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Introductory Note 

This report was written as a chapter for a report on "Analysis of the 

Stanford Geothermal Reservoir Model Experiments Using the LBL Reservoir 

Simulator," to be issued by the Stanford Geothermal Program. It summarizes 

',0' the governing equations and solution method of the geothermal reservoir 

simulator MULKOM, and describes the discretization method employed in 

modeling the Stanford heat extraction experiments. 



Description of LBL Reservoir Simulator 

The simulations reported below were carried out on Lawrence Berkeley 

Laboratory's CDC-7600 computer, using the multi-purpose simulator "MULKOM". 

MULKOM was developed at LBL for simulating the flow of multi-component, 

\~ multiphase fluids and heat in porous or naturally fractured media (Pruess, 

1983a). The flow equations solved and the mathematical and numerical 

methods used in MULKOM are similar to the geothermal reservoir simulator 

SHAFT79 (Pruess and Schroeder, 1980). 

Here we will briefly summarize the equations solved by the simulator, 

emphasizing the main assumptions and approximations made. Subsequently we 

shall outline the solution method, and discuss the discretization procedure 

employed for representing the various components of the Stanford geothermal 

reservoir model. 

1. Governing Eguations 

The version of MULKOM used in the present study solves two coupled 

equations for each volume element of the flow domain, which express a mass 

balance for water, and a heat balance. In space - and time - discretized 

form the equations for volume element n are: 

(1 ) 

(2) 
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Here nand m label the volume elements (n,m = 1, ••• , N), and k is a 

t · t . t ",k+1. 1me s ep coun er.~ 1S 
n 

(average) porosity of volume element n at time 

level tk+1, p is density, 6t = tk+1 t k i~ time step size, Vn is the 

volume of element n Fk+1 , nm is the mass flux between elements nand m at 

time tk+1 (defined below), Anm is the interface area between elements n 

and m, qk+1 is a mass sink or source term, Un is the internal energy of 
n 

volume elementn (defined below), Gk+1 is the heat flux between elements n 
nm 

and m at time tk+1 (defined below), and Qk+1 is a heat sink or source 
n 

term. The sums in equations (1), (2) extend over all elements m which share 

a surface segment with element n. To assure unconditional stability, we 

have used a fully implicit formulation, with all fluxes and variable 

sources evaluated at the new time level t k+1• 

We assume that mass flux is given by Darcy's law 

F 
run 

_2:(kk6\ 

6 \.I 6 / nm 
(3) 

The summation here extends over the phases present (6 = liquid, vapor). k is 

absolute permeability, k6 is relative peremability to phase 6 (0 ( k6 ( 1), 

\.I is viscosity, P is pressure, dnm is the nodal distance between elements 

nand m, and gnm is the normal component of gravitational acceleration 

between volumne elements nand m. The subscripts (nm) indicate that the 

respective quantities are to be evaluated at the interface between elements 

nand m. Different weighting procedures can be selected for this, e. g. harmonic 

weighting, spatial interpolation, or upstream weighting. 

\' 
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The heat flux Gnm has a conductive and an advective component: 

= (4) 

Knm is thermal conductivity at the interface between elements nand m, T 

is temperature, and hS is the specific enthalpy of phase S. 

Finally, the volumetric internal energy of the rock/fluid mixture is written 

U = 'P u + (1 - , )PR CR T n nnn n n 
(5) 

Here Pn is the (average) fluid density in element n, u is specific 

internal energy, PR is rock grain density and CR is rock specific 

heat. 

The main assumptions made in the above formulation are as follows: 

(1) Liquid, vapor, and rock are locally in thermodynamic equilibrium (Le. at 

the same temperature and pressure at all times). (2) Kinetic energy and 

inertial force terms are neglected. (3) Capillary pressure and phase adsorption 

effects are neglected. The above equations need to be complemented with a 

description of the thermophysical properties of water in its liquid and vapor 

,., phases. In MULKOM the steam table equations as given by the International 

Formulation Committee are used (1967), which represent the needed paramete~s 

within experimental accuracy. 

2. Solution Method 

The governing equations as given above are in general highly non-linear, 

because of non-linear material properties and parameter changes during phase 
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transitions. Futhermore, mass and energy balance equations are strongly 

coupled, as in most geothermal applications mass flow is the dominant heat 

transfer mechanism. The flux terms also strongly couple the balance equations 

for different volume elements. 

Because of these features of the equation system, MULKOM performs a 

completely simultaneous solution, taking all coupling terms into account. 

Newton-Raphson iteration is performed to handle the non-linearities. The 

linear equations arising at each iteration step are solved directly, using 

Gaussian elimination and sparse storage techniques. The linear algebra is 

performed with the Harwell subroutine package "MA2a", which efficiently 

handles non-symmetric matrices with random sparsity structure (Duff, 1977). 

This feature is essential for the particular discretization technique used 

to represent the Stanford geothermal reservoir model (see below). 

3. Discretization of the Flow System 

In porous media, the variables of thermodynamic state are usually slowly 

varying functions of position. Under these conditions it is appropriate to 

discretize the flow domain for purpose of calculation into a number of 

"sufficiently" small simply-connected volume elements. Conceptually, this 

approach is straightforward, and it could also be applied to the Stanford 

geothermal reservoir model (SGRM). However, this is not very practical, as it 

would lead to a prohibitively large number of volume elements. The SGRM contains 

30 rectangular and 24 triangular rock blocks, in which three-dimensional heat 

flow patterns evolve during heat extraction. Discretization needs to be rather 

\1 

.~. 
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fine near the block surfaces, so that the steep temperature gradients at 

early times of the cold sweep experiment can be adequately represented. A 

rather coarse discretization would probably require of the order of 100 or 

more volume elements per rock block, and many additional elements to represent 

\.- the water channels between the blocks, and the steel vessel. Clearly 

approximate methods are needed which permit a drastic reduction of geometric 

complexity. 

(" 

The simulations performed in the present study used the method of "multiple 

interacting continua" ("MINC"; Pruess and Narasimhan, 1982). The MINC-method 

was developed as a simplified approach to calculating fluid and heat flow in 

fractured geothermal reservoirs. Part of the approximations made in this 

method had already been tested and validated against analytical solutions by 

C. H. Lai (personal communication, 1982). However, a more complete evaluation 

of the MINC-method by comparison with fluid flow and heat transfer experiments 

was considered desirable. The present simulation studies were in fact 

motivated by the hope to accomplish an experimental test of the MINC-method. 

Before presenting specific details of the MINC-discretization employed in 

our simulations, it is appropriate to briefly review the basic ideas behind 

the methodology. A more complete discussion was given by Pruess and 

Narasimhan (1982) and Pruess (1983b). 

The MINC - method is an ext.ension of the familiar double-porosity concept 

for fractured reservoirs. A fractured reservoir is idealized as consisting 

of rock blocks separated by void spaces (see Figure 1). If such a system 

of hot rocks is swept by cold water, the water will flow rapidly through the 

fracture system, while heat will be conducted from the blocks to the water 
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on a much slower time scale. The MINC-method makes the approximation that 

the rock blocks are engulfed by cold water virtually instantaneously, so 

that heat flow within the blocks will occur in an essentially one-dimensional 

pattern, namely, outward towards the block faces. With this approximation, 

it is then possible to discretize the rock blocks into a one-dimensional 

string of nested volume elements, defined on the basis of distance from the 

block faces. This discretization is shown schematically in Figure 2 for 

a two-dimensional case. Note that this discretization correlates only 

approximately with the temperature distribution in the blocks, even if the 

assumption of an instantaneous temperature change at the block faces is 

valid, because near the block corners conduction effects of several block faces 

interfere. A more accurate discretization would employ curved interfaces, 

coinciding with the isotherms for the heat flow problem (e.g. Carslaw and 

Jaeger, 1959). However, for the problem of heat transfer between rock 

blocks and surrounding fluid, the detailed temperature distribution within 

the blocks is irrelevant, as long as the total. rates of heat flow across the 

block faces are accurately predicted. Numerical and analytical studies by 

C. H. Lai for regularly shaped blocks have shown that the MINC approximation 

yields total heat flow rates at the block surface which are accurate to 

within a fraction of a percent (C~ H. Lai, personal communication, 1982). 

The other important approximation made in the MINC-method, namely, that 

temperature change at the block faces is sudden and instantaneous in comparison 

to the time needed for significant heat transfer from the blocks to the sur

rounding water, is not well justified for the conditions of the SGRM experiment. 

This is because of the small scale of the rock blocks and the large void 

spaces, which cause flow velocities to be rather small. The thermal diffusi

vity for the granite rocks is approximatley K = 10-6 m2/s, so that 
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the diffusion lengths Ld ="Kt~/2 corresponding to the time t~ it 
.:. 

takes to sweep past one layer of rock blocks are significant. Table 1 

lists diffusion lengths and percentage of volume of the rectangular blocks 

affected by heat conducti?n for the times required to sweep one layer in the 

\.,/ d i ff erent exper iment s. 

Experimental Run 

1.5 hours 

5 hours 

10 hours 

900 s 1.5 cm 

3000 s 2.7 cm 

6000 s 3.9 cm 

Percentage of affected 
block volume 

37.2% 

60.0% 

75.7% 

Table 1: Conduction effects as water sweeps one layer of rock blocks. 

It should be noted that the "-instantaneous sweep" assumption is sufficient 

to justify the discretization made in the MINC-method, but it may not be a 

necessary condition for its validity. 

The basic MINC-discretization concept as illustrated in Figure 2 can be 

readily extended to rock blocks of arbitrary shape. In the general case it 

is convenient to define a "proximity function" PROX(x), which represents the 

total fraction of rock volume contained within a distance x from the block 

faces. The proximity function provides all the geometric information which 

is needed for obtaining a discretization of rock blocks into nested volume 

elements. Proximity functions for the rectangular and triangular blocks of 
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the SGRM, as well as average proximity functions for the individual layers, 

have been given by Pruess and Karasaki (1982). The computational grids for 

the simulations of the experiment were obtained from these proximity functions, 

using a preprocessor computer program "GMINC" (Pruess, 1983b). 

A conceptual illustration of the computational grid is given in Figure 3. 

The water flow path from bottom to top is discretized into 30-60 layers. 

Each water volume element is represented by a solid circle in Figure 3. 

The water elements are connected to each other and to elements representing 

the vessel walls, which in turn are connected among each other, as well as 

with "infinite" volume elements representing the constant temperature 

ambient conditions ("surroundings"). Each water element is also connected 

to a one-dimensional string of nested volume elements in the rock blocks. 

For different runs, 4 - 11 nested volume elements were used. 

The entire grid makes it possible to represent the following processes: 

(1) water flow up the void channels, (2) heat exchange between steel vessel 

and water, (3) heat loss from the vessel to the surroundings, (4) heat 

transfer from the rock blocks to the water, (5) heat conduction within 

the rock blocks, and (6) heat conduction along the walls of the vessel. 
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Figure 1. Idealized model of a fractured porous medium. 
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Basic computational mesh for a fractured porous medium. 
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Figure 3. Conceptual illustration of the computational grid used for the 
Stanford Geothermal Reservoir Model. 
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