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THE CRYSTALLOGRAPHY AND STRUCTURE OF DEFORMATION INDUCED EPSILON 
AND ALPHA MARTENSITE IN Fe-Ni-Cr SINGLE CRYSTALS 

Glen Andrew Stone 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering; 

University of California, Berkeley, California 

ABSTRACT 

A comprehensive study of the crystallography and structure of 

deformation induced s and a martensite (from austenite) in a low stacking 

fault energy Fe-15wt%Ni-15wt%Cr alloy has been completed. The 

martensite needle axis,magnitude of the shape change and direction of 

the shape change have been measured. When these results were compared 

to the Acton-Bevis two shear phenomenological theory, using two slip 

shears, the following result was obtained fur the habit plane normal 

(assuming the long axis of the needles lie in the habit plane and the 

habit plane is perpendicular to the slip plane), 

-+ 
h = ( 0.333, 0.812, 0.479 \ 

h = ( 0.341, 0.812, 0.475} 
y 

for the direction of the shape change vector, 

-+ 
u = ( 0.822, 0.129, 0.555 \ 

-+ 
u = ( 0. 825 ' 0 .158' 0. 542 } y 

Experimental 

Theoretical 

Experimental 

Theoretical 

and for the magnitude of the shape change experimental values varied 

between 0.21 to 0.30 and theoretical values varied between 0.25 to 0.39. 
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Studies of the microstructure show that in this alloy E martensite 

will not form independently of a. martensite by quenching. This is 

because the E martenslte start temperature (Es ) is less than or equal 
. i y 

to the a. martensite start temperature (Msy). The deformation start 

temperature for E martensite (Ed ) is greater than 300°K in this alloy. 
y 

The a. martensite start temperature (Mdy) is 190±5°K for specimens 

deformed in tension with a [lOO]y tensile axis. Deformation induced 

E martensite forms as thin sheets parallel to active. {111} slip planes. . . y 

The E phase at all temperatures partitions the austenite matrix with 

parallel sheets of E 0.5 to 2.5 microns apart. This forces the a. 

martensite to form in packets that are sandwiched between two E sheets. 

The a. martensite in this alloy is acicular and dislocated. Separate 

volumes of a. martensite needles always meet at a {112} twin boundary. a. 

The internal structure is dislocated martensite, rtot twinned, even 

though the material exhibits the {252} habit plane commonly associated 
y 

with twinned Fe-C, Fe-Mn-C and Fe-Cr-C alloys. 

The magnitude of the critical resolved shear stress (CRSS) on 
! 

possible a. martensite habit planes controls which variants of the habit 

that can form. Measurements of the habits present in deformed single 

crystals agree well with the CRSS model of Patel and Cohen. The variants 

of the Kurdjumov-Sachs (KS) orientation re·lation present for a. martensite 

werealways the variants that contained both the active slip planes and 

I 
slip directions. This result demonstrates that the K-S variants that 

are present also depend on the CRSS. 

.,.., 
I 
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The sequence of transformations in the temperature range studied 

are y ~ E: and y + a. The E: + a transformation was not observed. The 

ease of these transformations above Esy and Msy depends on the 

magnitude of the CRSS on potential habits. The y + E: transformation 

is believed alway~ to occur first. The E: + y (reversion) occurs 

at large plastic strains after a significant amount of a martensite 

has formed. In addition to the E: - a interface formed by E: sheets 

parallel to {111} planes, E: martensite surrounding the entire a 
y 

martensite needle has been observed. This situation is formed during 

accommodation deformation of the austenite adjacent to the growing 

a martensite needle. 
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PART I. THE CRYSTALLOGRAPHY OF a MARTENSITE 
IN Fe-15wt%Ni-15wt%Cr SINGLE CRYSTALS 

I. INTRODUCTION 

The great majority of steels exhibit either the {3,15,10}y or 

{252}y interface plane (habit). The phenomenological theory1- 4 has 

been successfully applied to explain the crystallographic features 

of {3 ,15,10\ martensite. However the {252} habit that is observed 
y 

in many low stacking fault energy steels (Fe-Mn-C, Fe-Cr-C 

and Fe-C alloys for example) has not been effectively explained, 

mainly because of the absence in the literature of measurements of the 

martensite shape strain and habit plane for these alloys. The objective 

in Part I is to obtain such measurements for an Fe-15Ni-15Cr alloy 

(alloy compositions are weight percent unless otherwise specified) and 

to test those measurements against results obtained from a new generalized 

phenomenological theory by Acton and Bevis (AB) 5 and Ross and Crocker 

(RC). 6 The objective is to test the theory to see if the generalized 

theory can effectively describe the crystallography of steels with the 

{252}y habit plane. 

A. Principles of the Phenomenological Theory 

The martensitic phase transformation requires the motion of many 

atoms over short distances in the absence of diffusion. The change 

in crystal structure is accomplished by a homogeneous deformation of 

the crystal lattice and the experimentally observed change in shape is 

accomplished by a lattice invariant shear in the martensite. The 
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magnitude and direction of the lattice invariant shear must have values 

that preserve
1 

the experiment~lly observed orientation· relationship 

and interface plane (habit plane) between the austenite and martensite 

phases. The habit plane is observed to be undistorted or nearly 

undistorted and unrotated with respect to the original crystal matrix. 

The formulation of the present phenomenological theory of martensite 

crystallography developed from experimental studies of Greninger and 

1 2 
Troiano. ' They observed the existence of irrational habit planes in 

Fe-e and Fe-Ni alloys. Studies of the shape deformation in an Fe-22 

Ni-0.8C alloy indicated the observed surface relief could be described 

by a homogeneous shear on the habit plane of the martensite plate. When 

the shape deformation alone was applied to the fcc lattice, the b.c.c. 

or b.c.t. lattice was not generated. It was concluded that two deformations 

must be required: a homogeneous deformation that produces the required 

change in the crystal structure and secondly, a lattice invariant shear 

which leaves the habit plane undistorted and unrotated to comply with 

the experimental results. 

3 4 Wechsle!, Lieberman and Read (WLR), and Bowles and MacKenzie (BM) 

independently developed mathematical models of the phenomenological 

theory to des~ribe martensite crystallography. Both theories may be. 

represented by the matrix equation 
I 

F RPS (1) 

where F is the overall shape strain of the martensite crystal, R is 

a rigid body rotation often referred to in the literature as the 

. 
>../ 
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orientation relationship, P is the lattice deformation and S is the 

lattice invariant shear. The lattice deformation P contains the lattice 

correspondence and allied deformations that describe the motion of each 

parent lattice site into the product structure. The lattice correspondence 

that appears most likely for steels was proposed by Bain7 and is 

shown in Fig. 1. The lattice invariant shear S is assumed to be a 

normal deformation mode such as slip or twinning. It is easily shown 

that a lattice deformation and lattice invariant shear can produce an 

undistorted interface plane, however the plane is no longer related 

to its original interface position in the lattice. To make the interface 

plane indeed invariant to agree with experimental observations a rigid 

body rotation was added to the theory. The rotation matrix R can be 

calculated for any combination of lattice invariant line and habit 

plane normal. This will determine the invariant line strain associated 

with lattice invariant shear S. 

Before one can say the phenomenological theory is valid, it is 

necessary that the calculated and experimental orientation relationships 

between the austenite and martensite matrix, the habit plane and the 

magnitude and.direction of the overall shape change of the martensite 

crystal all agree. The success (the {3,15,10} habit planes) and 
y 

failure (the {252}y habit planes) of this theory as applied to numerous 

8 9 10-12 
alloy systems is throughly reviewed by Christian ' and Wayman. 

The problem of particular interest in this thesis which has not been 

described in any acceptable way by the WLR and BM models is the {252}y 

habit plane observed inmany low stacking fault austenitic stainless 

steels. 
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The (AB) and (RC) model of the theory evolved around the concept 

that perhaps a multiple lattice invariant shear in the martensite is 

occurring during the. phase transformation. This theory is expressed 
i 

by the matrix equation 

F RPTS (2) 

where T is an additional lattice invariant shear. The mode of shear 

as before ma,y be by slip or twinning of the martensite. Observations 

13 of multiple twinning shears have been made by Oka and Wayman, Das 

14 15 16 
and Thomas and Thomas and Das. Wayman, is careful to point out 

that there is no sure way one can prove that the multiple twinning 

shear observed in the martensite is due to the transformation or is 

an accommodation effect. The transformation shears are the homogeneous 

de~ormation and lattice invariant shear defined in the theory. The 

shears associated with accommodation deformation are those caused by 

impingment of adjacent martensite needles in regions of high volume 

fractionofmartensite. Clearly if accommodation deformation is 

present in the martensite or austenite, agreement between the measure 

and calculated magnitude and direction of the shape change would not 

be expected. 

This is a serious problem and the only way to effectively show that 

the shears observed in alloys that appear to have a multiple lattice 

invariant twinning shear is to carefully measure both the overall shape 

I . 
strain and the habit plane in alloys were a low volume fraction of a 

.. I 
.... 
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martensite can be produced. As far as this author knows this is the 

first comprehensive study using single crystals to measure these 

parameters and apply the results to the generalized theory. Acton 

and Bevis5 use published data13 ,l6 ,l],lS to test their theory and 

obtained what can be considered encouraging results in explaining 

martensite crystallography of alloys exhibiting the {252}y habit plane. 

The magnitude and direction of the shape strain and the habit plane 

have been measured using single crystals of a Fe-15Ni-15Cr alloy. 

Numerous computer calculations using the (AB) model have been made and 

a summary is presented in this thesis; the purpose is to test the two 

shear version of their theory. It is interesting to note that the 

lattice invariant shear (s) in this alloy, are not twinning shears even 

though the habit appears to be near the {252} . Studies of microstructure 
y 

of this alloy in the electron microscope reveal that the internal 

structure of the a martensite is dislocated, not twinned. A typical 

electron micrograph showing the dislocated martensite is shown in 

Fig. 2. Detailed analysis of the microstructures will be presented in 

Part II. 
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II. EXPERIMENTAL PROCEDURES 

A. Habit Plane Measurements 

The habit plane for martensite in a particular alloy is usually 

established by cutting specimens to expose two surfaces 90 degrees 

apart. If the martensite is lenticular and exhibits a structural 

feature such as a mid-rib, which is believed to be the trace of the 

habit plane, the Miller indices of the habit plane.can be obtained. 

The a martensite in this Fe-15Ni-15Cr alloy is acicular. Two surface 

analysis of this alloy shows the needle type morphology and also shows 

the habit plane cannot be established directly by this method. An 

example of a two surface study using the optical and electron 

microscopes is shown in Fig. 3. 

A habit plane must exist. To establish what it is in this alloy 

requires a combination of consistent observation between experiment 

and theory. Kelly19 has observed in similar alloys that the habit 

planes near the {252}y always appear to be perpendicular to a {lll}y 

plane. It also appears that the long axis of the needle lies in the habit 

plane. Computer calculations using the AB theory generates many 

variants of the habit plane of the type {0.340, 0.812, 0.474}y (these 

results to be presented in detail later). Clearly habit planes of 

this type will be nearly perpendicular to specific {lll}y planes. If 

it can be shown the microstructure of this alloy is consistent witH! 

the observations made by Kelly19 and calculation made using the AB 

theory, it will be possible to define the habit plane for each martensite 

needle present. 

' c.-, 

;....-·' 
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The objective is then to measure the dir~ction of the needle axis 

from optical micrographs of the slip plane, to define the habit plane 

as being perpendicular to the active slip plane, and then to see if 

habit planes defined in this way are consistent with the theory. It 

is important the reader remembers this assumption during the following 

discussion, because the claimed agreement which will be demonstrated 

between the AB theory and experimental measurements is in fact agreement 

if and orily if the assumption that the habit plane normal is perpendi-

cular to the active slip plane is valid. 

Measurements were made from single crystals deformed in tension in 

an easy glide orientation at a temperature between Mdy and Msy. The 

temperature Md is defined as the a martensite start temperature for 
y 

deformation induced a martensite. Above Md deformation will not induce 
y 

the a phase. The temperature Ms is the a martensite start temperature 
y 

20 
observed upon cooling in the absence of any external loads. Specifically 

the crystals were pulled to 5% strain with a [2l3]y tensile axis at 185°K. 

The slip system for this tensile axis is the (lll)y [Oll]y. Specimens 

tested in this manner produce stress induced a martensite needles that 

are associated with only one {111} plane, the slip plane. The a 
y 

martensite needles are packed between parallel € martensite sheets that 

are parallel to the active slip plane. The € martensite sheets are seen 

as vertical dark lines in Fig. 3a. By using specimens prepared in this 

manne,r the measurements can be made with ease because of the simple 

. 21 m1crostructure. 



-8-

The method used to calculate the long axis of the needle and the 

vector perpendicular to it on the slip plane follows. An accurate , 
i 

line of reference was ne~ded on the polished surface of the crystal 

and in general there was no crystallographic feature on the polished 

and etched surface that can be used. To generate a reference line, 

a vector parallel to the cut edge of two 90° surfaces was calculated. 

To do this, back reflection Laue photographs of each surface were taken 

at a specimen to film distances of 5 em. The spots on the Laue 

photographs were indexed in the conventional manner. The exact normals 

to these two polished surfaces were then calculated analytically using 

computer PROGRAM LAUE, discussed in Appendix A. The cross product of 

these two normals produces the indices of a vector defining the line 

of,intersection between the two surfaces. This lin~ of intersection 

is used as a reference line to calculate the direction of the long axis 

of the needles. The calculations are made by computer PROGRAM TRACE, 

discussed in Appendix B. To insure that optical micrographs of the etched 

austenite-martensite interface are correctly orientated with respect to 

the reference line, micrographs at the working magnification .(usually 

x500) were taken; then without moving the microscope stage, a low 
I 'I 

magnification micrograph was taken showing the edge of the cut crystal 

and therefore defining the direction of the reference line. All angular 

measurements were made with respect to this reference line with a vernier 

protractor capable of measuring angles to five minutes of arc. 

!': 
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Because the polished surface was not the exact (lll) plane, a 
y 

correction was required to resolve the direction of the vector on the 

polished surface onto the (lll) plane. To accompiish this, a 
y 

rectangular geometry was assumed for the martensite needles and 

measurements were made only on plates where both sides were parallel. 

Justification for using this geometry can be seen in Fig. 3a. It was 

also assumed that the vector defining the trace on the polished surface 

was in an interface plane also containing the [lll] direction. The 
y 

vector normal to the interface plane is obtained by simply taking the 

vector product of the vectors defining the direction of the trace on 

the polished surface with the [lll] direction. The vector parallel 
y 

to the long axis of the needle is simply the vector product of the 

interface plane normal and the [lll] direction. 
y 

B. Shape Change Measurements 

1. Theory 

The shape deformation due to a martensite plate in the austenite 

matrix is shown schematically in Fig. 4. 22 Experimentally it is observed 

that a straight line ABCD scribed on the austenite surface will remain 

continuous after the transformation. The surface EFGH is planar and 

is tilted about EF and GH which are vectors laying in the interface 

planes (habit plane) EFJI and HGKL respectively. The observed shape 

deformation is the result of a transformation where vectors in the 

austenite transform to vectors in the martensite and planes in the 

austenite transform to planes in the martensite. Such a transformation 
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can be treated as a linear homogeneous transformation. The shape 

strain, S, which is an invariant plane strain on the habit plane may 
I 

I 

be expressed by the matrix equation 

S = i (I)(I + mdh), {3) 

where o is the dilatation parameter and will be set equal to one in this 

study. The parameter o was introduced in the BM theory and allows for 

the possibility that an isotropic distortion up to 2% in the interface 

plane may be present. For testing the AB model it will be assumed o= 1, 

i.e., no isotropic distortions are present. m is a ~calar factor 

defining the magnitude of the displacement vector, d is a unit vector 

"' defining the direction of the shear and h is the unit normal to the 

habit plane. When h is known, m and d can be calculated from measured 

displacements of a single fiducial line on the crystal surface. 

Bowles and Morton23 have presented a general solution for the 

determinations of the shape strain. An arbitrary basis J that is 

related to the martensite crystallography is selected. Figure 5 is a 

sterographic projection showing the geometry that in fact corresponds 

to one calculation made from Fig. 6 to be discussed next. In Fig. '5 
I 

"' the unit vector J
3 

is the specimen normal, determined in this study 

using 5 em back reflection Laue photographs (see Appendix A). The 

habit plane normal and normal to the tilted surface are plotted to lie 

"' The unit vector J
1 

is then the intersection 
A A A 

of the habit plane with the specimen surface and J
2 

= J
3 

x J
1

• The 

habit plane normal in terms of the J basis is 

.. 
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(h;J) = (O;sin8;cos8)J (4) 

where e is the angle between the pole of the habit plane and the 

specimen normal. The shape strain is therefore given as 

S = (JSJ) 

md1sin8 md1cos8 

) l+md2sin8 md2cos8 

md
3
sin8 l+md

3
cose 

(5) 

where the unit vector defining the direction of shear is 

[J,d] = [d1 ,d2 ,d3]. To evaluate d1 , d2 and d3 four equations are 

required. The first is obtained by taking the determinant of S giving 

(6) 

which is equal to the ratio of the final and initial volume of the 

fcc and bee unit cells 

r = 2(~)
3 

= 2 (
2

•
87143

)
3 

= 1.0289176 a 3.58356 
0 

a and a being the martensite and austenite lattice parameters respec
o 
21 tively. The dashed line in Fig. 5 represents a fiducial line on the 

crystal surface which can be expressed as 

[J;X] = [cosp,sinp,O]J = [l,tanp,O]J (7) 

which will transform by the strain S to 

(JSJ)[J:X] = tanp[cotp + md1sin8; l+md2sin8; md3sin6]J (8) 

The trace of this line is shown as a dotted line. From the geometry 

" of Fig. 5 an independent equation for SX can be obtained. 



A 

SX = [cosa;cosS;cosy] 
J 
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(9) 

where a, B arid y are jthe angl~s between SX and 3
1

, 12 and J 3 respectively. 

"' Taking the vector X as always equal to unity, 

cosa = cosp' siny = \cosp' 

cosS = sinp'siny = >..1sinp' 

cosS = coscj> sina = >..2cos<P 

cosy = sin<P sina = >..2sin<P 

From the two equations relating cosS, 

= 
>..

2 
coscp 

sinp' 

(10) 

(11) 

giving in terms of measurable angles from the electron micrographs 

(JSJ)[J:X] = >..1 [coscj>cosp'; coscp; sincp]J. (12) 

Using Eqs. (8) and (12) three equations in terms of >..
1 

may be obtained. 

/..1 

cotpfmd
1

sin8 
= coscj>cotp' (13a) 

/..1 
~fmd2sin8 

coset> 
(13b) 

/..1 = 
md

3
sin8 

sincp (13c) 

md
3 

= r/(sin8cotcp + cos8) (14a) 

.. 
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evaluate' :x.1 in Eq. (13c) and set equal to Eq. (13b) gives 

and Al in Eq. (13a) gives 

= 

= r cot¢ 
(sin8cot<j>+cos8) 

r cotpcotp' - cotpcsc8 
sin8cot<j>+cos8 

(14b) 

(14c) 

Because [d1 ,d2 ,d
3
]J is a unit vector the value of scalar m, the magnitude 

of the shear can be calculated. The final result [d1d2d3] is obtained 

by a simple rotation of axes to the austenite basis shown in Fig. S. 

The computer program, PROGRAM SHAPE use to make the shape change 

calculations is given in Appendix C. 

2. Fiducial Lines 

Experimentally the difficulty with shape strain measurements is 

placing fiducial lines on the polished austenite. Two methods were 

used in this study. Electropolished crystals were cemented on a·glass 

slide, the straight edge of the slide being used as a reference for 

X-ray orientation of the crystal and as a guide to scratch the crystal 

by drawing over microcloth saturated with 0.05~ Al2o
3 

particles. This 

procedure produced a high density of parallel fiducial lines, the 

direction of which could be defined to ±0.5° on the austenite surface. 

The second type of fiducial line, slip traces on the polished 

austenite surface, were favored in this work. Slip lines were generated 

on the electropolished surface of crystals by prestrains of 2-3% or 

were formed by accommodation deformations of the austenite during the 

martensitic transformation. Examples showing a gold shadowed carbon 
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replica of a (OOl)y surface are given in Fig. 6. The spheres on the 

surface are 0.264±0.006 microns in diameter. The fiducial lines in 

I ' ' 
the example are austenite < 110) slip traces produced by accommodation 

y 

deformation. It was possible to define the change in direction of the 

fiducial line to ±0.2°. The angle of tilt (¢) of the martensite crystal 

was measurable to an accuracy of ± 1°. All calculations of the shape 

strain and direction of shape strain vector assume the habit plane 

to be of the type {0.812,0.479,0.333}y. These habit plane normals are 

consistent with experimental measurements presented in this thesis. 

3. Angle of tilt 

To calculate the angle of tilt of the a martensite crystal with 

respect to the austenite surface it is not required to know the actual 

size of the spheres. However their uniformity is important so that 

good statisticai information can be obtained. The procedure first 

involves calculating the shadow angle which is 

-1 d a = tan (-) 
X 

(15) 

where d is the diameter of the sphere and x the length of the shadow 

on the electron micrograph. If a sphere is sitting on an a martensite 

surface tilted above the austenite, the length of the shadow on the 

tilted surface (y) is less than x. 

of the shadow is then, 

The tilt angle ¢ in the direction 
s 

(16) 
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When the a martensite surface is tilted below the austenite surface 

y > x and 

(17) 

The tilt in a second direction (usually the [110] ) was obtained from 
·Y 

the geometry on the micrograph and both points plotted on a sterographic 

projection. The great circle cutting both points defines the trace of 

the tilted plane and the plane normal is located. Because the habit 

plane normal and the normal to the tilted surface must lie on the 

same ~reat circle, the habit plane normal for the needle in question 

is clearly defined. These measurements were made from micrographs 

shown in Fig. 6. 
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III. EXPERIMENTAL RESULTS 

A. Computer Calculations of Habit Plane and Shape 
Strain Using the AB Two-Shear Model 

5 The FORTRAN version of the generalized martensite crystallography 

was translated from Acton-Bevis ALGOL version by SChoen, 24 and i 

further modified by the author. The program was checked by reproducing 

10 5 results obtained by Wayman and Acton and Bevis. Exact agreement was 

obtained thereby insuring that the new martensite two shear FORTRAN 

program was correct. The only input data required are the austenite 

and martensite lattice parameters, (measured for the Fe-15Ni-15Cr alloy 

21 by the author ), the two shears to be considered and the maximum 

value of the first (termed the S shear) and second shear (termed the 

T shear) to be allowed in the calculation. All possible combinations 

of shears of the type {110} (111> in pairs were tested by the computer . a a .· 

program. Twinning shears will not be considered in this study because 

no internal twinning of the a martensite was observed in the alloy. 

In each case the magnitude of the S shear was varied between +0.40 

and -0.40 :in steps of 0.02. The solution was rejected if the magnitude 

of the T shear exceeded 0.40, if the magnitude of the overall shap~ 
I 

strain exceeded 0.40 or the K-S orientation relat:ionship was not 

satisfied to within ±1.5°. 

The variant of the Bain correspondence matrix use for these calcula-
1 

tions was, 

1 
2 

1 
2 

0 

1- ; 
1 
2 

0 

0 

0 

1 

. 
I 
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and is the same variant as that shown in Fig. 1. This variant corresponds to 

the following three orientation relationshipsbetween the austenite and 

martensite lattice. 

(1) (111) II (011) ; [Oll] II [lll] 
y a y a 

(2) (111) II (011) ; [lOl] II [lll] 
y a y a 

(3) (111) II (011) ; [llZ] II [Oll] y a y a 

The numbers (1), (2) and (3) corresponding to the three orientation 

relationships above will be use to identify which of the three correspond 

to a particular solution in results to follow. 

Three types of solutions using lattice invariant slip shears were 

found that produced the {252} martensite habit. These were, first, 
y 

solutions where one shear (the SorT) was equal to zero; second,solutions 

where the {252} was satisfied over a wide range of values for the 
y 

SandT shears; and third, solutions that produced a pair of {252} 
y 

habits that are twin related. 

For the first type of situation where the magnitude of the S or 

T shear was zero, only two unique solutions were found. These solutions 

tended to converge rapidly on the K-S orientation relationship and are 

not minimized with respect to the magnitude of the shape change. 

The image of the computer print-out for the two solutions of this 

type is given in Table I. 

Four different shear pairs were found where the magnitude of the 

S and T shears were non-zero. Two of these shear pairs each have 

one shear listed in Table I and therefore also reproduce these 
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solutions. The two shear solutions are presented. in Table II. 

The third type of solution given in Table III is of considerable 

interest. It is shown that the AB two-shear model can produce a twin 

related pair of {252} habits, which is observed experimentally, using 
y 

the same two slip shears. Only the sign and magnitude of the two 

shears are different and the magnitude of the shape change for both 

habits are realistic. It appears the martensite in this alloy is 

always present in twin related needle pairs, in the same manner that 

is suggested by these calculations (this will be proved later). 

It should be noted that changing the order of the shears produces 

exactly the same results. Therefore the order of the two lattice 

invariant slip shears is not important as far as AB formulation is 

concerned. 

To summarize these data, for the Bain correspondence used, and 

all possible combinations of {110} ( 111) lattice invariant slip a a 
-+ 

shears, only four unique habit planenormals (h) and directions of the 

-+ 
shape change (u) consistent with experimental observations were 

generated. These four are in fact two sets of twin .related martensite 

habits. They are: 

(1) 
-+ 
h = 

o. 341] 
0.812 

0.475 y 

r O.l58J -+ 
u = - 0.542 

o~826 · .· y 

Twin 
Pair 

-+ [- 0.826] 
u = 0.542 

. 0.158 
y 

(2) 
-+ 
h 

[ 

0,.475] 
0.812 

0.341 
y 

~· I 

I' 

~- i 
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[- 0.812] r- 0.542] -+ -+ 
(3) h = - 0.341 u = ..;.. 0.158 

- 0.475 y 0.826 y 

Twin 

[ 0.812] [ 0.542] Pair 

-+ -+ 
(4) h = 0.475 u = - 0.826 

0.341 0.158 y y 

It remains to be seen if these calculated habit plane normals and 

direction of shape change will be consistent with the experimentally 

measured values that follow. 

B. Habit Plane Measurement' Results 

The habit plane nonnalmeasurements produced a vector that can be 

represented by 

-+ 
h = ( 0.333, 0.812, 0.479\ ± 1.5° • 

This can be compared to the habit plane normal calculated using the 

AB two shear theory, which is 

-+ 
h = ( 0.341, 0.812, 0.475) 

y 

Keeping in mind the assumptions used to make ,the habit plane normal 

measurements, which was based on experimental observations made by 

19 Kelly, it appears that outstanding agreement between theory and 

experiment exist. It is possible this result is fortuitous; however, 

using what is believed to be the best information available, the assumption 

that the habit plane is perpendicular to the active slip plane in the 

austenite is a logical statement. The data showing the experimentally 

measured habit plane normal and a martensite needle axis is given in Table IV. 
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·To help the reader interpret consistency of these data in 

.Table IV, the angle between the habit plane normal and the [2ll]y 

direction is given. Each line of data iri Table IV is of a single a 

martensite needle. No effort was made to average the data and no results 

were dis~arded. The data have been grouped to show what is believed I 

to be a real variation in crystallographic direction of needles with 

seemingly the same long axis. All the measurements were made from 

four micrographs from the same crystal that was strained to 5% tensile 

strain at 185°K with a [2l3] tensile axis. When a crystal is strained 
y 

- . 21 
under these conditions, a martensite forms only on the (111) plane. 

y 

The first point to consider about these results is their accuracy. 

All the micrographs used for these calculations contained a rare 

linear feature; an £ martensite sheet cutting the polished surface 

shown in Fig. 7, whose trace direction was always [0.69551347, 

0.02264272, 0.71815619]y ± 0.25° on the polished surface. It was 

observed that if this trace was assumed to be the intersection of an 

£ martensite plate on the (lll)y plane cutting the polished surface 

the above trace was obtained. This result was fortuitous in that a 

crystallographic feature that could be used to check the precision of 

the measurement was unexpected. This outstanding agreement between 

the observed and correct line of intersection of a £ plate parallel 

to the (lll) plane and the polished surface indicates the precision 
y 

of the experimental method used here is of the order of± 0.25°. The 

data was tabulated to eight places in Table I for convenience and is 

not the implied accuracy. The variations observed in Table I are real 

within the experimental constraints of the measurement. 
i 

I 
• ! 
"'': 

....... 

'{.' 
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C. Shape Change Measurement Results 

The measured direction of the shape change vector using the habit 

plane normal deduced in the previous section in the calculation for a. 

martensite crystals in this Fe-15Ni-15Cr alloy can be represented as, 

-+ u = . ( 0.822, 0.129, 0.555) ± 3° 
y 

The general form of the result obtain from the AB two shear theory 

is consistent with experimental measurements, and is, 

-+ 
u = ( 0.825, 0.158, 0.542)y 

The magnitude of the measured shape change varied between 0.21 and 0.30 

where as the AB theory indicated the shape change varied between 0.25 

and 0.39. A value of the shape change of 0.28 was typical for calculated 

-+ 
solutions of u that best agreed with the experimental measurements. 

The magnitude of the shape change obtained experimentally was a little 

less than that calculated by the AB model. Until the errors associated 

with shape change calculations can be reduced, this error is not 

considered significant. 

The ideal experimental conditions for these measurements are 

electron micrographs of isolated a. martensite needles surrounded on all 

sides by austenite and the presence of one or more of the latex spheres 

on the tilted surface so the angle of tilt (¢) of the martensite plate 

can be calculated. Satisfying all of these conditions at the same 

time proved to be difficult. Figure 6 contains the best examples 

obtained during this phase of the study. 
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Before calculations of the magnitude and directions of the shape 

change can be made from electron micrographs of the type shown in 
' ·, 

Fig. 6, it is important that the morphology of the structure be clearly 

defined. The a martensite in this alloy is acicular. The habit pl,anes 

areperpendicular to a {111} plane and the vector defining the long 
y 

axis of a needle lies in the same {111} plane. With this in mind 
y 

consider the pair of needles cutting the (001) surface in Fig. 6A. 
y 

These needles will be shown to be twin related in Part II. In this 

example the needles intersect the surface with retained austenite 

between the needle pair. In Fig. 6B the twin pair is joined at the 

surface of the specimen. 

If,for the twin orientated needles in 6A the habit planes are 

defined as, 

(1) [0.812, 0.333, 0.479]y 

(2) = [0.812, 0.479, 0.333]y 

the needles must then lie on the (lll)y plane and the fiducial line 

must be the [llO]y when using a (OOl)y standard sterographic projection. 

If the selected habit planes are correct~ and measurements of
1
the 

projected deviation of the fiducial line and the angle of surface tilt 

are accurate, a solution for the magnitude and direction of the shape 

change will result. Because of symmetry, the same general form of 
I 

the (hkl) vector defining the direction of the shape change will be 
y 

obtained for any of the possible {hkl}'s of the habit plane as long 

as the correct {lll}y plane and correct (llO)y fiducial line, consistant 

, 
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with the known morphology,are selected for the calculation. 

It is possible to prove the synnnetry of these solutions by 

simply rotating the micrographs in Fig. 6 about the [110] , [llO] y y 

and [001] and observing if in fact synnnetrical solutions result. 
y 

This was done, and the results are tabulated in Table V. It was not 

possible to measure the surface tilt for martensite needles B and D, 

however, study of Fig. 6A and 6B shows that the angles which produced 

experimental values of the magnitude and direction of the shape change 

are in good agreement with the general form of the solutions predicted 

by the AB two shear theory. 

The accuracy of the calculation depends on knowledge of the habit 

plane normal and the ability to measure the angle of tilt <I> of the a 

martensite crystal. Where the tilt was measurable, the range of 

confidence is indicated in Table V. The measurements are believed 

to be quite good, considering the experimental difficulties and are 

believed to be the first published data of the magnitude and direction 

of the shape change for a martensite crystals that are 1-2 microns 

in cross section. 
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IV. DISCUSSION 

• I I f I A. Compar1son;o the AB Theory and Experimental Results 
I 

For the first time a material that exhibits the {252}y habit 

plane has been shown to be consistent with the generalized martensite 

crystallography theory qeveloped by Acton and Bevis. 5 The consistency 

lies in the fact that theory predicts the general form of the habit 

plane to within one degree of the experimentally obtained value, 

assuming that the habit plane is correctly defined. · The theory predicts 

the general form of the direction of the shape change to within two 

degrees of the experimentally obtained value. The calculated and 

experimental values for the magnitude of the shape change are clearly 

in reasonable agreement. 

With all this consistency of experiment and theory there still 

exists a perplexing problem that seems insurmountable at this time. 

Clearly exact agreement with theory can be demonstrated if and only 

if the exact variants of the habit plane, magnitude and direction of 

the shape strain and the orientation relationship match with experimental 

results. For every martensite needle studied in this thesis, if 

the variants of orientation reJ..ationship and habit plane predicted I 

by theory are applied to the experimental shape change measurement, 

the wrong variant for the direction of the shape change is obtained, 

even though the magnitude and general form of the vector are correct. 

It is believed that the problem lies in the shape change 

calculation. The difficulty seems to be a problem of symmetry. It is 

possible experimental solutions of the shape change vector matching 
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the AB model would result if all possible variants of the habit plane, 

that could be rotated to the standard variant without destroying the 

orientation. relationship, were used to make shape change calculations. 

One of these variants should result in a matching solution. A computer 

program to aid in these calculations is being prepared and the results 

of this effort will be reported in the near future. 

The last serious effort by other researchers to define the 

problems as to why the {252\ could not be satisfactorily explained 

by the present single and double shear models of. the phenomenological 

12 theory was made by Dunne and Wayman. Efforts to explain {252} 
y 

martensite concentrated around the fact that in all the alloys studied, 

electron microscopy results showed the martensite microstructure was 

twinned. In nearly all of Wayman'spublications a concern as to 

whether the twinning observed was a transformation shear or accommodation 

shear has been expressed. The evidence that twinning was a transformation 

5 
shear was so strong that no one, not even Acton and Bevis, considered 

trying all possible combinations of pairs of {110} (111) lattice a a 

invariant shears. If this would have been done, the data on Fe-1.2C 

published by Dunne and Bowles18 could have been explained. Dunne and 

Bowles shape strain results of their twinned Fe-1.2C microstructure 

effectively mirrors the results obtained in this thesis for dislocated 

martensite in a Fe-15Ni-15Cr carbon free alloy. The only difference 

being that Dunne and Bowles used a different K-S variant in their 

calculations. The data presented in this thesis on {252} martensite 
. y 

suggests strongly that the lattice invariant shears involved in the 
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transformation are slip shears, and that twinning observed in the 

18 . 18 '17 
Fe-1.2C, Fe-6.14Mn-0.95C and Fe-7.9Cr-1.11C was cau~ed by 

I I 
accommodation deformation in the mar·tensite. 

One very exciting result that presented itself in the calculations 

made using the AB model was the fact that a twin related pair of 

martensite habits with the same K-S orientation relations resulted 

for the same pair of lattice invariant shears (see Table III). This 

result has not been previously reported. This twin relationship 

between martensite needles was observed to be a consistent characteristic 

of the microstructure as shown in the habit plane measurements 

presented in Table IV. This remarkable agreement between experiment 

and theory demonstrates the basic soundness of the AB theory and its 

ability to predict the habit plane, direction of the shape change 

and magnitude of the shape change providing the correct pair of 

lattice invariant shears are selected. 

B. Factors that Effect the Accuracy of Habit Plane 
and Shape Strain Calculations 

The variation in crystallographic direction of the martensite 

needles in the austenite matrix shown in Table IV is felt to be unrealistic 
I I ' 

considering the apparent.accuracy of the method used in this study. 

The cause for the observed variation is believed to be the present 

inability of x-ray methods to measure the exact austenite orientation 

next to the a martensite needle. Because only 7% of the crystal volume 

h b f d . 21 d h f h 11 h . as een trans orme to a martens1te an t e act t at a t e a martens1te 

are located in isolated regions of nearly 100% a martensite throughtout 

the austenite matrix, 25 the Laue back reflection method is effective 

.,: 
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in measuring the orientation of the untransfotmed austenite. The 

accommodation deformation of the austenite next to the a martensite 

crystal can cause significant lattice rotation of the austenite. 

This lattice rotation is clearly seen in the opticalmicrograph of 

the (lll\ surface in Fig. 7 and the electron micrograph of a gold 

shadowed carbon replica in Fig. 6b and c. The reader is asked to 

place a straight edge on the third E martensite trace from the bottom 

of Fig. 7; the trace cutting the a martensite needle. Note that the 

trace on the left side of the needle is bent with respect to the right 

side of the needle. Now place the straight edge on one of the [llO]y 

slip traces on the right side of the tilted surface of Fig. 6b. Note 

as the a martensite needle is approached, the [110] trace is bending 
y 

by several degrees. The bending is even more dramatic in the austenite 

near needle E of Fig. 6c. Clearly the data tabulated in Table IV 

reflects this experimental difficulty. 

The only significant effort this author is aware of to resolve 

this problem was made by Rowlands, et a1. 26 Here the back-reflection 

Kassel method was applied to study a Fe-32%Ni alloy. This experimental 

method could possibly be applied to the Fe-15Ni-15Cr alloy in an 

effort to resolve the magnitude of errors present due to austenite 

lattice rotations caused by accommodation deformation adjacent to 

martensite crystals. Electron beam spot sizes of about 1/2 micron 

would be required so that the divergent beam of x-rays required for the 

formation of the Kassel pattern from a single a martensite crystal 

and the adjacent austenite would result. The author attempted to 
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resolve this problem by using the pseudo-Kikuchi pattern that is generated 

in the Scanning Electron Mic~oscope (SEM). The idea was to locate a 

martensite-austenite interface like that seen in Fig. 6A •. With one 

scan axis off in the SEM, scan across the interface to produce a super-

imposed micrograph of the pseudo-Kikuchi image for each crystal (the 

austenite and martensite). By controlling the spot size and scanning 

across the interface ±0.1 ~ it was felt an exact orientation relationship 

between the a needle and the y matrix would be obtained. The experiment 

failed for an unexpected reason. The surfaces of the crystals were 

electropolished to a mirror finish before they were transformed partially 

to a martensite. It seems the surface was so shiny that it was not 

possible to resolve the austenite-martensite interface in the SEM. 27 

If this experiment would have worked, the logical extension would have 

been to deposit the small sphears on the surface of the partially 

transformed crystal, shadow in the same manner as use for the replica 

studies and obtain in one sitting at the SEM the orientation relationship 

and data needed to calculate the magnitude and direction of the shape 

change. If this were possible any ambiguities associated with the 

two shear martensite crystallographic model could be resolved. 

Additional effort must be made in the future to master this important 

experimental method. 

The small scatter observed for the £ sheet on the (lll) plane 
y 

cutting the polished surface of the crystal is because the dislocation 

density in the region of the £ plates is quite low. An example of 

the austenite - E martensite structure is given in Fig. 9. This 

.. 
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electron micrograph shows the typical microstructure in a (Oll) 
y 

symmetrical orientation of the [Zl3]y tensile axis specimen where 

a martensite has not formed. 

The primary error associated with the shape change measurements 

presented in Table V is one's ability to measure the tilt of the 

martensite surface with respect to the austenite surface. Because 

only one or two spheres were located on the tilted surface, satisfactory 

statistical analysis was not possible. It was therefore necessary to 

indicate a rather large error of ±1° for the direction of tilt of the 

a martensite needles, to give the reader a feeling for the sensitivity 

of the direction of the shape change vector as a function bf tilt let's 

consider the first calculation for needle A in Table V. The best fit 

with theory for this particular variant was for a surface tilt of 

10.0°. A variation of ±1° for this calculation would show the 

following variation in the shape change vector. 

~ 

u = 

0.125475 

~0.521830 

0.844787 

+ 0.036628 

- 0.043114 

- 0.040875 

+ 0.041920 

+ 0.016842 

- 0.022959 

or 

The accuracy of these results are about the same as those reported 

18 
by Dunne and Bowles, who used a Leitz Wetzear two-beam interfermeter 

to measure the tilt .of the exposed a martensite crystal on the surface. 
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It is clear the accuracy of this measurement must l>e improved. A 

method to improve this measurement,however,does not appear to be 

obvious at the present time. 
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V. CONCLUSIONS 

A detailed examination of the crystallography of a martensite 

formed in a Fe-15Ni-15Cr single crystals has been completed. Measure-

ment of the habit plane, the direction of the shape change and the 

magnitude of the shape change were made, and the results found to be 

in good agreement with the two shear crystallographic theory. The 

theory predicts accurately the orientation relationship, the habit 

plane, the magnitude of the shape change and the general form of the 

shape change vector. The fact that the experimental results presented 

in this thesis show a different variant of the shape change vector 

than that predicted by the theory may possibly be trivial, if it can 

be shown to be a problem of symmetry. This difficulty with the 

theory cannot be consider trivial however, until this important point 

is resolved. 

It has been clearly demonstrated that martensite with the {252} 
y 

habit plane can be effectively described by using two lattice invariant 

slip shears of the type {110} ( 111> • All known previous studies of a a 
I 

{252}y have assumed the shears to be (112)N [lll] and (110) [lll] , 
"" a a a 

as applied to the standard KS variant (lll)yll (Oll)a, in an effort to 

explain the experimental results. The selection .of a twinning shear 

as one of the lattice invariant shears was logical because the Fe-C, 

Fe-Mn-C and Fe-Cr-C alloys studied all produced a martensite that is 

internally twinned. There is no question that the martensite formed 

in the Fe-Ni:..cr alloy used in this study is dislocated and produces 
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almost exactly the same results of the magnitude and direction of the 

shape change as that observed for twinned Fe-C martensite by Dunne and 

18 Bowles. ·. This strongly suggests the twinning observed in these alloys 

is due to accommodation deformation, and the transformation shears 

responsible for the observed shape change are slip shears. 

Future work should be to resolve the symmetry problem, if it is 

in fact a problem of symmetry that produces the wrong variant of the 

shape change vector; to develope the scanning electron microscope analysis 

so the habit plane~ the orientation relationship, and the magnitude 

and direction of the shape change can be obtained .from a single a 

martensite crystal; and to develope an accurate method to measure the 

angle of tilt of the a martensite crystal with respect to the austenite 

matrix. 
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PART II. THE STRUCTURE AND MECHANICAL PROPERTIES OF DEFORMATION 
INDUCED £ AND a MARTENSITE IN Fe~l5Ni-15Cr SINGLE CRYSTALS 

I. INTRODUCTION 

It is believed the formation of the £ (hcp) martensitic phase 

in association with a martensite in low stacking fault energy steels 

was first reported by Cina28 (1954). The first single crystal studies 

were reported by Breedis and Robertson29 using a Fe-12Ni-16Cr alloy. 

They reported the orientation relationship for £ martensite as 

(0001) II (111) ; [l2l0] II [llO] , the a martensite was dislocated, 
£ y £ y 

had a lenticular shape, exhibited a {252}y habit plane and that pairs 

of a martensite crystals joined a (112)a twin plane. The specific 

habits were of the form: 

= (~:~~~~\ 
o. 8655 )y 

twin pair 

"' h = 
(

0.3709) 
0.3367 
0.8655 

y 

As shown in Part I the Fe-15Ni-15Cr alloy also exhibits a habit near the 

{252} (assuming the habit is perpendicular to the active austenite 
y 

slip plane19), the a martensite is dislocated and that separate volumes 

of a martensite join at a {112}a twin boundary with.habit planes of the 

form: 
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A 

h = 
.( 0.812) ·. 

0.479 

0.333 y 

Twin pair 

h = 
(

0.812) 
0.333 

0.479 
y 

The martensite crystals are not lenticular in shape however but 

exhibit an acicular geometry. . 30 Results reported by Kelly and Nutt1.ng 

using a commercial stainless steel (Fe-18Cr-8Ni) ate consistent with 

these studies including the acicular geometry of the a martensite. 

The sequence of the martensite transformations is of considerable 

interest and was reviewed by Breedis and Robertson29 (1962). At that 

time the evidence suggested the sequence of the transformation was 

f.c.c. -+ h.c.p. -+ b.c.c. An example of this evidence was presented by 

Guntner and Reed31 (1962). Using a polycrystalline Fe-18Cr-9Ni alloy, they 

deformation induced the £ and a phase at - 196°C. It was observed 

that the volume fraction increased from zero to 0.35 in about 9% tensile 

strain, then dropped to 0.10 at 26% tensile strain, the apparent strain 

at fracture. The volume fraction of a martensite increased from about 

0.04 at zero strain to about 0.90 at 26% tensile strain. Thus at 

fracture the alloy was nearly 100% martensite, 10% £. and 90% a. The 

reduction of £ from 0.35 to 0.10 during the deformation strongly 

suggested the £ -+ a transformation was taking place. Later observations 

B d . 32 1 19 d h. d 1 h h by ree 1.s, Kel y, an t 1.s stu y strong y suggests t at t e £ -+ a 

transformation does not exist. In all the electron microscopy studies 
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the author is aware of to date, a martensite has never been observed 

to replace regions that were clearly at one time £ martensite. It 

hasbeensuggested that because the stacking fault energy in these 

alloys is positive,
32

•33 the hcp phase is unstable and therefore the 

£ ~ y will occur. Also that once the £ sheet has formed in the 

austenite matrix it will not completely revert toy. The observed 

variations of the volume fraction of £ is due to thickening or thinning 

of the £ sheets. 

It appears that the y ~ £ transformation occurs only when the 

austenite is plastically deformed. In these Fe-Ni-Cr alloys, £ can 

exist by itself in plastically deformed specimens, but a is never 

observed in the absence of £ in quenched or deformed crystals. This 

is demonstrated in a Fe-18.5Cr-13.7Ni alloy by Thomas33 and is 

consistent with observations m this single crystal study. Goldman, 

·et a1. 34 have shown that the martensite start temperature for the£ 

phase (Es ), if it exists in a Fe-15Cr-11.7Ni alloy is lower than 
y 

Msy. Thus by quenching type heat treatments £ martensite can not be 

formed by itself. 

The therJ!lodynamics of the y-£ transformation have been studied 

35 36 20 in detail by Schumann ' and Breedis and Kaufman. Breedis 

and Kaufman concluded that at atmospheric pressure the £ ~ a 

transformation is not expected at temperatures below 500°K. The 

y ~ £ and y ~ a transformations therefore occur jointly in the 

Fe-Ni-Cr alloys consider here. 
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The effect of stress on the formation of a as a function of crystal 

orientation is of particular interest in this single crystal study. 

Patel and Cohen (1953) 37 and Richman and Bolling (1971) 38 showed how 

the action of an applied stress can aid or hinder the formation of a 

martensite crystals in the austenite matrix. Calculations were made 

using Patel and Cohen's model37 in the same way discussed by Goodchild, 

et al.;9 in an effort to identify which variants of the potential 

habit plane would be expected if the crystal was deformed between Mdy 

and Msy. However, the experimental results clearly showed that many 

habits that were favored by the above calculations were not present 

in the crystal and as shown in the present paper all the a martensite 

appeared to have the same K-S variant of the orientation relationship. 

In order to study this apparent singularity associated with the direction 

f li d . d . d 21 . o an app e stress, an x-ray exper1ment was es1gne , us1ng a 

40 Schulz goniometer, that would allow the experimenter to locate and 

measure the volume fraction of a martensite in the austenite matrix 

associated with each vgriant of the K-S orientation relationship. The 

procedure was also used to measure the volume fraction of E martensite 

associated with each {111} plane in the crystal. The results and . y 

discussion of these measurements follow. 

The mechanical response of these crystals with various tensile 

axes pulled between Mdy and Msy is also of interest. Goodchild, et a1. 39 

observed in plastically deformed 303 and 305 stainless steel that grains 

with a tensile axis near {001} contained no a nor E martensite. The 
y 

absence of a martensite was also observed in single crystals with a 
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[lOO]y tensile axis. The Patel and Cohen mode137 explains these 

results very well. Epsilon martensite was observed in [100] tensile 
y 

axis crystals, which is in conflict with the polycrystalline studies. 

An explanation of these polycrystalline results based on the observed 

stress strain curves of single crystals pulled in tension with 

various tensile axes is presented. 

The overall objective of this chapter is to describe as clearly 

as possible the structural relationships between y, E and a phase 

formed in this Fe-15Ni-15Cr single crystal alloy, and how the structure 

relates to the crystallography of the y + E and y + a martensitic phases 

transformations. Ideas as to how plastic deformation aids iri the 

formation of E martensite will be presented, and interesting observations 

as to how E martensite controls the formation of a martensite crystals 

will be discussed. For the first time a detailed analysis of the y~E-a 

interface will be presented and discussed. 
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II. STRUCTURE AND PROPERTIES 

A. General Features of the Microstructure 

Single crystals were tested in tension with easy glide and multiple 

slip orientations at temperatures between 185°K and 273°K. The objective 

was to develop a clear understanding as to how plastic deformation, and 

deformation induced phases control the microstructure of the transformed 

material. Crystals tested with an easy glide orientation had the [213] 
y 

tensile axis producing deformation for the first several percent stain 

on the (lll) [Oll] slip system. It was observed that all the a 
y y 

martensite had a rectangular geometry and appeared to be contained in 

parallel bands bounded by the (lll) planes when the (Oll) surface y . y 

was viewed optically. When the (lll) plane of the crystal was viewed, 
y 

the a martensite appeared in the form of clusters of needles. Studies 

of this type clearly established that the a martensite crystals were 

needles (acicular martensite). Electron microscope studies of the 

same orientations confirmed the optical results and also demonstrated 

that the ·clusters of a martensite needles are bounded on both sides by 

parallel sheets of E martensite. The orientation relationship between 

y, E and a is the well known Kurdjumov-Sachs (K-S) orientation relation-

ship (Oll) II (lll) II (2110) and [lll] II [110] II [0001] . A good 
y a E y a E 

example of this structure showing both electron and optical micrographs 

of the (Oll) and (lll) surface is presented in Fig. 3. Dark vertical 
y y . 

lines seen in Fig. 3A that have a [211]y trace on the (Oll)y surface are 

E martensite sheets cutting the (Oll) surface that have the specific 
y 
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K-S variant of the orientation relationship j~st presented. 

A detailed study of these E sheets was made by dark field electron 

microscopy using the (Olll) reflection in (Oll) thin foils. E y· 

An example is . shown in Fig. 8B. Figure 8D clearly demonstrates the 

K-Sorientation relationship for this alloy. 

The a martensite in this alloy has the {252}y habit as demonstrated 

in Part I. Previous studies of alloys exhibiting the {252}y habit 

were internally twinned. 12- 18 Breedis (1962) 29 and Kelly (1965) 19 

reported the habit plane in low stacking fault energy stainless steels 

was {252} and the martensite had a dislocated microstructure. Not 
y 

one paper on the crystallography of {252} martensite published between 
y . 

1962 and the present, including the most up to date review by Dunne 

and Wayman,
12 

reference this result. The crystallographers were 

clearly convinced that one lattice invariant shear associated with the 

y ~ a transformation had to be a twinning shear. Because of this, 

considerable effort was expended trying to find internal twinning in the 

a martensite of this alloy. It was concluded the internal structure 

of the a martensite formed in this Fe-15Ni-15Cr carbon free alloy 

is that of dislocated martensite; no internal twins are present. This 

dislocated structure can be seen in Fig. 2,. 3, 8 and 10. 

Individual needles however were found to join in a bee twin 

orientation. This was proved with thin foil electron microscopy specimens 

taken from a [213] tensile axis specimen pulled in tension at 185°K. 
y 

In this type of specimen all the a martensite is confined between E 

sheets parallel to the (lll)y slip plane. Initial optical observations 
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of specimens of this type were cut to expose the (lll) plane and 
y 

showed that the a martensite needles appeared to exists in pairs 

and that their long axis bisected a < 110> direction on the (lll) 
y y 

surface of the crystal. An example of this is shown in Fig. 7. 

Electron micrographs of the same (lll) orientation produced the 
y ~ 

result that each martensite needle bisecting the ( 110} direction 
y 

was joined at a bee twin boundary. This is clearly seen in Fig. 10 

where SAD patterns were taken from needles identified as A and B. 

These needles are in twin orientations as seen by the sterographic 

analysis of Fig. 10 in Fig. 11. 

B. Relationship Between E Martensite and Slip in the Austenite 

The E martensite phase was deformation induced at all temperatures 

(185° to 273°K) used in this study. The a martensite phase was 

observed only in crystals tested at 185°K. The E martensite sheets 

are contained in the slip bands and their formation is possibly associated 

with the mechanism of slip in this alloy in the temperature range 

considered. The mechanism of the y + E transformation is discussed 

in Appendix D. The E phase appears to cover the entire slip band, 

their thickness being 0.05 microns or less and their separation being 

of the order of 0.5 to 1 microns. This spacing between sheets seen in 

Fig. 3, 8 and 9 appears to be independent of temperature in the range 

of 180°K to 273°K. Figure 9 is an example of the E microstructure 

in a specimen with the [Zl3] tensile axis which was tested at 243°K 
y 

to 5% tensile strain. No a martensite was observed at this temperature. 
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The large surface area of the £ martensite sheets is demonstrated 

by observing the slip line structure on the surface 

of a deformed electropolished crystal, then electropolish away the 

slip line structure and then etch. The slip lines will not reappear 

and the £ phase can therefore be observed. This procedure was 

applied to a crystal tested to 15% tensile strainat 242°K with a [I12] 
y 

tensile axis. This result is shown in Fig. 12. The polished and 

etched surface is the (lll)y plane. Even though this is a duplex slip 

orientation, the majority of the deformation occurred on only one 

slip system. Figure 12A is the as tested slip line structure, Fig. 12B 

the electropolished surface and Fig. 12C the etched surface exposing 

the thicker of the £ sheets. The circle drawn on the upper parts of 

these three micrographs identifes the same area. The very fine 

spacing of the £ sheets of 0.5 to 1 micron of course cannot be observed 

in this optical micrograph, however, the claim that the £ sheet can 

extend over the entire slipped region of the crystal is quite 

definitely supported. Thus plastic deformation partitions the 

austenite matrix with large very thin sheets of £ martensite that 

are parallel to the {111} slip planes of the crystal. 
y 

C. Why Deformation Induced ·£ Martensite 
Partitions the Austenite Matrix 

It is now po~sible to show that £ martensite cart exist in the 

absence of ct in Fe-Ni-Cr alloys. Many studies of similar alloys29 •32 •41 •42 

suggested that the £ phase is observed only in association with the 
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a. martensite. The difficulty that lead to early interpretations that 

the £ phase must always be associated with a. martensite was clarified 

34 by Goldman, et al., for Fe-Ni-Cr alloys. Using a sensitive differential 

thermal analysis apparatus it was observed for a Fe-11.7Ni-15Cr 

alloy that only one transformation temperature existed. In other 

words Es and Ms are equal or nearly equal. Es and Ms are the y y . y y 

£ and a. martensite start temperatures respectively. Thus, by 

isothermal heat treatment of these alloys it would be impossible to 

form the £ phase in the absence of a. martensite. The Esy temperature 

could be below Ms and £ martensite that is observed to be associated 
y 

with the y + a. transformation is produced because of internal stresses 

associated with accommodation deformation in the austenite. It has 

already been demonstrated that the £ phase can form over a wide temperature 

range in the absence of a. martensite when energy is supplied to aid the 

transformation through an applied stress (plastic deformation). 

. 46 
This result is also in agreement with observations by Mangonon and Thomas. 

20 
Breedis and Kaufman have calculated the change in free energy 

6.Fa.+y and !:s.F£+y using the regular solution approximation and lattice 

stability parameters. They found driving forces of the order of 

200-400 cal per g-atom related to Msy and up to 50 cal per g-atom for 

Esy. If these values of the free energyare used in Patel and Cohen's 37 

model that demonstrates how the work done by an external force will 

raise Es and Ms , it is evident that much less energy supplied by the 
y . y 

applied stress is required to initiate the y + £ transformation. These 

new transformation start temperatures will be written as Edy and Mdy 

and defines the transformation start temperature due to an applied 

·-



... 

'• d d " u ~) •J "-} ;J 6 ~' j' 

-43-

external stress and associated plastic deformation of the crystal. 

Edy and Md are clearly not constant and may vary from Es and Msy y . . y 
37 38 39 to several hundred degrees above these temperatures. ' ' the 

actual value of the transformation temperature is a function of the 

resolved shear stress on potential a or £ martensite habit planes. 

In summary, even if Esy is equal to Msy the temperature Edy will 

in general always be greater than Md because of the smaller value for 
y 

~Fy~ and therefore much less external energy will be required to aid the 

y+£ transformation. Because of the ease by ~hich deformation can 

aid tbe, y + E transformation it becomes quite clear as to why the 
•., ... . , 
' austenfte matrix becomes partitioned by the £ phase, with the £ sheets 

covering the entire {111} planes that have slipped. y .· 

The Ed temperature has not been established for this alloy. It 
y 

is in excess of 300°K, The Md temperature for crystals stressed in 
y 

tension with a [OOl]y tensile axis is 19@5°K. 

D. Volume Fraction Measurements of Deformation Induced £ Martensite 
as a Function of Crystal Orientation, Temperature and Strain 

Single crystals were tested in tension with [lOO]y, [llO]y' [II2]y 

and [Zl3]y tensile axes at 185°K and with t.he [Zl3]y tensile axes at 

273°K and 242°K to 5% tensile strain. The volume fractions of the 

£ martensite was measured in each specimen by an x-ray pole figure 

21 25 method developed by the author. ' The results showed that the volume 

fraction of £ martensite was about 0.02 and is independent of temperature 

and the direction of the tensile axis within experimental error of the 
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measurement (±0.005). The results are tabulated in Table VI. For 

the [Zl3]y specimens the € martensite was associated with only one slip 

plane as would be expected. For the other specimens the € martensite 

was distributed on the active slip planes. The volume fraction shown 

in Table VI for these specimens is the sum total of € martensite 

observed on each active slip plane. It is interesting to note for 

the specimens tested at 185°K that the [110] specimen had € associated 
y 

with two {111} slip planes as expected. However € martensite was 
y 

present on only one slip plane in the [ll2] specimen and on only 
y 

two slip planes in the [100] specimen. These results are presented 
y 

in Table VII. The significance of these results will be discussed 

in Appendix D. 

To see if these measurements were consistent with experimental 

observations a simple calculation was made. 2 If a cylinder 1 em in 

surface area by 1 em long was transformed to 2% £ martensite by 

volume, the € sheets having a surface area equal to 1 cm2 and a 

thickness of 0.05 microns, the spacing of these € sheets along the 

length of the cylinder would be 2.5 microns. The spacing between € 

martensite sheets observed in Fig. 3a, 8 and 9 are. typically of the 

order of 0.5 to 1 microns in regions transformed to both € and a 

martensite. It is therefore clear that a 2% by volume quanity of € 

martensite is sufficient to· partition the complete crystal oriented 

for easy glide with parallel sheets of € martensite. The y + € 

transformation clearly can preceed the y + a transformation. Therefore 
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by partitioning the austenite matrix with E, the size and variant 

of the habit plane of the a martensite needles is controlled in 

this alloy. 

The fact that the quantity of E martensite present (2% by volume 

at 5% tensile strain) appears to be independent of both temperature 

and crystal orientation strongly suggests that the amount of plastic 

strain is controlling the quantity of E martensite. It is important 

that the volume fraction of E and a martensite as a function of strain 

and temperature be measuredin this single crystal alloy in the near future. 

A discussion of the importance of such a study is presented in 

Appendix E. 

E. Volume Fraction Measurements of Deformation Induced 
a Martensite as a Function of Crystal Orientation 

Quantitative volume fraction measurements of a martensite were 

made on tensile specimens with [100] , [llO] , [ll2] and [Zl3] y ~ y y 

tensile axes. These specimens were tested in the region of 185°K 

to 5% tensile strain. The total volume fraction of a martensite 

varied from< 0.002 to 0.07 for the [lOO]y and [ZlJ]Y. specimens 

respectively. These results show that Md is a strong function 
y 

of the resolved shear stress on potential martensite habit planes. 

For these experimental data it would appear. that Md ~ 190°K for the 
y 

[lOO]y specimen. Md must be greater than 190°K for the other three y . 

orientations. The stress strain curves arid volume fraction measurements 

for these specimens are given in Fig. 13 and Table VII, respectively. 
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The data for the [ll2] and [2l3] specimens were previously reported 
y y 

21 by the author. 

F. Discussion of the Volume Fraction Measurements 
and Mechanical Property Results 

In all cases £ martensite was observed only on planes that had 

slipped. This was confirmed by comparing slip planes defined by slip, 

traces on two perpendicular surfaces to the x-ray measurements. If 

slip occurs on a particular {lll}y plane, £ martensite was always 

present as {111} 11{0001} . Slip is possible on only two systems 
y £ 

for the [ll2]y tensile axis sample. Because the crystals were two 

degrees from the exact [ll2ly tensile axis, the (lll)y [lOl]y system 

was favored and produced twice the quantity of £ on the (lll)y plane 

than was observed on the (lll) plane (see Table VII). The majority 
y 

of the a martensite was that associated with the particular K-S 

variant corresponding to the active (lll)y slip direction. Although 

a crystal exactly with [llO]y parallel to the tensile axis should 

slip on two planes and four slip directions only a one degree deviation 

from the [llO] was sufficient to confine slip to the (lll) [lOl] y y y 

and (lll) [011] systems. The a martensite was evenly distributed 
y y 

between the K-S variants containing the [lOl] and [011] slip . . y y 

directions. The [lOO]y sample generated slip on only two systems, the 

(lll) [110] and (111) [llO] • Almost no a martensite was observed y y y y 

in this sample and the volume fraction of £ martensite was also less 

than in other orientations (See Table VII). It is clear from the data 
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in Table VII that the K-S variants favored in.plastically deformed 

austenite crystals are those associated with both the slip plane 

and slip direction. 

The mechanical properties of these single crystals (Figs. 13, 14 

and 15) help to explain the orientation dependence of e: and a martensite 

formation in the polycrystal data presented by Goodchild, et a1. 39 for 

textured 303 and 305 austenitic stainless steel. They observed that 

the formation of e: and a martensite was inhibited in grains with the 

(001) parallel to the tensile axis. Grains with the ( 110) parallel y y 

to the tensile axis contained e: and moderate amounts of a martensite. 

Grains with one of the ( 123 > parallel to the tensile axis contained 
y 

e: martensite and the maximum amounts of a martensite. The results 

given in Table VII follow these same trends for a'martensite, but 

not for e: martensite. A reduction of e: martensite was observed in the 

[100] tensile axis specimen, but not to the extent suggested by the 
y 

39 polycrystals. The reason almost no e: martensite is present in grains 

with the ( 100) parallel to the tensile axis in polycrystal samples 
y 

may be due to the orientation dependence of the flow stress observed 

in single crystals tested between Md and Ms , (Figs. 14 and 15). 
. y ~ 

For single crystals, the yield and flow stress is reduced significantly 

when the y~ transformation can proceed wit~ ease. A single crystal 

with a [lOOly tensile axis does not transform to a martensite at 185°K 

during straining, consequently a higher yield and flow stress are 

observed (Fig. 13). Epsilon martensite is not found in grains with 

the ( 001> parallel to the tensile axis in polycrystalline austenitic y 



.:.48-

stainless steel because under these deformation conditions the stress 

in these grains does not exceed the CRSS for slip. 

The reason a does not form appears to be related to the work done 

by the stress which can either aid or hinder the y~ transformation. 

The orientation dependence of a martensite formation follows from the 

37 criterion established by Patel and Cohen showing how the work done 

by an external stress resolved on the habit plane (T) and the normal 

to the habit plane (a ) of the martensite plate can raise the martensite 
n 

start temperature. The work done by the stress is written as 

where y
0 

is the transformation shear in the habit plane and s
0 

is the 

transformation shear normal to the habit plane .. The values of y
0 

and 

s
0 

used were 0.20 and 0.04, respectively. Very simply, the effect on 

Msy due to an applied stress is 

= ~Fy~ @ Md + U 
y 

where Msy < Mdy. The magnitude of U depends upon the magnitude of the 

resolved shear stress T and the normal stress a on the potential 
n 

martensite habit plane. 

Goodchild et a1. 39 show that the magnitude of U/a where a is the 

applied stress will indicate which martensite crystals should be favored 

due to the applied stress. The larger U/a, the more the stress aids the 

formation of a particular martensite crystal. If it is assumed that 

the habit plane is the {112} and shear direction is-the ( 110} 
19

,
32 

y y' 

·-
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crystals with the largest values of U/o are not always observed experi-

mentally in this alloy. 

Based upon U/o calculations, the crystal with •(2l3]y tensile axis 

should favor about equally (U/o ~ 0.13) martensite crystal formation 

for the. following habit plane-shear directions: (ll2) [llO] , 
y y 

Only the (211\ [Oll]y 

of this set was observed experimentally. The result is clearly seen 

in Fig. 16A, which was sectioned to show the (Zll) surface. Because 
y 

the austenite shear direction in the [Zl3] tensile axis crystal is 
y 

the [Oll]y' then it is expected that the long axis of needles would 

be near the [Oll]y in the (2ll)y plane. This clearly was the result. 

Figure 16B shows the same crystal sectioned to expose the (Oll) plane. 
y 

It is clear that a martensite needles cut the surface in packets that 

appear to be confined between £ sheets parallel to the (lll) plane. 
y 

Electron microscopy of (Oll) foils showed that the a martensite is 
y 

confined on two sides by large £ martensite sheets that are parallel 

to the (lll) plane (See Figs. 3 and 8). Figure 16C is the same crystal 
y 

cut to expose the (lll) plane. The a martensite typically appears as 
y 

small, highly transformed regions that arewidely separated in the 

austenite matrix. Accurate habit plane measurements (Table IV) from 

optical micrographs show that the following habit plane-shear directions 

(Zll) [Oll] , (lil) [101] , (ll2) [llO] , and (211) [Oll] with y y y y y y y y 

U/o = 0.13, 0.08, 0.08 and 0.04, respectively, are formed when the 

crystal is deformed plastically with the [Zl3]y tensile axis. 
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The difficulty at the present time is that the model of 

reference 37 favors the presence of a martensite habit planes that 

are not experimentally observed in this alloy. The metallographic 

results show that the austenite matrix is partitioned by the £ phase 

as sheets parallel to the {111} slip planes, and confirms earlier 
y 

results of Reed in a similar alloy. 43 This partitioning appears to 

control both the size of the acicular a martensite crystals and the 

plane on which the a martensite crystals can form. Such partitioning 

is not accounted for in the model. If all the a martensite crystals 

were to form with the habit planes suggested by the theory, many 

needles would have to cut through the £ martensite sheet. This event 

has not been observed. Therefore, it is not surprising, because of 

£ martensite partitioning, that all the a martensite that forms due 

to the deformation has the (110) plane always parallel to the {111} 
a y 

slip plane(s), and that the direction of shear in the austenite plays 

a dominant role in determining the specific K-S variant formed. 

One final point of interest is the fact that the volume fraction 

of a in the [ll2]y specimen is less than half that observed in the 

[Zl3] specimen. For the [112] specimen the values of U/cr are only 
y y 

0.02 less than those observed for the [Zl3] orientation. This small 
y ' 

difference in U/cr is not believed to be the reason for this large 

reduction of a martensite in the [ll2] crystal at 5% tensile strain. 
y 

The [Zl3] tensile axis specimen is partitioned only on the (lll) 
y y 

plane. The [ll2] crystal is partitioned on two {111} planes. The y y 

difference in volume fraction of a martensite observed for these two 
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specimens is thought to be due to the fact that partitioning by two 

slip systems will reduce the size of the burst of a martensite and 

therefore the total volume of a martensite. Thus, E: partitioning 

is also controlling the amount of a martensite that can form during 

each burst. If a could penetrate the E: interface, its significance 

as a controlling factor on the volume fraction of a that forms 

could be reduced. However, at no time has an a martensite needle 

been observed to pass through an E: sheet and also no evidence that 

E: has transformed to a has been found. These observations do not 

support previous studies that indicated that a martensite nucleation 

is aided at the intersection of E: martensite bands. 41 •44 

G. Conclusions· 

1. The deformation induced E: martensite in this alloy forms only 

on {111} planes that slip. The E: forms as very thin sheets, 
y 

0. 05 microns or less in thickness and appear to cover the entire 

slip plane. The orientation relationship is the {111} II {0001} ; 
y E: 

< 011> II < Z110} (See Fig. 8C). y E: 

2. The E: martensite partitions the austenite matrix at all temperatures 

tested with parallel E: martensite sheets on each slip plane. At 

5% tensile strain in easy glide orientation the spacing between the 

parallel sheets is one micron or less (See Figs. 3, 8 and 9). 

3. The a martensite forms as clusters of needles bounded on both sides 

by parallel E: martensite sheets (See Figs. 3 and 8). 
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4. The a martensite in this alloy is dislocated. The habit plane 

is near the {252} . Previous studies have suggested that all 
y 

{252} martensites must be internally twinned. This study suggest 
y 

that the twinning observed must have been due to accommodation 

deformation in the martensite and not part of the transformation 

-- --- --- ---shearc;s-.-------------------

5. The a martensite appears to exist in needle pairs with habits of 

the form (0.333, 0.812, 0.479)y and (0.479, 0.812, 0.333)y. Needle 

pairs with these habit planes join at a bee twin boundary. The AB 

theory has predicted this experimental result (see Tables III and 

IV and Fig. 10). 

6. The variant of the K-S orientation relation for a martensite 

7. 

present in Fe-15Ni-15Cr single crystals was always the variant 

that contained both the austenite slip plane and slip direction. 

This characteristic was true for both single and multiple slip 

orientations (see Table VII). 

34 
Goodchild, et al observed that grains with the ( 001) direction 

y 

parallel to the tensile axis in 303 and 305 stainless steel did 

not contain £ or a martensite. The single crystal results reported 

here may be used to explain the above observations. The [lOO]y 

single crystal specimen was found to have a yield stress approxi

mately 5 kg/mm2 higher than was observed for the [llO] , [ll2] 
y y 

and [Zl3] tensile axes crystals (Fig. 5). The reason for this 
y 

difference in yield stress is the fact that at 185°K, the stress 

aided y~ transformation cannot occur in the [OOl]y specimen 



\.,J 6 

-53-

because of the low shear stress on potential a martensite habit 

planes. It is conceivable that it is those grains in the poly-

crystal 303 and 305 stainless steels, which are orientated such 

that the applied stress aids the y~ transformation are the grains 

which deform the most. Consequently ( 001} oriented grains do 
y 

not deform sufficiently to form a or E martensite. The surrounding 

grains with favorable orientations for the y~ transformation will 

transform to a martensite and plastically deform at stresses much 

lower than the yield stress for grains in the ( 001} orientation. 
y 

The absence of significant deformation in these grains explains the 

absence of € martensite, and the low resolved shear stress on 

potential a martensite habit planes, explains the absence of a 

martensite. 

8. Many a martensite crystal orientations that should be favored as 

predicted by the Patel-Cohen model are not observed experimentally. 

This is explained by the following; because the y-E transformation 

preceeds the y-a transformation due to plastic deformation, the 

austenite matrix becomes partitioned by € plates parallel to the 

slip plane(s). This partitioning blocks the formation of needles 

with energetically favored habit planes. The majority of needles 

that do form, even under the restriction of partitioning, have high 
I 

U/cr values and therefore tends to support the basic concept of the 

model. 
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III. THE DEFORMATION INDUCED MARTENSITE-AUSTENITE INTERFACE 

A single crystal stressed in the [2l3]y direction at 185°K was 

transformed to 5% a martensite and 2% £ martensite by volume. The 

austenite slip system of maximum shear stress is the (lll) y [Ollly. 

Figure 3 shows a two surface study using the electron and optical 

microscopes. The a martensite is confined between £ martensite plates 

with the (0001\ II (111\. The size of the acicular martensite 

crystals is controlled by the spacing of the £ martensite plates. 

These E martensite plates are seen in Fig. 3A as dark vertical bands. 

The axes of the acicular crystals lie in the (lll)y plane. The £ 

martensite habit plane is defined as the plane perpendicular to the 

(lll)y containing the vector defining the crystal axis. See Table IV. 

The physical nature of the interface is being revealed in some 

detail working with (Oll)y foils. Figure 8A is a bright field micro

graph showing a a martensite crystal cutting the surface with its axis 

a few degrees out of the plane of the foil. Figure 8B is a dark field 

of the same area using a (Olll)E reflection. Fine lines light up in 

the interface defining a sheath surrounding the a martensite. Figure 8C 

is the (200) reflection that lights up the sheath as well, indicating 
y 

the a mqrtensite crystal is surrounded by alternate regions of faulted 

austenite and dislocated austenite. Figure 8D is the diffraction 

pattern from the same area and clearly shows this alloy obeys the 

Kurdjumov-Sachs orientation relationship. Specifically in this diffraction 

pattern the (Oll) II (lll) H (2110) and [lll] II [110] II [0001] . 
y £ y a E 



/ 

-55-

Efforts to image interface dislocations have been unsuccessful to 

date. It appears clear that the interface between the phases in this 

alloy is a composite of dislocated austenite and faulted austenite 

giving rise to hcp reflections. Also the (llO)a surface of the crystal 

is in contact with and parallel to the (0001)£ plane. The large very 

thin £ plates appear to control the size of the acicular a crystals and 

forces the long axis of the crystals to remain parallel to the austenite 

slip plane which is the (lll)y in this example. 
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APPENDIX A 

A Computer Program to Calculate the Exact Specimen 
Normal from Indexed Back Reflection Laue Photographs 

Back reflection Laue photographs with a specimen to film distance 

of 5 em are indexed in the conventional manner. To calculate the exact 

specimen normal [uvw] the dot product between arty three indexed poles 

and [uvw] will generate three equations that can be solved for [uvw]. 

The angle between the x-ray beam and vector normal to any diffracting 

plane can be obtained using the following equation: 

(1) 

where r: is the distance from the center of the film to the exposed 
1 

spot and D is the specimen to film distance. The matrix equation for 

the solution of [uvw] is 

hl kl 11 

h2 k2 12 

h3 k3 13 

u 

v 

w 

cos(81)1 
cos(8 2) 

cos(83) 

(2) 

The vectors [h. k. 1.] are converted to unit vectors 1.·n the program. 1 1 1 

The Laue photos used in this study were indexed and many different 

combinations of three indexed diffraction spots were used to calculate 

the specimen normal. The same solution should result for any combination 

of three indexed poles. Table VIII shows the result of several different 

combinations from one Laue photograph. 



v J .. ) ,J 

I 6 

-61-

The input data for PROGRAM LAUE are as follows: 

Card 1: Col 1-5 

Card 2: Col 1-10 

11-20 

21-30 

31-40 

N, the number of sets of input data, 

Integer number tight justified 

h
1

k
1

1
1 

of first indexed pole. 

Decimal point must be supplied 

r
1 

measured distance from pole to 

center of Laue photograph in em. 

Card 3: Same format as above, input h2k
2
1

2 
and r

2 
for second pole 

Card 4: Same format as above, input h
3
k

3
1

3 
and r

3 
for third pole 

Repeat cards 2, 3 and 4 for each set of data. Fortran listing and 

example of input data follows. 
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PhiUG~AM LAUE<INPUTtOUTPUTtTAPE5=1NPUTtTAPE6=0U.TPUTl 
OlM~~~IPN A(3)tb<3ltC<3>•D<3ltBd(3ltCC<3> 
WhiiTE<6o5l 

!:l FOhiMAT < 1H1) 
RE.A0<5o3) N 
00 100 I=ltN 

3 FOhiMAT < I5l 
C 01-< I t:.h1T AT I Q,~ OF ::, CiVl LAUE PHOTOGRAPHS ONLY 
C At t::lt C AR~ THE INuiCI~S OF THREE INDEXED POLES ON THE LAUE PHOTO 
C D<l>• D<2>• AND D<3> ARE THE QISTANCES IN CM MEASURED FORM THE 
C CENTEhl OF THE. LAUE PHUTOGRAPH TO POLE Ao 8~ AND C RESPECTIVELY 

READ< 5 • 1 > A • D < 1 l 
READ<5•1> BoD<2> 
1-<l:.AD<5•1l Ct0<3> 
f"URMAT < 4F 1 OeO l 
CALL AMAG<AtX) 
D<1>=COS<ATAN<D<1>/5e0l/2•0l*X 
CALL AMAG<t3oY) 
U<2>=COS<ATAN<D<2)/5eOl/2eOl*Y 
CALL Arv.AG<CtL) 
D<3>~COS<ATAN<D<3)/5e0)/2eO>*Z 

wRITE<6o4> AtD<1> 
~hllTE<6o4l BtD<2> 
~RiTEi6o4> CtD<3> 

4 FORMAT<10Xt3Fi1.8,F12e8) 
CALL UET(AtBoCoAA> 
ob< 1 >=A< 1 > 
t:!f::H 2 > =B < 1 > 
88<3>:C<1> 
A<1>=D<1> 
l:l<1>=D<2> 
C < 1 l =D < 3 > 
CALL UET(AtBtCtEl 
CC<1>=E/AA 
A< 1 > =BB ( 1 > 
B < 1 > =BH <2> 
C I 1 > =BB I 3) 
t::Jbii)=A(2) 
t::ib<<:.>=B<c> 
ob<J>=C<2> 
A I 2) =D ( 1 > 

b<2>=D<2> 
C<2l=DI3l 
CALL uE.TIAoBoCtEl 
CCI2l=t.:/AA 
A<2>=BBI1l 
8(2)=88(2) 
Cl2l=BBI3l 
A<3>=D<i> 
bi3>=D<2> 
C<3>=DI3) 
CALL bET<A•B•CtE..l 
CCI3l=E/AA 
CALL AMAGICCtX) 
CCI 1 >=CCI 1 l/X 
CC<2>=CCI2l/X 
CC<3l=CC<3)/X 
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C OUTPUT UNIT VECTOR NORMAL TO POLISHED SURFACE OF CRYSTAL 
WRITt:<6t2l CC 
A<1>=1o0 
A< 2 >·= 1 • 0 
A<3l=-1o0 
CALL CROSS<A•CC•bl 
iNR ITt: ( 6t2 lB 
CALL CROSS<CCtBtAl 
WRITE<6t2l A 
wRITE<6,6l 

6 FORMAT(//) 
2 FORMAT<10Xt3F11o8l 

100 CONTINUE 
STOP 

19 

-1· 
-3. 
-5. 
-1. 
-1 • 
-3. 
-3. 
-1. 
-1. 
-3. 
-3. 
-1. 
-3. 
-3. 
-3. 
-2. 
-3. 
-3. 

END 
SUBROUTINE AMAG<A,Bl 
DIMt.NSION A<3l 
B=SURT<Ai1l*A<1l+A<2l*A<2l+A<3l*A<3ll 
RETURN 
END 
SUBROUTINE DET<A•B•C•Dl 
D1MENSION A<3ltb<3ltC<3l 
J'=A( 1 >*<u<2l*CC3l-t:l<3l*C<2> l+A<2l*<B<3l*C< I l....;B< I l*C<3> l+A<3l*C 

S.tH I l *C < 2) -B < 2 l *C < I l > 
RETURN 
END 
SUBROUTINE CROSS !AtBtCl 
DIMENSION A<3ltB<3ltCI3> 
C<ll=A<2>*B<3>-A<3>*d(2l 
C < 2 >=A< 3 > *B ( 1 >-A< I l *B < 3 l 
C<3>=A< 1 l*B<2l-A<2>*B< 1 l 
CALL AMAG<CtDl 
C<I>=C<1l/D 
C<2l=C<2l/D 
CC3l=C<:3l/D 
RETURN 
END 

2. 2. 
2· 1 • 
1'. 3· 
1 • 2. 
2. 2· 
2· 1 • 
5. 3· 
1 • ~ ,. 
2. 2· 
1 • 2. 
s. 3. 
1 • 2· 
1 • 3o 
1 • 2· 
s. 3. 
2. 1 • 
1 • 3. 
1 • 2· 

4o08 
4o6 
5o62 
3.95 
4.08 
4.6 
3o92 
3o95 
4o08 
3o57 
3o92 
3.95 
3o56 
3o57 
3.92 
3o54 
3.56 
3.57 
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-2. 1 • 1 • 3.28 
-2. 2. 1 • 3.54 
-3. 1 • 3. 3.56 
-2. 1 • 2. 2.05 
-2. 1 • l • 3.28 
-2. 2. 1 • 3.54 
-1. 1 • 2· 3.95 
-3. 2· 1 • 4.6 
-5· 1 • 3. 5.62 
-3. 5. 3. 3.92 
-1. 2. 2. 4e08 
-3. 2. 1 • 4.6 
-3. 1 • 2· 3e57 
-1. 1 • 2. 3.95 
-1. 2. 2. 4e08 
-3. 1 • 3. 3.56 
-3. 5. 3e 3.92 
-1. 1 • 2. 3e95 
-2· 2. 1 • 3e54 
-3. 1 • 2· 3.57 
-3. :,. 3. 3e92 
-2. 1 • 1 • 3.28 
-3. 1 • 3· 3.56 
-3. 1 • 2. 3.57 
-2. 1 • 2. 2.05 
-2· 2. 1 • 3.54 
-3. 1 • 3. 3.56 
-2. l • l • 3.28 
-2. 2. 1 • 3e54 
-5. 1 • 3. 5.62 
-2. 1 • 2· 2·05 
-1. 2· 2· 4e08 
-5. 1 • 3. 5.62 
-2. 1 • 1 • 3.28 
-3. 2. 1 • 4.6 
-5. 1 • 3. 5.62 
-2. 1 • 2· 2e05 
-2. 1 • 1 • 3e28 
-3. 2. 1 • 4.6 



-· 

I / 0 

-65-

APPENDIX B. 

A Computer Program to Calculate the Direction of a Trace 
on the Surface of a Single Crystal 

The program provides quick and accurate calculations of the 

direction of a trace on the polished surface of the crystal. The 

required input are a set of orthogonal vectors that define the crystal 

orientation and the measured angles between these vectors and the 

vector parallel to the trace on the crystal surface. Two methods were 

used to define a set of orthogonal vectors--the first leading to the 

second. 

The first method applied to the problem was to cut the crystal 

to expose two perpendicular surfaces. Each surface was orientated using 

5 em Laue back reflection photographs. The orthogonal set of reference ' 

vectors are (1) the surface normal, (2) the line of intersection of the 

two orientated planes obtained simply by taking the cross product of 

the two surface normals and (3) a second vector on the polished surface 

calculated by taking the cross product between the surface normal and 

the line of intersection. Three equations with three unknowns are 

obtained simply by taking the dot product between the trace and the 

orthogonal set of unit vectors. 

lhl kl 11 u Q, 

h2 k2 12 v = cos(8
1 ) (1) 

h3 k3 131 w cos(8 2) 
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The angle between the surface normal [h1k111 ] and the trace vector 

[uvw] is 90° and is defined in the program. The angle e1 is the angle 

between the trace vector and the line of intersection [h
2k

2
12] and the 

angle e
2 

is the angle between the second vector on the polished surface 

[h
3
k

3
1

3
] and the trace vector. The output is a unit vector [uvw] 

parallel to the trace on the crystal surface. 

The second method is in fact the same as the first, except that 

the orthogonal set of vectors defining the crystal orientations are 

obtained from a known crystallographic feature on the crystal surface. 

In this study, it was observed using the first methbd described that 

a feature on the optical micrographs was the intersection of a E 

martensite plate laying parallel to an adjacent {lll}y plane. 

Specifically in this experiment, the polished surface was near the 

(lll) plane. This produced a line of intersection on the polished 
y 

surface with a direction [0.69551347, 0.02264272, 0.71815619ly· This 

is the unit vector obtained by taking the vector product between the 

specimen normal [-0.62452938, 0.51327139, 0.58865570] and the [lll] y y 

direction. When this crystallographic feature was observed, the 

resulting vector defining the line of intersection of the two planes 

was obtained to a precision of ±0.25. This result provides proof that 

the original method used was sound. 

When possible, the specimen normal, the line of intersection of 

the plate on the (lll)y plane and the crystal surface are used to 

define the crystal orientation. It is felt that the accuracy of trace 

calculations using a crystallographic feature is better than the 

original procedure (method 1). Even with this good accuracy, it appears 
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that sets of martensite plates with seemingly the same direction have 

experimental scatter up to ±1° • This scatter appears to be real and 

not due to experimental error (see Table IV). 

The program listing to follow has been modified to resolve vectors 

laying on the polished surface onto the (lll)y surface. To do this, 

several assumptions were required. It is assumed that the long axis 

of the martensite needles lies exactly in the interface plane and the 

(lll)y plane. It is assumed that the needle has a rectangular cross 

section. It is assumed that the trace on the polished surface and the 

[lll]y direction lie in the same plane; the plane being the interface 

plane. All measurements are made only on martensite needles sectioned 

by the polished surface in such a way that both sides (traces) of the 

needle are parallel (see Fig. 7). The resulting output by taking the 

vector product between the [lll] and the trace vector is the habit 
y 

plane normal. The vector defining the long axis of the needle is 

simply the vector product of the [lll] and the interface plane normal. 
y 

Also in the output are the computed angles between the vectors defining 

the long axis and the [lOl]y and vectors defining the interface plane 

normal and the [2ll]y. These calculations are given in Table IV. 

The input data for PROGRAM TRACE are as follows: 

Card 1: Col 1-5 M, the number of complete data sets. 

Integer nu~ber right justified. 

Card 2: Col 1-5 N, the number of traces to be calculated 

using the set of orthogonal vector to 

be defined in this calculation. Integer 

number right justified. 



Cards 

next 

Card 

3 and 4: 

Col 1-10 A(l) 

11-20 A(2) 

21-30 A(3) 

31-40 B(l) 

41-50 B(2) 

51-60 B(3) 

61-70 C(l) 

71-80 C(2) 

card 1-10 C(3) 

5: Col 1-7 THETA! 

,8-14 THETA2 

-68-

A, B, and C are the three vectors 

defining the orthogonal set. Decimal 

point must be supplied. 

THETA! and THETA2 are the angles 

between B and C respectively. Decimal 

point must be supplied. 

Repeat Card 5 N times for this data set. 

Repeat Card 2 to Card 5 M times for each data set thereafter. 

Fortran listing and example of input data follows. 
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~k0G~AM TRACE(JNPUToOUTPUToTAPE~=!NPUT•TAPE6=0UTPUTl 

C CALCULAT!Uo-.1 OF Tt-~ACt:. 01~ THE -1 1 1 PLANE WITH h:E:FLRENCE TO A 
C RL~LRLNCL UIRECTION SUCH AS A SLIP BANU OR INTERSECTION OF TWO 
C PLANES• 

DIMLNSION A<3l•~<3loC<3l•AA<3loUB<3loG<3l•H<3loF<3l 
Wf.<ITE<6•6l 

6 FORM AT ( 1 H 1 l 
READ<5o5l M 

C M IS THE NUMBER OF COMPLETE DATA SETS• 
D0102.J=1•M 
READ<~ t.5l N 

~ FORI\IiAT < I~ l 
REAU<~o1) Ao8oC 
FORMAT<8F10e0/F10e0l 
WRITE<6o7> AoBoC 

7 FURMAT<10X•3Filee/10Xo3F11e8/10Xo3Fll•8//l 
C F-OR THE CALCULATIONS USING THE INTERSECT I ON OF A EP l.SLON RANn ON THE 
C 1 1 -1 ~UR~AC~ CUTTING THL -1 1 1 SURFACE LET••• 
C A IS VECTUR NEAR -1 1 1 DIRECTION <THE NORMAL TO THE POLISHED 
C UIRECTION OF THL CRYSTAL) . 
C U I~ VLCTUR N~A~ 1 0 1 Oi~ECT!ON UN POLISHED SURFACE OF CRYSTAL 
C C IS Vt:.CTOR NEAR 1 2 -1 U!RECT!ON ONPOLISHEO SURFACE OF ~RYSTAL 
C N IS THE NUMUER OF TRACES TO UE CALCULATED IN A PARTICULAR DATA SET 
C THETA! IS ANGLE BETWEEN DIRECTION OF MARTENSITE INTERFACE AND 
C 1 0 1 DIRECTION ON SURFACE OF CRYSTAL 
C THt:.TA2 1::, ANGLE ~LTIIJEEN DIRECTION OF l•lARTENSITE INTE~FACE AND 
C 1 2 -1 UI~ECTION ON SURFACE OF CRYSTAL 

CALL AI\1AG( A oX l 
CALL AMAG<~tYl 
CALL AMAG<CoZl 
DO 101 I= 1 • 3 
A<l>=A(J)/X 
8( I l=BC I )/Y 
CCI l=CC I l/Z 

101 CONTINUE 
CALL DETCAtBtCoDl 
DO 100 I= 1 oN 
READC5o2l THETA1•THETA2oALPHA 

2 FORMATC2F7e2o5XoA10l 
WRITE ( 6o8 l THETA 1, THETA2 oALPHA 

8 FORMAT<10XoF7e2o5XtF7e2o~XtA10l 
THETA1=COS<THLTA1*3e1415~2o~4/180el 

THETA2=COS<THETA2*3e1415~2654/180el 

AA<1l=A<1l 
AA<2l=B< 1> 
AA<3l=C<1l 
A< 1 l=OeO 
BC1l=THETA1 
C( 1l=THLTA2 
CALL DETCA•BtCtODl 
~8( 1 l =DD/D 
A<ll=AA<ll 
UC 1 l=AA<2l 
C<l>=AA<3l 
AA( 1 l =AC2) 
AA<2l=BC2l 
AA<3l=C<2l 



AC21=0o0 
bC21=THETA1 
C:C21=THETA2 
<..ALL DETCAtB•CtDDI 
I:Jt:H 2 I = DlJ/0 
A C 2 I =AA C 1 I 
BC2l=AAC2l 
(;C2l=AAC3l 
AACJJ;AC3l 
AAC2l=UC3l 
AAC3)"(;(:.J) 
AC3l=Oo0 
BC3l.,THETAI 
C:C31=THE::TA2 
c;ALL OETCAtbtC;UUI 
Ul::lC31=DD/0 
<..ALL AMAGCI::lBtCCI 
AC3l:AAC!l 
BC3l=AAC2l 
CC31=AAC3> 
t::lBC I l=BBCI 1/CC 
t::lt::lC2l=BBC2l/CC 
E:IBC31=BBC3)/CC 
FCll=~loO/SQRTCjoOl 
FC2l=-FCII 
FC3l=FC2l 

3 FORMATC!OX~4Fl2o~) 
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C OUTI-'UT UN! T VECTOR ON POLISHED SURFACE IN DIRECTION OF INTERFACE 
C LINE 

WRITEC6t3l BB 
<..ALL CROSSCFtBBtGl 
C:ALL CROSSCF~G,HI 
FC11=1oO/SURTC2o0) 
f-C2l=Oo0 
FC3l=FCII 
<..ALL DOTCFtHtANul 

C OUTPUT UNIT VECTOR ON -1 1 1 SURFACE IN DIRECTION OF INTERFACE LINE 
C AND ANGLE BETWEEN IOI OI~ECTION 

II.•RITtoC6t4l HtANG 
FC11=2o0/~URTC6o0) 

FC21=1o0/5URTC6o0) 
FC3l=FC2) 

C Ul.JTI..lUT UF VECTUI-I NUR•••AL, TO INTERFACE PLANE AND ANGLE BETWFEN 211 O!RECT!ON 
<..ALL DOTCFtGtANGI 
WRITt::C6,4> GtANG 

4 FORM+TC!OXt3F11o8t5XtF8o21 
WR!TEC6t9i 

9 F'ORMATC//) 
100 CONTINUE:. 
102 CONTINUE 

~TOP 

t:.ND 
SUBROUTINE OOTCAtBoANG> 
DIMENSION AC31tBC3l 
ANG=+COSCCAC 1 >*t:H 1 l+AC2>*tH2l+AC3l*ElC3l J/SURTCAC I l*AC 11+AC21*AC21+ 

~AI31*AI311/~URTCUI11*bC11+BCbi*BI2)+HIJI*BC31ll*180o0/3ol41592654 
RETURN 



.. 
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t:.ND 
SUI:lkOUTINE C~OSS IAoboCl 
DIMENSION Al3loBI3loCI3l 
Cl1l=AI2l*BI3)-AI3l*BI2l 
Cl2l=AI3l*Bill-Aill*BI3l 
Cl3l=AI 1 l*l:l12l-AI2l*l:ll 1 l 
CALL AMAGICoDl 
(.;I 1 l=C I 1 l/D 
Cl2l=CI2l/D 
C I 3 l =C I 3 l /D 
RETURN 
E:.ND 
SUB~OUTJNE AMAGIAoBl 

.. , 
~j • 1 

-!...'~ ,.....,~ 

DIMENSION Al3l 
l:l=SU~TIAI1l*AIJl+AI2l*AI2l+AI3l*AI3ll 

~ETURN 

t::ND 
SUI:lkOUTJNE DE:.TIAol:loCoDl 

. ./ I .f J 

-71-

uiMENSION Al3l ol:ll3loCI3l 
D=AI1l*IBI2l*C13l-BI3l*CI2ll+AI2l*IBI3l*CIJ l-Bill*CI3ll+AI~l*l 

$811l*CI2l-B12l*CI1ll 
RETURN 
END 

28 
-.624!:>.1::930 o51327139 o!:>8b6!:>:J70 
-·37112821 

9o17 99o17 322-1 
5o33 84o67 322-2 
5o67 84o33 322-3 
9o:l8 99o58 322-4 

67oU8 157o08 322-5 
55o33 145o33 322-6 
67o92 157o92 322-7 
54•83 144o83 329-1 
69•75 159o75 329-2 
69•08 159o08 329-3 
:;,6oJJ 14oo33 329-4 
69o33 l59o33 329-5 
69o33 159o33 329-6 

55o92 145o92 329-7 
8o2:l Si8o2!:> 329-8 
8o92 98o92 329-9 
5o42 84o58 329-10 

10o17 100o17 336-1 
8o:JO 98o50 336-2 

11o75 10 1. 75 336-3 
10•67 100o67 336-4 

3o!:>8 86o42 336-5 
4o!:>O b5o50 336-6 
7o47 97o47 337-1 

55o92 145o92 337-2 
68o3l 158o31 337-3 
56o28 146o28 337-4 

3o75 86o25 337-5 

o69551347 o02264272 o71815619 o35~~1:l026 o85792761 

. 
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APPENDIX C. 

A Computer Program to Calculate the Magnitude and Uirection of 
the Shape Change Associated with the y-+a. Martensitic Transformations 

The magnitude and direction of the shape change are calculated 

using the method described by Bowles and Morton.?3 The specimen normal 

is the (001) • The reference vector used to calculate the angle 
. y 

required to rotate the result from the J basis to the austenite basis 

is the [lOO]y. The geometry of the measurement is shown in Fig. 5. 

The input data are the direction of the fiducial line (F), the angle 

between the fiducial line and the transformed line (ALPHA), and the 

angle between the noma! of the tilted a martensite crystal and the 

(OOl)y surface (PHI). The angle PHI is measured such that the noma! 

to the tilted surface, the (001) and the habit plane noma! all lie on 
y 

the same great circle. The unit vector defining the habit plane noma! 

is also required. The output is the magnitude of the shape change 

and a unit vector defining the direction of the shape change. 

The input data for PROGRAM SHAPE are as follows: 

Card 1: Col. 1-3 N the number of habits plane nomals to be tested 
for each measured ALPHA and PHI 

Col. 4-6 M the number of values of ALPHA and PHI 

Card 2: Col. 1-10 

~ 
u 

Col. 11-20 v direction of fiducial line 

Col. 21-30 w 

Card 3: Col. 1-10 ALPHA 

Col. 11-20 PHI 



. ; .,. 

Card 4: 

"' > .. ) 

Col 

Col 

Col 

Repeat 

Repeat 

Repeat 

1-10 

11-20 

21-30 

Card 4 

Card 3 

Card 4 

/ 
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( h 

k Habit plane normal 

~ 1 

N times 

~ This sequence repeated M times 

N times 

Fortran listing and example of input data follows. 
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~~UG~AM ~HA~E< IN~UToOUTPUToTA~E5=INPUToTAPE6=0UTPUT) 

t<t:.i-11.. .J 1 ( 3 ) • .JI:: ( ..J ) • ..J ..> ( 3 ) • H ( 3 ) • F ( 3 l • F 1 ( 3 ) • MD ( 3 l tROT < j t 3 ) t~VlDD ( 3 l t HH < 3 l 
..J3( 1 l=Fl <3>=0•0 . 
..J3<2l=F1 <2>=0e0 
..J3 ( 3 l = F 1 ( 1 l = 1 • 0 
READ<5o4l NtM 

4 FORM AT < I 3 ol 3 l 
READ< 5ol l F 
DO 100 K=ltM 
READI5t1i ALPHAtPHl 
WRITEI6t1l ALPHAt~HloF 

FORMAT<8FIUe5l 
ALPHA=ALPHA*3ei4159/180e 
PHI=PH1*3el4159/l80e 
DO 100 1=1•N 
READ<5oll H 
WRITE. ( 6, 1 l H 
CALL CRO~S <H•..JJ•..Jll 
CALL CROSS<J3o..Jl•J2l 
CALL DOT<J3tHtBETAl 
CALL OOT(JloFtROWl 
ROWP=ROIN+ALPHA 
CALL DOT<JltFltTHETAl 
A=leO/TAN<PHI l 
~=COS<BE.TAI+~IN<bETA>*A 

C = 1 • U/::891 76 
MD<3>=C/8 
MD<2>=C*A/8~leO/SIN<8ETA) 

AA=1eU/TAN<ROW) 
MD<l>=C*A/IB*TAN<ROWP)l-AA/SIN<BETAl 
CALL AMAG<MD•Dl 

C D IS THt:: IV\AGNITUUE. OF THE:: SHAPE STRAIN• 
MD<3)=MD<3l/D 
MD<2>=MD<2l/D 
MD< 1 l =MD< I )/0 
WRITE<6o3l MDtO 

3 FORMAT<5XtFl0e6•~X•FlOe6t5X•FlOe6o5XtF10e6l 

ROT<I•l>=ROT<2o2l=COS<THETAl 
ROT<lt2)=-SIN<THETA) 
ROTI2tli=SIN(THETAI 
ROT<!o31=ROT<2o3l=ROT<3oll=ROT<3o2l=O•O 
RUT(3o31=le0 
CALL ~MPR0<ROToMOtMDD•3•3tll 
INRITEI6t2l MOD 

2 FORMAT<5XoF!Oe6t5XoFIOe6•5XtFIOe6l 
ROT<ltl)=ROT<1•3>=ROT<2•2>=ROT<2•3l=ROT<3•I>=ROT<3•2l=Oe0 

ROT<1•2l=ROT<3o3l=le0 
ROT<2•1>=-le0 
CALL GMPRD<ROToMDOtMDt3t3o1l 
CALL GMPRD<ROToMDtMODt3t3•1J 
CALL GMPRD<ROToHoHHo3o3o1) 
CALL GMPRUCROToHHoHo3o3oll 
WRITE<6t2l MOD 
INRITE<6t2l H 
iiiRITEC6t5l 

5 FORMAT(//) 
100 CONTINUE 



STOP 
t::ND 

J 
/ 

l 
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SU~ROUTINE GMPRD!AoBoRoNoMoLl 
DIMENSION A!9l oB<9loR!9) 
IR=O 
IK=-M 
DO 10 K=l oL 
lK=lK+M 
uo io J=loN 
IR=IR+I 
JI =J-N 
It:)=IK 
R<IR>=O 
DO 10' I= 1, M 
..Jl=JI+N 
IE:l=IB+1 

1 U R < I R l = R ( I f.< l +A< J I l *b ( I t:l l 
R!:.TURN 
t::ND 
SUBROUTINE DOT<A•BoANG> 
DIMENSION A!3loB<3l 
ANG=ACO~< <A< 1 l*bC 1 l+ACcl"~~-t:J<2l+A<3>*BC3l )/SQRT<A< 1 >*A< 1 l+AC 2l*AC2)+ 

$AC3l*A!3))/SQRTCE:l<I>*BC1l+B<B>*BC2l+B<3>*B<3lll 
RETURN 

4 8 
-leU 
-5.5 

-0.479 
-0.333 
-0.812 
-0·812 

6e6 
-0.479 
-0·333 
-0.812 
-0.812 

::..t> 
-0.47':J 
-0.333 

END 
SU~ROUTINE CROSS <AoBoCl 
~IMENSION A(3)oB<3loC<3l 
C<1l=A<2l*B!3)-A<3l*B<2>· 
C ( 2) =A< 3 l *B < 1 l -A< 1 l *B < 3 l 
C!3l=A< 1 >*B<2>-A<2l*B< 1 > 
CALL AMAG<CoD) 
C!1l=C<1l/D 
C<2l=C<2l/D 
C!3l=C<3l/D 
RETURN 
END 
SUBROUTINE AMAG<AoBl 
DIMENSION A!3l 

B=SGRT <A ( 1 l*A< 1 >+A ( 2l *A <2 l+A< 3l*A ( 3l l 

~~i5URN 

-1 .o 0•0 
-9·0 

-0.812 0•333 
-0.812 Oe479 
-0.479 Oe333 
-•333 Oe479 

1 1. 0 
-0.812 Oe333 
-0·812 0•479 
-0.479 Oe333 
-•333 Oe479 

9.0 
-0 e812 Oe333 
-0.812 Oe479 
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-0.812 -0.479 0eJ33 
-0.812 -·3~3 0 e479 · 

-6.6 -1le0 
-0.479 -0.812 Oe333 
-0.333 -0.812 Oe479 
-0.812 -0.479 Oe333 
-0.812 -·333 Oe479 

5·5 -9·0 
-0.47'-i -0.812 Oe333 
-0.333 -0.812 Oe479 
-0.812 -0.479 Oe333 
-0.812 -·333 Oe479 

-6·6 11e0 
-0.479 -0.812 Ce333 
-0.333 -o ·812 Oe479 
-0.812 -0.479 Oe333 
-0.812 -·333 Oe479 

-5·5 9e0 
-0.479 -0.812 Oe333 
-0.333 -0.812 Oe479 
-0.812 -o e479 Oe333 
-0·812 -•333 0•479 

6e6 -11 .o 
-Oe479 -0.812 Oe333 
-0•333 -0.812 Oe479 
-0.812 -0.479 Oe333 
-0.812 -·333 Oe479 
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APPENDIX D 

The Mechanism of the y-+£ Deformation Induced Phase Transformation 

The objective of this discussion is to present data that indicates 

that the critical resolve shear stress (CRSS) acting on {111} planes 
y 

in ( 112\ directions can dictate the variants of £ martensite that can 

form by plastic deformation in low stacking fault energy materials. 

The results show.ed that slip and £ martensite were observed 

en only two of the expected four {lll}y planes for the [lOO]y 

tensile axis specimen and on only one of the expected two {111} planes 
y 

for the [llO]y tensile axis specimen. There are of course experimental 

reasons that could cause these results. These are errors in cutting 

the crystals (crystal orientation) and poor axial alignment and during 

tensile testing. The ideal tensile axes wanted and actual tensile axes 

obtained in these single crystals were usually within two degrees of 

each other. The crystal orientation and Schmidt factors for all the 

slip systems possible in these crystals are presented in Tables IX and 

X. Great care was excercised to control the axial alignment of the 

crystals. However this is always a difficult problem when testing 

small crystals; in this study the gauge length of the specimens were 

between 10 and 15 mm. With these problems in mind; it appears the fact 

that slip and therefore £ martensite are not forming on specific {Ill\ 

planes, arid the fact that the total volume fraction of £ associated 

with the [100] is less than that observed for other orientations tested 
y 

may be consistent with previous studies. 
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Gaunt and Christian47 have studied the f.c.c. to h.c.p. trans-

formation in cobalt and cobalt-nickel alloys. The f.c.c. to h.c.p. 

martensitic transformation occurs in this alloy by both quenching below 

the martensite start temperature and by elastic and plastic strain 

above this temperature. The h.c.p. phase exists as sheets parallel to 

{111} f.c.c. planes. An important observation was the fact that the 

{111} f.c.c. plane that exhibited the presence of the h.c.p. phase 

was not necessarily the {111} f.c.c. plane of highest resolved shear 

stress. Kotual and Honeycombe48 studied the f.c.c. to h.c.p. (a-+l;) 

transformation in the Copper-Germanium system. This transformation 

is also formed under stress and by thermal activation. They established 

the orientation relationship as (lll)a II (OOOl)l; and [llO]a ii [llZO]l;, 

the same relationship is now clearly established for the y-+£ transformation 

in low stacking fault energy Fe-Ni-Cr alloys. Kotual and Honeycombe 

calculated the angle of tilt that should be observed on the specimen 

surface if the l; phase was forming by the motion of~< 112>a Shockley 

partials on alternate {111} planes, which results in a half-twin shear a 

1/(2/2) as first proposed by Christian. 49 Three different tilt angles 

associated with each of the three a/6 ( 112 > shears on a {111} plane a a 

were obtained. The significant result obtained when the a-+l; transformation 

is induced by stress was the fact that for any given set of {111} planes, 
a 

surface tilts associated with only one a/6 < 112) . shear was observed. 

Other studies using Fe-Ni-Cr-C polycrystalline alloys tend to support 

this behavior but add little to the basic understanding as to why the 

state of stress tends to control which variant of the h.c.p. phase that 

f 
50,51 orms. 



' I 
,_j {j ~.J ,,) v 9 t,; / ·; I c~J § 

-79-

52 Copley and Kear have calculated the dependence of the width of 

a dissociated dislocation on dislocation velocity and have shown that 

the dynamic width of a Shockley pair is dependent on the CRSS on each 

dislocation. When the leading partial has the highest Schmidt factor 

its possible for one partial to glide out of the crystal leaving the 

partial with the lower CRSS behind. The crystal now has a large 

intrinsic stacking fault. For the case where the trailing partial 

has the highest Schmidt factor the partials glide together due to the 

applied stress. Continued motion of these partials would cause the 

formation of an extrinsic stacking fault. If the energy of the 

extrinsic fault is enough larger than the entrinsic fault, it is 

possible the extrinsic fault would not form in the crystal, and that 

plastic deformation in these low stacking fault energy single crystals ' 

will be due to the motion of leading Shockley partical dislocation 

that have higher Schmidt factors than the trailing Shockley particals. 

52 A figure from Copley and Kear's paper showing how the orientation 

dependence of the tensile axis will control the spacing between Shockley 

partials as a function of dislocation velocity is given in Fig. 19. 

In this figure D' is the force per unit length of dislocation line, 

v* is a velocity near the shear wave velocity, v the dislocation 

velocity and ~ the spacing between Shockley partial dislocations. 

Krishna Seshan53 was ask to review the single crystal results 

presented in this thesis to see if the observed selectivity of £ 

martensite formation as a function of the direction of the tensile 

axis is consistant with Copley and Kears results and previous studies 

of the f.c.c. + h.c.p. transformation already discussed. Seshan 
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concluded that if only one kind of stacking fault can form in the 

material, these single crystal results were consistant with Copley 

and Kears calculations.
52 

Hirth and Lothe54 discuss the formation 

of stacking faults in f~c.c. metals. Throughout this discussion 

it becomes clear that extrinsic faults are rarely found in f.c.c. 

metals. It is therefore possible that only intrinsic faults are 

forming in this Fe-15Ni-15Cr alloy and a detailed study of faults 

could form the basis of an interesting research project. 



. . 
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APPENDIX E 

The Volume Fraction of E: and a Martensite as a Function of Strain 

Gunther and Reed31 have measured the volume fraction of a and E: 

martensite in a polycrystalline Fe-18Cr-9Ni alloy deformed at 77°K, 

They observed that the volume fraction of E: martensite increased 

rapidly to a maximum of 0.35 at 9% tensile strain and then decreases 

to 0.10 at 26% tensile strain, the apparent strain at fracture. The 

volume fraction of a at this strain was 0.90. These results suggested 

that the e+a. transformation was occurring. However -Breedis and 

20 Kaufman have demonstrated that the E:+a transformation should not 

occur in these Fe-Ni-Cr alloys at temperatures below 500°K. Also no 

known electron microscopy studies have shown a martensite in a region 

of a specimen that was at one time clearly E: martensite. The variation 

of E: and a martensite as a function of strain and temperature is of 

considerable interest. A separate study was initiated to make 

measurements of the volume fraction of E: and a martensite as a 

function of strain to fracture in this alloy, 45 but this work has not 

yet been completed. 

It appears that the quantity of E: martensite present in Fe-15Ni-15Cr 

single crystals increases from zero to 8-9 percent byvolume in about 

10% tensile strain. The quantity of E: then remains nearly constant in 

specimen that initially had the [Zl3]y tensile axis, but shows a sharp 

decrease in the [ll2]y tensile axis specimens. This is shown in 
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Fig •. l7. This reduction of£ is in agreement with polycrystal stainless 

steel results of Guntner and Reed. 31 If plastic deformation in the 

austenite is responsible for the y+£ transformation it is necessary to 

ask why the amount of £ stops increasing even tough the amount of plastic 

strain increases significantly. One possibility is that the £+y 

transformations begins to occur at arate equal to or greater than the 

y+£ transformation. The popular mechanism for the y+£ transformation 

is that of slip in the austenite of every other (111) plane, thus 
y 

forming the regular hcp structure. The E+y transformation could occur 

in the reverse manner. 

A second possibility is that as soon as the matrix is partitioned 

by the E, the majority of plasti~ deformation, at least to the strains 

tested to in this program, occurs on the basal plane of the new hcp 

phase. Large slip stepsat small tensile strains would support this mode 

of deformation. The surface of specimens tested to 15% tensile strain 

at 242°K and 5% tensile strain at 185°K are presented in Fig. 18A and 

B respectively. The results clearly indicate large slip 

steps. 

One final piece of perhaps unconvincing data is the somewhat larger 

then expected temperature dependence of the flow stress observed in this 

alloy when only they+£ transformation occurs (242° and 273°K). Materials 

with the fcc crystal structure usually exhibit a weak temperature 

dependence of the flow stress. These crystals tested at 273°K and 242°K 

(a 31° temperature difference) exhibited a 2 kg/mm2 increase in the 

tensile flow stress with decreasing temperature. This is large for a 
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fcc metal and suggests the possibility of a different mechanism for 

slip in this alloy. This behavior is shown for the [ll2] and 
y 

[213] tensile specimens in Fig. 14 and 15 respectively. 
y . . 

Whatever the case may be, this phenomenon should be studied using 

in situ tensile testing of thick foils in the high voltage electron 

microscope. It is quite possible the study could be carried out at 

room temperature in this alloy. There is no reason to expect that the 

£ phase will not form at room temperature in single crystal foils 

although this point has not been checked. 



magnitude of one shear is zero. 
Calculated solutions that produce {252}y a martensite habit planes where the Table I. 

S SHE.P. T cHE:AI'. ~AGIIIITUDE MAGill !TUDE MAGIIIPUDE 3HAPE: CHANGE HABIT PLANE ANGULAR DEVIATION 
S SHEAR T SHEAR SHAPE: Ct-<ANGE VECTOR NORMAL FORM K-S RELATIONSHIP Key* 

PLANE Olf<ECTION 

Ol [ -1 1 11 ( 1 0 ll( 1 1 - 1 I .oooooooo -. 25210794 • 28539 530 -.15804210 -. 34059760 .::9 1.14 (2) 
-,54153953 -. 81154891 

.82568616 -.47474377 

1 Ol [ -1 1 11 I 1 c ll[ 1 1 -11 -. 02000000 • 26360641 • 28207180 -.09526621 -. 34904589 1. 23 .96 (2) 
-.54832164 -.81829585 

.83082353 -.45668246 

Ol [ -1 1 11 I -1 0 1l ( 1 - 1 1 I .04000000 .23321870 .29224581 -.5711023 -. 76299505 1.50 1.12 (l) 
-.19516451 -.38754428 

.7'1729755 -. ~1734707 

Ol [ - 1 I 11 ( -1 0 ll ( 1 -1 1 I .02000000 .24291902 • 2880~ 745 -. 556(>0692 -, 7H784512 ,91 1. 12 ( l) I 
CXl 

-. 17 7845 09 -. 3643 8389 ~ 
.61151701 -.49651229 I 

Ol I -1 1 11 ( -1 0 lll 1 - 1 11 ,00000000 • 25210794 • 28539530 -.54153953 -. 81154891 .39 1.14 (l) 
-.158042i0 -.34059760 

• 82 5 68616 -.4747'.377 

Ol I ··1 1 11 I •1 0 lll 1 - 1 1 I -.02000000 .26070952 .28432186 -.52605668 -. 83366441 .20 1. 15 (l) 
-.13588413 -. 31663806 

.83952360 -.45248645 

Ol [ -1 1 11 I -1 0 ll ( 1 -1 11 -.04000000 .26866393 .2B47S504 -.51026401 -.85387367 .61 1. 18 (l) 
-.11160749 -. 29£95701 

• 85274522 -.43020453 

Ol [ -1 1 1 I I -1 0 ll( 1 -1 11 -.06000000 • 27593192 • 2867<:272 -. 49427364 -. 87200101 1.00 1. 21 (l) 
-.065541'tl -. 26995998 

• 86508742 -.40833302 

Ol ( -1 1 1 I I -1 0 ll[ 1 -1 11 -. 08000000 • 2824962t .29005020 -.47820031 -. 88800642 1.37 1.25 (l) 
-.05808136 -. 24797284 

.87632814 -.38723904 

*Key: (l) ( 111) II y ( 011) ; 
a 

[ Oll] II y [lll] a 

(2) (lll) II y ( 011) ; 
a 

[lOl] II y [lll] 
a 

., 



Table II. Calculated two shear solutions that produce {252} a martensite habit planes. 

S SHHO T SHEAR MAGNITUDE MAGNITUDE MAGNI1 UDE SHAPE CHbNGE HABIT PLANE ANGUL~R DEVI~TIQN 

S SHEAR T SHEAP SHAPE CHA,-.GE VECTOR NORMAL FOI<M K-S P!:LATICNSHIP Key* 
PLANE DPECiiON 

01 I 1 -1 11 I 1 0 111 1 1 -11 .14000000 -. 29163118 • 26415648 .• 08922845 .17076391 1.19 .79 ( 2) 
-.55010180 -. 88389193 f" 

'"-·' 
.83031698 -. 43540183 

•)I [ 1 -1 1 I I -1 0 11 [ 1 -1' Ll • 06:)00000 • 28091268 .25663259 -.60424815 -. 8093451"4 .40 1.49 (1) ~-

~~ 

... 05025460 -. ~18?8294 
• 79520981 -.49342209 .... 

( 1) "-·· 
1 Ol [ 1 '1 1 I I -1 0 11 I 1 - 1 1 I .04000000 .27166559 .26555575 -.58311913 • 81027732 .40 1. 35 

-.088b3132 • 32725027 c __ 
.80753135 ..• 4861b656 

01 [ 1 -1 11 I -i 0 111 1 -1 ,11 • 02000000 • 26203627 .27517099 •.• 5b 213502 .• 81J'I9138 • 39 1. 23 (1) (r, 
-.1.2457413 .• 33448317 

.81760962 •• 411001457 

01 I 1 -1 11 I -1 0 111 1 -1 11 .oooooooo .25210794 .2853'>530 -.54153953 -.81154891 .39 1. 14 (1) 
,r; 

-.15004210 -. 34059760 
• 82 568b16 -.47474377 

... ,...._ 

01 ( 1 -1 1 I I -1 0 lll 1 -1 1 I -. 02000000 • 24194201 • 29615715 -. 5d51179 -. 81199165 .39 1.05 (1) 
- .18<;07801 -.34582630 (_ 

.83203062 -. 470184 79 

01 ( 1 -1 1 I I -1 0 ll( 1 - 1 11 -.04000000 • 23158463 • 30739447 -. 50217628 -. 81231t855 .39 .98 (1) .. .... 
- .21777921 -. 35034352 

.83689378 -.46620730 I 
~ (X) 

01 I 1 -1 ll I -1 0 lll 1 -1 1 I - .ObOOOOOO • 22107096 • 31905323 -.48361300 ..• 81264012 .38 .92 (1) VI 
I 

-.244.27587 -.35428180 ..-
.84050447 - .4b2 70989 '-' 

1 01 ( 1 -1 11 I - 1 0 lll 1 -1 ll -.o8oooooo .21042825 • 33108625 •• 46 5 86 7 08 -. 81288118 .38 • 8b (1) 
-. 26871546 •• 35 774339 

.8430b576 -·. 45961272 

01 ( 1 -1 11 I -1 0 11( 1 -1 ll -.10000000 .199b778b • 34345234 -.44895701 -. 81308l62 .38 .81 ( 1) 
..;,29125188 -. 36080828 

.84475437 -. 45b85231 

01 ( 1 -1 1 I ( -1 0 111 1 -1 ll. -.12000000 .18883674 • 35611 546 -.43288160 -. 81325258 .38 .77 (1) 
-.~120380:4 -. 3053983 
.~4572197 -. 4543 7763 

OJ I 1 -1 11 I - 1 0 ll I 1 - 1 1 I -. 14000000 • 17791854 ~ 3690440b -.41"162555 -.81339723 • 38 .13 ( 1) 
-.33122224 -. 36598880 

.8460\1735 -.45214726 

01 ( 1 -1 1 J ( -1 0 ll ( 1 -1' 1 I -.16000000 • 16693432 • 38221047 -.40316378 -. 81352132 .38 .69 (1) 
-. 34894335 -. 36819627 

.84598907 -.45012729 

01 ( 1 ,-1 1 I ( - 1 0 ll I 1 -1 1 I -.18000000 .15589315 • 39559040 -.38946478 -.81362853 .38 .66 ( 1) 
-,365B138 -.37019585 
.84~48812 -.44828970 



'l'able II. Continued. 

S SHEAR T SHEAR MAGNITUDE MAGNITUDE MAGNITUDE 'HAPE CHANGE HABIT PLANE ANGULA• OEV!A~!~~ Key* S SHEAR T SHEAR SHAPE CHANGE VECTOR NO~~A~ FORM K-S RfLAT!GN;H!F 
PLANE U!kEC:ION 

( -1 1 Ol I 1 1 -ll ( 1 0 ll ( 1 1 -ll .18000000 -.15589315 • 39559040 -.36533138 -· 37019585 .38 .66 (2) 
-. 389464 78 -. 81362853 

.84541lill2 -. 441128970 

( -1 1 01 ( 1 1 -11 ( 1 0 lll 1 1 •1 I .16000000 -. 16693432 • 38221047 -.34!l94H5 -. 3681962"1 .38 .69 (2) 
-.40316378 -. 81352132 

• 8't!>911907 -. 45012729 

( -1 1 0 I I 1 1 -ll ( 1 0 111 1 1-11 .14000000 -.17791854 • 36'l04406 -.33122224 -. 36598880 .38 • 73 (2) 
-.41762555 -. 813 39723 

• 84609735 -. 45214726 

( -1 1 Ol I 1 1 -ll ( 1 0 lll 1 1-11 .12000000 -. 18883674 .35611546 -. 31203824 -. 36353983 • 38 • 77 (?) 
-.43.288160 ,., 81325258 

.84572197 -.45't31763 

( -1 1 Ol I 1 1 -ll ( 1 0 lll 1 1 -1) .10000000 -.19'l67786 • 3431t5234 -. 2'll25118 -. 360d0828 .38 .81 (2) 
-.44895701 -. 61308262 

• a44 75437 -.45685231 

( -1 1 0) I 1 1 -1) ( 1 0- ll I 1 1-11 .08000000 -. 2101t2825 .33108625 -.26871546 -. 35774339 .38 .86 (2) 
-.46586708 -. 61288118 

.84306576 -,45961272 
I 

( -1 1 I)) I 1 1 -1) ( l 0 111 1 1 - ll .06000000 -. 22107096 .31905323 -. 24427587 -. 35428180 .38 .92 (2) 00 
a-

-.48361300 .,. • 81264012 I 
.84050447 -.4627098'l 

( -1 1 01 I 1 1 -ll ( 1 0 111 1 1-ll .04000000 -.23152463 .30739447 - • .21777921 .... 35031t352 .39 .98 (2) 
-.50217628 -. 81234855 

• 83o8'l378 -. 46620730 

( -1 1 01 I 1 1 -11 ( 1 0 lll 1 l -1) • 02000000 -. 24194201 .29615715 -.18907801 ..: .34582630 • 39 1. 05 (2) 
-.52151179 -.111199165 

.8320306.2 -.4701&479 

( •1' 1 OJ ( 1 1 -1 I ( '1 0 1)( 1 1 -ll .00000000 -. 25210.794 .28539530 -.1580it210 -.34059760 .3'l h.l'lt (2) 
-.54153953 -.81154891 

• 82,5686 16 -.471t 74377 

( -1 1 0) I 1 1 -11 ( 1 0 lll 1 1 -11 -. 02000000 -.26203627 • 27517099 -.12457413 -. 3341t8317 .39 1.23 (2) 
-.56213502 -.11109'>138 

,817o0962 -.lt8001457 

( -1 1 01 ( 1 1 -11 ( 1 0 111 1 1-11 -. 04000000 -. 27166559 • 26555575 -.08t!63D2 -. 32725027 .40 1. 35 (2) 
-.58311913 -. 81027 732 

• 60753735 -.486161>56 

( -1 1 Ol ( 1 1 -11 ( 1 0 1)( 1 1 -11 -. 06000000 -. 21091268 .25663259 -.05025460 -. 31858294 .40 1.49 (2) 
-.b0424815 ·-· 80934514 

.795209111 -,49342209 

Ol I 1 -1 1 I c 0 1 lll 1 -1 11 -.28000000 .26490374 .27227523 •.• 56827832 -. 81079984 .39 1.26 ( 1) 
-.11425591 -. 3:$248350 

.61486523 -.lt81724~!1 



'rab1e II. Continued. 

S ~HEAR T SHEAR MAGNITUDE 
S SHEAR 

01 I 1 -l l l ( 0 l lll l -l ll -.30000DOO 

Jl I 1 -i ll ( 0 l 111 l -1 ll -. 32000000 

01 I 1 -1 ll ( 0 1 111 l -1 ll -.34000000 

01 l 1 -1 ll ( 0 1 11! l -1 ll -.36000000 

*Key: (1) ( 111) II ( 011) ; [ Oll] II [ll1] y a y a 

(2) (lll)y II (Oll)a; [10l]y II [l1l] 
a 

MAGNITUDE MAGNITUDE SHAPE CHANGE HABIT PLANE 
T SHEAR SHAPE CHANGE VECTO~ NORMAL 

• 21tll4693 • 29701041 -. 519'18972 -. 812D2202 
-.19138060 -. 34619930 

• 832456 70 -~ 46985773 

.21457950 • 32636666 -~lt72b6707 -. 81279271 
-.25944912 -.3561tltl79 

• 114218288 -. 46017356 

.18597553 .35948725 -.42879541 -. 81329282 
-.31722717 -. 364211171 

.84587317 -.45376956 

• 15590833 • 39557192 -.38948307 -.81362839 
-.;36530977 -.37019324 
:. 114548'104 -. 4482<;211 

ANGULAR DEVIATION 
FORM K-S RELATIONSHIP 

PLANE Dli<ECT!Ot~; 
Key* 

• 39 1. 05 (1) 

• 38 .sa (1) 

.3& • 76 (1) 

• 38 • 66 (1) 

I 
00 
....... 
I 

.... ...... 

;,..0 

~~.~-· 

{,, 

~ 

r'" ·..,. 

.. ... 
....... ...,~ 

iF • ...... 



Table III. Calculated two shear solutions that produced {252} twin related a martensite habits. 

S $;jEAR T SHEAR "AGNITUOE MAGNITUDE MAGNITUDE SHAPE CHANGE HABIT PLANE ANGULA~ DEVIATION 
Key* S SHEAR T SHEAR SHAPE CHANGE VECTOR NORMAL FORM K-S RELATIONSHIP 

PLANE 01 RECTI ON 

0 111 1 1 -11 I 0 1 11 t 1 1•11 -.16000000 -. 39912727 ~ 27993985 -.1121116551 • 47742097 • Jg 1. 18 (2) 
.55232436 .81127190 
.14072523 • 33750128 

0 lll 1 1 -11 I 0 1 lll 1 1 .. ll -. 18000000 -. 35482363 .25391349 -. 79405752 o't9409428 .40 1.50 (2) 
.60603014 • 80925374 
• 046905 31 • 31177228 

0 111 1 1 -11 I 0 1 111 1 1 -11 - o24000000 .02803047 • 26914863 -.10264092 -. 33016068 .39 I. 30 (2) 
-.57507847 -.111057169 

.81163391 - .<,83 70182 

0 ll I 1 1·11 I 0 1 lll 1 1-ll -. 26000000 • 01913433 .29731264 -.19219104 -. 34633012 • 39 1. 04 (2) 
-.51 ~'+52 79 -. 81203264 

.83260519 -. 46974296 

0 11 I 1 1 -11 I 0 1 lll 1 1 - 11 -. 28·)00000 • 07004022 • 33162087 -.26974067 -. 35788534 .38 .86 (2) 
-.'+6510932 •. E12119076 

.84315675 -. 45'l48525 

(2) I 
0 ll I 1 1 -11 I 0 1 111 1 1 -11 - .30000000 .12352425 • 370764 7 2 -. 33 363642 -. 36629248 .38 .72 00 

-.41567650 -. 813'+1466 00 
.8'ttl08b1 -. 45186991 I 

I - 1 0 111 1 -1 ll I 0 1 11 I 1 -1 11 .30000000 -.12352425 .37076472 -.41567650 -.813'+1466 .38 • 72 (l) 
-.33363642 -. 36629248 

.8'tt:10861 -.451<16991 

I •I 0 1) I 1 -1 11 I 0 1 111 1 -1 ll .211000000 -. 0700'+022 .33162087 -.46510932 -.81289076 • 38 • 86 ( 1) 
-.26974067 -.35788534 

• a43156 75 -.45948525 

I -1 J ll I 1 -,1 ll I 0 1 ll (" 1 -1 11 • 26000000 -. 01913433 .29731264 .-.51945279 -.81203264 .39 1.04 (1) 
-.19219104 -·.34633012 

.113260519 -.'t697't296 

I -1 0 lll 1 -1 11 ( 0 1 Ul 1 -1 11 • 2't000000 • 02803047 .26914863 -.57507847 -. 81057169 • 39 1. 30 (1) 
-.10264092 -.33016068 

.81163391 -.48370182 

( -l 0 11 I 1 -l 1 I I 0 1 lll 1 -1 1 I .18000000 .35482363 .25591349 .60603014 .80925374 .4·0 1.50 (1) 
-. 79405752 • 49409428 

.04t:90537 .31777228 

I -1 0 ll I 1 -1 1 I I 0 1 11 I 1 -1 11 • 16 000000 • 3991272 7 • 2 7993985 .55232436 .81127190 • 39 1. 18 ( 1) 
-.82166551 • 47742097 

.140725.23 .33750128 

*Key: ( 1) (111) II y 
( 011) ; 

a [Oll]y II [lll]a 

(2) (111) II 
y 

(011) ; 
a 

[10l]y II [ Oll ]a 



Table IV. Measurements of the a martensite needle axis and habit Plane normal assuming the 
habit plane is perpendicular to a {111} plane. . y 

Unit Vector Defining the Long Axis of Unit Vector Defining the Interface Plane Arigle Between Intet-
Martensite Needles on the (lll)y Plane Normal for Martensite Needles on the (lll)y face Normal and 

h k R. h k R. (2ll}y Direction 

-0.~3798142 0.12229693 -0.76027835 0.50955508 0.80728565 -0.29773058 51.39 
-0.63433004 0.12805297 -0.76238300 0.51409345 0.80639265 -0.29229920 50.98 
-0.64605652 0.10935841 -0.75541493 0.49927712 0.80913992 -0.30986280 52.30 
-0.64019198 0.11878404 -0.75897601 0. 50677500 0.80781001 -0.30103501 51.63 
-0.62901910 0.13632438 -0.76534348 0.52057818 0.80503561 -0.28445743 50.39 
-0.64387846 0.11287727 -0.75675514 0.50208285 0.80865653 -0.30657368 52.05 
-0.61447222 0.15840100 -0.77287322 0.53767142 0.80098426 -0.26331284 48.81 
-0.62446647 0.14332271 -0.76778918 0.52603069 0.80381918 -0.27778848 49.89 

-0.74501901 -0.08318268 -0.66183633 0.33408584 0.81224830 -0.47816247 65.85 
-0.74698423 -0.08799094 -0.65899329 0.32966836 0.81174150 -0.48207314 66.19 
-0.74554175 -0.08445573 -0.66108602 0.33291765 0.81211692 -0.47919927 65.94 
-0.73449311 -0.05839400 -0.67609911 0.35663221 0.81440580 -0.45777359 64.10 
-0.74011221 -0.07143354 -0.66867867 0.34481964 0.81336579 -0.46854616 65.02 
-0.73554564 -0.06080464 -0.67474100 0.35445632 0.81422937 -0.45977305 64.27 

0.09102861 0.74821292 -0.65718431 0.81140647 0.32687015 0.48453632 6.40 
0.10291886 0.75292631 -0.65000745 0.80998418 0.31586174 0.49412244 7.24 
0.12874635 0.76263407 -0.63388773 0.80628224 0.29164351 0. 51463873 9.07 
0.11930364 0.75916950 -0.63986586 0.80773344 0.30054674 0. 50718670 8.40 
0.12282893 0.76047440 -0.63764547 0.80720488 0.29722946 0.50997542 8.65 
0.12282893 0.76047440 -0.63764547 0.80720488 0.29722946 0.50997542 8.65 
0.10843235 0.75505982 -0.64662748 0.80926454 0.31072710 0.49853744 7.63 

-0.07606209 0.66600086 -0.74206295 0.81294602 0.47234471 0.34060131 5.35 
-0.08314634 0.66185772 -0.74500406 0.81225203 0.47813285 0.33411917 5.84 
-0. 06187 563 0.67413562 -0.73601126 o.8i414868 0.46066021 0.35348847 4.35 
-0.06769479 0.67082492 -0.73851970 0.81368549 o.465468i5 0.34821734 4.76 
.:..o.o6769479 0.67082492 -0.73851970 0.81368549 0.46546815 0.34821734 4.76 
-0.06258547 0.67373371 -0.73631919 0.81409442 0.46124782 0.35284660 '4.40 

h k R. 

Specimen Normal -0.62452938 0.51327139 0.58865570 ± 0.1° 

Second Surface Normal 0.02682327 0.70555316 -0.70814917 ± 0.1° 

Line of Intersection Between 0.7807972 0.4275636 0.4555712 
Specimen Surface and Second Surface 

--------

c: 
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Table V. Shape change calculations that correspond to Fig. 6A, 6B and 6C. The specimen normal and 
direction of fiducial line use in these calculations are respectively the [001] and [110] • 

- y y The photomicrograph was rotated about the [110] , [110] and [001] to show 
that symmetrical solutions exist. Y Y Y 

Needle ProJected Measured Surface Magnitude Direction of Habit 
Code Deviation Surface Tilt used of Shape Shape Change Plane Normal 

of Fiducial Tilt for this Change m m Line (degrees) (degrees) Calculation 
degrees) 

0.125475 0.812 
A 5.5±0.2° 9.0±1° 10.0 0.223 -0.521830 0.333 

0.844787 0.479 

-0.140576 0.812 
B -6. 6±0. 2° -11.0 0.277 0.551343 0.479 

-0.822350 0.333 

-0.562850 0.479 
A 5.5±0.2° -9.0±1 ° - 9.0 0.226 0.158440 0.812 

-0.811232 0.333 

0.556964 0.333 
B -6 .6±0. 2° +11.0 0.250 -0.114648 0.812 

0.822586 0.479 

0.521830 0.333 
A -5. 5±0. 2° 9.0±1 ° 10.0 0.223 -0.125475 0.812 

0.844787 0.479 

-0.551343 0.479 
B 6.6±0.2° -11.0 0.277 0.140576 0.812 

-0.822350 0.333 

I 
\0 
0 
I 



Table V. Continued. 

Needle Projected Measured Surface Magnitude Direction of Habit c: 
Code Deviation Surface Tilt used of Shape Shape Change Plane Normal 

of Fiducial Tilt for this Change m m 
,.,., 

Line (degrees) (degrees) Calculation r~-

""'"' 
{degrees~ ... 

'=..~ ..... 

-0.158440 0.812 
A -5.5±0.2° -9 .0±1 ° -9.0 0.226 0.562850 0.479 (< 

-0.811232 0.333 ..;[' ,. 

0.114648 0.812 <!'"'· 
~ ... 

B 6.6±0.2° 11.0 0.250 -0.556964 0.333 
0.822586 0.479 ' ... 

' -0.823889 .333 
.,_ 

I 
c 8.8±0.2° - 6±1 0 -6.0 0.238 0.136474 .812 \0 

~ (;: 
-0.550075 .479 I 

"' . .....,.~ 

0.553593 .479 
D -7. 2±0.2° 11.0 0.242 0.137058 .812 

0.821432 .333 

-0.824453 .479 
c 8.8±0.2° - 6±1 ° -6.0 0.213 -0.090215 .812 

-0.558693 .333 

0.55743 .333 
D -7. 2±0.2 ° 12.0 0.272 -0.124679 .812 

0.820802 .479 



Table V. Continued. 

Needle Projected Measured Surface Magnitude Direction of Habit 
Code Deviation Surface Tilt used of Shape Shape Change Plane Normal 

of Fiducial Tilt for this Change m m Line (degrees) (degrees) Calculation 
·{degrees} 

0.090215 0.812 
c -8.8±0. 2° -6±1 ° -6 0.213 0.824453 0.479 

-0.55869 0.333 

0.124679 0.812 
D 7.2±0.2° 12.0 0.271 -0.557439 0.333 

o.82080Z, 0.479 

-0.136474 0.812 
c -8.8±0. 2° -6±1 ° -6.0 0.238 0.823889 0.333 I 

-0.550075 0.479 \0 
N 
I 

-0.137078 0.812 
D 7.2±0.2° 11.0 0.242 -0.553593 0.479 

0.821432 0.333 

-0.152874 0.812 
c 8.8±0.2° 6±1 ° 7.0 0.242 -0.815919 0.333 

0.557589 0.479 

-0.132069 0.812 
D 7. 2±0. 2° -12.0 0.304 0.548712 0.479 

-0.825513 0.333 

0.815919 0.333 
c -8. 8±0. 2° 6±1 ° 7.0 0.252 0.152874 0.812 

0.557589 0.479 

-0.548712 0.479 
D 7. 2±0.2° -12.0 0.304 0.132069 0.812 

-0.825513 0.333 



Table V. Continued 

Needle Projected Measured Surface Magnitude Direction of Habit 
Code Deviation Surface Tilt used of Shape Shape Change Plane Normal ..-~ 

\.,...._ .. 
of Fiducial Tilt for this ... Change 

Line (degrees) (degrees) .. Calculation 
(degrees) m m_ ,~ .. 

,. ..._. 

-0.146879 0.812 r. 

E 6.5±0.2° 15°± 2° 10.0 ·~· 0.220 -0.547233 0.479 
0.823992 0.333 "' '"'"''· 

... 
-0.546507 0.479 ~ ...... 

E 6.5±0.2° -15°± 2° -11.0 0.276 0.144836 0.812 .-· 
-0.824835 0.333 

' "' 
I ··-

\0 
w 
I ,. .... ')! 

~~:;.. 

'< .. 
..:...... 
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Table VI. Volume fraction of £ martensite in single crystals tested 
to 5% tensile strain. The error associated with these 
measurements is ±0.005. 

Temperature OK 

Tensile axis 185° 242° 273° 

r2I3J 0.021 0.025 0.020 y 

[ll2] 0.028 y 

[110] 0.027 
y 

[100] 0.015 
y 



TABLE til 

Summary of volume fraction measurements for Fe-15w/o Ni-15w/o Cr 
alloy tested to 5% tensile strain at 185°K 

c 
Symbol Variant [213] [Ii2] [llO] [100] -of the KS orientat1or '1:>> .. 

Relat1onship Tensile axis Tensile axis Tensile axis Tensile axis 
c c c c c.. a a a a 

w 1 (In)y II (llO)a; [IIo]y II [lll]a 0.0072 0.0018 not observed 
~~-- .... 

IX] [Ilo]y II [hi]a "'-· 2 0.0033 0.0006 not observed Same 

!Xi 3 [Ioi]y II [lll]a 0.0011 not observed not observed very weak {, .. 

! XI 4 [Ioi]y II [Ili]a not observed not observed not observed peaks observed ..c 
[L 5 [Oll]y II [lll]a 0.0137* "0.0006 not observed just above back~ 

!Xi 6 [Oli]y II [Ili]a 0.0421* 0.0019 not observed ground ~ 

:....... 

• 1 (lll)y II (llO)a; [IOl]y II [Inla not observed 0.0132* o.oo44 

• 2 [IOl]y II [hi)a not observed 0.0056 0.0105* 
~ ... 

• 3 [on ]y II [In ]a not observed not observed O.Oll2* I 
\0 ill,.,_~ .••. 

• 4 [Oll]y II [lll]a 
IJ1 

not observed not observed 0.0032 I 

• 5 [llO]y II [lll]a not observed 0.0020 "0.0003 
0.:: 

• 6 [llO]y II [lll]a not observed 0.0041 not observed • ,...,, 

TOTAL a 0.0674 0.0228 0.0226 "0.002 

c c c c 
£ £ £ £ 

0 1 (lll)y II (OOOl)c not observed not observed not observed 0.0102 

0 2 (lll)y II (OOOl)c not observed 0.0194 0.0270 0.0045 

Q 3 (lll)y II (OOOl)c 0.0214 0.0091 not observed not observed 

0 4 ( lll)y II ( 0001 )c not observed not observed not observed not observed 

TOTAL c 0.0214 0.0282 0.0210 0.0147 

TOTAL a + £ 0.0888 0.0583 0.0566 0.0167 

* The majority of a martensite is always associated with the active austenite slip plane and direction. 
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Table VIII. ·. Example of Calculations obtained by using PROGRAM LAUE to 
calculate the surface normal of a single crystal using 
five combination of Indexed poles from the same Laue back 
reflection photograph. 

Indexed 
Pole (hkl) 

y 

(122) 
(02l) 
(012) 

(02l) 
(012) 
(135) 

ri em 

4.60· 
3.89 
3.82 

3.89 
3.82 
3.21 

Unit vector of specimen normal [unw] 
. . y 

. [03027i0366, 0.70525724, -0.70~42938] 

[0.02952808, 0.70521071, -0.70838263] 

------------~-----------------------------------~---------------------

(122) 
(135) 
(012) 

(l22) 
(02l) 
(122) 

4.60 
3.21 
3.82 

4.60 
3.89 
3. 71 

[0.02873764, 0.706j9197, -0.70723725] 

[0.02682377, 0.70555316, -0.70814917] 

--------~-------------------------------------------------------------

(13S) 
(l53) 
(l22) 

3.21 
3. 72 
4.60 

[0.02832692, 0.70577667, -0.70786784] 

I 

• i 

- ! 



Table IX. Schmid factors agd measured directions of the tensile axis before and after testing for 
the [100] and [110] tensile axis specimens. y y 

Ideal *Actual **Actual Ideal *Actual **Actual 
~r,.._ 

\.: . .-· 

Slip Systems [lOO]y @ zero @ 4.75% [llO]y @ zero @ 5.0% 
Strain Strain strain strain 

·'\,.~ 

p· 

~---.. 
( 1 1 1) [ 1 -1 0] . 408248 .415202 .431676 o. -.011276 -.054441 
( 1 1 1) [ 0 -1 1] o. .012486 .020101 o. -.005506 -.025251 ('" ..... 
( 1 1 1) [ -1 0 1] -.408248 -.402716 -.411575 0. . 005770 .029191 
( 1 1 1) [ 1 -2 1] .235702 .246926 .260833 o. -.009689 -.046010 (,, 

( 1 1 1) [-1 -1 2] -.235702 -.225300 -.226018 0. .000152 .002275 ...::; 
( 1 1 1) [ -2 1 1] -.471405 -.472225 -.486851 o. .009841 .048285 

(-1 1 1) [ 1 1 0] -'.408248 -.400955 -.380137 0. • 001174 .017465 
ii'" .... 
-.......~ 

(-1 1 1) [ 1 0 1] -.408248 -.413330 -.397224 -.408248 -.402352 -.376961 
(-1 1 1) [ 0 -1 1] o. -.012375 -.017087 -.408248 -.403526 -.394426 

1,;,..· 

(-1 1 1) [ 2 1 1] -.471405 -.470128 -.448809 -.235702 -.231620 -.207555 '~·", 
(-1 1 1) [ 1 -1 2] -.235702 -.245781 -.239202 -.471405 -.465274 -.445361 I 

\0 

(-1 1 1) [-1 -2 1] .235702 .224347 .209607 -.235702 -.233653 -.237806 "'-J L I 

(-1 -1 1) [-1 1 0] • 408248 .400770 .381047 o . .008957 .021061 c 
(-1 -1 1) [ 0 1 1] o. ..... 001761 -.031438 o . .004596 .011725 
(-1 -1 1) [ 1 0 1] -.408248 -.402531 -.412485 o. -.004361 -.009336 
(-1 -1 1) [-1 2 1] .235702 . 230368 .201846 0 • .007824 .018929 
( -1 -1 1) [ 1 1 2] -.235702 -.233418 -.256299 o. .000136 .001379 
(-1 -1 1) [ 2 ~1 1] -. 471405 -.463786 -.458146 o. -.007689 -.017550 

( 1 -1 1) [ 1 1 Ol . 408248 .415017 .432586 o . -.001145 -.015915 
( 1 -1 1) [ -1 0 1] -.408248 -.413145 -.398133 -.408248 -.412482 -.415488 
( 1 -1 1) [ 0 1 1] o. • 001872 .034452 -.408248 -.413627 -.431402 
( 1 -1 1) [ -2 -1 1] -.471405 -.478139 -.479616 -.235704 . -.237486 -.230694 
( 1 -1 1) [ -1 1 2] -.235704 -.237488 -. 209971 -.471405 -.476955 -.488952 
( 1 -1 1) [ 1 2 1] .235702 .240691 .269645 -.235702 -.239469 -.258259 

*[0.999763, -0.013002, 0.0174531] y *[-0.705993, 0.708002, 0.017524]y 

**[0.997842, 0.017615, 0.063259]y **[-0.690949, 0.719926, 0.65542] y 



Table X. S~~id factoE~ and measured directions of the tensile axes before and after testing for the 
[112]y and [213]y tensile axes specimens. 

Ideal *Actual **Actual Ideal *Actual **Actual 
Slip Systems [Ii2]y @ zero @ 4.85% [2l3]y @ zero @ 5.1% 

Strain Strain strain strain 

( 1 1 1) [ 1 -1 0] o. -.000061 -.003031 0. -.001758 .003346 
( 1 1 1). [ 0 -1 1] o. -.001573 -.026786 o. .007037 -.030823 
( 1 1 1) [ -1 0 1] 0. -.001512 -.023755 0. .008795 -.034169 
( 1 1 1) [ 1 -2 1] 0. -.000943 -.017215 o. ...• 003048 -.015864 
( 1 1 1) [ -1 -1 2] o. -.001731 -.029179 0. .009141 -.037523 
( 1 1 1) [ -2 1 1] o. -.000838 -.011965 0. .006092 -.021659 

(-1 1 1) [ 1 1 0) -.272166 -.256036 -.223984 -.349927 -.346890 -.320341 
(-1 1 1) [ 1 0 1] .136083 .134620 .117870 .116642 .121964 .112263 
(-1 1 1) [ 0 -1 1] .408248 .390656 .341854 .466569 .· .468854 .432604 
(-1 1 1) [ 2 1 1] -.078567 -.070099 -.061265 -.134687 -.129861 -.120134 
(-1 1 1) [ 1 -1 2] .314270 .303268 .265422 • 336718 .341109 .314579 I 

(-1 1 1) [ -1 -2 1] .392837 .373367 .326687 . 471405 .470970 • 434713 \0 
00 
I 

(-1 -1 1) [-1 1 0] 0. -.032244 -.097820 .174964 .174226 .084397 
(-1 -1 1) [ 0 1 1] • 272166 .254524 .200229 .349927 .355685 .286172 
(-1 -1 1) [ 1 0 1] .272166 .286768 .298049 .174964 .181458 .201775 
(-1 -1 1) [-1 2 1] .157135 .128333 .059126 .303046 .305944 . 213948 
(-1 -1 1) [ 1 1 2) . .314270 .312515 .287681 .303046· .• 310120 .281717 
( -1 -1 1) [ 2 -1 1 J .157135. .184182 .228555 0. -.174421 -.232598 

( 1 -1 1) [ 1 1 0] -.272166 -.288341 -.324835 -.174964 .004175 . 067768 
( 1 -1 1) [ -1 0 1] .408248 .422900 .439674 .291606 .294627 .348207 
( 1 -1 1) [ 0 1 1] .136083 .134559 .114839 .116642 .120206 .115609 
( 1 -1 1) [-2 -1 1] .392837 .410635 .441389 .269374 .270805 .335328 
( 1 -1 1) [ -1 1 2] .314270 .321849 .320148 .235702 .239504 .267784 
( 1 -1 1) [ 1 2 1) -.078567 -.088786 -.121241 -.033672 -.031301 -.067544 

--- ----
*[-0.384854, -0.433220, 0.814989]y *[-0.529029, -0.261995, 0.807147]y 

**[-0.349804, -0.495862, 0.794832] . . y **[-0.490865, -0.365358, 0.790927]y 
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Fig. 1. Lattice correspondence and lattice qeformation 

for the y~ martensitic phase transformation in 

iron alloys (after Bain7 and Wayman
10

). 
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Fig. 2. Montage showing a large area transformed to s and a martensite. 

The s cannot be seen because it is parallel to the plane of 

the figure. The a appears as needles joining at straight 

{112} twin boundaries. There are no twins observable inside a 
the a martensite crystals. 
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Fig. 3. Two surface analysis using the optical and electron microscopes. 

The crystal \vas sectioned to expose the (Oll)y and (lll)y 

surfaces. This micrograph clearly proves the a martensite 

geometry is acicular in this alloy. There are no twins 

observable inside the a martensite crystals. 
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Fig. 4. The shape deformation due to a martensite plate. 

Surface EFGH remains plane and tilted about EF 

and GH. The scratch ABCD, originally a straight 

line, remains continuous. The interfaces EFJI and 

HGKL are undistorted and no line in these interfaces 

is rotated by more than a small fraction of a degree 

(after Wayman
10 

and Bilby and Christian22). 
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Fig. 5. Sterographic projection showing how the J basis is defined, 

the position of the normal to the tilted surface and habit 

plane. All angles are positive as shown. (After Bowles 

and Morton. 23) 
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Fig. 6. Gold shadowed carbon replicas of a martensite 
needles cutting the (OOl)y surface. The f iducial 
lines used in shape change calculations are [llO] y 
slip traces. The results of shape change calculations 
from these electron micrographs are given in Table V. 
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Optical micrograph o f (lll) surface showing the deformation y 
induced a martensite needles bisecting ( 110) directions. 

y 
This is a typical example of the microstructure used to 

calculate the needle axis and habit plane normal. 



-106-

XBB 734-2477 

Fig . 8. Electron micrographs identifying the de f ormation induced E 
martensite phase , showing theK-S orientat i on rel ationship 
between y ( f )-E(h)-a (b) and revealing the structure of the 
y - E- a i nterface, A is the bright fiel d image . B is the dark 
field image using_the (Olll) E reflection, C is the dark field 
image using the (200) y reflection and D is the electron 
dif fraction pattern of t he three superimposed phaseq . 

. . 
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Fig. 9 . . Electron micrographs showing the deformations induced E phase 

in a crystal containing no a martensite . In this example sheets 

of E are laying on (Ill) planes. 
y 
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XBB 737-4665 

Fig. 10. Electron micrographs showing that each a martensite needle pair 

join at a {112} twin boundary . Needles marked A and B are the a 
same orientation. The region marked C i s the austenite. 
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Fig. 11. Sterographic analysis of Fig. 10 showing that the needles 

A and B join at a (llZ) twin boundary. 
a 
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Fig : 12. Optical micrographs of a (lll)y surface of a crys tal 
tested at 242°K showing (A). The slip line structure, (B) 
same area after electropolishing, and (C) same area after 
etching to reveal the E martensite. The circle over the 
scratch placed on the specimen for a reference identifies 
the same region of t he crystal in each micrograph. 
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Fig. 13. Stress-strain curves for each crystal tested at 185°K 

to approximately 5% tensile strain. 
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Stress-strain curves for [ll2] tensile axis specimens 
y 

tested at 181°, 242° and 273°K. 21 •25 
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Stress-strain curves for [Zl3] tensile axis specimens 
y 

tested at 188°, 242° and 273 °K.
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Fig. 16. Three surface analysis showing (A) the (2ll)y surface, 

(B) the (Oll) surface, and (C) the (lll) surface of 
-- y y 

a [213] tensile axis specimen tested to 5% tensile 
. y 25 

strain at 185°K. 
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Fig. 17. The variation of the volume fraction of deformation induced 

E martensite as a function of tensile strain and orientation 

of the tensile axis. 
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18. The slip line structure of (A) a [ll2] tensile axis specimen 
tested to 15% tensile strain at 242°K and (1) a specimen- of the same 
orientation tested to 5% tensile strain at 185 °K. Note the large 
slip steps in each of these crystals. The specimen tested at 185 °K 
transformed partially to a martensite. 
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Fig. 19. Plot showing the dynamic separation of partiaL dislocations 
as a function of resolved shear stress on .the following and 
leading partials for crystals with [lll]y, [113]y and [OOl]y 
tensile axes.52 
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r------------------LEGALNOTICE---------------------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



II 

TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 


