled by the jeJ and above all the remaining cuts. As
usual, the multiple discontinuity across a set of.ﬁ cuts is defined to be
the sum of.the-2n boundary values corresponding to}the;regions‘lying on
all possible éides of these cuts, each with a factdt (¥l)m, where m is
the number cuts beiow which the cbrresponding region'iies. Thus a double
discontingify is M(+, +) - M(f, =) - M(-, +) + M(%!h;) , where the sign

arguments indicate the sides of the two cuts.

By writing Eq. (1.2) in an inverted form, one‘may'inductively derive

the'formulé »

. |

J o

W o= Z (=1) "M . (1.3)
JaCJ o

'Hére the sum is over all (empty or nonempty) subsets Ja of J, n, is the .

number of indices in the set T and KJ, = K\JJa.jThis'relation expresses
J 15 . ST

all 65,536 functions M , all 16 x 2 single discontinuities M " and all

of the numerous multiple discontinuities MJK in terms of the physical

scattering function M, the 16 single discontinuitieskmj, and the various

multiple discontinuities M,

3k’ Mjkz' etc. For the 33 case, all multiple

discontinuities Mj"' with more than three indices wvanish, by virtue of
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the generalized Steinmann relations, as do most dduble and triple
discontinuities. Thus Eq. (1.3) expresses the entire set of functions
J ) ' . . . s

- M g in terms  of the relatively few nonvanishing functions M, Mj, Mjk'

and Mjkl'

'Explicit formulas for this small group of nonvanishing functions will
be given later. First, however, the third undesirable feature of the normal

discontiﬂuity'formula of ref. 4 is discussed.

This third feature is that the results are essgptially off-mass-shell
‘resulté. 1In.particular, the primitive domain of andiyticity does not inter-
sect the mass shell. The real physical points lie oﬁ'the boundary of this
domain of énalyticity,'and must be approached thrgugh‘off—mass—shell regions
of analyticity. 1In fact, all of the various physiéal‘and unphysical real
boundary Valués'are expressed as limits of analyii?vfunctions from off-

mass-shell domains of analyticity.

Bros, ﬁpstein, and Glaser13 have made importanﬁ é:ogress in extending

. the primitive domains of analyticity into the mass‘éﬂell. However, we do not
follow that line here, but merely note that mass-sheil analogs of all the
results described here Qere derived from purely S;ﬁ;£xix principles prior

to the inception of the present work. In fact, the é;matrix results go
considerably beyond the results described here. for“in the present work

no analyticity properties are obtained for any of the 65,536 functions MJ
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that are hot among the original 2282. 1In the S-matrix approach each of the
65,536 functions MJ is constructed to have the analyticity properties ap-
propriate to a function that lies below all the basic cuts labeled by jeJ
and abovéfali remaining basic cuts. These mass-shell analyticity properties

of the M° will be described and proved elsewherel4.

As discussed above, all the functions MJK in the 3+3 case are

compactly expressed by Eq. (1.3) in terms of the functions M, Jj’ Mjk'
A These latter functions are now displayed explicitly. A

diagrammatic notation is used in which the basic definitions are as

follows:

1 — ' 1
2 I . _
E + _ E v = <Pfll ple-"’lpf , out Pi ’ Pi l---rPi ’ in>
n ——m n 1 2 m
(1.4a)
L - - 1
2 — . T2 .
. B = P. ¢+ P, s++-4P, ,-in | P. , P 1-ee,P ,out>
i . < i i i , £ f f
m—— J_"_—n 1 2 m - 1 2 n

(1.4b,
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and

T — . s

F=
=

The subscript c means comnected part. An external shaded strip represents
and arbitrary set of lines. An internal shaded striplindicates a sum over
a complete set of in or out states, with the same Wéighting as in the ex-

pansion of the identity operator I,

I =Z|n,i><n,il, o (1.5)

where + and - designate out and in, respectively.
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In termsfof this notation, the function M is-represented by a plus .
bubble as in Eq. (l.4c). All 16 single discontinuities Mj are given by

the single formula

, (1.6)

where the diﬁisioh of external lines between the two.plus bubbles is

the division defined by j. 1In particular, if the 16 sets j are labeled by

t=14,5,6}, £=2t-{e}, 1=%+ {i}, ana FL = £+ {i} - {£], then the M

are
4
ME = 5 -
6 (1.7a)
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: Mez T + 1 - , \ (1.7b)
. .

M= = (1.7¢)

£ -
) | A
M- = C 5 + ] -
i i

The last two formulas can be simplified by means of the identities

(1.74)

(1.8a)

. . — - i . ‘/"‘,...-\\\ v . . \\
’ FOTI W——_—-—+x — ‘; R e et —_ TT-:—-— ) 1 .
v S IR | 1T VR R L N = 58571 S S (1.8b)
- \ /
| N
N e aendd ——.

which follow directly from the unitarity relations -

(1.9a)
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and ) . L ;

¢

Mmoo - mIm t mmm o = I or Mmmmo, e

Here the I-box represents the identity operator I and éatisfies for any

operator X the identities

Lo 1 iﬁ,u“ z 1 : .
1 X = X (1.10a) .
- - F
F2 41. u".: N .i]i;.._ ..._.L._.E ._.a..." 2 m |
and :
I — I
i) X o - T = ] X (l.lOb)
: I ) e ) )
L 2 .
The I-box also satisfies the rules
F‘“‘“—* 3
—_— : 1 —]
[ . _ L I -
P 2 B | (1.11a)
o e
iz f© 1
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and
6 £ i
4 — i * -
5 — I = —_1 I g ’ * (1.11b)
f =4
where
f——i = <f, 4+ | i, > = <& - | ie D> = s(£,4) (1.11c)

is-used for the inner product of two single particle states. These

identities will be used later.

The double and triple discontinuities are defined with the aid

of the qﬁahtities

= 1 I s (1.12a)
£ '
— .
1 — i _ + 7 . (1.12b)
/ ." ! C =3 .Zﬂ - I ) ,.7._‘.‘.. + »-7—,7
e 7T Li) & Ll
. — r
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and
] s 7] 1 m T '
LN+ <;_;; - ; + - TIN.  (1.12c)
c Fis £ 777 >i e
J f

f . . t

i 1 7 1
_ VRN R N e @120
£ : 7777 £ - .

+

Equivalently, these functions can be defined as thbSebterms in the

cluster expahsion of the plus or minus boxes in whiéh‘the distinguished

line £ or i is connected to some other final or initial line, respectively.

M1

ft

The

nonzero double discontinuities Mjk are -

(1.13a) -

(1.13b)
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. N (1.13c)
Mei -
"y
M= = -
- fi (1.134)
V’
and
i
M +
fi i = - . (1.13e)
£
The nonzero triple discontinuities Mijk are
M_ = - + _
fti
£ J
(1.14a)
= = - + i
£ |
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and

(1.14Db)

These expllc1t equatlons when combined w1th Eq. (1 3) glve a complete

representatlon of the basic-cut structure of the 3+3 scatterlng amplitude.

ﬁy considering the Hermitian conjugate of Eg:(i;B), one can
obtain élternative forms of the discontinuity formulés’(l.7), (1.13),
and (1714). .Sinée Hermitian conjugation reverseé the sign inside each
box or bubble and multiblies each bubble by minus 6né; the signs inside
all boxes and bubbles will be reversed and above w1ll be interchanged
with beZow Taklng into account the extra minus 51gn in the definition
(1.44) of the minus bubble, one obtains the general rule

+ n+l

(M K) = (-1) eIk

K - S (1.15)

where n is the number of elements of K, and E is_thefcomplete set of

sixteen indices.

-
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The 67 discontinuities given by Egs. (1.7), (1.13), and (1.14) can
all be expres$ed in terms of the 16 single discontinuities (1L.7), the 9

inclusive-cross-section discontinuities

(1.16)

and the 9 double discontinuities (l.13a), together with the Hermitian con-
jugates of these 34 discontinuities. Direct appliéation of the defining

properties (1.10), (1.11), and (1.12), plus unitarity, gives

Mz oo = * 1 o
IR b
f e e . ..‘ . S—

(1.17a)
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I

(1.17b)

(1.17c)

!
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and

??

1
+ p
+ - N i+ % ‘I’l" Y
N : S '
4‘(_+ 1l
- - 7 1 (1.17d)
£ c/i . - '

fi i
(1.17¢) and (1.17d), with i and £ interchanged.

The equations for M=— - and M- g are reflections thrdugh the origin of

_The formulas (1.17) for the various doublevandAtriple discontinuities
can also be derived directly from the independent;cut'Structure and the
genérélized Steinmann relations, together with Eq. (1;15) and the discon-
tinuity'formulaS‘(l.G), (1;16), and (l.l3a). Equations (1.6) and (1.16)
are éxpreséiohs fo; basicvdiscontinuities that have Eeen derived previously 5.
Thus the p;ihcipal new results of this work are cént##ned in the double
discontinuitj formula (1.13a), together with the fégﬁlt that the independent-
cut structure and generélized Steinmann relations'féliow for the 3+3 case

from'basic field-theoretic principles. .
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By_vi?tﬁe of the_above.fesults, the apparent ¢§mpiexity of the
33 disContinuity structure, suggested by the largé:ﬁqmber 65,536 of
: different:funétions MJ, is greatly reduced. All thé:M; are built ffom
M and 68 gleﬁentary discqntinuities, which are the@sél&es special cases
of the three simplé formulas (1.6), (l.l6),$nd (l.iéa)‘and their complex

conjugates.
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