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A simple and convenient approximation is obtained for the multiphoton energy-transfer processes 
which accompany the scattering of a charged particle by a scattering potential in the presence of a 
strong external electromagnetic field. It is expressed in terms of the difT~rential elastic-scattering cross 
section combined with known functions, and is valid when the scattering potential is weak or when the 
wave frequency is small. A detailed form of the classical limit is obtained. 

I. INTRODUCTION AND SUMMARY 

When a charged particle, to be referred to 
henceforth as an electron,. scatters in the presence 
of an electromagnetic wave, it may exchange ener
gy with the electromagnetic field. Because, on 
the average, energy-absorbing encounters ·domi
nate energy-emitting encounters, the process 
is of central importance in the study of plasma 
heating by electromagnetic ·waves and in the study 
of gas breakdown. It has been extensively dis
cussed both classically1 and quantum mechanical
ly/ the latter in the context of inverse brems
strahlung and stimulated bremsstrahlung of single 
photons. When the electromagnetic field is strong, 
however (or when the frequency is low enough), 
many photons can be emitted or absorbed in a 
single scattering process. It is the purpose of 
this note to analyze these multiphoton processes 
and to relate them to the classical description. 

The electromagnetic field will be approximated 
by a classical spatially homogeneous electric field 
throughout. The distinction between the classical 
and quantum treatment resides. in the description 
of the asymptotic states of the electron before and 
after the collision. In the classical description, 
the electron follows a classical orbit, with oscil
lating velocity. Scattering processes are charac
terized by an instantaneous incident velocity deter
mined by the phase (henceforth referred to as the 
scattering phase a) of the electric field at the 
scattering instant. While the scattering itself 
is assumed to be instantaneous and elastic, change 
in time-averaged electron energy occurs as the 
result of the change in electron direction. For a 
given scattering angle (referred to the time-aver
aged directions) the energy change is determined 
by the scattering phase a. In the quantum case, 
initial and final electron states are described by 
solutions of the Schrooinger equation~ Energy 
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changes ·are determined by the number of photons 
emitted or absorbed. A correspondence between 
the photon number and scattering phase is estab
lished. It proves to be useful in the discussion of 
the classical limit and in the establishment of a 
relation between multiphoton processes and elastic 
scattering cross sections. 

The classical theory is summarized in Sec. II. 
Section III is devoted to the development of a 
convenient formalism for the quantum case. 
Section IV consists of the application of the 
formalism when the elastic scattering process 
is adequately described by the Born approximation. 
Section V is devoted to a low-frequency approxi-

. mation for those cases in which the Born approxi
mation to the elastic scattering is inadequate. The 
classical and strong-field limits are the same for 
both of our approximations. Concluding comments 
are made in Sec. VI. 

Our prinCipal result may be summarized by the 
following formula: . 

dau(q(v),q0 )=q(v) J 2 ( ) da •• (e,Q) (1.1) 
~ qo u X dil ' 

where dau(q(v),<io)/dil is the differential cross 
section for scattering from (time-averaged) initial 
momentum <io to final momentum q(v) with the 
emission (v >0) or absorption (v <0) of v photons 
of angular frequency w, so that 

(1.2) 

da.1/ ~ is the differential elastic scattering cross 
section for scattering in the absence of the electro
magnetic field, evaluated at momentum transfer 

(1.3) 

and energy . . . 
2 A - • 

- !h.. ... a • qo ( "" )2 m 
E- 2m + llrtW a , Q + VrtW 2 (a .: Q)2 . (1.4) 

The electric field direction is denoted by a. J u(x) 
denotes the Bessel function of order v'. 

The magnitude of multiphoton cross sections 
is determined by the parameter x, which for a 
vector potential of amplitude a is given by 

x=-ea·Q/mcliw. (1.5) 

In terms ·of inhident radiation flux P in MW /cm2 

. and wavelength .\ in J.llil, 

x= -0.352.\2P 112 a ·Q/mc. (1.6) 

Equation (1.1) holds whenever the Born approxi
mation provides an adequate description of the 
elastic process, in which case the elastic cross 
section depends upon the momentum transfer oriiy ~ 
When the Born approximation is inadequate, Eq. 

(1.1) holds only atlow frequencies, and Eq. (1.4) 
is reliable only for 

l ~liw !!!.£1 = ~~~<1. a·Q e x 

This latter condition is equivalent to the require
ment that vliw, the energy transfer, be no larger 
than that which is allowed classically and avoids 
the apparant singularity of Eq. (1.4) at a· Q = 0. 
This condition need not be imposed when the Born 
approximation is adequate, but it is to be noted 
that the Bessel function becomes small when it 
is violated. 

II. SUMMARY OF CLASSICAL THEORY 

The instantaneous kinetic momentum p = mv of 
an electron in the spatially uniform vector potential 
A is given by 

p=q-(e/c)A, (2.1) 

where q is a constant vector which represents 
the time-averaged value of p and A may be con
veniently taken to have the form a coswt. An 
electron with time-averaged momentum q0 will 
arrive at a scattering center at some instant t 
and hence with incident momentum Iio determined 
by (2.1). Scattering is assumed to take place 
instantaneously (i.e., in a time short compared 
to 1/w) and elastically from an incident Po to a .· 
final p. Thus, coswt has the same value imme
diately after the collision as it had immediately 
before, and the time-averaged final moment q 
is determined by (2.1). We have, therefore, 

• ... - ... A 
q -qo = P- Po= "'l (2.2) 

and, since P2 = p~, 

q2 -q~ = 2(e/c)a • Qcoswt. (2.3) 

In a typical scattering process q and <io are to 
be regarded as the observables. Equation (2.3) 
then determines the value of coswt (let wt = a 
="scattering phase" henceforth) at which the 
scattering took place; and Eq. (2.1) then deter
mines the values p and p0 (andhence the energy) 
involved in the interaction with the scatterer. 

The scattering rate per electron per unit scat
terer density into solid angle driP, in the phase 
interval da is given by 

dR=& da(p0 ,P) dil da. 
m tiD, t>rr (2.4) 

(Since a appears only via coso we may take 
0 <a< rr.) To define a cross section we use the 
time-averaged electron-flux at incident momentum 
<io· Thus, 

(2.5) 
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For comparison with the quantum theory itis 
convenient to express dr?.P da in terms of tinq d(q 2

). 

2d.h 
anP da = p dao(p2 

- p~) 

= 
2da! da o[q2 -q~- 2(e/ e)a · Qcosa] 

= q_ d( )2 tin 1 (2 6) 
p q q j2(e/e)a•QsinaJ' · 

yielding, finally, 

·tkr--!1... da(P,_po) .. anq dq2 . . (2.7) 
-q0 .tin j27T(e/e)a·Qsinal' 

III. FORMALISM FOR INDUCED MULTIPHOTON 
PROCESSES IN ELECTRON SCA TIERING 

The Schrodinger equation for an electron moving 
in a vector potential A and scattering potential 
Vis 

1 (" -. e -r) 2 
• -

2 
-:- V -- i\ '{I + V'{l = ili'{l . m t · e (3.1) 

In strong fieldsJ stimulated processes dominate 
spontaneous processes by an enormous factor. 
Hence it is appropriate to treat A as a e number. 
In addition we take (as before) A to be spatially 
independent. Consequently, the A 2 term can be 
eliminated from Eq. (3.1). Let 

'{I =exp (~k J
1

2~
2

e2 A2 dt') cp(t). (3.2) 

Then 

(
-If ieli -r - ) • 2m V2+me J\•V+V tj>=ilicp. (3.3) 

For V=O, Eq. (3.3) has the plane-wave solutions 
(we use X in place of cp for V = 0 solutions) 

Xt=e 1t.; exp[-~! Jt (k2 -!~i{·A)dt'] (3.4) 

corresponding to the classical solutions with time
averaged momentum q =me. One may construct 
the retarded Green's function, G(r- r',t, t'), 
defined by the differential equation 

( lf2 
2 ielf -r - ... a J (- ---2 v +-i\·V-zfi- G=o r-r')o(t-t') · m me at 
- (3.5) 

and the requirement that G vanish for negative 
(t- t'). For positive (t- t') one finds 

_ i J [ ilf J. 1 

f 2 2e - ) "] G-li(27T)3 exp -2m t'\k -lfek·A dt 

(3.6) 

The solution 'Pko to Eq. (3;3) corres_pond~ng to an 
incoming plane wave of momentum q0 = llk0 plus 
outgoing waves satisfies the integral equation 

qJt
0 

=Xt
0

- J dr' f., dt' GV(r')cpt
0
(r', t'). (3.7) 

To determine a scattering cross section, we 
need the asymptotic form of 'Pk' at large r. It is 
convenient at this point to specialize to A=acoswt. 
Then ' 

G=li(:7T)3 J dkelk·<;_;.> 

· [-iii ( 2 2e - - . )] x exp 2m k t - lfew k • a smwt. 

[ iii ( 2 2e - - . )] xexp 2m k t'- licw k ·a smwt' . (3.8) 

Making use of the fact that 4>k'o.k' defined by 

( ) [in ( 2 2e - - . )] 4>-k k- r' t' =exp- k t' --k·asmwt' 
0• ' 2m 0 neW 

x cp- (r' t') 
ko ' 

(3.9) 

is periodic in t' with period 27T/w, we expand it 
in a Fourier series as follows: 

The second term of Eq. (3.7) may be written 
~vSk0 , v(r, t ), where 

- -z J -<--S- (r t)=-- dkdr'eik· r-r'l 
ko• v ' li(27T)3 

(3.10) 

· [-ilf ( 2e - - . ,\] x·exp 2m k2 t - ficw k · a smwt; 

(3.11) 

Using the familiar methods of scattering one finds 
that at large r, in the direction i{(v), 

m eu<vlr 
Sko, v(r, t) =- 21Tn2 -r-

. [ ilf ~ 2 2e - - . ,\] xexp - 2m\k (v)t- wmnk(v)·asmw:; 

where 

(3.13) 

Equation (3 .13) tells us that s-k v is associated 
0' 

with the stimulated bremsstrahlung of v photons 
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for 11 positiv.e and the inverse bremsstrahlung 
of l11l photons for 11 negative. 

Making use of (3.9), (3.10), and (3.13) we see 
that the final factor of Eq. (3.12) may be reex
pressed in accordance with 

.Jdr'e-iJ::<v>·;'v(r)4.>- - (r') 
k 0 .k(v).u 

W (211/w 
= 217 )o dt[XJ::cvl• VcpJ::

0
]=(X"kcvl• VcpJ::

0
). (3.14) 

in Eq. (3.14) the term in square brackets is an 
inner product in the usual sense of integration 

. ~over,rcand,the-term.in"angular.brackets is .de
fined as the indicated time average. 

The probability current associated with the 
incident wave Xr is (q0 /m) -eA/mc, which is 

0 
just the classical instantaneous velocity. For 
defining an incident flux we take the time -averaged 
value. The probability current associated with the 
spherical wave solutions in sro·" is, at larger, 

.!.(Cl(ll) _ eA\. 
r m me) 

Again we take the time average to define a cross 
section. The total outgoing wave probability cur
rent contains cross terms between terms of dif
ferent 11. These cross terms do not vanish on 
time averaging but do vanish when ar. average 
is taken over a macroscopically small range of 
r. They should, therefore, be omitted in deter
mining the cross sections. Finally, we obtain 

da(q(ll),qo) = (~) 2 q(v) I (X- V - )J 2 (3.15) 
tin 2nli2 Qo k(v), «Pko • 

Equation (3.15) is a straightforward generaliza
tion of the well-known expressions for scattering 
in a static potential. 3 · 

IV. WEAK-POTENTIAL APPROXIMATION 

When the scattering potential V is weak, one can 
approximate cpJ::

0 
by XJ::

0 
in (3.15). Then using (3.4), 

(1.5), and (3.13) we have 

[Xrcv>• VXJ::
0

] =exp(ix sinwt- i11wt) 

x[e-lk(vl·r"",velko"r""] (4.1) 

and, from {3.14), we have 
. W l2Tr/w 

<xrcvl• VXJ:: )=-2 exp(ixsinwt-illwt)dt 
0 1T 0 

x[e-lk(vl• ;, Velk0 ·r""] 

=J (x) (e-lk(vl·r"" Velk0 ·r"") (4.2) 
v " ' ' 

which yields 

da@ll),q0 )=q(11)J2 ( )da8 (Q) (4.3) 
tin Qo II X tin . 

The subscript B refers to first Born approxima
tion for the elastic scattering cross sections. It 
is apparent from Eqs. (4.3) and (1.5) that the 
strong-field limit, low-frequency limit, and 
classical limit are all governed by large values 
of the single parameter x appearing in the argu
ment of the Bessel function J .,. To investigate 
this limit we recall the Debye asymptotic formu
las4 

J 2 ( )- 2 cos2[(~;.. 112 )1/2 -JIIcos- 1 (11/x) 1- tn] 
" " ~ rr(~. _ 112)112 ' 

l-!11/xl>e (4.4a) 

J 2( )~ 2exp[-2.fo" cosh- 1(11'/lxJ)dll'] 
u X ~ 1T(V - X2)l/2 , 

l11/xl-1>e. (4.4b) 

Identifying q in Eq. (2.3) with q(11) and using Eq. 
(3.13), we see that the classical scattering phase 
a is related to the quantum parameters via . 

cosa = v/x. (4.5) 

The Eq. (4.4b) form is thus seen to correspond 
to an energy transfer larger than is classically 
allowed. As one would expect, it vanishes expo
nentially as Jxl- oo. Equation (4.4a) can be used 
to deduce the classical limit. In this limit, the 
number of photons transferred is typically large. 
The cos2 factor indicates large fluctuations as the 
photon number changes by unity. For a mean 
behavior, however, we take cos2 equal to one
half to obtain 

dij = Q(ll) da B(Q) (1T 1-e-a • Q Sina 1)- 1
• (4.6) 

tin q0 tin \' mcliw 

This is seen to be identical with the classical 
formula equation (2. 7) when we set dq2 = 2mliw. 

It is apparent on inspection of x that the classical 
limit obtains when the classical oscillation ampli
tude ea/mcw is large compared to the interference 
fringe separation (costQ · v modulation factor) 
between the incident and scattered wave along the 
direction of oscillation. 

.. V. LOW-FREQUENCY APPROXIMATION 

In this section we shall show that in the low
frequency limit [Eq. (4.3)] holds to all orders in 
the scattering potential provided that the Born 
approximation for the elastic scattering is re
placed by the exact expression for the elastic 
scattering evaluated at the energy E given by 
Eq. (1.4). 
It is useful to redefine the scattering state 

cpr; so that it becomes time independent in the 
0 
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low-frequency limit. Furthermore; to go beyond 
the first Born approximation it is more convenient 
to work in momentum space. Accordingly, we let 

(5.1) 

- ) 'lfk
2 e + - . 7](k, t = -

2 
t - --k • a Slilwt . 

m mew 
(5.2) 

Substituting into Eqs. (3.4), (3.6), and (3.7), we 
find 

;;;- (k t) = o(k- c:)- (i/lf)e-i.t:.(k,ko,tl 
"'ko ' "o 

J_ t -- ') X _..,dt' dk'·el.t:.(k,ko.t 

where 

.A(k. ko, t) = 77(k, t) - 77(1{0 , t) 

and 

V(k -k') = J e-i(k -k') .; V(r) flar. 

A formal solution to Eq. (5.3) is provided by 

and 

- ""_(n). 

qJko = L) <P'to' 
n:o 

-(0) - -) (/Ji< = 6(k- k 0 , 
0 

- - t ;;;{a +I)= -(i/lf)e-i.t:.(k .k 0.tlj dt' dk' 
"'ko .- ... 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

xei.t:.Ck.ko·''l V(k.-k')~l (k', t'). (5.8) 
0 

In the low-frequency limit, 

a2 A a-cp<n> 
at'2 ~ 0' 7 ~ 0. {5.9) 

Then 

(5.10) 

Using the approximation (5.10) in (5.8), we obtain 

-(,+1) - 1 J dk-1 - (- -,)-In) ( I ) 
lflko -- lf!(k,ko, t) _ V k -k <Pt0 k, t . 

(5.11) 

We note that all time-dependent quantities in Eq. 
(5.11) refer to the same instant. Consequently, 
the time may now be regarded as a parameter, 
and the problem has been reduced to the solution 
of the elastic scattering problem. Let<~>; (k) be 

0 
the solution of Eq. (5.3), with the vector potential 
a set equal to zero. Comparison with Eqs. (5.2), 
(5.4), (5.6), (5.7), and (5.8) shows that, for low 
frequency w, 

-cpk- (it, t) ~<Pi< (K), 
0 0 

(5;12) 

where 

Ko=ko- (e/lfc)acoswt, K=k- (e/lfc)acoswt. 

(5.13) 

To c_ompute the scattering5 we require [Xk(v) 'Vrpj;J 
Using Eqs. (3.4} and (5.1), we find 

[Xk(v)' V<PtoJ = e-it.Cko.k(v), t) J dk' V<k(v)- k')cpko (k'' t) 

=e-lt,(ko.k(v),t) J dK'V(K(v) -K').Pi(
0
(K'). 

(5.14) 

The last integral is just the familiar T matrix 
for elastic scattering, whose arguments we shall 
take to be momenta rather than wave numbers. 
Thus, we write 

(5.15) 

where the p vectors are related to the q = lik vec
tors via Eq. (2.1). We note thatp2(v)*P~ except 
at the classical values of coswt =cos a determined 
by Eq. (2.3), so that (5.15) refers to the T matrix 
off the energy shell. We shall write T.1 for the on
shell T matrix which yields the elastic scattering 
and express it in terms of the momentum trans
fer and energy. 

Finally, we consider [see Eq. (3.14)] 

<xtcvJ• Vq;t
0

) = (w/21T)fo 2
"
1w dt e-i.t:.Cka,kCvl.t>r<i)(v), p0 ). 

(5.16) 

For sufficiently small w, the exponential factor 
will oscillate many times as t ranges over the 
integration interval. The principal contribution 
will come from those values of t for which 6. 
vanishes. Thus, we approximate (5.16) by re
moving T from under the integral sign and evalu
ating it at the stationary phase points, that is at 
values of t such that 6. = 0. This condition is 
immediately seen to be the same as the energy
shell condition with energy determined by Eq. 
(1.4). Thus, we obtain 

(5.17) 

and hence the final result 

da(<i(v),q0) =q(v)J 2 ( )da.1(E,Q) 
fin Qo v X fin . (5.18) 

In applying Eq. (5.18), coswt is given by Eqs. 
(2.3) and (4.5). For. v>x, the cosine is greater 
than 1, and the stationary-phase condition can
not be satisfied. The integral in Eq. (5.16) is then 

·~ 
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expected to be small, and while th,e approximation 
in Eq. (5.17) is no longer justified; it also gives a 
small result. 

It is of interest to note that the weak-field limit 
of Eq. (5.17) for single-photon processes is valid 
not only to lowest order in w (-w- 1 for this pro
cess) but also to the next higher order (-w0

). To 
see that this is the case we recall that a form 
validtothis order has been given by Low.6 As 
shown by Brown and Goble,7 the form given by 
Low may (again to order w0

) be written (specialized 
here to the nonrelativistic limit with spatially 
constant electromagnetic field) 

-a·<i<1)r •• (~. ~)], (5.19) 

while (5.17) in the weak-:field limit yields 

(Xk(ll• Vcpk0)R:- 2m:Jiw [a·(q0 -q(1))] T.1 (E,~). 
(5.20) 

Using Eq. (1.4) for E one sees that the two formulas 
are equal to o:Fder w0

• 

VI. CONCLUDING REMARKS 

The principal result of this paper is Eq. (5.18). 
It provides a simple and reasonable approxima
tion to multiphoton energy transfers when the 
frequency of the electromagnetic wave is small 
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of the gas-breakdown problem. To specify a 
reasonable power level we recall that the classical 
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, growing by a factor of 
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that multiphoton energy transfers are improbable 
for say Nd and ruby-laser pulses. On the other 
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quantum effects are, of course, not smoothed. In 
Ref. 2 it was found that quantum effects on elec
tron heating for the case of air are of negligible 
importance for photons below 0.5 ev. It there
fore appears that the neglect of multiphoton pro
cesses (or classical energy transfer fluctuations) 
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