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Abstract 

A review is given of studies of chaotic dynamics in several solid 

state systems. In each case the physical system is described, rele-

vant equations of motion are given, experimental results are presented 

and interpreted, more or less, from the relevant equations, including 

numerical solutions. The systems are: 

(1) An electron-hole helical plasma density wave in a Ge crystal in 

parallel electric and magnetic fields; this shows period doubling and 

quasiperiodic routes to chaos. (2) Standing mode spin '(lave packets 

in ferrite spheres, excited by driving ferromagnetic resonance of 

the uniform mode; this system shows period doubling to chaos and 

periodic windows. (3) Resonantly driven p-n junctions in Si show 

extremely nonlinear behavior due to charge stored during injection; 

one junction shows period doubling to chaos and period adding 

(frequency locking); coupled junctions show, in addition, quasi-

periodicity, entrainment, and behavior generic to coupled nonlinear 

oscillators. The fractal dimension is measured for these systems. 
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1. INTRODUCTION 

Over the years experimental solid state physicists have discovered 

a number of dynamical instabilities in many physical systems, e.g. 

semiconductors and magnetic substances, characterized often by onset 

of oscillations, hysteresis, and erratic behavior when suitably excited. 

In many cases theoretical analyses have been given. Their microscopic 

origins can be ascribed to nonlinear coupling between model elementary 

excitations, e.g., phonons, plasmons, magnons, holes, excitons, etc., 

and external driving fields. Earlier workers did not have the advan­

tage of the present theoretical framework, especially the ideas of 

universality [lJ and recognizable routes to chaos [2J; the data were 

not taken in .a format that could easily reveal such behavior. Just as 

in fluids, experimental studies of instabilities in solids are of 

renewed interest. 

I will review recent Berkeley work on instabilities in three 

systems: p-n junctions in Si; electron-hole plasmas in Ge crystals; 

and spin waves in ferrite spheres. For each case I describe the 

physical system, indicate the equations of motion and the source of 

nonlinearity, and the experimental results and their interpretation. 

2. P-N JUNCTIONS IN SILICON 

A p-n junction when resonantly driven will exhibit a period 

doulbing cascade to chaos [3J. Related instabilities were observed 

in early work on parametric amplifiers using diodes but were not so 

well understood [4J. Driven junctions have been used for the 

study of intermittency [5J, effects of added noise [6,7J, crises of 

the attractor [8,9J, and the quasiperiodic route to chaos when two 

or more are coupled together [10,11]. The system is approximately 

-3-



. 

modeled by a driven asymmetric passive oscillator (i.e., a resonator) 

with a very nonlinear restoring force, but the model is not exact • 

§ The system is clearly not an analog computer 

2.1 Physical system and models. The junction, Fig. 1, is 

~ composed of a Si crystal containing fixed donor ions (+) and 
QJ 

> 
~ electrons (e) to the right and fixed acceptor ions (-) and holes (0) 

~ to the left of a doping interface in a region ~lO-4 cm wide. One 
o 

\+-

o -

o 
VI 

U 

.. 
o . ...., 

u 

solves the transport equation, including drift and mobility terms 

in an electric field arising from an applied potential difference V 

[12]. One finds for V negative that the junction is approximated 
_.1. 

by a junction differential capacitance Cj(V) = Cjo[l-V/~] 2; this 

arises from the fixed (+) and (-) ions in the interface. For V 

positive, holes (electron) are injected into the n(p) regions and 

give rise to a large storage differential capacitance Cs(V) = 

Csoexp(V/cp) and a junction current Id(V) = Io[exp(V/cp) - 1] for an ideal 

diode. The injected carriers recombine or back-diffuse in a 

characteristic minority carrier lifetime T. If the junction is 

resonantly driven by a voltage Vo = Vossinwt with (2n/w) 5 T, then 

the equations of motion of the system, Fig. 1, become 

Vo(e) - RI - V 
i = --"--~---

L 
(1 a) 

.. 
V = (1 b) 

e = w (1 c) 

where e = wt and C(V) = Cj(V) +-Cs(V) = (aQ/aV) is the total 

differential capacitance. The motion can be visualized in I, V, e 
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polar coordinates chosen so that the orbits traverse the I, V plane 

at, say, sinG = a at consecutive times t = nT. This Poincare 

section of the attractor can be observed directly by displaying I, V 

on an oscilloscope and strobing the beam intensity at t = nT. 
. 

Alternatively, one displays (I, I) or (I n+l , In)' which are con-

jectured to be topologically equivalent [13]. Equations (1) are 

stiff, display a slow and a fast manifold [14], and can be numerically 

integrated by an explicit fourth order Runge-Kutta algorithm [15]. 

Equations (1) are of the form 

(2 ) 

discussed by Ott [16], and have a negative divergence of phase space 

flow l:iaf;laxi, approximately equal to the value -Ial in Eq. (3); 

volumes in phase space decrease exponentially in time, A(t) = 
A(o)exp(-at). Since the system is observed to display chaotic motion 

one can thus conclude that it has a strange attractor characterized 

by a fractal dimension. Some physical insight is obtained by calcu­

lating the effective charge on the junction 

V 
q(V) = ! C(V)dV, 

and rewriting Eqso (1) in the form of a driven damped nonlinear 

oscillator 

q + a(q)q - f(q) = Aosinwt, 

with a damping coefficient 

R 1 aId 
a(q) = L + C(qf ~ 

and a restoring force 

f(q) 1 = - ~V(q) + RId(V(q))] 

-5-
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This force function for typical system parameters shows a weak, 

almost constant form for positive q (forward injection) and a strong 

exponentially increasing force for negative q. The expansion of 

Eq. (4), f(q) = -Aq + 8qZ - Cq3 + Dq~ ••• , shows no symmetry so 

that the system may display period doubling without first undergoing 

symmetry breaking [17], in contrast to the driven pendulum and 

Duffingls equation, f(q) '" -q ± q3. For large q, the force can be 

roughly modeled by the form f(q) = exp(-q) - 1; and by f(q) = 
-log(q+l) if one assumes Cj « cS)a reasonable approximation for 

some junctionse In this case the junction oscillator is so nonlinear 

that it can be experimentally driven hard eno~gh to shift its resonance fre­

quency down by an order of magnitude - an ultra-soft spring. 

If Eqs. (1) or (3) are numerically solved, the computed Poincare 

section and the return map are found to be essentially one-dimensional 

if the dissipation a(q) in Eq. (3) is large enough. r'1ore generally, 

however, they are described by a two-dimensional map of the form 

(Sa) 

(Sb) 

where A is the set of system parameters. From the physical fact 

that the minority carrier density recovery after forward 

injection is a diffusion time processes, the motion is more 

properly described by differential delay equations rather than the 

approximation, Eqs. (1) and (3). In principZe the system is very 

high-dimensional and Eqs. (5) should perhaps be modified to 

x +1 = f(x ,x l' x 2""Y' y 1, ••• ,A),although present data do n n n- n- n n-
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not seem to require this, owing to the dissipation. The question 

can be rephrased: how many previous cycles can the system remember? 

2.2 A driven p-n junction: experimental results and 

interpretation. We measure the set {In} of consecutive current 

maxima by a sampling I(t), and plot· this set vs. the magnitude 

Vos of the drive voltage, thus obtaining a bifurcation diagram, e.g. 

that shown in Fig. 2. In general, observed bifurcation diagrams 

may deviate very ccnsiderably from Fig. 2 and depend markedly on 

the system parameters w, R, L, C jo' Cso ' 1
0

, <P, and cp conta i ned in Eqs. (1) 

and in (3), as well as the carrier lifetime L. This is an experi-

mental manifestation of the sensitivity of instabilities to system 

parameters in a complex system. However, diagrams like Fig. 2 are 

observed if the parameters are so chosen that: (i) the drive 

frequency w :: wres :: [LeCso + Cjo)]-t = resonance frequency of the 

junction oscillator at Vos ... 0; (ii) (21T/W) ... 'I, within a factor 10; 

(iii) the damping coefficient a(q) in Eq. (3) is large enough; (iv) 

Vos is not too large. Under these conditions almost all p-n 

junctions studied (approximately 10 different types) display a 

bifurcation diagram like Fig. 2, which is the simplest type observed, 

with recognizable universal features. 

There is clearly a cascade of period doubling bifurcations to 

an accumulation point of chaos, band merging, periodic windows, and 

the onset of a wide period 3 window with hysteresis. Very roughly 

the behavior follows a special simple case of Eqs. (5), 

(6 ) 

the logistic map [18] with the correspondence I -+- x and Vos -+- A, 

the control parameter. The Poincare section of the numerical solution 

of Eq. (3) with a(q) :: a 51 is essentially one-dimensional and can 

be parameterized by a unimodal return map [11]. 

-7-



Figure 3 shows the measured power spectrum of the yoltage V across a 

d r i v e n p-n j u n c t ion for a set of increased va 1 ues of V , os 
showing period doubling, chaos (four-band), chaos (one-band). 

Another characteristic bifurcation diagram displayed by all 

junctions if they can be driven hard enough and a(q) ;s not too 

large, is shown in Fig. 4(a), together with a plot of the junction 

current ~ = I, average over one cycle. In addition to period 

doubling to chaos, there is a sequence of periodic regions, of 

periods 3, 4, 5, .o.N, ••• which we refer to as period adding. This 

has a simple physical explanation. It is seen that I ;s approximately 

constant in a region of period N, and furthermore we observe N- l ~ 

(I)-t. For hard driving, the dominant-junction capacitance is Cs ~ 

exp(V/~), which is just proportional to the junction current Id for 

large forward injection. Thus the resonant frequency of the junction 

oscillator wres ~ (Cs)-i ~ (I)-i, which is just the frequency wIN 

of a periodic region. That is, as this soft spring system is driven 

harder, it shifts its frequency down and becomes entrained or locked 

at successive subharmonics of the drive frequency; it is a passive 

nonlinear resonator with entrainment behavior resembling a driven 

van der Pol self-oscillator. Figure 5 is a two-parameter diagram 

of the observed entrainment regions. 

Figure 6 shows the observed projection of the attractor in the 
e 

(I, I) plane at a dri ve voltage for wh i ch the 2 -+ 1 band merge has 

occurred. The faint oval lines correspond to the veils in the 

bifurcation diagram, Fig. 3, and are successive iterates of the 

critical point of the map. The dark line is a Poincare section made 
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by enhancing the oscilloscope intensity at e(t) = O. This section 

is not really one-dimensional. The observed return map (In' In+l , 

In+2) of Fig. 7(b) clearly shows this, and can be reasonably fit by 

the two-dimensional Henon map [19], 

x 1 = 1 + Bx 1 - Ax 2 n+ n- n (7) 

with A = 1.5 and 6 = 0.08 , shown in Fig. 7(a). This value of B, 

the phase volume contraction per cycle, is typical for junction 

oscillators with moderate driving. Equation (7) can explain the 

observed hysteresis, which Eq. (6) cannot. However, Eq. (7) cannot 

fit the data for hard driving into the period adding region, Fig. 4, 

where the return map of Fig. 7(c) is observed, in the chaotic band 

between periods 4 and 5. 

A high resolution POincare section for this region, Fig. 8, 

clearly shows self-similarity [19] and the fractal [20J structure 

the attractor. A set of measurements of the fractal dfmension d 

of 

[21] 

of the attractor for a driyen p-n junction has been carried out by 

Held et ~. [22] with the preliminary result for the chaotic region 

just below the period 3 window, d = 2.05 ± 0.05. This measure is related to 

d = lim log N(E~ 
c - E-+O log(l/E (8) 

a COlilmon definition of measure of dimension [21]. Our computation 

procedure is discussed in Sec. 3.2. This same value of d was 

observed for two quite different types of p-n junctions. 

-9-
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The results of a two-parameter study [lOJ of the overall 

behavior of a driven junction is given in the "phase diagram" of 

Fig. 9, showing the boundaries of the various periodic and chaotic 

regions as a function of the driving voltage Vos and the driving 

frequency f = w/2n. The IIsimp1est" bifurcation diagram, e.g. Fig. 2, 

is obtained by increasing Vos upward along a line of constant 

frequency = 20 kHz = junction oscillator resonance frequency. Moving 

upward along f = 34 kHz gives a periodic sequence 1, 2, 4,8,4,2,1 

without chaos. Increasing f horizontally at constant voltage Vos = 2 

volts generates 1,2, 4, 8, ••• chaos, ••• 8, 4,2, 1. Figure 9 makes 

clear why such a wide variety of bifurcation diagrams are observed; even 

more variation occurs in a three-paramet~r space, the third parameter 

Deing the dissipation coefficient a in Eq. (3). Figure 9 also 

-10-
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indicates hysteresis (t,i-) and a period l~period 1 bifurcation, 

the "jump phenomena, II characteristic of driven nonl inear oscillators 

[23J and an example of a transcritical bifurcation [24J. 

The detailed behavior can be fit fairly well by the numerical 

integration of Eqs. (1) or (3) using the known system parameters. 

Figure 10 is the computed bifurcation diagram for the charge {q} 

vs. Ao from solution of Eq. (3), with a(q) ~ a = 0.45 and w = 1. 

It can be compared to current data {I} vs. Vos' Fig. 2, showing 

reasonable correspondence including hysteresis. Bifurcation data 

showing extensive period adding, Fig. 4, can be fit by maps of the 

form of Eq. (5) to generate the bifurcation diagram of Fig. 11, vJhich is 

computed from the map [llJ 

xn+1 = [xn+l-S(xn)] S(A(l-S(xn)Z)) - Yn (9a) 

yn+1 = BXn (9b) 

S(x) = Hx +/x z + B) (9c) 

with B = 0.1 and A the control parameter. These equations generate 

return maps similar to observations, Fig. 7(c). 

By applying a short perturbing pulse to the driven junction, 

one can measure the transient recovery time LC of the junction 

current to its steady state value as a function of the drive voltage 

Vso near the 1 ~2 bifurcation point Vcr' This plot, Fig. 12, 

displays the critical-s1owing-down phenomena characteristic of phase 

transitions. Other experimental evidence of universal behavior of driven 

junctions is given by comparison of theoretical prediction for scaling 

with measured val ues for: period doubl ing convergence rate 0 [3]; 
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pitchfork ratio a [3J; power spectral ratio [3J; noise sensitivity 

factor K [6]; noise scaling at bifurcation points [7J; and inter­

mittency route scaling [5J. To summarize, the driven junction is 

well characterized and appropriate to use in systems composed of 

large numbers coupled together. 

2.3 Systems of coupled p-n junction resonators [lO,llJ. It is 

experimentally straightforward to couple together N identical p-n 

junction resonators and force the system by a common driving oscillator. 

This can be done in many ways, but we discuss only these two, with 

different symmetry: (i) resistive coupling: connect a second 

inductance plus junction between A and C in Fig. 1; (ii) inductive 

coupling: connect second inductance plus junction between Band C 

with R ~ o. The approximate equations of motion, following Sec. 2.1 

and Eqs. (3) and (4) take the form 

(lOa) 

(lOb) 

for resistive coupling where r is the coupling parameter, a is the 

dissipative coefficient, and S < 1 is a factor to account for the 

fact that the p-n junctions, in practice, are not identical. For 

the inductive coupling case, 

.. . 
q1 + aq1 - 2f(q1) + f(q2) = Aosin t 

q2 + aq2 - f(q2) + f(q1) = 0 

In contrast to a simple driven resonator, for N2.2 c'oupled 

resonators we expect Hopf bifurcations to quasiperiodicity, in 

-12-
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addition to period doubling bifurcations and intermittency; Eqs. 

(10) and (11) do exhibit this behavior. One expects quite generally 

that their Poincare sect ions wi 11 be described by two coupled maps 

of the plane 

xn+l = f(x n, Yn' Xn, Yn, It) (12a) 

Yn+l = g(xn, Yn' Xn, Yn, It) (12b) 

Xn+l = h(xn, Yn' Xn, Y n' It) (12c) 

Yn+l = 1 (xn ' Y n' Xn, Yn, It) (12d) 

and that these will reduce to simpler forms with sufficient dissipation. 

A related map, a circle map modeling a single forced self-excited 

oscillator, has received recent attention in computation of universal 

features of the quasiperiodic route to chaos [25J. 

2.4 N=2 coupled oscillators: results and interpretation [lO,llJ. 

Figure 13 shows a bifurcation diagram observed for the resistively 

coupled case driven at fre9uency fl and amplitude Vos~ It is 

characterized by period doubling to fl/2 and then a Hopf bifurcation 

to a second incommensurate frequency f2 ; narrow regions of entrain­

ment or locking with f2/fl a rational number MIN [see blow-up in 

Fig. 13(b)J; a wide locking region with relative period 18; period 

doubling to 36, to two-band chaos; and abrupt change of attractor 

(a crisis [8J); etc. This figure shows the clear distinction in 

a bifurcation diagram between period doubling and Hopf bifurcations. 

The results of a two-parameter study of the overall behavior 

in the quasiperiodic region are shown in the phase diagram, Fig. 14, 

-13-



to be compared to Fig. 9, for a single junction. Along the boundary 

line of the Hopf bifurcation the frequency ratio f2/fl varies con­

tinuously from 0.211319 ••• (upper left) to 0.23018 ••• (upper right), 

and when f2/fl ~ MIN, a point of resonance, there emanates from 

the boundary a horn-shaped entrainment domain similar to that 

observed for Hopf bifurcations in a detailed study of a driven 

magnetic oscillator [26], and corresponding to the resonance horns 

predicted by Arnold [27]. The horns are labeled in Fig. 14 by the 

integer N/2 which is just the number of fixed points in the upper 

branch of the Poincare section, e.g., Fig. l6(d). The integer M is then 

determined from the strongest line f2 in the measured power spectrum, 

e.g., Fig. l8(b). There are many other narrow entrainment horns, not 

shown. Period doubling to chaos occurs within an entrainment horn. 

When horns overlap, there is intermittency and hysteresis between 

two attractors. The regions of chaos are widespread and fall 

approximately within the heavy dashed parabolic region of Fig. 14.­

We have some evidence tha~ the upper Hopf bifurcation boundary 

becomes closed for drive voltages much larger than shown. 

For an inductively coupled system, Fig. 15 shows a sequence of 
. 

phase portrait projections in the (I, I) plane for increasing 

drive, along with a darker strobed Poincare section at e(t) = o. 
For this system there is first a Hopf bifurcation in contrast to 

the resistively coupled case. The period 1 orbit in Fig. l5(a) 

becomes a 2-torus in l5(b), with Poincare section becoming rather 

square as the quasiperiodic orbit becomes periodic with MIN = 1/4 

just beyond Fig. l5(d). 

-14-
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Figures 16 and 17 show a sequence of eight Poincare sections 

(V l , 12) for resistive coupling, showing the characteristic 

breakup of the invariant circle with increasing drive voltage, 

corresponding to moving vertically upward on Fig. 14 along a line 

of constant frequency = 29.5 kHz. Figures 18(a)-(g) show the power 

spectra for this exact same sequence. There is first a period 

doubling, then onset of a Hopf bifurcation with new incommensurate 

frequency f2' Fig. l8(a), and combination frequencies fl/2 - f2 and 

f,/2+f2 (not shown). Figure 18(b) shows combination frequencies 

fnm = nf,/2 + mf2 with m, n positive and negative integers. At 

Figs. l8(d) and 16(d), locking occurs at f2/f1 = 4118, and period 

doubling to 4/36 at Figs. 18(d) and 17(a) •. Chaos begins in the 

Poincare section of Fig. 17(b) in the form of a rabbit(!) whose ears, 

and legs fold over; in Figs. 17(d) and l8(h) there is a two-band 

chaotic attractor resembling a fo1de~ ~ug. 

Figure 19 is another sequence of Poincare sections (V1, 12) 

for reduced resistive coup'ling, showing fast oscillations of a 

rather square orbit as it approaches locking at f2/f1 = 114 to two 

attractors in the corners. It is less strongly pulled to two other 

attractors in the other corners; these attractors have a different 

basin which are accessible by decreasing Vos from a large value. 

To compare the above results to models, we point out immediately 

that Fig. 19(d) is strikingly similar to a POincare section (x, X) 

computed by Hogg and Huberman [28J from a special case of Eq. (12), 

two coupled one-dimensional maps 

-15-



(13a) 

(13b) 

with r = 3.39, E = Oa06, Xo = 0.2, Xo = 0.4. This shows that the 

dissipation in the system used is sufficient to approximately reduce 
.. 

the Poincare space from 4 to 2 dimensions. On the whole, the 

Poincare sections observed are similar to those computed from dissi-

pat ;ve maps of the p1 ane by a number of authors [29]. 

Figure 20 is a bifurcation diagram numerically computed from 

the differential equations [Eqs. (10)]; it shows the principal 

features of the data, Fig. l3(a). Perhaps better agreement is that 

shown in Fig. 21 computed from this map constructed to model the 

p-n junction behavior [11]: 

xn+l = a.S[xn + 1 - S(xn)] - S(A(l - S(Xn)2)) - y + ex n n ( 14a) 

yn+l = 0.1 xn (14b) 

Xn+l = OoS[Xn + 1 - S(Xn)) - S (Ab (1 - S (Xn) 2 )) y + 
n eXn ( 14c) 

Yn+1 = 0 1 X • n (14d) 

S(x) = 0.5 (X+/X2+0.l) , (14e) 

with C = coupling parameter = 0.3, b = asymmetry parameter = 0.95, 

A = control (drive) parameter. 

A two-parameter plot in wand Ao of computed solutions of 

Eqs. (10) will moderately fit the shape of the Hopf boundary in 

Fig. 14 and al so the boundary of the 1 ~ 2 period doubl ing bifurcation 

(not shown in Fig. 14 but similar to that in Fig. 9). 

-16-
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Similar experiments for N=2 for the inductively coupled case 

show that a Hopf bifurcation occurs first -- and this is in agree­

ment with the models of Eqs. (11) and also of maps similar to-Eqs. 

(14) but with the sign of the coupling term reversed in Eq. (14c); 

this is a direct consequence of a different symmetry. For N=12 

coupled junctions, Hopf bifurcations to three incommensurate fre­

quencies are observed [11]. 

The attractor dimension d has been measured [22] for the system 

shown in Fig. 17(d), with the preliminary values d = 2.23 ± 0.05, to 

be compared to 2.05 ± 0.05 for a single driven junction. 

-17-



3. ELECTRON-HOLE PLASMAS IN GERNANIUN CRYSTALS 

Plasmas in semiconductors have been extensively studied experi­

mentally and show a number of inst"abilities [30]. However, chaotic 

dynamics has only been observed recently by Held et !l. [31] in experi­

ments on plasma density waves in crystals of Ge. Chaotic dynamics due 

to impact ionization and space charge injection in Ge has been reported 

by Teitsworth, Westervelt, and Haller [32J. The system we study is spatially 

continuous with very many degrees of freedom and is modeled by a set 

of partial differential equations. It exhibits both period doubling and 

the quasiperiodic routes to chaos and seems to be somewhat analogous 

to hydrodynamic systems such as Benard-Rayleigh convection. Chaotic 

dynamics has been predicted for simple theoretical models of plasmas, 

e.g., three nonlinearly coupled modes [33]. 

3.1 Plasma system and models [31]. Figure 22 shows the experi­

mental arrangement: a rod of Ge is placed in parallel electric E 

and magnetic B fields and cooled to 77°K. Electrons and holes are 

produced either by laser p~mping or by injecting contacts, creating a plasma of 

density ne = nh = 1013 cm- 3 • As the current Idc is increased by 

increasing the dc drive voltage Vo ' spontaneous current oscillations 

I(t) are observed [34], attributed to a helical plasma 

density wave [35], shown schematically in Fig. 22 and believed to 

be similar to that in gas plasmas [36]. 

For times and distances of interest, the following partial 

differential equations describe the motion of conduction electrons 

and holes in the crystal [35]: 

(1Sa) 
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(15b) 

~ 

iJ • E = -q (n - p) / e: (15c) 

where j is the electron (hole) current density, q is the magnitude e,h 
of the electronic charge, ~ is the mobility, D is the diffusion 

constant, e: is the dielectric constant of the sample, y is the net 

carrier generation rate. At surfaces perpendicular to the applied 

electric field, these equations are subject to the boundary condition 

Je = J h = qsn, wh~re s is the surface recombination rate. By 

expanding the carrier densities and the electric field about their 
~ ~ 

equilibrium values [n = no + nl(t), p = Po + Pl(t), E = Eo - iJ~l(t)J, 

and substituting these expressions into Eqs. (15), it has been 

shown [35J that the first order terms lead to a helical density wave, 

p,:; n, = Nl (r)exp[iwt - ikz - imcpJ and ~l = ~l (r)exp[iwt - ikz - imcp]; 

m is.an integer. Beyond certain thresholds of the applied electric 

and magnetic fields, this helical density wave is absolutely unstable 

[Im(w) < OJ and spontaneous' oscillations occur coincident with the 

onset of nonlinear behavior. 

To incorporate nonlinear behavior into a model which explains 

the observed chaotic dynamics, we consider a superposition of 

waves in which the time dependence is not assumed to be periodic, 

- nel = \ C (t)N (r)e-ikz-imcp + C.C. 
k~ km km r 

~l = 1: C (t)~ (r)e-ikz-imcp + C.Co 
k,m km km 

resulting in a partial differential equation of the form 
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(17) 

+ 

where M and M' are independent of time, and only til is complex. This 

equation describes a wave-wave interaction in which a wave with 

wave. vector k can couple nonlinearly to many different pairs of 

waves (k"ml ), (k2 ,m2). It turns out that a special case of Eq. (17) 

had been considered by Wersinger et~. [33J who studied numerically 

the evolution of an undamped wave coupled bilinearly to two damped 

waves: 

(18a) 

ac 
a~,3 = Y2,3Cz,3 - MC,C3,2exp (iot) (18b) 

For Y2 = Y3 and r = IY21/Yl they found that Cl undergoes a period 

doubling cascade to chaos as r is increased. The computed Poincare 

section can be reduced to a unimodal return map. It seems that 

these equations may also exhibit a Hopf bifurcation but no numerical 

solutions are yet available. 

3.2 Experimental results and interpretation [31J. The system of 

Fig. 22 was found to exhibit a period doubling route and also a 

quasiperiodic route depending mainly on the control. parameters Vo 
-i-

and IBI, as well as the angle between B and the rod axis. Fig. 23(a) 
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shows the measured oscillatory current I(t); the phase portrait V(t) 

vs. I(t) where V(t) is the potential difference across the end con­

tacts; and the power spectrum II(w)12. As Vo is increased, the 

oscillations show a period doubling sequence to chaos, Fig. 23(d), 

characterized by a broad-band spectrum, and then to a wide period 3 

window. The bifurcation diagram of Fig. 24 shows this behavior as 

well as higher periodic windows and a return to period 1. The oscilla­

tion frequency fo ~ 10 5 Hz and is determined mainly by E, B, and 

sample geometry. For different parameter values, a Hopfbifurcation 

to quas;periodicity is observed, characterized by a threshold for 

the appearance of a second (incommensurate) frequency f 2. The power 

spectrum, Fig. 25, shows two well defined frequencies fl (=fo in 

Fig. 23) and f2' together with combination frequencies. The 

Poincare sections, Fig. 26, for increasing values of Vo show 

behavior characteristic of breakup of the invariant section of a 

2-torus, similar to those of Figs. 16 and 17 for coupled p-n junctions. 

The fractal dimension-d was measured [31] for the attractor 

of Fig. 26(d), with the preliminary average value d ~ 2.65. This 

was obtained by the method of Brandstater et!l. [21], as follows. 

A data set of q = 98,000 successive values of the local current 

maxima of I{t) was recorded using a peak detector, a fast l2-bit 

analog-to-digital converter, and a LSI-ll/23 computer. From these 

data a D-dimensional phase space was reconstructed [13]. In this 

reconstructed space the number of points N(E) on the attractor which 

are contained in aD-dimensional hypersphere of radius E should 

~cale as N(E) ~ Ed. We measure N(E) for many hyperspheres on the 

attractor, calculate the average N(E), and plot log N(E) vs. logE. 
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The slope of this plot, for small E, is the dimension d. 

Fig u r e 27 s how s res ul t s fer three values D = 2, 4, and 8. 

·The slope is seen to converge for D~4 to 1.65 for this Poincare 
the complete attractor. 

section, implying d = 2.65 forl\ For small values of E there is a 

break to a steeper slope, which increases with embedding dimension 

and is due to random noise in the signal. This method ~f data 

analysis can thus discriminate between high dimensional random 

processes and lower dimensional deterministic chaos, as noted by--

To summarize, spontaneous plasma current oscillations in Ge 

crystals are found to exhibit a period doubling cascade to chaos 

and the quasiperiodic route to chaos. This is the first reported 

observation of chaotic dynamics in any plasma and can be qualitatively 

understood from nonlinear wave-wave coupling. This is a good system 

for study of quasiperiodicity, and may show higher dir.1ensional, more 
. and breakdown of spatial order. 

turbulent behavior,A A more rigorous understanding is desirable, 

possibly from solution of the partial differential equations. 

4. SPIN WAVES IN FERRITE' SPHERES 

It was discovered that ferromagnetic resonance in some ferrites 

displays premature saturation and subsidiary resonance when excited 

above a critical value of the rf driving field Hl [37J. This was 

explained by Suhl [38], who developed a detailed theory of nonlinear 

coupling between the uniform precession mode of the magnetization 

vector and spin waves. He showed that the uniform precession could 

excite spin waves, whose amplitude grows essentially exponentially 

at a critical value of Hl • He wrote [38J 1I ••• this situation bears 

a certain resemblance to the turbulent state in fluid dynamics ••• II • 
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The subsequent observation of low frequency (10 4 to 10 6 Hz) noisy 

"auto-oscillations" of the magnetization [39,40J was believed to 

be due to excitation of spin waves but not fully understood. From 

the more recent perspective of nonlinear dynamics theory, one is 

tempted to interpret these experimental results as examples of 

chaotic dynamics. To this end vie have experimentally reexamined the 

auto-oscillations in spheres of yttrium iron garnet (YIG), and have 

observed period doubling bifurcations, onset of chaos, and periodic 

windows [41J. Similar chaotic dynamics has been predicted for a 

related phenomenon, the parallel pumping of a ferromagnet [42J. 

4.1 Spin system and models. Figure 28 shows the experimental 

arrangement used: a Ga-doped YIG sphere of radius R is wound with 

a pick-up coil and a driving coil at right angles, providing a 

field Hl at the sphere from an oscillator of frequency fo and vari­

aole voltage Vrf • This assembly is mounted in a magnetic field Hdc 

along a third, mutually perpendicular axis, which provides the 

Zeeman field for ferromagnetic resonance, observed from the voltage 
~ 

Vs induced into the pick-up coil by the sample magnetization M(t), 

precessing about Hdc • To observe auto-oscillations of M(t) we 

observe Vs(t) at some fixed value of Hdc near its resonance value. 

The Ga-YIG spheres were highly spherical and highly polished. 

Typical parameters used are: radius R = 0.047 cm; saturation mag-

netization 4nMs = 300 gauss; fo = 1.3 GHz; Hdc = 460 gauss; resonance 

line width: 0.5 gauss. Experiments were done at room temperature 
~ ~ 

and with the perpendicular pumping configuration (Hl 1 Hdc ) of 
~ ~ 

Fig. 28.· Although parallel pumping (Hl II Hdc ) was attempted, no 
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chaotic dynamics were observed, possibly because of insufficient 

pumping power available • .. 
For a set of spins Sj on a lattice in an external magnetic .. 

field Ho ' an appropriate Hamiltonian is [43] 

t .... 0 \ .... 
X = yhJ~ Ho·S

J
. - (-)yh ~ S.·S. 1 + Xdd 

Sa2 J J J+ 
(19 ) 

The first term is the Zeeman interaction (y = gyromagnetic ratio); 

the second is the Heisenberg exchange interaction (0 = exchange 

constant; a = lattice spacing); the last term is the dipole-dipole 

interaction. The Zeeman interaction gives rise to a uniform preces-.. .. 
s ion of the samp 1 e magneti zation r·1 about Ho at Wo = yHo for a 

spherical sample. The second term leads to spin waves of frequency 

w. and wave vector k, described by the dispersion relation [44] 
K 

(20 ) 

"-
valid for a sphere, with spin waves propagating in a ijirection k at .. 
angle 0k to H; here ~ = y471'i~s. For the values Wo = 8.16 X 10 9 sec- 1

, 

~ = 5.27 X 10 9 sec- 1 , y = 17.58 x 10 6 ; 0 = 5.4 X 10- 9 Oe cm 2 used 

in our experiment, wk is plotted in Fig. 29 for three angles: 0 = 0, 

o = 90° and 0 = 0 , 0 = 60.4°, the value for which Wo = wk at k = 0; 

this is the largest angle for which Wo can equal wk. It is the non­

linear- coupling between the uniform mode at Wo and spin waves at wk 
that gives rise to the instabilities of interest, chiefly through 

the dipolar term. 

Suhl analyzed this system from first principles finding the 

differential equations of motion including the leading nonlinear 
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terms for the evolution of the dynamical variables ao ' ak, and 

a*_k' the amplitudes of the uniform mode (k=O) and spin waves of 

wave vector k and -k, respectively. Very approximately, these 

can be written as 

and its adjoint. 

(21a) 

(21b) 

The experimental conditions for instabilities arising from the 

nonlinear .terms of order aoa k in Eq. (21b) are not satisfied by our para­

Ineters. However the term O(laoI2.ak) gives rise to Suhl's second 

order instability through saturation of the main resonance: 

W = H = H o wk ' res o' The lowest threshold value of Hl occurs at 

Ok = 0 in Eq. 20, corresponding to yDk; = ~.l3, i.e. to the value 

kl shown in Fig. 29. This means that as the main ferromagnetic 

resonance is saturated by increasing Hl , the first instability will 

excite spin waves (wk,k), which will travel along Ho in the sphere. 

Because of the finite line width of the resonance, spin waves 

of spread ~wk and ~k will be excited, and can be described as a spin 

wave packet with group velocity Vg = dwk/dk, which can be found from 

Eq. (20). Standing-wave modes of this packet can be set up in the 

sphere, the lowest normal mode corresponding to [40] 

(22) 

Oscillations at wA should be manifest experimentally as a time 

modulation of the signal voltage Vs' One concludes that rf excitation 

at frequency Wo ~ 10 9 sec- 1 will generate auto-oscillations of the 
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magnetization at wA :: lOs sec-1 , this frequency being determined by 

the radius of the sphere and the microscopic parameters of the magnetic 

system U, Ms ' y. In some sense this is analogous to the excitation 

of convection loop frequencies in a fluid driven by a temperature 

gradient in Benard-Rayleigh convection. 

4.2 Experimental results and interpretation. Figure 30 is a 

series of ferromagnetic resonance line shapes for increasing values 

of the driving field Hl showing low power unsaturated resonance, 

broadening and premature saturation, onset of instability and noisy 

oscillations, and more fully developed oscillations. These auto­

oscillations have a well defined Hl for their onset. Figure 3l(a) 

shows the oscillations observed at the lowest value of Hl at fre­

quency fAl ~ 250 kHz. As Hl was increased, these diminished in 

amplitude; other auto-oscillations as in Fig. 3l(b) at the 

frequency fA2 ~ 16 Khz were observed at higher Hl [cf. Fig. 30(d)]. 

We interpret fAl and fA2 as follows. The lowest frequency mode 

will be given by Eq. (22),'which for radius R = 0.047 cm and Vg(0=0) 

g i ve s fA = wA/21T = I YD~13/R = 275 kHz, whi ch corresponds 

favorably with observed f Al • The low frequency oscillations at fA2 

cannot be due to a higher order mode at 0 = 0, and we ascribe them 

to the zero order mode of Eq. (22) but with a small value of Vg at 

some angle 0* such that fA2 = wA/21T = Vg(0*)/2R, which requires 

Vg = 1.5 X 10 3 cm/sec, which can be obtained for 0 = 0* = 60°, i.e., 

close to the value 0
0 

= 60.4° at which k-+O, Fig. 29. We postulate 

that the strong auto-oscillations at fA2 are due to the lowest order 

spherical Bessel function mode of a packet of spin waves of wave 
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vector k ~ o. These oscillations were found to show chaotic dynamics. 

This is shown most simply by the sequence of fA2 oscillation signals, 

Fig. 31, obtained at increased Hl values. These first appear in 

Fig. 31(b) as a sine wave. There is a higher threshold at which 

the signal bifurcates to period 2, then to period 4. Further increase 

of Hl leads to onset of a "noisy" aperiodic signal we call chaos, 

Fig. 32(a), although we have not proved experimentally that it is deter-

ministic. However, the observed power spectrum is broad band, and there 

is no reason why random (e.g., thermal) noise should so abruptly 

increase. We also observed a periodic state of period 3, Fig. 32(b), 

which bifurcates to period 6, Fig. 32(c), and then becomes chaotic. 

Other periodic states observed are period 5 and period 4, Fig. 32(d), 

with a visitation pattern different from that of Fig. 31 (d). 

Although the overall behavior seems roughly similar to that observed 

in, say, a p-n junction, the spin system is less stable and the 

behavior less reproducible. There are more parameters (H , f , Hl , o 0 . 

crystal orientation, temperature) that can fluctuate. This gives 

the appearance of intermittency, however probably not that of 

r.1anneville and Pomeau. We also observe a strong hysteresis, i.e., 

a dependence of the chaotic dynamics on the direction in which Ho 

and fo are set to resonance, and also on whether Hl is increased or 

decreased toward a threshold value. The system seems to have 

several attractors with quite different behavior. That described 

above is probably the most characteristic and reproducible. Another, 

quite different, signal shape is also observed, reminiscent of relaxa-

tion oscillations in general. We believe that these are distinct 

phenomena but have not investigated their possibly chaotic dynamics. 
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Power spectra were measured by a frequency scanning spectrum 

analyzer, with results confirming the signal periods measured above 

from real time analysis. The chaotic state, Fig. 32(a), showed a 

wide band spectrum with a broad peak at f A2 • By plotting Vs(t) 

vs. 0s(t) on an oscilloscope, real time phase portraits were 

observed. 

From a time sample of Vs(t) a return map VS(t+T) vs. Vs(t) 

was constructed, with T : 0.2 T; the shape was roughly unimodal, 

with considerable scatter in the data points. At other parameter 

values of the system return maps were generated by plotting 

Vs(t+T) vs. Vs(t) directly on an oscilloscope using a zero-crossing 

detector to give a strobing pulse train of approximate period T. 

These showed periodic attractors 1, 2, 4 .•• ,3,6, as 'fIe" as 

circular and elliptical shapes. They can be fit, but not necessarily 

uniquely, by the Henon map, Eq. (7), with B = 1, corresponding to 

very small dissipation. This is consistent with the observation 

that the spin wave mode a~ fAZ had a very long lifetime, ~103 cycles. 

We consider these preliminary results, however, and point out that 

more work is necessary: a numerical solution of the full equations 

[e.g. Eq. (21)] and computation of Poincare sections; more data, 

preferably at higher frequencies and fields; search for quasiperiodicity, 

which seems likely for this system; and parallel pumping experiments. 

5. SUMMARY AND CONCLUSIONS 

A driven p-n junction is found to display in the simplest 

case a clear period doubling route to chaos; a period 

adding route (frequency locking) when driven harder; intermittency; 
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and hysteresis. All this behavior can be understood from first 

principles by numerical solution of the governing differential equa­

tions; the Poincare section is a map of the plane. 

For N=2 coupled driven junctions, in addition to the above, a 

Hopf bifurcation to a two-frequency quasiperiodic state is observed, 

with entrainment horns, intermittency, hysteresis, and chaos. Bifur­

cation diagrams show complex intertwining of period doubling, locking, 

and double periodicity. The behavior can be moderately understood 

by solution of the differential equations, and is also qualitatively 

modeled by two coupled maps of the plane or, for large dissipation, by 

two coupled one-dimensional maps. For N=12 coupled p-n junction, 

additional Hopf bifurcation is observed, up to a four-frequency 

quasiperiodic state. 

Spatia-temporal electron-hole plasma wave oscillations in a crystal 

of Ge show period doubling and two-frequency quasiperiodicity. The 

period doubling is understandable from numerical solution of model 

differential equations. This seems to be a good system for detailed 

study of the quasiperiodic route. Spin wave instabilities in ferrite 

spheres show a period doubling route to chaos and deserve to be more 

fully studied experimentally and theoretically. 

Mere observation of some recognizable routes to chaos in a system 

is certainly not a solution to the problem, and we have tried to indi­

cate why specific observed behavior arises from first principles, 

but this is only the beginning. To achieve a predictive under­

standing of instabilities in solids one can start with the (usually 

well known) governing differential equations; use dynamical variables 
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accessible to measurement; include the parameters A of the physical 

system; compute a numerical solution for a given set A, and a 

Poincare section. For sufficient dissipation one expects this 

section to be a low dimensional map with a few parameters A; quali­

tative behavior can thus be quickly explained, or even already known, 

if the map has a recognizable form previously studied. However, 

detailed understanding requires the relations between the physical 

parameters A and the map parameters A. Herein lies the problem in 

using maps as models; to numerically establish the form of the A,A 

relationship would be a step forward. Chaotic dynamics theory has 

much to contribute to understanding solid state instabilities. Likewise, 

solid state systems are often well characterized, have low extrinsic 

(random) noise, a wide range of behavior, and are good systems from 

the viewpoint of a nonlinear dynamicist interested in physical reality. 
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Figure Captions 

Fig. 1 - A p-n junction in a silicon crystal, resonantly driven 

by a voltage Vo(t) through an inductance L and resistance 

R. The observed dynamical variables are the current I 

and potential difference V. Additional junctions may be 

connected between A and C or Band C. 

Fig. 2 - Observed bifurcation diagram for driven p-n junction con­

secutive current maxima {In} vs. drive voltage Vos (hori­

zontal axis), showing cascade of period doubling to 

chaos, band merging, period 5 and period 3 window with 

hysteresis. f = 3.87 kHz, L = 470 mH, R = 244 n, 300A 

p-n junction. 

Fig. 3 - Power spectra of driven p-n junction at consecutive values 

of drive voltage Vo(t) RMS. (a) 1.040; (b) 1.330; (c) 

1.488; (d) 1.601; (e) 2.887. Relative frequency 1.0 

corresponds to 20 kHz; L = 100 mH, R = 53 n, lN4723 p-n 

junction. 

Fig. 4 - (a) Bifurcation diagram {In} vs. drive voltage Vos for p-n junction 

showing period doubling and period adding (frequency 

locking). (b) Average junction current T vs. Vos' 

showing peaks at frequency locking regions. f = 28 kHz, 

L = 10 mH, R = 8 n, 300A p-n junction. 

Fig. 5 - Shaded areas show observed locking regions N:l in parameter 

space for the period adding region of bifurcation diagram, e.g., 

Fig. 4. L = 10 mH, R = 8 n, lN4721 p-n junction. 
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· Fig. 6 - Oval lines: I(t) vs. I(t) (horizontal axis) for one band 

chaos in driven p-n junction. This is a projection of 

the strange attractor. Dark line: a strobed Poincare 

section of the attractor. f = 100 kHz, L = 10 mH, R = 

100 n, lN4004 p-n junction [Ref. 3, J. Perez, Thesis]. 

Fig. 7 - (b) Observed 3-dimensional return map of driven p-n 

junction. (a) Computed return map from Henon equation 

[Eq. (7)] with A = 1.5, B = 0.08. (c) Observed 3-

dimensional return map for chaotic region between period 

4 and 5 in Fig. 4. 

Fig. 8 - High resolution Poincare section (1,1), showing se1f-

similarity and fractal structure. f = 76 kHz, L = 10 mH, 

R = 43 0, 1N4721 p-n junction. 

Fig. 9 - Observed phase diagram for driven p-n junction, showing 

boundaries between periods 1, 2, 4, 8; threshold for chaos; 

C2 = two-band chaos; C1 = one-band chaos; period 3, 6, 

C3 = three-band chaos; C1 = one-band chaos; hysteresis 

(t,+); and 1:1 bifurcation. L = 100 mH, R = 53 0, 1N4723 

p-n junction. 

Fig. 10 - Bi·furcation diagram, X(J) = {q} vs. A , computed from o 

Eq. (3) with a(q)+a = 0.45 and w = 1, showing characteristic 

period doubling to chaos and period 3 window with hysteresis. 

Fig. 11 - Bifurcation diagram X(J) = {xn} vs. Ao computed from Eq. (9) 

with B = 0.1, showing period doubling, period adding, and 

hysteresis, with overall behavior similar to data, Fig. 4(a). 
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Fig. 12 - Transient recovery time ~ vs. drive voltage Vos near 

1 ~2 period doubling, showing critical slowing down 

phenomena. Roughly, ~ « [Vos-Vcrl-0.8 with Vcr = 603 mV. 

L = 470 mH, R = 244 n, f = 3~87 kHz, 300A p-n junction. 

Fig. 13 - (a) Observed bifurcation diagram {In} vs. Vos (horizontal) for two 

resistively coupled p-n junction resonators, showing period 

doubling, Hopf bifurcation to quasiperiodicity; entrainment 

at period 18; doubling to period 36; chaos; and crisis. 

(b) Bifurcation diagram {Vn} vs. Vos at top center. section 

of (a), showing more clearly Hopf bifurcation, entrainment, 

doubling, chaos. fl = 27 kHz, R = 1200 n, L = 100 mH, 

lN4723 p-n junction. 

Fig. 14 - Phase diagram for quasiperiodic region for two coupled p-n 

junctions, of Fig. 13, showing the Hopf bifurcation 

boundary; entrainment horns; period doubling to chaos (c); 

and large domain.of chaos within the dashed parabola. The 

entrainment horns labeled by N/2 = 7, 16, 25, 9, and 11 

correspond to rotation numbers (M/N) = 3/14, 7/32, 11/50, 

4/18, and 5/22, respectively. 

. 
Fig. 15 - Sequence of phase portraits (1,1) and strobed Poincare 

sections for two inductively coupled p-n junctions with 

increasing drive voltage Vos(rms). (a) 0.946, period 1 

orbit; (b) 0.958, Hopf bifurcation to 2-torus; (c) 0.988; 

(d) 1.015. At 1.021 rms volts, locking to M/N = 1/4 

occurs. f = 26.5 kHz, L = 10 mH, 1N4723 p-n junction. 
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Fig. 16 - Sequence of Poincare sections (V, ,12) showing quasi-

periodic route to chaos for two resistively coupled p-n 

junctions of Fig. 13(b) for increasing drive voltage V (rms). os 
(a) 3.165~ smooth torus just after Hopf bifurcation; (b) 

3.681 wrinkled torus; (c) 4.028, more wrinkled; (d) 

entrainment to M/N = 4/18. 

Fig. 17 - Poincare sections, continuation of Fig. 16. (a) Vos = 
4.409, period doubling; (b) 4.882, strange "rabbit ll 

attractor; (c) 5.182, folding of attractor; (d) 8.958, more 

folding, with measured dimension dc = 2.23, see text. 

Fig. 18 - Observed power spectra near f1/4 for same sequence as 

Figs. 16, 17 for quasiperiodic behavior (of system of 

Fig. 13) at increasing drive voltage Vos(rms). (a) 3.166; 

(b) 3.681; (c) 4.028; (d) 4.190; (e) 4.409; (f) 4.882 (strange 

"rabbit" attractor); (g) 5.132; (h) 8.958. On a wider frequency 

scan there are strong sharp lines (+45 dB) at f,/2, f" 3f1/2 .... 

Fig. 19 - Observed Poincare sections (V1,12) for two resistively 

coupled p-n junctions at increasing drive voltage Vos(rms). 

(a) 1.542; (b) 1.706; (c) 1.897; (d) 1.951. The orbits 

oscillate in the corners where periodic attractors will 

appear at Vos = 2.021. f = 28 kHz, R = 510 n, L = '00 mH, 

lN4723 p-n junction. 

Fig. 20 - Bifurcation diagram X(J) = {qn} vs. Ao computed from 

Eqs. (10) with a = 0.45, S = 0.95, r = 0.6, w = 1.5. 
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Fig. 21 - Bifurcation diagram {x} vs. A computed from Eqs. (14) 

with C = 0.3, b = 0.95. 

Fig. 22 - Experimental arrangement for observation of chaotic 

dynamics of helical plasma wave instability in a germanium 

rod [31]. Typically, R = 100 0, Vo ~ 0 to 25V, B = 1 to 

15 kG, rod diameter: 0.1 to 0.8 cm, length: 1 cm. 

Fig. 23 - Oscillating current I(t), phase portrait V(t) vs. I(t), 
wave 

and power spectra for plasmaAoscillations in a Ge rod 

(0.1 x 0.1 x 1.0 cm 3 , T = 77°K, B = 4.3 kG) for a sequence 

of increased values of Vo. (a) period 1; (b) period 2; 

(c) period 4; (d) onset of chaos; (e) period 3 window [31 J., 

Fig. 24 - Bifurcation diagram, {Imax} vs. Vo' for Ge rod, as in 

Fig. 23, showing period doubling to chaos (Cl); period 3 

window W3; chaos (C2); etc., to period 1 at Vo = 10.65 [31J. 

wave 
Fig. 25 - Power spectrum for plasmaAoscillations in 0.1 x 0.1 x 1.0 cm 3 

Ge rod in quasiperiodic mode, showing first oscillatory 

frequency f, and second frequency f2 arising at Hopf 

bifurcation, together with combination frequencies. 

Fig. 26 - Sequence of return maps, I +1 vs. I , for quasiperiodic . n n wave 
plasmaAoscillations in Ge rod as in Fig. 25, showing 

quasiperiodic route to chaos as Vo is increased, (a) to 

(d). For (d) the measured fractal dimension d = 2.65. 
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Fig. 27 - Plot of 1og2NT€T vs. lo92E for a Poincare section data set 
wave 

of current maxima for plasmaAoscillations, Fig. 26(d), 

for embedding dimension D = 2,4,8. The slope is 1.65 

for this Poincare section. The points below lo92E ~ 5 are 

due to high dimensional random noise in the system. 

Fig. 28 - Experimental arrangement for observation of spin wave 

instabilities in ferrite (YIG) sphere in a magnetic field 

Hdc . A rf field Hl in?uces uniform precession of the 

magnetization, which couples nonlinearly to a standing 

mode of spin wave packets in the sphere [41]. 

Fig. 29 - Dispersion relation, frequency wk vs. wave vector k for 

spin waves in Ga-YIG sphere used in experiments. First 

instability occurs at k = kl where spin wave frequency 

becomes equal to uniform precession frequency Wo (Kittel 

mode)[4l]. 

Fig. 30 - Observed ferromagnetic resonance line shape of system, 

Fig. 28, with increased values of drive field Hl . (a) 

Hl = 1 (relative units); (b) Hl = 30; (c) Hl = 31; (d) 

Hl = 35, showing fully developed auto-oscillations that 

have become chaotic [41]. 

Fig. 31 - Real time signals Vs(t) for auto-oscillations for 

increasing values of Hl : (a) as in Fig. 30(c), oscilla­

tions at fAl = 250 kHz; (b) oscillations at fA2 : 16 kHz; 

(c) bifurcation to f A2/2; (d) bifurcation to fA2/4 [41J. 
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Fig. 32 - Vs(t) for auto-oscillations at fAl for increasing Hl : 

(a) chaos following Fig. 31(d); (b) period 3 window; (c) 

bifurcation to period 6; (d) period 4 [41J. 
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