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THE CRYSTALLOGRAPHY AND STRUCTURE OF DEFORMATION INDUCED EPSILON
AND ALPHA MARTENSITE IN Fe-Ni-Cr SINGLE CRYSTALS

Glen Andrew Stone
Inorganic Materials Research Division, Lawrence Berkeley Laboratory and

Department of Materials Science and Engineering, College of Engineering;
University of Califormnia, Berkeley, California

ABSTRACT

A comprehensive study of the crystallography and structure of
deformation induced € and o martensite (from austenite) in a low stacking
fault energy Fe-15wt7ZNi-15wt7%Cr alloy has been completed. The
martensite needle axis,magnitude of the shape change and direction of
thé shape change have been measured. When these results were compared

to the Acton-Bevis two shear phenomenological theory, using two slip

‘shears, the following result was obtained for the habit plane normal

(assuming the long axis of the needles lie in the haBit plane and the

habit plane is perpendicular to the slip plane),

(0.333, 0.812, 0.479)Y Experimental

S

(0.341, 0.812, 0.475 XY Theoretical

for the direction of the shape change vector,

(0.822, 0.129, 0.555)Y Experimental

it

£y £¥

(0.825, 0.158,.0.542)Y Theoretical -

and for the magnitude of the shape change experimental values varied

between 0.21 to 0.30 and theoretical values varied between 0.25 to 0.39.
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Stﬁdies of the microsfructure show that in'£ﬁ;§ alloy € martensite
will not fo;m independently of o martensite by queﬁching. This ié
because tﬁe € martensite start temperature (ESY) is 1ess than or equal
to the o martensite start teﬁperatufe (ng). The deformation start
temperature for € martensité (Edy) is greater than 300°K in this alloy.
The o mar;epsite start temperatu;e (MdY) is 190i5°K for specimens
 deformed in‘cension with a [100]Y tensile axis. 'Déférmation inddced
€ martensite forms as thin sheets parallel to active'{lll}Y‘slip planes.
The € phase at all temperatures partitions the aﬁstenite matrix with
parallel Shéets of E.O.S té 2.5 microns apart. This forces the a
mértensite to erm in‘packets that are sandwiched between two € sheetéf
The o martensite in fhis alloy is acicular and dislocated. Separate
volumes of‘a martensite needles always meet at a {llZ}a twin boundary.
Thevinternal structure is dislqcated martensite,'ﬁdt twinned, even
‘though the material gxhibits the {252}Y habit plaﬁe commohly associated
with fﬁinhed:Fe-C, Fe-Mn-C and Fe-Cr-C alloys.

The magnitude of the critical resolved shear stress (CRSS) on
possible o martensite habit planes controls which variants of the habitb
that can form; Measurements of the habits'preseﬁt ip'deformed single
ctystals agree well with the CRSS model of Patel aﬁd-ébhen. The va;iants
of the Kurdjumov—Sachs (KS) orientation relation pfesent for o martensite
were always the variants that contained both the active slip planes ahd

|
slip directions. This result demonstrates that the K-S variants that

are present also depend on the CRSS.
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The  sequence of transformations in the temperature range studied

are Y € and Y > a. The €+ o transformation was not observed. The

ease of these transformations above EsY and MSY depends on the

magnitude éf_the CRSS on potential habits. The Yv+'€ transformation
is believed always to occur first. Thele >y (reQersion) occurs

af large.plastic strains after a significant amountlbf 0 martensite
has_fofmed; In addition to the € - o interface forﬁed by € sheets
parallel to {lll}Y planes, € martensite surrounding the entire a
martensite needle has been observed. This situation is formed during
accommodation deformation of the austenite adjacent to the growing

o martensite needle.
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PART I. THE CRYSTALLOGRAPHY OF o MARTENSITE
IN Fe-15wt7ZNi-15wt7Cr SINGLE CRYSTALS

I. INTRODUCTION

The great majority of steels exhibit either the {3,15,10}Y or
{252}Y interface plane (habit). The phenomenological.theOryl_A has

been successfully applied to explain the crystallographic features

of'{3,15,__10}Y martensite. However the {252}Y habit that is observed

in many low stacking fault energy steels (Fe-Mn-C, Fe-Cr-C

and Fe-C alloys for example) has not been effectivély explained,

mainly becéuse of the absence in the literature of measurements of the
martensite shape strain and habit plane for these alloys. The objective
in_Part I is to obtain such measurements for an Fe-15Ni-15Cr alloy

(alloy compositions are weight percent unless otherwise specified) and .
to test those measurements against results obtained from a ﬁew generalized
phenomenological theory by Acton and Bevis (AB)5 and Ross and Crocker
(RC).6 - The objective is to test the theory to sée'ifvthe generalized
theory can effectively describe the crystallography of steels with the

{ZSZ}Y habit plane.

A Principles of the Phenomenological Theory

The'martensitic phase transformation requires ﬁhe motion of many
atoms over short distances in the absence of diffusion. The change
in crysfal structure is accomplished by a homogeneous deformation of
the crystal lattice and the experimentally observed change in shape is

accomplished by a lattice invariant shear in the martensite. The



magnitudé.apd direction of the lattice invariant‘shear must héve values -
that preéervq the experimentql}y observed orientation'reiationship_

an& interface plane (habit plaﬁe)<between the agstenite and martensite
phases. The habit plane is observed to be undistéﬁtéd or nearly
undistorted énd unrotated with respect to thevorigiﬁal crystal matrix.

The formulation of‘the pPresent phenomenqlégiéél theory of martensite
érystalldgraphy developed from experimental studiéé‘of Greninger and
Troiano.l’2 They observed the existence of irrational habit planes in
Fe-C and Fe-Ni alloys. Studies of the shape deformation in an Fe-22
Ni-Q.8C alloy indicated thé observed surface relieEZCQuld be described.
by a hoﬁogenéous éhear on_the habit plane of the ﬁaftensite plate. When
the shapé deformation alone was applied to the chllattice, the b.c.c.
or b;c.t. iattice was not generated. It was conéluded that two deformations
must be required: a homogeneous deformation that produces the required
change in the crystal structure and secondly, a lattice invariant shear
 which leaves the habit plane undistorted and unrotated to comply with
the experimental results.

Wechsier, Liebérman and Read (WLR),3 and Bowles and MacKenzie (BM)4
independentl& developed mathematical models of the.phenomenological
theory to des£ribe martensite crystallography. Both theories may be
represented by the matrix equation

- ‘ |
F = RPS P (1)

where F is the overall shape strain of the maftensite crystal, R is

a rigid body rotation often referred to in the literature as the
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orientation relationship, P is the lattice deformation and S is the

lattice invariant shear. The lattice deformation P éontains the lattice
correspondence and allied deformations that descfibe'tﬁe motion of éach
parent léttice site into the product structure. Thé lattice correspondence
that appears most likely for steels was proposed by Bain7 and is

shown in Fig. 1. The lattice invariant shear S is'aésumed to be a

normal deformation mode such as slip or twinming. It is easily shown

-that a lattice deformation and lattice invariant shear can produce an

undistorted interface plane, however the plane is no.longer related

to its original interface position in the lattice.. To make the interface
plane indeed invariant to agree with experimental observations a rigid
body rotation was added to the theory. The rotation matrix R can be
calculated for any combination of lattice invariant line and habit

plane norﬁal. This.will deterﬁine»the invariant'lihe‘strain associated
with lattice invariant shear S.

Before one can say the phenomenological theory is valid, it is
necessary that the calculated and experimental orienfation reiationshipé
between the austenite and martensite matrix, the habit plane and the
magnitude and direction of the overall shape change of the.martensitg
crystal all agree. The success (the {3,15,10}Y hébit planes) and
failure (the {252}Y_habit planes) of this theory as applied to numerous

»9 and Y/Jayman.]")m12

alloy systems is throughly reviewed by Christian8
The problem of particular interest in this thesis which has not been
described in any acceptable way by the WLR and BM models is the {252}Y

habit plane observed in many low stacking fault austenitic stainless

steels.



The (AB) and (RC) model of the theory eVolvéd:around the-concépt
that perhabs a multiple lattice invariant shear in the martensite is

occurring during the. phase transformation. This theory is expressed
1’ : '
by the matrix equation

F = RPTS »_-"_(2)

where T is an additional lattice invariant shear. The mode of shear
as before_may be by slip or twinﬁing of'thé martenéite. Observations
of multiple twinning shears have been made by Oka and Wayman,13 Das
and Thomas14 and Thomas and'Das.15 Wayman,16 is éareful to point out
that there is no sure way one can prove that the-muitiple twinning
shear observed in the martensite is due to the tragéfbrmation or is
an'accommddation effect. The transformation shearé”are the homogeneous
deformation and lattice invariant shear defined in tﬁe theory. The
shears associated with accommodation deformation are those caused by
impingment of adjacent martensite needles in regions of high volume
fractibﬁ"ofjmartensite. Clearly ifvaccommodatioh”deformation is
present in the martensite or austenite, agreementﬁﬂétween the measure
and éalculated magnitude and direction of the shépé éhange would not
be expecteda?

This is a serious problem and.thé only way toveffectively sho& that |
the shears observed in alloys that appear to have'a ﬁultipie lattice
vinvariant twinning shear is to carefully measure'both the overall shape

[ -
strain and the habit plane in alloys were a low volume fraction of a
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martensite can be produced. As far as this author knows this is the
first comprehensive study using single crystals to measure these
parametefs and apply the results to the generalized'theory, Acton

13,16,17,18 to test their theory and

and Beviss use published data

obtained what can be considered encouraging results in explaining

martensite crystallography of alloys exhibiting t-he‘v{ZSZ}Y habit plane.
The magnitude and direction of the shape strain and the habit plane

have been measured using singlg crystals of a Fe—lSNijISCr alloy.

Numerous computer calculations using the (AB) model have been made and

a summary is presented in this thesis; the purpose is to test the two

shear version of their theory. It is interesting to note that the

lattice invariant shear (s) in this alloy, are not twinning shears even

though tne habitlappéars to be near the {252}Y. Studies of microstructure

of this alloy in the elect;on microscope reveal that the internal

structure of the 0 martensite is dislocated, not twinned. A typical

elecfron micrograph showing the dislocated martensite is shown in

Fig. 2. Detailed analysis of the microstructures will be presented in

Part II.Y



II. EXPERIMENTAL PROCEDURES .

1 . i

A. Habit Plane Measurements

The habit plane for martensite in a particular,ailoy is usually
establishe& by cutting specimens to expose two surfaces 90 degrees
apart; IfAthe martensite is lenticular and exhibits a structural
feature such as a mid-rib, which is believed to be the trace of the
habit plane, the Miller indices of the habit plane.cén be obtained.

The o martensite in this Fe-15Ni-15Cr alloy is acicular. Two surface

analysis of this alloy shows the needle type morphology and also shows

the habit plane cannot be established directly by this method. An
example of a two surface study using the optical»land electron
microscopés is shown in Fig. 3. |

A habit‘plane must exist. To establish what itAis in this alloy
requires a combinatioﬁ of consistent observation between experiment
and theory. Kelly19 has observed in similar alldyéithat the habit

planes near the {252}Y always appear to be perpendicular to a {111}Y

plane. It also appears that the long axis of the needle lies in the habit

plane. Computer calculations using the AB theory generates many
variants of the habit plane of the type {0.340, 0;812; 0;474}Y (these
results to be presented in detail later). Clearly habit planes of
this typé Qill be nearly perpendicular to specific {lll}Y planes. 1If
it can be shown the microstructure of thié alloy is consistent with

the observations made by Kelly19 and calculation made using the AB

theory, it will be possible to define the habit plane for each martensite

needle present.
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The objective is then to measure the direction of the needle axis
from optical micrographs of the slip plane, to definé the habit plane
as being perpendicular to the active slip plane; and‘then to see if
habit planeé defined in this way are consistent with.the theory. It
is important the reader remembers this assumption during the following

discussion, because the claimed agreement which will be demonstrated

between the AB theory and experimental measurements is in fact agreement

if and only if the assumption that the habit plane normal is perpendi-

cular to the active slip plane is wvalid.

Measurements were made from single crystals deformed in tension in
an easy glide orientation at a temperature between MdY and MsY. The
temperature Md is defined as the o martensite start temperature for
deformation induced o martensite. Above MdY deformation wil; not induce

the o phase. The temperature MsY is the o martensite start temperature

_observed upon cooling in the absence of any external loads.20 Specifically

the crystals-were pulled to 5% strain with a [fi3]Y tensi1e axis at 185°K.
The slip system for this tensile axis is the (Ill)Y [Oli]Y. Specimens
tested in this manner produce stresé induced o martensite needles that

are associated with only one {lll}Y plane, the slip blgne. The o
martensite needles are packed between parallel ¢ mégtensite sheets that
are parallel to the active slib plane. The € martensite sheets are seen
as vertical:dark lines in Fig. 3a. By using speéiﬁens prepared in this

manner the measurements can be made with ease because of the simple

microstructure.



The method used to calculate the long axis of the needle and the
vector perpendicular Fo it on the slip plane follows. An accurate:
line ofvreference wasvneeded on the polished suffaee of the crystal
and in general there was no crystallographic featdre.on the polished
and etehed surface that can be used. To generate a reference line,

a vector parallel to the cut edge of tﬁo 90° surfaeeé was calculated.

To do this, back reflection Laue photographs of each surface were takeﬁ
at a specimen to film distances of 5 cm. The spets on the Laue
photographs were indexed in the conventional manner. The exact normals
to these two polished surfaces were then calculated analytically using
computer PROGRAM LAUE, discussed in Appendix A. The cross product.of
these two normals produces the indices of a vector defining the line
of:intersection between the two surfaces. This liheJef intersection

is used as a reference line to calculate the diree;ion of the long axis
of the needlee. The calculations are made by comﬁuter PROGRAM TRACE,
discussed in Appendix B. To insure that optical micrographs of the etched
austenite-martensite interface are correctly orientated with respect to
the reference line, micrographs at the working magnification_(usually
x500) were taken; then without moving the mieroscope stage, a low
magnification'microgrgph was teken showing ehe edge 6f the cut'cry;tal
and therefore defining the direction of the referencezline. All angeiar

measurements were made with respect to this reference line with a vernier

protractor capable of measuring angles to five minutes of arc.



Because the polished surface was not the eXéét (Ill)Y plane, a
correctiQn was required to resolve the direction-of the vector on the
polished surface onto the (Ill)Y plane. To accomplish this, a
'rectangular geometry was assumed for the martensite needles and
vﬁeasurements were made oﬁly on plates where both sides were parallel.
Jﬁstificatidﬁ for using this geometry can be seen in Fig. 3a. It was
also assumed tha£ the vecﬁor defining the trace on the polished surface
was in ah_interface plane also contaiﬁing the [ill]Y_direction; The
vector ﬁdrﬁal to the interface plane is obtained by.simply taking the
vector product of the vectors defining the direction of the trace on
the'polished surface with the [Ill]Y direction. The vector parallel
ﬁo the long axis of the needle is simply the vectorlproduct of the

interface plane normal and the [Ill]Y direction.

B. Shape Change Measurements

1. Theory

The shape deformation due to a martensite plate in the austenite‘-
matrix is‘sﬁown schematically in Fig. 4.22 Experiﬁentally it is observed
" that a straight line ABCD scribed on the austenitéisﬁrface will remain
continuous.affer the transformation. The surface EFGH is planar and
is tilted about Ef-andlaﬁ'which are vectors laying in the interface
planes (habit plane) EFJI and HGKL respectively. The observed shape
‘deformation is the result of a transformation where vectors in the
austenite transform to vectofs in the martensite énd planes in the

austenite transform to planes in the martensite. Such a transformation
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can be treated as a linear homogeneous transformation. The shape

strain, S,'which is an invariant plane strain on the habit plane may
l ‘ ! E '
. | .
be expressed by the matrix equation

s = %(I)(I+m3ﬁ),' | (3)

where § is the dilatation parameter and will be set equal to one in this
study. The parameter § was introduced in the BM theory and allows for
the possiEility that an isotropic distortion up.to 2% in the interface
plane may be present. For testing the AB model it wiil be assumed §=1,
'i.e., no isotropic distortions are present. m ie,a"scelar factor
defining ﬁhe magnitude of the displacement vector, d is_a unit vector
defining the direction of the shear and h is the unit normal to the
habit pléne. When h is known, m and 3 can be calculated from measured
displacements of a single fiducial line on the crystai surface.
Bowles and Morton23 have presented a general solution for the
determinations of the shape strain. An arbitrar&vbaeis J that is
felated tovthe martensite crystallography is selected. Figure 5 is a
sterographic projection showing the geometry that in fact correqunds_
to one calculation made from Fig. 6 to be discuseed next. In Fig.'5
the unit vector 33 is.the specimen normal, detergined in this study
using 5 cm back reflection Laue photographs (see Aﬁpenﬂix A). The
habit plane normal and normal to the tilted surfaee are plotted to lie
3" The unit vector 31 is then the intersection

of the habit plane with the specimen surface and 32 = 33 X 31. The

in the same zone with J

habit plane normal in terms of the J basis is

-

P

BN
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(h;J) = (0;sind;cosd) o (%)

where 0 is the angle between the pole of the habit plane and the

specimen normal. The shape strain is therefore given as

1 md131n9 mdlcose
S = (JSJ) 0 1+mdzsin6 mdzcose_ (5)
0 md351n6 1+md3cosQ~ 

where the unit vector defining the direction of shéar is
[(J,d] = [dl,dz,d3]. To ev§1uate dl’ d2 and d3 four equations are

required. The first is obtained by taking the determinant of S giving

r = 1+mdzsin6 + md3cose o (6)

which is equal to the ratio of the final and initial volume of the

fcc and becc unit cells

2.87143
r= 2(—3—> =2 (——) = 1.0289176
| a, 3.58356 .

a and éo being the martensite and austenite 1attfce‘parameters respec-
tively.Zl The dashed line in Fig. 5 represents'a.fiducial line on the

crystal surféce which can be expressed as

[J;X] = [cosp,sinp,O]J = [i,tanp,O]J ' @)

which will_transfotm by the strain S to
(JsJ) [J:X] = tanp[cotp + mdlsine; l+mdzsin6; mdBSiQG]J (8)

The trace of this line is shown as a dotted line. 'Ffom the geometry

of Fig._S-aﬂ;independent equation for SX can be obtained.
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sX = [cosa;cosB;cosyl# €))

where a, B and Y arelthe anglés between Sﬁ and J 32 and 33 respectively.

"1’

Taking the vector X as always equal to unity,

cos0 = cosp'siny = Alcosp'
cosB = sinp'siny = Alsinp'
' (10)
cosf = cos¢ sina = A2c0s¢
cosY = sin¢ sina = A2s1n¢ )
From the two equations relating cosf,
12 cos¢
Al = sinp' (11)

giving in terms of measurable angles from the eleétrdn micrographs
(JSJ) [J:X] = Al [cospcosp’; cos¢>;'sih¢]J . (12)

Using Eqs. (8) and (12) three equations in terms éf Kl may be obtained.

cotp+md. sind

_ 1 o
>\1 - cos¢cotp’ (13a)
@ 1+mdzsin8 :
>\1 = ——a)—sr ‘ (l3b)
mdBSinG
M T Teimg (13e)

to evaluatelmd2 and md3 take the ratio of Eq. (13b) and Eq. (13c¢c) and

using Eq. (6),
md, = r/(sinBcotd + cosB) ‘ (14a)
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evaluate Al in Eq. (13c) and set equal to Eq.‘(l3b) gives

= r cotd ,
mdz (sinBcot¢+coshd) : (14b)

and Al in Eq. (13a) gives

: _ _r cot¢cotp’ S
_mdl sinBcotp+cosd COtpCSCe-- (14c)

Bedauée [dl,dz,d3]J is ;vunit vector the wvalue of’scalér m, the magnitude
of the shear can be calculated. The final result [dld2d3] is obtained
byva-Simﬁlé rotation of axes to the austenite basis shown in Fig. 5.

The computef program, PROGRAM SHAPE use to make the Shape change
calculations is given in Appendix C. |

2. Fiducial Lines

Experimentally the difficulty with shape strain measurements is
blacing fiducial lines on the polished austenite. Two methods were
used in tHis study; Ele;tropolishedvcrystalsbwere cemented on a'glass
slide, the straight edge of the slide being used'aé a reference for
X-ray orientation of-the crystal and as a guide to scratch the crystal
by.drawinglbver'microcloth saturated with 0.05u A1203 particles. This
procedure produced a high density of parallel fiducial lines, the
direction of which could be defined to +0.5° on thg austenite surface.

-Thé second type of fiducial line, slip tfaces én the ﬁolished
austenite surface, were favored in this work. 'Slipjlines were generated
on the electropolished surface of crystals by prestrains of 2-3% or
were forméd by accommodation deformations of the austenite during the

martensitic transformation. Examples showing a gold shadowed carbon
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'replica of a (001)Y surface are given in Fig. 6;: Tﬁe spheres on the
surface are 0.264t0.006 microns in diameter. The fiducial lines in

the example are austeﬁite <lld)Y slip traces produced by accommodation
deformatioh. It was possible to define the change in direction of the
fiducial iipe to *0.2°, The angle of tilt (¢) of ;he martensite crystal
was meaSurable to an accuracy of ¥1°, All calculétions of the shape
strain and direction of shape strain vector assume_the habit plane

to be of the type {0.812,0.479,0.333}Y. These habit plane normals are
‘consistent with experimental measurements presented in this thesis.

3. Angle of tilt

To calculate.the angle of tilt of the o martensite crystal with
respect to the austenite surface it is not required to know the actual
size of the spheres. However their uniformity is important so that
good statistical information can be obtained. The procedure first

involves calculating the shadow angle which is

d
&) (15)

where d is the diameter of the sphere and x the length of‘the shadow
on the electron micrograph. If a sphere is sittiﬁg 6n an O martensite
surface tilted above the austenite, the length of ﬁhe shadow on the
tilted sﬁrface (y) is‘less than x. The tilt angle ¢s in the direction

of the shadow is then,

6, = tan " ;(X—;l) (taﬁa)% | (_16).
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When the 0. martensite surface is tilted below the austenite surface

y>x and_ o '
b = — {<X§§> (tand)%ﬂ' - (17)

The tilt in a second direction (usually the [llOJYj was obtained frpm
the géométry on the micrograph and both points piotted on a sterographic
projeétion. The great circle cutting both points defines the trace of
the tilted plane and thé plane normal is located;:'Because the habit
plane normal and the normal to the tilted surface ﬁust lie on the

same gfeat’circle, the habit plane normal for the needle in question

is clearlyIAefined. 'These measurements were made. from micrographs

shown in-Fig. 6.
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III. EXPERIMENTAL RESULTS

‘A. Computer Calculations of Habit Plane and Shape
Strain Using the AB Two-Shear Model

The ?ORTRAN vérsion of the generalized mar;eﬁsité crystallography5
was translated from Acton-Bevis ALGOL version by‘Sv(ihoen,24 and o
further modified by the author. The program was checked by reproducing
results thained by Waymanlo and Acton and Bevis.5 Exact agreement was
obtaired thereby insuring that the new martenéité-two shear FORTRAN
program was correct. The only input data requiredfareithe austenite
and martehsite lattice'parameters,_(measured for thé.fe~15Ni—ISCr alloy
by the author21), the two shears to be considered‘and the maximum
value of the first (termed the S shear) and second shear (termed the
T shear) to be allowed in the calculation. All possible combinations
of shears of the.type {llO}a (lll)a in pairs were;teSted by the computer
program. Twinning shears will not be considered’ih.this study because
no internal twinning of the 0 martensite was obsérved in the ailoy.
In each case the magnitude of the S shear was varied between +0.40
and -0.40 in stepsof 0.02. The solution was rejected if the magniﬁude
of the T shear exceeded 0.40, if the magnitude of the overall shape
strain éxcee&ed 0.40vor the K-S orientation relationship was not
satisfied to within +1.5°. {

The vériant of the Bain correspondence matrix use for these calcula-

tions was,

1 1

2!"2O
. . 1)1
b f 2 2 0

0 0 1

LS
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~and is the same variant as that shown in Fig. 1. This variant corresponds to
the following three orientation relationships between the austenite and

martensite lattice.

& (1) S, Ihco11) s foaf] Wiii1],
() A, ko) ;  [101] 111,
(3) (11D, heotny,;  [112], | [ou]a

The numbers (1), (2) and (3) corresponding to the three orientation
relationships above will be use to identify which of the three c&rrespond
to a particular solution in resulté to follow.

Three types of solutions using lattice_invariant,slip shears were
found thaf ﬁroduced the {252}Y martensite habit. These were, first,
solutions where one shear (the S or T) was equal to zero; second,solutions.
o i
where the {252}Y was satisfied over a wide range of values for the
S and T,sheérs;_and third,solutions that produced a pair of {252}Y

_ habits that are twin related.

For Ehe‘first type of situation where the magnitude of the S or
/T shear was zero, only two unique solutions werebfound. These solutioﬁs
tended to converge rapidly on the K-S orientationfrélationship and aré

. not minimized with respeét to the magnitude of the SHape change.
The image of the computer print-out for the two éol#tions of this
type is given in Table I.

Four different shear pdirs were found where the.magnitude of the

"8 and T shears were non-zero. Two of these shear pairs each have

one shear 1listed in Table I and therefore also réproduce these
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solutions. The two shear solutions are presentéd in Table II.
The third type of solution given in Table III is of considerable
| N

interest. It is shown that the AB two-shear model can produce a twin

related pair of {252} habits, which is observed experimentally, using }i

 the same two slip shears. Only the sign and magnitude of the two
shears are different and the magnitude of the sbape'éhange for both
habits are realistic. It appears the marteﬁsite in this alloy is
alwayé present in twin related needle pairs, in the same manner that :
is suggested by these calculations (this will be proved later).

It should b¢ nofed that changing the order of tﬁe shears produces
exactly.the same results. Iherefore the order of the two lattice
invariant slip shears is not important as far as'AB.formulation is
concerned.

'To summarize these data, for the Bain correspondence used, and
all possible combinations of {110}a (lll>a lattice ipVériant slip
shears, only four unique habit plane normals (ﬁ) énd.directions of the
shape change (3) consistent with experimental obsefvations were
generatéd. These four are in fact two sets of twiﬁ,felated martensite
habits. They are:

- 0.341 - 0.158

-> > .
1) h = - 0.812 : e = - 0.542
- 0.475 ‘ 0:826 :
v 0826 1, .
Twin |
: : ' Pair
0.475 - 0.826
(2) h = 0.812 : a = 0.542
0.341 | ‘ © 0.158
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- 0.812 - 0.542
e > '
(3)) h = - 0.341 ; u = - 0.158
| - 0.475 " 0.826
Y . Y
o Twin
[ 0.812 0.542 Pair
s >
(%) h = 0.475 ; u = - 0.826
| 0.341 _ 0.158 :
Y Y

It remains to be seen if these calculated habit plane normals and
direction of shape change will be consistent with the experimentally

measured values that follow.

B. Habit Plane Measurement' Results

The habit plane normal measurements produced a vector that can be

vrepreseﬁted‘by ' |

-> ) .
h = (0.333, 0.812, 0.479)Y £ 1.5° ..

This can be compared to the habit plane normal calculated using the

AB two shear theory, which is : ;

B = (0.341, 0.812, 0.475), .

Keeping in mind the assumptions used to make the hébit plane normal
meaSurements, which was based on experimental obserations made by

Kelly,19 iteappeafs that outstanding agreement between theory and
experiment exist. It is possible this result is fortuitous; however,
using what is believed to be the best information available, the assumption
that.the,habit plane is perpendiculer to the actiye slip plane in the
austenite is a logical statement. - The data showing the experimentally

measured habit plane normal and o martensite needle axis is given in Table IV.
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To help the reader interpret consistency of these data in
.Table IV, the angle between the habi; plane normal and the [211]Y

direction is given. Each line of data in Table IV:is of a single

martensite needle. No effort was made to average the data and no results

were diéCardéd. The data have been grouped to show.what is believed
to be a feal variatiop in crystallographic direction of needles with
seemingly the same long axis. All the measureménté_were made frdm
four micrographs from the same crystal that was sttained to 5% tensile
strain aﬁ 185°K with a [§i3]Y tensile axis. Wheh:é_érysfal is strained
under these gOnditions, 0 martensite forms only én-£he'(ill)Y plane.21
The first point to consider about these resultévis_their-accuracy.
All the micfogréphs used for these_calculations contained a rare
linear feature; an € martensite sheet cutting the polished surface
shown in Fig. 7, whose trace direction was always [Q.69551347,
0.02264272, 0.71815619]Y * 0.25° on the polished §pfféce. It was
observed'fhaﬁxif this trace was assumed to be the:inférsection of aﬁ
€ martensite plate on the (lli)Y plane cutting the polished surface
the above trace was obtaiﬁed. This result waé ertuitous in that a
crystallographic feature that could be used to chéck‘the precision of
the measurgmént was unexpected. This outstanding égreement between
the observed and correct liné of intersection of'a € plate parallel
to the (}ii)#. plane and the polished surface indicétes the precision
of the experimental method used here is of the order.of + 0.25°. The
daté was tabulated to eight places in Table I for convenience and is
not the implied accuracy. The variations observed in Table I are real

within the experimental constraints of the measurement.
: : . .

)
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C. Shape Change Measurement Results

The measured direction of the shape change vector using the habit
plane normal deduced in the previdus section in the calculation for a

martensite crystals in this Fe-15Ni-15Cr alloy can be represented as,
u = (0.822, 0.129, 0.555)  3° .

The general form of the result obtain from the AB two shear theory

is consistent with experimental measurements, and is,
u =140.825, 0.158, 0.542) . .

The magnitude of the measured shape change varied_between 0.21 and 0.30

where as the AB'theory iﬁdiéafed the shape change varied between 0.25

and 0.39. A value of the shape change.of 0.28 was typical for calculated

solutions of 3 that best agreed with the experimental measurements.

The magnitﬁde of the shape change obtained experimgﬁtélly was a little

less than that calculated by the AB model. .Untii;fﬁé errors associated

with shape change calculations can bé reducéd, this e;ro¥_is not

consideréd significant.

. The ideal experimentél conditions for these measurements are
electron micrographs of isolated o martensite needlés surrounded on all
sides by austenite and the presence of one or more of the latex épheres
on the tiltéd:surface so the angle of tilt (¢) of thé martensite plate
can be calculated. Satisfying ail of these éonditions at the same
“time proved to be difficult. Figure 6 contains the best examples

obtained during this phase of the study.
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Before calculations of the magnitude and directions of the shape
change can be madg from electron micrographs of the type shown in
Fig. 6, it is importaht that the mofbhology of the structure be cléarly
defined. The o martensite in this alloy is aciculaf. The habit planes
are perpendiéular to a {lll}Y plane and the vecto;vdefining the long
axis of a needle lies in the same {lll}Y plane. With this in mind
consider the pair of needles cutting the (001)Y surface in Fig. 6A.
These needles will be shown to be twin related in Part II. In this
example the needles intersect the sufface with re£ained austenite
between the needle pair. In Fig. 6B the twiﬁ pair is joined at the
surface of thé specimen.

If, for the twin orientated needles‘in 6A the habit planes are

defined as,

=
I

1) '1 [0.812, 0.333, 0.479]Y

=20
I

- (2) 9 [0.812, 0.479, 0.333]Y

the needles must then lie on the (Ill)Y plane and tﬁe fiducial line

must be the [110]Y when using a (001)Y standard sterographic projection.’

If the selected habit planes are correct, and meésurements of the

projected deviation of the fiducial line and the angle of surface tilt -
are accurate, a solution for the magnitude and dirgction of the shape
change will fesult. Because %f symmetry, the same general form of
the (hkl)Y vector defining the direction of the shépe.change will be
obtained for any of the possible {hkl}'s of the habit:plane as long

as the correct {lll}Y plane and correct (llO)Y fiducial line, consistant
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with the'kﬁown morphology,are selected for the caléulation.

It*is possib1e to prove the symmetry of ;hesé SOIutiohs by
simply fétating the micrographs in Fig. 6 about the [110]Y, [IlO]Y
and [001]Y and observing if in fact symmetrical'éolutions result.

This was doﬁe, and the results are tabulated in jable V. It was not
'possiblevto measure the surface‘tilt.for martensite needles B and D,
however, study of Fig. 6A and_6B shows that the aﬂglés which prbduced
experimeﬁtal values of the magnitude and direction pf the shape changé
are in good égreement with the general form of fhé'éolutions predicted
by. the Aﬁ two shear theory.

The accuracy of the calculation depends on knowledge of the habit»
plane normal and the ability to measure the angle of tilt ¢ of the a
.martensite‘crystal. .Where the tilt was measurable; the range of
confidence is indicéted in Table V. The measureménfé are believed
to be quité good, considering the experimental difficﬁltiesvand are
believed to Be the first published data of the magnitude and direction
of the shape change for o martemsite crystals that are 1-2 microns

in cross section.
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IV. DISCUSSION

A, Comparisbnfof the AB Theory and E§periméntal Results

\ i
. »

For the first time a material tﬁat exhibits thg {ZSZ}Y habit
plane has‘been shown to be consistent with the generalized martensite
crystallography theory developed by Acton and Bevis.? The consistency
lies in the fact that theory predicts the general form of the habit
plane to within one degree of the experimentally obtained value,
assuming fhat the habit plane is correctly defined}‘-The theory pfedicts
‘the general form of the direction of the shape'éhénge to within two
degrees of the experimentally obtained value. The'célculated and
experimeﬁtal values for the magnitude of the shape change are clearly
in reasonable agreement.

With éll this consistency of experiment and.theory there still
exists a pefplexing problem that seems insurmoun;abie at this time.

Clearly exact agreement with theory can be demonstrated if and only

if the exact variants of the habit plane, magnitudé and direction of
the shape strain and the orientation relationship match with experimental
results. -For every martensite needle studied in this thesis, if

the variants of orientation relationship and habit plane predicted

by theory are applied to the experimental shape change measurément, '~;

the wrong variant for the direction of the shape change is obtained,

even thoﬁgh fhe magnitude and general form of thevvector are correct.
It is believed that the éroblem lies in the shape change

calculation. The difficulty seems to be a problem of symmetry. It ig

possible experimental solutions of the shape change vector matching

y
|
!
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the AB model would result if all possible variants of the habit plane,
that could be rotated to the standard variant without destroyihg the
orientation relationship, were used to make shap;.chénge calculations.
One of theég variants should result in a matchiﬁg solution. A computer
program to aid in these calculations is being prepéred and the results
of this éffort will be reported in the near future.

fhe last serious effort by othef researchers to define the
problems as:to why the {252}Y could not be satisfactorily explained
by the présept single and double shear models of-thé phenomenological
théory was made by Dunne and Wayman.12 Efforts to explain {ZSZ}Y
martensite concentrated around the fact that in éii the alloys studied,
electron microscopy results showed the martensite microstructure was
twinned. In nearly all of Wéyman%spublications a concern as to
whether the twinning observed was a transformation’ghéar or accommodation
sheér has been expressed; The evidence that twinning was a transfdrmation
shear was so strong that:no one, not even Acton and Bevisf'considered
trying a11 poé$ib1e combinations of pairs of {llO}a (lll)u lattice
invariant shears. If this would have been done, the data on Fe-1.2C
published by Dunne and Bowles18 could have been gxplained. Dunne and
ﬁowles shape strain results of their twinned Fe-1.2C microstructure
effectively mirrors the results obtained in this thesié for dislocated
martensite in a Fe-15Ni-15Cr carbon free alloy. The‘only difference
being that-Duﬁne and Bowles used a different K-S variant in their
calculatiéns. The data presented in this thesis on/{252}Y martensite

suggests strongly that the lattice invariant shears involved in the
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transformation are slip shears, and that twinning observed in the

Fe—l.ZC,18 Fe—6.l4Mn—0.95C18 and Fe—7.9Cr—l.llC17 was caused by

accommodation deformaLion in éhe martensite. "

| One very exciting result that presented itseif in the calculations
made using the AB model ﬁas the fact that a twin related pairvof
martensitevhabits with the same K~S orientation relations resulted
for the same pair of lattice invariant shears (;ee Table III). This
result has not been previously reported. This fwin'relationship
between martensite needles was observed to be a conSistent characteristic
of the microstructure as shown in the habit plane measurements
presented in Table IV. This remarkable agreement between experiment
and theory demonstrates the basic‘soundness of the AB theory and its
ability to predict the habit plane, direction of the shape change

ahd magnitude of the shape change providing the cdrrect pair of

lattice invariant shears are selected.

B. Factors that Effect the Accuracy of Habit Plane
and Shape Strain Calculations

The yariation in crystallographic direction'qf Fhe martensite
needles in the au§ten%te matrix shown ;n‘Table IV is felt to be unrealistic
considering the apparent accuracy of the method uséd-in this study.
The cause for the observed variation is believed to be the present
inability'of“x—ray methods to measure the exact austenite orientation
next to the o martensite needle. Because only 7Zvof the crystal volume
has been transformed to o martensite21 and the fact that all the o martensite
are located in isolated regions of nearly 1007 o ﬁérténsite throughtout

the austenite matrlx,2 the Laue back reflection method is effective
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in measuring the orientation of the untransformed austenite. The
accommodafion deformation of the austenite next to the 0 martensite
crystallcan cause significant lattice rotation of_the austenite,

This lattice rotation is clearly seen in the optioal micrograph of
the (ill)Ylsurface in Fig. 7 and the electron micfograph of.a gold
'shédoﬁed carbon replioa in Fig. 6b and c. The reader is asked to
place a straight edge on the third € martensite.traoe from the bottom
of Fig. 7; the trace cutting the o martensite needle?l Note that the
.trace on the left side of the needle is bent witﬁ fespeot to the right
side of the'needle. Now place the straight edge on one of the [llO]Y
slip tracés on the right side of the tilted surfacé of Fig. 6b.  Note
as the a martensite needle is approached, the [110]Y trace is bending

by several degrees. The bending is even more dramatic in the austenite

near needlé E of Fig. 6¢c. Clearly the data tabuiéteo in Table IV
reflects this experimental difficulty. o

The only.significant effort this author is aware of to resolve
this probleﬁ.was made by Rowlands, et al.26 Here thé back-reflection
Kossel method was applied to study a Fe-327Ni alloy. This experimental
method could possibly be applied to the Fe-lSNi—lSCr‘alloy in an
effort to fésolve the magnitude of errors present due,to austenite
lattice rotations caused by accommodation deformation.adjacent to
martenoite crystals. Electron beam spot sizes of about 1/2 micron
would be requirod so that the diVergént’beam of x-rays required for the

formation of the Kossel pattern from a singlé 0 martensite crystal

and the adjacent austenite would result. The author attempted to
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.resolve this ﬁroblem by using the pseudo-Kikuchi pafﬁern that is generated
in the Scanniné Electron Microscope (SEM). The idea was to locate a
martensite-austenite interface like that seen in Fig. 6A. With one

scan axis off in the SEM, scan across the interface to produce a super- "
.imposed micrograph of the pseudo-Kikuchi image for,eéch crystal (the

austenite and martensite). By controlliﬁg the spot size an& scanning

across the interface $0.1 py it was felt an exact orientation relationship

between the 0 needle and the Y matrix would be obtained. The experiment

failed for an unexpected reason. The surfaces of the crystals were
electropolished to a mirror finish before the§ wefe_transformed partially

to a martensite. It seems the surface_was so- shiny that it was not

possible to resolve the austenite—maftensite interface in the SEM.27

If this experiment would have worked, the logical extension would have
been to depoéit the small sphears on the surface of the parfially
transformed crystal, shadow in the same manner as use for the replica
studies and obtain in one sitting at the SEM the offentation relationship
and data needed to calculate the magnitude and direction of the shape
change. If this were possible any.ambiguitiés associated with the

two shear martensite crystallographic model couldlbe resblved.

Additional effort must be made in the future to master this important

experimental method.

(39

The small scatter oBserved for the € sheet on. the (llI)Y plane
cutting the polished surface of the crystal is because the dislocation
density in the region of the € plates is quite low. An example of

the austenite - € martensite structure is given in Fig. 9. This
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electron ﬁicrograph shows the typical microstruétﬁ#e.in a (OlI)Y
symmetricaliqrientation of the [EiB]Y tensile akis sﬁecimen where
o] martensite has not formed.

The primary error associated with the shape change measurements
presented in Table V is one's ability to measure the tiit of the
martensite surface with respect to the austen%te sﬁrface. Because
only one or two spheres were located on the tilted,sﬁrface, satisfactory
statistical analysis was not possible. It was therefore necessary to
indicate a rather large error of *1° for the direction of tiit of the
a martenéite needles, to give the reader a feeling for the sensitivity
of the direction of the shape chahge vector as a»function of tilt let's
consider the first calculation for needle A in TaBleIV. The best fit
with theory for this particulér variant was for a su;face tilt of
10.0°. A variation of *1° for this calculation would show the

following variation in the'shape change vector.

[ + 0.036628
0.125475  _ 4.043114
- , - 0.040875 | = + 2.28°
u = =0.321830 5 041920 | °F - 2.82°
+ 0.016842
0.844787  _ 4.022959 |

The accuracy of these results are about the same as those reported
18 . .
by Dunne and Bowles, who used a Leitz Wetzear two-beam interfermeter

to measure the tilt of the exposed a martensite crystal on the surface.
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.

It is clear the accuracy of this measurement mustjbe improved. A
method to improve this measurement, however,does not appear to be

obvious at the present time.
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V. CONCLUSIONS

A detailed examination of the crystallography_df 0 martensite
formed in'a Fe-15Ni-15Cr single crystals has beéﬁ.coppleted. Measure-
ment of thé habit plane, the direction of the shape‘change and the
magnitude of the shape change were made, and the results found to be
in good aéreement'with the two shear crystallographic theory. The
théory predicts accurately the orientation relationship, the habit
plane,'the.magnitude of the shape change and tﬁe general form of the
shape change vector. The fact thatbthe experimehtél'results presented
in this thesis show a different variant of the shape change vector
than that predicted By the theory may possibly be trivial, if it can
be shown to Be a problem of symmetry. This difficulty with the
theory cannot be consider trivial however, until this important point
is resolved.

It has been clearly demonstrated that martensite with the {252}Y

‘habit plane can be effectively described by using tWQ'lattice invariant

slip shears of the type {llO}a (lll)a. All known previous studies of

{zsz}Y have assumed the shears to be (112) [ﬁl]a- and (110), .[1Ii]a,

"as applied to the standard KS variant (lll)YH(Oll)a, in an effort to

explain the experimental results. The selection of a twinning shear
as one ofbfhe lattice invariant shears was 1ogicaiibeéause the Fe-C,
Fe—Mn—C_and Fe-Cr-C alloys studied all produced « martensite that is
internallyvﬁﬁinned. There is no question that the martensite formed

in the Fe-Ni-Cr alloy used in this study is dislocated and produces
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almost 9#act1y the same results of the magnitude and direction of the
shape chaﬁgé as that observed for twinned Fe-C marfensite'by Dunne and
Bowles.18 This strongly suggests the twinning obéerved in these alloys
is due to accommodation deformation, and the transformation shears
fesponsible'fof the observed shape change are slip éhears.

Future work should be to resolve the symmetfy:problem, if it is
in fact a problem of symmetry that produces the ﬁfoﬁg variant of the
shape chaﬁge vector; to develope the scanning electron microscope analysis
so the habit plane) the orientation relafionship, énd the magnitude
and direction of the shape change can be obtained from a single a
martensite‘crystal; and to develope an accurate method to measure the
angle of tilﬁ of the o martensite crystal with respect to the austenite

matrix. .

(s
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. PART II. THE STRUCTURE AND MECHANICAL PROPERTIES OF DEFORMATION
INDUCED £ AND o MARTENSITE IN Fe-15Ni-15Cr SINGLE CRYSTALS

I. INTRODUCTION

It is believed the formation of the € (hcp) martensitic phase
in association with 0 martensite in low stacking”fault energy steels
was first reported by_Cina28 (1954). The first single crystal studies
were reported by Breedis and Robertson29 using a Fe-12Ni-16Cr alloy.
They reported the orientation relationship for € martensite as
(0001)E I (lll)Y; [IZJ—.O]e Il [IlO]Y, the o martensite was dislocated,
“had a lenticular shape, exhibited a {252}Y habit plane and that pairs
.of o martensite crystals joined a (112)a twin pléne. The specific
habits were of the form:
0.3367
h = 0.3709
0.8655
Y twin pair
0.3709

0.3367
0.8655
Y

=
]

As shown ih Part I the Fe-15Ni-15Cr alloy also exhibits_a habit near tﬁé
{ZSZ}Y (assuming the habit is perpendicular to thg active austenite

slip planelg), fhe 0 martensite is dislocated and that separate volumes
of a marténsite join at a {llZ}a twin boundary withihabit plahes.of the

form:
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0.812
0.479
0.333

=3
it

Twin pair _
0.812\ _ ' - .
0.333 | .
0.479

o
1]

The martensife crystals are not lenticular in shape however but
exhibit an acicular geometry. Results reported by Kelly and Nutting30 .
using a commercial stainless steel (Fe—18Cr;8Ni)'are éonsistent with
these studies including the acicﬁlar»geometry of thé.a martensite.

The sequence of the martensite transformations‘is of considerable
interest and was reviewed by Breedis and Robertson29 (1962). At that
time the evidence suggested the séquénce of the transformation was
f.c.c. > h.c.p. »> bfc.c. An example of this evidence was presented by
Guntner and Reed31 (1962). Using a polycrystallinévEe—lSCr—QNi alloy, they
deformation induced the € and o phase at - 196°C. It was observed
that the volﬁme fraction increased from zero to 0.35 in about 9% tensile
strain, then dropped to 0.10 at 26% tensile strain, the apparent strain
at fracture; The volume fraction of o martensite increased from about

0.04 at zero strain to about 0.90 at 267% tensile strain. Thus at

fracture the alloy was nearly 1007 martensite, 10% € and 90% o. The

"=

reduction of € from 0.35 to 0.10 during the deformation strongly
suggested the € » o transformation was taking placé. Later observations
by Breedis,32 Kelly,19 and this study strongly suggests that the € > o

transformation does not exist. 1In all the electron microscopy studies



»

e
e

wa ,; Jouoy o ouo, S S 7
-35-

the author is aware of to date, 0 martensite has never been observed
to replace regions that were clearly at one time € martensite. It
has been suggested that because the stacking fault energy in these

32,33

alloys is positive, the hcp phase is unstable and therefore the

€ > y will occur. Also that once the € sheet has formed in the

~austenite matrix it will not completely revert to Y.' The observed

variations of the volume fraction of € is due to thickening or thinning
of the € sheets.

It appears that the Y > € transformation occurs only when the
austenite is plastically deformed. In these Fe—Ni-Cf alloys, € can
exist by itself in plastically deformed specimens, but o is never
observed in fhe absence of £ in quenched or defofmed'crystals. This
is. demonstrated in a Fe~18.5Cr-13.7Ni alloy by Thomas33 and is ,

consistent with observations in this single crystal study. Goldman,

et al.34 have shown that the martensite start temperature for the €

phase (ESY)’ if it exigts in a Fe—lSCr—ll.7Ni alloy.is lower than
MsY. Thus by qugnching type heat treatments € mé;ﬁensite can not be
formed by itself.

The;fhefmodynamics of the y-€ transformation‘hgve been studied

35,36 and Breedis and Kaufman.20 Breedis

in detail by Schumann
and Kaufman concluded that at atmospheric pressure the € > o
transformation is not expected at temperatures below 500°K. The

Y > € and Y > o transformations therefore occur jointly in the

Fe~Ni~Cr élloys consider here.
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Thé effect of stress on the formation of o as a function of crystal
orientation»is of particular interest in this single crystal study.
Patel and Cohen‘(l.953)37 and Richman and Bolling (1971)38 showed how
the action of-an applied stress can aid or hinder fhe formation of « .
martensite crystals in the austenite matrix. Calculations were made
using Patel and Cohen's model37 in the same way‘aiSéussed by Goodchild,
et al.?9 in an effort to identify which variants oflthe‘potential
habit plaﬁe would be expected if the crystal was deformed between Mdy
and Msy. However, the.experimental results clearly showed that many
habits tﬁat were favored by the above calculations were not present
in the crystal and as shown in the present paper'all.the o martensite
appeared to have the same K-S variant of the orienfation relationship.

In order to study this apﬁarent singularity associated with the direction

of an applied stress, an x-ray experiment was designed,21 using a

Schulz goniometer,[*0 that would allow the experimentor to locate and

measure the volume fraction of o martensite in thé‘agstenite matrix

associated with each variant of the K-S orientation feiationship. The

procedure was also used to measure the volume fraction of € martensite

associa;éd with each {111}Y plane in the crystal. The results and

discussion of these measurements follow. : -

The mechanical response of these crystals with various tensile

(R

axes pulled between Mdy and Msy is also of interest. Goodchild, et al.39

observed in plastically deformed 303 and 305 stainless steel that grains
with a tensile axis near {001}Y contained no o nor € martensite. The

absence of o martensite was also observed in single crystals with a
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[100]Y teﬁsile axis. The Patel and Cohen mod'el37 éxplains these
results very well. Epsilon martensite was ob;erved in [100]Y tensile
axis crystals, which is in conflict with the polycrystalline studies.
An explanation of these polycrystalline results based on the observed
stress strain curves of single crystals pulled iﬁ!ténsion with
various tensile axes is presented.

Thé.ovérall objective of this chapter is to describe as clearly
as possible the structural relatiénships between Yy, € and o phase

formed in this Fe-15Ni-15Cr single crystal alloy, and how the structure

relates to the cryétallography of the vy >~ € and Y > o martensitic phaseS

- transformations. Ideas as to how plastic deformation aids in the

formation of £ martensite will be'presented, and iﬁtgresting observations
as to how € martensite controls the formation of o martensite crystals
will be discussed. For the first time a detailed analysis of the y-g-a

interface will be presented and discussed.
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II. STRUCTURE AND PROPERTIES

A. General Features of the Microstructure

Single-crystals were tested in tension with easy glide and multiple
slip orien;ations at temperatures between 185°K and.273°K. The objective
was to develop a clear understanding as to how plastic deformation, and
deformation induced phases control the microstructure of the transformed.
material. Crystals tested with an easy glide orientation had the [fiB]Y
tensile axié producing deformation for the first.séveral percent stain
on the (Ill)Y[Oli]Y slip system. It was observed that all the o
martensite had a rectangular geometry and appearea'to be contained in
parallel bands bounded by the (111)Y planes when the__(OlI)Y surface
was viewed optically. When the (Ill)Y plane of ;he crystal was viewed,
the a martenéite appeared in the form of clustersAof'needles. Studies
of this type clearly established that the 0 martensite crystals were
needles (acicular martensite). Electron microscope studies of the
same orien;ations confirmed the optical results énd also demonstrated
that the clusters of d martensite needles are bounded on both sides by
parallel sheets of € martensite. The orientation félationship between
Y, € and o is the well known Kurdjumovaachs (K-S) orientation relation-
ship (Oli>Y H'(Ill)a I (5110)€ and [ill]Y Il [llO]a il [OOOl]e. A good | -

example of this structure showing both electron and optical micrographs

N

of the (Oli)Y and (ill)Y surface is presented in Fig. 3. Dark vertical
lines seen in Fig. 3A that have a [211]Y trace on thev(Oli)Y surface are

€ martensite sheets cutting the (OlI)Y surface that have the specific
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K-S variant of the orientation relationship just presented.
A detailed'étudy of these € sheets was made By’dark field electron
microscopy using the (Olil)€ reflection in (OlI)Y fhin foils.
An example is . shown in Fig. 8B. Figure 8D clearly_demonstrates the
K-Sorientation relationship for this alloy. |

The'a'maftensite in this alloy has the {ZSZ}Yvhébit as demohstrated
in Part _I. Previous studies of alloys exhibiting the {252}Y habit

12-18

were internally twinned. Breedis (1962)29 and Kelly (1965)19

' reported the habit plane in low stacking fault energy stainless steels

was {ZSZ}Y and the martensite had a dislocated miéfostructure. Not
one paper onvthe crystallography of {252}Y martehsite,published between
1962 and thé'present, including the most.ub to date:feview by Dunne
and Waymah,l2 reference this result. The crystallographers were
clearly coﬁvinced that one lattice invariant sheaf associated with the
Y > a transfprmation had to be a twinning shear. Bécause of this,
considerable effort was expended trying to find iﬁternal twinning in. the
o martensite of this alloy. It was concluded thé’in£erna1 structure
of the o martensite formed in this Fe-15Ni-15Cr carbdn freevalloy
is that of dislocated martensite; no internal twins are present. This
dislocated structure can be seen in Fig. 2, 3, 8 and 10.

Iﬁdividual needles however were found to join in -a becc twin
orientation. Thiswas proved with thin foil electron microscopy specimens
taken from a [EiB]Y tensile axis_épeéimen pulled.injtensidn at 185°K.

In this type of specimen all the o martensite is confined between €

sheets parallel to the (ill)Y slip plane. Initial optical observations
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of specimensiof this type were cut to expose the (ill)Y plane and
éhowed that the 0 martensite needles appeared Eo exists in pairs
and thaf their long axis bisected a (110)Y direcfibn on the (ill)Y
surface of the crystal. An example of this is shbwh‘in Fig., 7. .
Electron micrographs of the same (ill)Y orientation produced ghe

result that each martensite needle bisecting the'<110)Y direction

was jolned at a bcc twin boundary. This is clearly seen in Fig. 10

where SAD patterns were taken from needles identified as A and B.

These needles are in twin orientations as seen by the sterographic

analysis of Fig. 10 in Fig. 11.

B. Relationship Between € Martensite and Slip in the Austenite

The € martensite phase was deformation induced at all temperatures
(185° to 273°K) used in this study. The 0 martensite phase was
observed only in crystals tested at 185°K. The € martensite sheets
are contaihed in the slip bands and their formation is possibly associated
with thermechanism of slip in this alloy in the femperature range
considered. The mechanism of the y » € transformation is discussed
in Appendix D. The € phase appears to cover the eﬁtire slip band,
their thickness being 0.05 microns or less and their éeparation being
of the ordeerf 0.5 to 1 microns. This spacing between sheets seen in
Fig., 3, 8 and 9 appears to be independent of temperature in the range
of 180°K to 273°K. Figure 9 is an example of the € microstructure

in a specimén with the [213]Y tensile axis which was tested at 243°K

to 5% tensile strain. No o martensite was observed at this temperature.
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The large surface area of the € martensite sheets is demonstrated
by observing the slip line structure on the surface
of a deformed electropolished érystal, then eleétropolish away the
slip line'stfucture'and then etch, The slip liﬁeézwill not reappear
and the € phase can therefore be observed. 'This‘pfééedure was
applied to a crystal tested to 15% ténsile strain:at 242°K with a [IiZ]Y
tensile axis. This result is shown in Fig. 12. Thé polished and |
etched surface is the‘('lll)Y plane. Even though this is a duplex slip
orientation, the majority of the deformation occurred on only oﬁe
slip'system; Figure 12A is the as tested slip line structure, Fig. 12B
the electropolished surface and Fig. 12C the etched sqrface exposing
the thicker.of the € sheets.. The circle drawn on the upper parts of
these three micrographs identifes the same area. The very fine
spacing of the € sheets of 0.5 to 1 micron of course cannot be obsefved
in this bpticgl micrograph, however, the claim thét the € sheet can
extend over the entire slipped region of the crystal is quite
definitely éupported. Thus plastic deformation p;rtitions the
éustenite métfix with large very thin sheets of E:martensite thét
are parallei to the {111}Y slip planes of the crfstal.

C. Why Deformation Induced € Martensite
Partitions the Austenite Matrix

It is now possible to show that £ martensite can exist in the

absence of ¢ in Fe-Ni~Cr alloys. Many studies of similar alloy529’32’41’42

suggested that the € phase is observed only in association with the
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o martensite. The difficulty that lead to early:interpretations that

the € phase must always be associated with a‘martensite was clarified

by Goldman, et al.,34 for Fe-Ni-Cr alloys. Using a sensitive‘differential

thermal analysis apparatus it was observed for a Fe-11.7Ni-15Cr

alloy that.only one ;ransformation temperature exis;ed. In other

words EsY agd MsY are equal or nearly equal. Es; and MsY are the

€ and 0 martensite start temperatures respectively. Thus, by

isothermal heat treatment of these alloys it wpuld be impossibie tei

form the € phase in the absepce of o martensite. The EsY temperature

_could be below MsY and € marfenéite that is obsefvedato be associated

with the v + o trensformation is produced because'of'internal stresses

associated with accommodation deformatioﬁ in the austenite. It has

already been demonstrated that‘the € phase can fo?m over a wide temperatere

range in the-absence of o martensite when energy is supplied to aid the

transformafion through an applied stress (plastie‘deformation).

This reselt is also in agreement with observatione ﬁy'Mangonon and Thomas.
Breedis’and,Kaufmaﬁzo have calculated the change in free energy

AFEY and AFQ*Y using the regular solution approxiﬁation and lattice

_ stability parameters. They found driving forces of the order qf

200-400 cal per g-atom related to MsY and up to 50 cal per g—etom for

Es. . If these values of the free energyare used;in Patel and Cohen's37

model that demonstrates how the work done by an exterhal force will

raise Es -andiMsY, it is evident that mech less energy supplied by the ‘

applied stress is required to initiate the y =+ € trensfermation. These

new transformation start temperatures will be written as EdY and MdY

and defines the transformation start temperature due to an applied
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external stress and associated plastic deformation of the crystal.

v

to several hundred degrees above these temperatureé:37’38’39 The

actual value of the transformation temperature is'a function of the
resolved shear stress on potential o or € martensite habit planes.
In summary, even if EsY is equal to MSY the temperature EdY will

in general always be greater than MdY because of the smaller value for

VAFY—)€ and therefore much less external energy will be required to aid the

Y >€ transformation. Because of the ease by whichgdeformation can

aid éﬁﬁ{f‘» ; transformatioh it becomes quite clear as to why the
austenfie matrix beéomes pa;titioned by the € phase, with the € sheets
covering the entire {lll}Y planes that have slippedl

The»Ed# temﬁerature.has not been established}fpr this alloy. It
ig in éxéess of 300°K.  The M&Y temperature for crisﬁals stressed in
tension with a [001]Y tensile axis is 190 5°K.

D. Volume Fraction Measurements of Defdrmation Induced € Martensite
as a Function of Crystal Orientation, Temperature and Strain

Single.crystals were tested in tension with [iOQjY, [110]Y, [iIZ]Y
and {zij]Y tensile axes at 185°K and with the [§i3]{fténsile axes at
273?K aﬁd 242°K to 5% tensile strain. The volume fractions of the
€ ﬁ;rtensite_was measured in each specimeﬁ 5y an xftéy pole figuré
method deveioped by the author.zl;zs The results showe& that the volume
fraction of € ﬁartensite was abouf 0.02 and_is indepehdent of temperature

and the direction of the tensile axis within experimental error of the
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measurement (*0.005). The results are tabulated-in Table VI. For
the [513]§ specimens the € martensite was associéted with only one slip
plane as Would be expected. For the other specimens the £ martensite
was distributed on the active slip planes. The volume fraction shown
in Table VI for these specimens is the sum totalldf € martensite
observed on each active slip plane. It is interesting to note for
;he specimens tested at 185°K that the [110]Y spécimén had € associated
with two {lll}Y slip planes as expected. However € ﬁartensite was
present on only one slip plane in the [IiZ]Y specimen and on only
two slip planes in the [100]Y specimen. These results are presented
in Table VII. The significance of these results wiil be discussed
in Appendix D.

fo see if these measurements were cpnsistent with experimental
observatioﬁé a simple calculation was made. If a cyiinder 1 cm2 in
 surface area by 1 cm long was transformed to 2% € martensite by
volume, the € sheets having a surface area equal to 1 cm2 and a
thickness of 0.05 microns, the spacing of these é shéets along the
length of the cylinder would be 2.5 microns. TheAspécing bétween €
martensite sheets observed in Fig. 3a, 8 and 9 are typically of the
order of 0.5 to 1 microns in regions transformed to both € énd a
martensite. It is therefore clear that a 27 by volume quanity of €
martensite is sufficient to partition the completé crystal oriented
for easy glide with parallel sheets of € martensite. The y > €

transformation clearly can preceed the Yy + a transformation. Therefore
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by partitioning the ausfenite matrix with €, thé Siié and variant
of the habit’plane of the o martensite needleé is.controlled in
this alloy.

The fact that the quantity of € martensite present (2% by volume
at 57 tensile strain) appears to be independent of bbth temperature
and crystal orientation strongly suggests that the:amoﬁnt_of plaétic
strain is_cbntrolling the quantity of ¢ marténsité;”’lt is important
that thé ﬁolume fraction of € and 0 martensite as a function of strain
and temperature be ﬁeasuredin this single crystéi alloy in the near future.
A discussion of the importance of such a study is presented in
Appendix E. |

E. Volume Fraction Measurements of Deformation Induced
‘0, Martensite as a Function of Crystal Orientation

Quantitative volume fraction measurements of o martensite were
made on tensile specimens with IIOO]Y, [1101y, [iIZ]Y and [§i3]Y
tensile axes.v Thgse spécimens were tested in thélregidn of 185°K
to 5% tenéile strain., The total volume fraction of o martensite
varied from (0.002 to 0.07 for the LlOO]Y and [§i31Y.5peéimens
respectivély, These results show that M.dY is a stroﬁg function
of the resolved shear stress on potential martensite habit planes.
For theée experimental data.it would appear. that MdY = 190°K for the
[100]Y specimen. MdY musf be greater than 190°Klfof-the other thfee
orientations. The stress strain curves and volume  fraction measurements

for these specimens are given in Fig. 13 and Table VII, respectively.
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The data for the [IIZ]Y and [fiB]Y specimens were previously reported

by the author.21

F. Discussion of the Volume Fraction Measurements
and Mechanical Property Results

In.all cases € martensite was observed only 6n planes that had
slipped. This was confirmed by comparing slip'planes defined by slip .
traces on two perpendicular surfaces to the x-ray measurements. If
slip occurs on a particular {lll}Y plane, ¢ martensite was always
present as {lll}Y H{OOOl}e. Slip is possible on only two systems
for the [IiZ]Y tensile axis sample. Because the cfystals were two
degrees from the exact [IiZ]Y tensile axis, the (lil)'Y [IOl]Y system
was favored and produced twice the quantity of € on the (lil)Y'plane
than wés observed on the (ill)Y plane (see Table VII). The majority
of the 0o martensite was that associated with the particular K-S
~variant correqunding to the active (lil)Y slip direction. Although
a crystal exactly with [IlO]Y parallel to the tensile axis should
slip on two planes and four slip directions only a 6ne degree deviation
from the [ilO.]Y waé sufficient to confine slip to ghe (lil)Y [iOl]Y
and (lil)Y‘[Oll]Y systems. The 0 martensite was evenly distributed
betweeﬁ the K-$ variants containing ther[iOl]Y and [011]Y slip
directions. The [10(_)]Y sample generated siip on only two systems, the
(1il)Y [ilO]Y and (lll)Y [lIO]Y. Almost no maftensite was observed
in this Sample and the volume fraction of ¢ marteﬁsite was also less

than in other orientations (See Table VII). It is clear from the data

y ®
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in-Tab1e VII that the K-S variants fav§red inﬁpléstically deformed
austenite'érystals aré those aséociated with bothxthe slip plane
and slip direction. |

The mechanical propertiesbof these single'crystéls (Figs. 13, 14
and 15) help to explain the orientation dependence Of € and o martensite

39 for

formation in the polycrystal data presented by Goodchild, et al.
textured 303 and 305 austenitic stainless steel. They.observed that
the formatién of € and 0 martensite was inhibited in grains'with the
(001)Y parallel to the tensile axis. Grains with the (110)Y parallel
to the tensile axis contained € and moderate amounts of 0 martensite.
Grains with one of the (123)Y parallel to the tgnsile axis contained

€ maftensite and the maximum amounts of a mafteﬁSite} The results
given in Table VII follow these same trends for a;ﬁartensite, but

not for € martensite. A reduction of € martgnsite'was observed in the
[100]Y'tenéile axis sﬁecimen, but not to the extent éuggested by the
polycrystals.39 The reason almost no € martensite is present in grains
with the‘(100)Y parallel to the tensile axis in polycrystal samples

may be due to the orientation dependénce of the flqw Stress observed

in single crystals tested between MdY and Msy, (Figé}‘l4 and 15).

For singlé crystals, the yield and flow stress is reduced significantly
when the y-»o tranéformation_can proceedbwith ease. A singlé crystal
with a [100].Y tensile axis does not transform to.a ﬁgrtensite at 185°K
during stréining, consequently a higher yield and floQ stress are
_oBserQed (Fig. 13). Epsilon martensite is ﬁot found‘in grains wi;h

the (001)Y parallel to the tensile axis in polycrystalline austenitic
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stainless:steel because under these deformation conditions the stresé
in thése grains does not exceed the CRSS for slip..
The reason 0 does not form appears to be relafed to the work done
by the Stress which can either aid or hinaer the Y=o transformation.
The orientation dependence of o martensite formation follows from the -
criterion established by Patel and Cohen37 showing how the work done
by an external stress resolved on the habit plane (r) and the normal
to the habit plane (Gn) of the martensite plate cah_faise the martensite

start temperature. The work done by the stress is written as

U P

where YO is the transformation shear in the habit plane and EO is the
transformation shear normal to the habit plane. The values of YO and i
eo used were 0.20 and 0.04, respectively. Very simﬁly,‘the effect on

MsY due to an applied stress is
AFY @ Ms, = AFTY @ M+ U

where MsY < Mdy. The magnitude of U depends upon the magnitude of the
resolved shéar stress T and the normal stress On on the potential

martensite habit plane.
Goodchild et al._39 show that the magnitude Of.U/G where 0 is the -
applied stress will indicate which martensite crystals should be favored
due to the applied stress. The larger U/o, the more the stress aids the
formation of a particular martensite crystal. If it is assumed that

the habit plane is the {112}Y and shear direction is.the <110>Y,19’32
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crystals with the largest values of U/o are nbt.aiwaye observed experi-
mentally ih this alloy. |

Basedvupon U/o calculations, the crystal with‘[§i3]y tensile axis
should faQor about equally (U/o = 0.13) martensifemcrystal formation
for theefollbwing habit plane-shear directions: (IIQ)Y [ilO]Y, |
(211)Y [OIl]Y, (Ilz)Y [ﬁO]Y, and (Eil)Y [011] . Only the (211)Y [oil]Y
of this set was observed experimentally. The reselt:is clearly seen .
in Fig. 16A, which was sectioned to show the (Ell)y,surface. Because
the austenite shear direction in the [513]Y tensile AXis crystal is
the [OIl]Y,'then it is expected that the long axiSYOf needles would
be near 'the.[Ol—.l]Y in the (EIL)Y plane. This cleafiy was the result.
Figure 16B shows the same crystal sectioned to expose the (Oli)Y plane.
It is cleer'that o martensiﬁe needles cut the surfece in packets thatv
appear to be confined between € sheets parallel toeﬁhe (Ill)Y plane.
Electron microscopy of (OIi)Y foils showed that ehe q-martensiee is
confined on two sides by large £ martensite sheets thet are parallel
to the (ill)Y'plane (See.Figs.3 and 8). Figure 16C is the same crystai
cut.to expose the (ill)Y plane. The o martensite typ;cally appears as
small, highly transformed regions that areewidely sebarated in the
austenite maﬁrix. Accurate habit plane measureﬁeﬁte-(Tabieljl) from
_optical mierographs show that the following habif plane-shear directions
(211, [ol1],, (12D (101] , (112) ([110] , and (211), [o11], with
U/o = 0.13, 0.08, 0.08 and 0.04, respectively, are formed when the

crystal is deformed plastically with the [513],Y tensile axis.
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The difficulty at the present time is that tﬁe model of”
reference 37 favors the presence of o martensite habit planes that
are not experimentally observed in this alloy. The metallographic
results show that the austenite matrix is partitioned by the € phase
as sheets.parallel to the {lll}Y slip planes, and confirms earlier
results of Reed in a similar.alloy.43 This partiﬁiohing appears to
control both the size of fhe acicular o martensite crystals and the

plane on which the o martensite crystals can form. Such partitioning

is not accounted for in the model. If all the o martensite crystals

were to form with the habit planes suggestéd by the theory, many
needles would have to cut through the ¢ martensite sheet. This event
has not been observed. Therefore, it is not sur?riéing, because of
€ martensite partitioning, that all the o martensite.that forms due
to the deformation has the (110)a plane always parallel to the {lll}Y
slip plane(s), and that the direction of shear in the austenite plays
a dominant role in determining the specific K-§ Qériant formed.v

One final point of interest is the fact that the-volume fraction
of o in the [IIZ]Y specimen is less than half that observed in the
[§I3]Y specimen. For the [112]Y specimen the values of U/o are only
0.02 less than those observed for the [EIB]Y orienfatiop. This small
difference in U/o is not believed to be the reason for this large
reduction of o martensite in the [iiZ]Y crystal at'SZVtensile strain.
The [§i3]Y tensile axis specimen is partitioned only on the (ill)Y
plane. The [iiZ]Y crystal is partitioned on two {lll}Y planes. The

difference in volume fraction of o martensite observed for these two
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specimens is thought to be due to the fact that partitioning by two

slip systems will reduce the size of the burst of o martensite and

therefore the total volume of o martensite. Thus, € partitioning

is also controlling the amount of o martensite that can form during

each burst., If a could penetrate the € interface, its significance

as a controlling factor on the volume fraction of o that forms

could be reduced. However, at no time has an o martensite needle

]

been observed to pass through an € sheet and also no evidence that .

€ has transformed to o has been found. These observations do not

support previous studies that indicated that o martensite nucleation

is aided at the intersection of € martensite bands.

41,44

G. Conclusions:

1. The deformation induced € martensite in this alloy forms only

on {lll}valanes that slip. The € forms as very thin sheets,

0.05 microns or less in thickness and appear to cover the entire
slip plane. The orientation relationship is the {111}Y fl {0001}8;
<011>Y f <§110>8 (See Fig. 8C).

The € martensite partitions the austenite matrix at all temperatures

- tested with parallel € martensite sheets on each élip plane. At

5% tensile strain in easy glide orientation the spacing between the
parallel sheets is one micron or less (See Figs. 3, 8 and 9).
The o martensite forms as clusters of needles bounded on both sides

by parallel ¢ martensite sheets (See Figs. 3 and 8).
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The o martensite in this>alloy is dislocated. The habit plane

is near the {252}Y. Previous studies have suggested that all
{ZSZ}Y martensites must be internally twinngd. This study suggest
that the twinning observed must have been due to accommodation

deformation in the martensite and not part of the transformation

shears; - —

The o martensite appears to exist in needle pairs with habits of

the form (0.333, 0.812, 0.479)Y and (0.479, 0.812, 0.333)Y. Needle

pairs with these habit planes join at a bce t&in boundary. The AB

theory has predicted this experiﬁental result (see Tables III and

IV and Fig. 10).

The variant of the K-S orientation relation for o martensite

present in Fe-15Ni-15Cr single crystals was always the variant

that contained both the austenite slip plane and slip direction.

This characteristic was true for both single and multiple slip

orientations (see Table VII). |

Goodchild, et a1?4observed that grains with the (001)Y direction

parallel to the tenéile axis in 303 and 305 stainless steel did

not contain € or & martensite. The single cryétal results reported

here may be used to explain the above observations. The [100]Y

single crystal specimen was found to have a yield sﬁress approxi- -~
mately 5 kg/mm2 higher than was observed for the [1IO]Y, [iiZ]Y
and [EIB]Y tensile axes crystals (Fig. 5). The reason for this
difference in yield stress is the fact that at 185°K, the stress

aided y~»o transformation cannot occur in the [001]Y specimen
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because of the low shear stress on potentiél’a ﬁértensite habit
planes. It is conceivable that it is those‘gtains in the poly-
crysfél 303.and 305 stainless steels, which are orientated such
that the applied stress aids the Yo transformation are the grains
which deform the most. Consequently (OOl)Y Oriented grains do

not deform sufficiently to form o or € marteﬁsite. The surrounding
grainékwith favorable orientations for the Y+a.£ransformation will
tranéform to o martensite and plastically dequm at stresses much
lower than the yield stress for grains in the (001)Y orientation.
The absence of significant defofmation in these grains explains the
absénée of é martensite, and the low resolved shéar stress on
potentiai o martensite habit planes, explains éhe absence qf o
martensite.

Many d maftensite crystal orientations.that should be favored as
predicted by the Patel-Cohen model are not obsérved experimentally,
This is éxﬁlained by the following; because the Y-£ transformation
preceeds"the Y-0. transformation due to plastié.defofmation, the
austenite matrix becpmes partitioned by € platés ﬁarallel to the

slip plane(s). This partitioning blocks the ﬁormation of needles

with énergetically favored habit planes. The majority of needles

that do form, even under the restriction of partitioning, have high

[

U/c values and therefore tends to support thelbasic concept of the

model.
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III. THE DEFORMATION INDUCED MARTENSITE-AUSTENITE'INTERFACE

A single crystal stressed in the [§i3]Y direction at 185°K was
transformed to 5% o martensite and 2% € martensite‘by volume. The
austenite slip system of maximum shear stress is the (ill)Y [OIIIY.
Figure 3 shows a two surface study using the electron aﬁd optical
microscopes. The o martensite is confined betweee € martensite plates
with the (0001)6 il (Ill)Y. The size of‘the aéieularemartensite
crystals is‘controlied by the spacing of the € martensite plates.

These € martensite plates are seen in Fig. 3A as dark vertical bands.
The axes of ehe acicular.crystals lie in the (ill)y plane. The ¢
martensite habit plane is defined as the plane perpendicular to the
(Ill)Y containing the vector defining the crystal agis. See Table IV.

The physical nature of the interface is being revealed in some
detail working with (oﬁ)Y foils. Figure 8A is a biight field micro-
graph showing a o martensite crystal cutting the surface with its axis
a few degrees out of the plane of the foil. Figure 8B is a dark field
of the same area using a (Olil)E reflection. Fine lines light up in
the interface defining a sheath surrounding the o martensite. TFigure 8C
is the (200)Y reflection that lights up the sheatﬁ as well, indicating
the o martensite crystal is surrounded by alternatevfegions of faulted
austenite.end dislocated austenite. Figure 8D is the diffraction
pattern from the same area and clearly shows this'alloy obeys the
Kurdjumov-Sachs orientation relationship. Specifically in this diffraction

pattern the (011)Y I (x11) (2110)€ and [111]Y il [1}O]a li [0001]6.
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Effprts to image interface dislpcations ha&évﬁeen unsuccessful to
date. Iﬁ appears clear that the interface between the phases in this
alloy is.a composite of dislocated austenite and faulted austenite
giving rise to hcp reflectioné. Also the (110)d,surface of the crystal
is in contact with and parallel to the (0001)€ plane; The large very
thin € plates appear to control the size of the éciéular 0 crystals and
forces the long axis of the crystals to remain parallel to the austenite

siip plane which is the (ill)Y in this examplé.



-56-

ACKNOWLEDGEMENTS

The author wishes to thank Professor Gareth Thomas for continued
encouragement, support and guidance during thié_study. Many thanks
to Professor C. M. Wayman for helpful suggestions regarding the
martensite shape change measurments, and to Professor R. Wenk for
the ﬁse of his‘x-ray equipment and discussions.rélated to the volume
fraction meaéurements. The author would also like éo thank Lutgard
de Jonghe,iomer Van der Biest and Krishna Seshan for the many helpful
discussions. The manuscript was expertly and graciously typed by
Alice Ramirez. The alloy single crystals used in this study were
grown and donated by the Advanced Materials Research and Development
Laboratory of Pratt and Whitman Aircraft.

This_ﬁork was performed under the auspices of the United States
Atomic Energy Commission.

The_moSt important acknowledgement is to my wife, Arleen; her

love, understanding and encouragement will always be appreciated.



10.

11,

12.

13.

14.

15.

-57-

REFERENCES

A. B. Greninger and A. R. Troiano, Trans. Mégﬁ Soc. AIME 140, 307
(1940) . o

A. ﬁf Greninger and A. R. Troiano, Trans. Me£; Soc. AIME 185, 590
(1949). - |

M. S. Wecﬁsler, D. S. Lieberman and T. A. Read,‘Trans. Met. Soc.
AIME 197, 1503 (1953).

J. S. Boﬁles and J. K. MacKeniie, Acta Met. 2, 224 (1954).

A. F. Acton and M. Bevis, Met. Sci. and Eng.jg,-19 (1969-70).
N.‘D. E. Ross and A. G. Crocker, Acta Met.'l§,1405 (1970).

E. C. Bain, Trans. Met. AIME 70, 25 (1924){

J. W. Christian, The Theory of Transformations in Metals and Alloys

Pergamon Press, Oxford, 1952, Chapter XXII.

v

J. W. Christian, Mechanism of Phase Transformations in Crystalline .

Solids, Institute of Metals Monograph No. 33, Manchester, 1968,
p. 129.

C. M. Wayman, Introduction to the Crystallography of Martensitic

Transformations, MacMillan, New York, 1964.

C. M. Wéyman, Adv. Mater. Res. 3 147 (1968)..

D. P..Dﬁnne and C. M. Wayman, Met. Trans. 2 2327 (1971);
M. Oka and C. M. Waymaﬁ, Met. Trans. AIME ggg;'337 (1968) .
S. K. Dasvand G. Thomas, Met. Trams. 1, 325 (1970).

G. Thomas and S. K. Das, J. Iron & Steel Inst. 209, 801 (1971).



16.
17.
18.
19.
20.

21.

22,
23.

24,

25.

26.

27.

28.
29.
30.
31.
32.

33.

-58-

C. M. Wayman, J. E. Hanafee and T. A. Read,‘Acta‘Met. 9, 391 (1961).
C. M. Wayman ahd A. J. Morton, Acta Met. 14, 1567 (1966). |

D. P. Dunne and J. S. Bowles, Acta Met. 17, 201 (1969).

P. M. Kelly, Acta Met. 13, 635 (1965).

J. F. Bfeedis and L. Kaufman, Met. Trans. 2 2359.(1971).

Glen Sténe, Master of Science Thesis, Lawrence -Berkeley Laboratory
Report No. LBL—134,.University of California; Berkeley, 1971.

B. A. Bilby and J. W. Christian, J. Iron & Steel Imnst. 197 122 (1961).
J. S. Bowles and A. J. Morton, Acta Met. 12, 629 (1964).

F. j. Schoen, Gulf General Atomic, P.0. Box 608, San Diego, Calif.
92112.

Glen Stone and Gareth Thomas, accepted for publication by Met. Trams.,
1974. (LBL-1853)

P. C. Rowlands, E. O. Fearon and M. Bevis, J. of Mat. Sci. 5, 679
(1970).

G. Gordon, Lawrence Berkeley Laboratory, IMRD,‘Uﬁiversity of
California, Berkeley 94720.

B. Cina, J. Iron & Steel Inst. 177, 406 (1954).

"J. F. Breedis and W. D. Robertson, Acta Met. lg, 1077 (1962).

P. M. Kelly and J. Nutting, J. Iron & Steel Inst. 198, 165 (1961).
C. J. guntner and R. Reed, Trans. ASM 55, 399 (1962).
J. F. Breedis, Trans. Met Soc. AIME 230, 1583 (1964).

B. J. Thomas, Métaux, Corrosion, Industrie, 1969, N°% 531,

novembre, et 532, decembre, p. 7-66.



34.

35.

36.
37.
38.

39.

40.
41,
42,

43.

44,

45.

46.
47.
48.
49.
50.
51.
52.

53.

54.

.
et
e
Cm »
R
LN
~
S
=
Cpa
&
~
Y
2

~59-

A. J.‘Goldman, W. D. Robertson, and D. S. Koss, Met. Trans. AIME

1230, 240 (1964).

H. Schumann, 25 Rostock, Klement—Gottwald-Str;‘16/17, Germany;

Von Hermann Schumann, Archiv fiir das Eisenhﬁtteﬁwesen, 40, 1 (1969).

J. R. Patel and M; éohén, Acta Met. 1, 531 (1953).

R. H. Richman and G. F. Bolling, Met. Trans.vg,.245l'(l97l).

D. Goodéhild, W. T. Roberts and D. V. Wilson, Acta Met. 18, 1137
(1970).

L. G. Schulz, J. of Appl. Phys. 20, 1030 (1949).

J. A.FV'er_iables, Phil. Mag. 7, 35 (1962). | o

J. Dash and ﬁ.'M. Otte, Acta Met.‘ll,>1169 (1963)F

R. P. Reed, Acta Met. 10, 865 (1962).

R. Lagheborg, Acta Met. 12, 823 (1964).

R. Hall, M.S. thesis in progress, University of

California, Berkeley, 1973.

Pat' L. Mangonon, Jr. and Gareth Thomas, Met. Tréné. 1, 1577 (1970).
P; Gaunt and J. W. Christian, Acta Met. 7, 529 (1959).

P. S. Koﬁval and R. W. K. Honeycombe, Acta Meﬁ. lg, 597 (1968).
J. W. Chfistian, Proc. R. Soc. A206, 51 (1951).

Hermann Schumann, Kristall und Technik, 4, 575 (1969).

F. Lecroisey and A. Pineau, Met. Trans. 3 387 (1972).

S. M. Copley and B. H.‘Kear, Acta Met. l§,>227‘(l968).

Krishna Seshan, Department of Materials Scienéé and Engineering,
University of California, Berkeley 94720 (pri&até,pom@umication).

John Price Hirth and JensLothe: Theory of Dislocations, McGraw-Hill,

New York, 1968, Chapter 10.



-60-

APPENDIX A

A Computer Program to Calculate the Exact Specimen
Normal from Indexed Back Reflection Laue Photographs

Back reflection Laue photographs with a spécimen to film distance
of 5 cm are indexed in thé conventional manner.v To calculate the exact
specimen normal [uvw] the dot product between any thtee indexed poles
and [uvw] will generate three equations that can be solved for [uvw].
The angle between the x-ray beam and vector normal to any diffracting
plane can be obtained using the following equation:

: T
o1 ~1 i
where ri is the distance from the center of the film to the exposed :
spot and D is the specimen to film distance. The matrix equation for

the solution of [uvw] is

h1 kl 1l, u cos(el) |
h2 k2 12 v | = cos(62) ' (2)
h3 k3 13 . w cos(63)

The vectors [hi ki li] are converted to unit vectors in the program.

The Léue photos used in this study were indexed and many different L
combinations of three indexed.diffraction spots were used to éalculate
the specimen normal. _The same solution should resuif for any combination
of tﬁree indexed poles. Table VIII shows the resuit;of several different

combinations from one Laue photograph.
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The input data for PROGRAM LAUE are as followé:_

Card 1: Col 1-5 N, the number of sets of input data,

Integer number right justified

Card 2: Col 1-10 bkl of first indexed pole.
11-20 Decimal point must be supplied
21-30 .
31-40 r, measured distance from pole to

1

center of Laué'photograph in cm.

Card 3: Same format as above, input h2k212 and r, for second pole

Card 4: Same format.as above, input h3k313 and r3 for third pole

Repeat cards 2, 3 and 4 for each set of data. Fortran listing and

example of input data follows.
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FROGRAM LAUE(INPUT.OUTPUTOTAPE5=lNPUT.TAPES:OUTPUT)

COIMENS JON A(3)96(3)oC(3)OD(3)OBB(3)oCC(3)

WRITE(615)

FORMAT (1H1)

READ(543) N

D0 100 I=1eN

FORMAT (15)

ORIENTATION OF 5 CM LAUE PHOTOGRAPHS ONLY .
As By C ARc THE INUICIES OF THREE INDEXED POLES ON THE LAUE PHOTO
OCl1)e D(2)Ysy AND D(3) ARE THE DISTANCES IN CM MEASURED FORM THE
CENTER OF THE LAUVE PHUTOGRAPH TO POLE As Bs AND C RESPECTIVELY
READ(S5¢1) AsD(1) ‘

READ(54+1) BeD(2)

READ(Se1) CeD(3)

FURMAT (4F 1040)

CALL AMAG(AeX)

D(1)=COS(ATAN(D(1)/540)/2e0) %X

CALL AMAG(B.Y)

DI2)=CUOSCATAN(DI(2) /5e0)/2e0) %Y

CALL AMAG(C+Z)

D(3)=COS(ATANID(3)/5.0)/240)1%Z

WRITE(644) AeD(1)

WRITE(644) BeD(Z)

WRITE(6e4) CsD(3)

FORMAT (10X+3F11e84F12e8)

CALL DET(A+B+CeAA).

Ob(l1)ysA(L)

BB(2)=B(1)

BB(3)=C(1)

A(1)=D (1)

B(1)=D(2)

C(l)y=D(3)

CALL DET(A+BeCE)

CC(1l)=E/AA

A(1)=BB(1)

B(1)=88(2)

C(1)=BB(3)

BB(l1)=A(2)

Bb(Z)=B(2)

sB(3)=C(2)

A(2)=D(1)
B8(2)=D(2)
C(2)=D(3)

CALL DET(A«BeCE)
CCl2)=E/AA
Al(2)=8B(1)
B(2)=8B(2)
C(2)=B8(3)
A(3)=D 1)
B(3)=D(2)
C(3)=D(3) .
CALL DET(AWBCE)
CC(3)=E/AA

CALL AMAG(CCX)
CCl1)=CCl1)rX
CCt2r=CcCc2)ysx
CCE3)=CC(3)rX
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e oUTPUT UNIT VECTOR NORMAL TO POLISHED SURFACE OF CQYSTAL
WRITE(6+2) CC
A(1)=140
A(2)=140
A(3)=—1e0

CALL CROSS(A+CCeb)
WRITE(6+2)8B
CALL CROSS(CCeBA)
WRITE(6+2) A
WRITE(64+6)

6 FORMAT(//)

2 FORMAT (10X43F1148)

100 CONT INUE

STOP
END
SUBROUTINE AMAG(A+B8)
DIMENSION A(3)
BoSURT(ATTII*®AC1)+A(2) %A (2)+A(3)*A(3))
RETURN
END
SUBROUTINE DET(A+8+CaD)
DIMENSION A(3)+8(3).C(3)
o= A(l)*(U(Z)*L(a)-b(B)*L(Z))+A(2)*(B(3)*C(l)—B(l)*C(3))+A(3)*(
BB (1)*#C(2)-B(2)*C(1))
RE TURN
END
SUBROUTINE CROSS (A+BeC)
DIMENSION A(3)+8(3).C(3)
Cl1)=A(2)#B(3)-A(3)*8(2)
C(2)=A(*B(1)-A(]1)*B(3)
C(3)I=A(1)I*¥B(2)—A(2)%B(1)
CALL AMAG(CeD)
C(1)=C(1)/D
C(2)=C(2)/D
C(3)=C(3)/D

RETURN
END
19

-1le 2 P= 4408
=3 2e le 446

~Se 1e 3. S5.62
-1le 1. e 395
-1le T 2e 2e 4408
=3 2e le : 446

=3 Se 3e 3492
-1. l. 2. . 3.95
~1le 2 Ze 4,08
-3, le T 2. 3457
-3 Se 3e 3e92
-1e Tl 2 395
-3 RS Y 3e 3656
-3 Tl -3 357
~3. Se 3. 3.92
—Ze e le 3e54
~3e le 3e 356

-3, e 2. 3.57



-2
—2e
~3e.
-2
-2
-2
-1le
~3e
-5e
~3e
—-1e
-3
-3
—-1le
~1le
-3
-3
~1le
-2
~3e
-3
-2
=3
-3.
—2e
-2
-3
—2e
-2
-5
-2
R
-Se
-2
=3
-Se
—2e
-2
-3

-64-

328

3e54
356
2405
3.28
354
395
446

Se62
392
408

L be6
357
3495

4008
356
3.92
3695
354
357
3692
328
356
357
2405
3e54
3¢56
328
3654
Se62
2405
4408
Se62
3428
446

S5e62

2405

328

’:406
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APPENDIX B.

A Combuter Program to Calculate the Direction of a Trace
on the Surface of a Single Crystal

The program provides quick and accurate caiéulationsvof the
direction of a trace on the polished surface of_the §rysta1. The
required input are a set of orthogonal vectors tﬁaﬁ‘define the crystal
orientatiéh énd the measured angles between these veqtors and fhe
vector péraliel to the trace on the crystal surfacé. Two methods were
used to define a set of orthogonal vectors--the first leading to the
second.

The first method applied to the probiem was to cut the crystal
to expose two perpendicular surfaces. .Each Surféqe:was o;ientated using
5 cm Laue back reflection photographs. The brthogdnél set of reference
vectors are (1) the surface normal, (2) the line of intersection of tﬁe
two orientated planes obtained simply by taking the crogs product of
the two surface normals and (3) a second vector on the polished sUrface_
célculated.by'taking the cross product between theksg¥face normal and
the line‘of;intersection. Three equations with three unknowns are

obtained simply by taking the dot product between.the traée and the

orthogonal set of unit vectors.

,hl kl ll u 0. . 5
h2 k2 12 vl = cos(Gl)b' ". (1).i 
hy kg 13| w|  [cos(6,)



—-66—~

The angle between the surface normal [hlklll] aﬁd tﬁe trace vector
fuvw] is 90° and is defined in the program. The angle 61 is the angle
between the fraée vector and the line of intersection [h2k212] and the
angle 62 is the angle between the éecond vector‘op the polished surface

[h ] and the trace vector. The output is a unitfvector [uvw]

3*3l3
parallel to the trace on the crystal surface.

The second method is in fact the same as theffirst, except that
the orthogonal set of vectors defining thevcrystal orientations are
obtained from a known crystallographiq feature on:the crystal surface.
In this study, it was observed using the first me;hd& described that
a feature on'thé optical micrographs was the interSecfion of a ¢
martensite plate laying parallel to an adjacent {111}_Y plane.
Specifically in this experiment, the polishéd surface was near the
(]—_.ll)Y plane. This produced a line of intersection on the polished
surface with a direction [0.69551347, 0.02264272, 0,71815619ly. Tﬁis
is the unit vector obtained by taking the vector pfqduct between the |
specimen normal [-0.62452938, 0.51327139, 0.'58865v57‘0]Y' and the [11i]Y
direction. When this crystallographic feature was observed, the
resulting Qéétor defining the line of intersection of the two planes
was obtained to a precision of *0.25. This result provides proof that
the original method used was sound.

When ppssible, the specimen normal, the line of intersection of
the plate on the '(111)Y plane and the crystal surface are used to
define the crystal orientation. It is felt that the éccuracy of trace
calculations using a crystallographic feature is better than the

original procedure (method_l). Even with this good accuracy, it appears
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that sets of martensite plates with seemingly theiéame direction have
experimenﬁal scatter up to *1°. This scatter appears to be real and
not due to experimental error (see Table 1IV).
The prpgram listing to follow has been modifiedvto resolve vectors
laying on.the polished surface onto the (f[ll)Y sufféce. To do this,
several assumptions were required. It is assumed'tﬁat the long axis
of the martensite needles lies exactly in the'intérféce plane and the
(ill)Y plane. It is assumed that the needle has a rectangular cross
section. It is assumed that the trace on the pdliShed surface and'thé
[ill]Y direction lie in the same plane; the plane'being the interface
plane. All measurements are made only on martensite heedles sectioned’
by the polished surface in such a way that both Sidés (traces) of the
needlé are parallél (see Fig. 7). The resulting 6Uf§ut by taking the
vector product between the [Ill]Y and the trace Qector is the habit
plane normal. The vector defining the long axis of the needle is
simply the vector product of the [ill]Y and the igtgfface plane normal;
Also in the output are the computed angles between ;he vectors defining
the long axis and the [101]Y and vectors definiﬁg ;he interface plane
normal and #he [lely' These calculations are givéﬁ in Table IV,
The.iﬁput data for PROGRAM TRACE are as follaws:
Card 1: Col 1-5 M, the number of complete data sets.
Integer number righ; justified.

Card 2:‘ Col .1-5 N, the number of traées.to be calcul#ted
using the set'of.orthogonal vector to
be defined in tﬁis”éalculation. Integer

number right justified.



Cards 3band 4:.
Col 1-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

next card 1-10

Card 5: Col 1-7 THETAL

. 8-14 THETA2

A(1)
A(2)
A(3)
B(1)
B(2)
B(3)
Cc(1)
C(2)

Cc(3)

‘between B and C respectively. Decimal
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A, B, and C are the three vectors

defining the orthogonal set. Decimal

point muét be éupplied.

THETAl and THETA2 are the angles

point must be supplied.

Repeat Card 5 N times for this data set.

Repeat Card 2 to Card 5 M times for each data set thereafter.

Fortran listing and example of input data follows.
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PROGRAM TRACE ( INPUT +OUTRPUT « TARPES= INPUT s TAPEG&6=0UTRPUT)
CALCULATIUN OF TRACE UN THE =1 1 1 PLANE WITH.REFERENCE TO A
REFERENCE DIRECTION SUCH AS A SLIP BAND OR INTERSECTION OF TwO
PLANES o o
D IMENS ION A(J)ob(3)‘C(J)'AA(B)'BB(3)vG(3)0H(3)-F(3)
WRITE(6+6)

6 FORMAT (1H1)
READ(5+5) ™
M IS THE NUMBER OF COMPLETE DATA SETSe
DO 102 J=1eM
READ(S+5) N

5 FORMAT ¢ 15)
READ(Ss1) AsBsC

1 FORMAT(B8F10¢0/F1060)
WRITE(6+7) AsBo+C

7 FOURMAT(10Xe3F11e8/10Xe3F11e8B/710Xe3F11e8//)
FOUR THE CALCULATIONS USING THE INTERSECTION OF A EPISLON BAND ON THE
1 1 =1 SURFACE CUTTING THk =1 1 1 SURFACE LETese
A 15 VECTUR NEAR —1 1| 1 DIRECTION (THE NORMAL TO THE POLISHED
VIRECTION OF THE CRYSTAL)
B 15 VECTOR NeAx 1 O 1 DIRECTION ON POLISHED SURFACE OF CRYSTAL
C 1S VECTUR NEAR 1 2 -1 DIRECTION ONPOLISHED SURFACE OF CRYSTAL
N IS THE NUMBER OF TRACES TO HE CALCULATED IN A PARTICULAR DATA SET
THETA1 1S ANGLE BETWEEN DIRECTION OF MARThNSITE INTERFACE AND
1 O 1 DIRECTION ON SURFACE OF CRYSTAL
THETAZ2 15 ANGLE BETWEEN DIRECTION OF MARTENSITE "INTERFACE AND
1 2 =1 DIRECTION CN SURFACE UF CRYSTAL :
CALL AMAG(A+X)
CALL AMAG(BWY)
CALL AMAG(C+2)
DO 101 I=143
A(I)Y=A(])/X
B(I)=B(I)/Y
Ctli=Cc(1yrsz

101 CONTINUE

CALL DET(A«B«C D)
DO 100 I=1sN
READ(542) THETALlsTHETAZ ALPHA

2 FORMAT(2F7e2¢5XsA10)
WRITE(6+8) THETAles THETAZ sALPHA"

8 FOURMAT(1OXeF7e2¢SXeFT7a2e9DX0A10)
THETAL =COS(THETAL#%34141592654/1804 )
THETAR=COS(THETAZ%#34 1415926547180 )
AA(L)=AC(1)
AA(2)=81(1)
AA(3)=C(1)
A(l1)=0e0
B(1)=THETA1
C(1)=THETA2
CALL DET(A+B+CeDD)
BB(1)=DL/D
AC1)=AA(])
B(1)=AA(2)
C(1)=AA(3)
AA(1)=A(2)
AA(2)=B(2)
AA(3)=C(2)
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A(2)=0,0
B(2)=THETA]
C(2)=THETAZ
CALL DET(A«B+C D)
BB(2)=DL/D
Al(2)=AA(1) : o
B(2)=AA(2)
C(2)zAA(3) o
AACL)Y=AL(3) : .
AAC2) =B (3)
AAC3)=C(3)
A(3)=040
B(3)=THETA1 - : -
C(3)=THETA2 | ' : v : -
CALL DET(A+B+CLL) ’ ] ] '
BB(3)=DD/D B :
CALL AMAG(BBCC)
A(3)=AA(L)
B(3)=AA(2)
C(3)=AA(3)
BB(1)=88(1)/CC
BB(2)=88(2)/CC
BB(3)=BB(3)/CC
F(1)==140/SART(30)
F(2)==F (1)
F(3)=F (2)
3 FORMAT (1UXs4F12e8)
OUTFUT UNIT VECTOR ON POLISHED SURFACE IN DIRECTION OF 'INTERFACE
L INE ) S
WRITE(643) BB
CALL CROSS(F+BB«G)
CALL CROSS(F'eGoH)
F(1)=1e0/SURT(240)
F(2)=0e0 ’
F(3)=F (1)
CALL DOT(F +HeANG)
OUTPUT UNIT VECTOR ON =1 1 1 SURFACE IN DIRECTION OF INTERFACE L INE
AND ANGLE BETWEEN 101 DIRECTION o
WRITE(6414) HeANG _ . : .
F(1)=22e0/5GRT(640) : :
F(2)=1e0/SQRT(640)
F(3)=F (2) : S )
QUTPUT OF VECTUK NURMAL . TO INTERFACE PLANE AND ANGLE BETWEEN 211 DIRECTION
CALL DOT(F 4G+ANG)
WRITE(6+4) GsANG
4 FORM+T(10OXe3F11e8+5XeF8e2)
WRITE(64+9) S
9 FORMAT(//)
100 CONTINUE
102 CONTINUE
STOP
END
SUBROUTINE DOT (As8eANG) : o
DIMENSION A(3)+8(3) : ' i
ANG=+COS((A(1)*#¥B(1)+A(2)%B(2)+A(3)1%B(3))/SORTIA(IIRALLI+A(2)HA(2) + ;
BACSIHA(I)I/SURTIB(1)I*S(1)I4+B(BI*B(2)+B(3)%#B(3)))I*180.0/3 141592654
RETURN :
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. . END
“ SUBKOUT INE CROSS (AWBeC)
DIMENSION A(3)4+8(3)+C(3)
C(1)=A(2)*B(3)-A(3)*B(2)
CL2)=A(3I*B(1)-A(1)*B(3)
CU3)I=A(1I*B(2)-A(2)%E(])
CALL AMAG(C+D)
C(1)=Ct1)/0
C(2)=C(2)/D
C(3)=C(3)/D
RETURN
END
SUBROUTINE AMAG(A.B)
 DIMENSION A(3)
B=SURT(A(L)IRA (1 )I+A(2)I*A(2)+A(3)%A(3))
RETURN
END
SUBROUTINE DET(A+B+CrD)
DIMENSION A(3)+B(3)4C(3)
D=A(1) % (B(2)*C(3)=-B(3I1XC(2))+A(2I*(B(AI¥C(1)-B(1I*¥C(3))+A () *(
SB(1)I*#C(2)-B(2)*C(1)) :
RETURN
END
1
28 S
~06245£930 251327139 +5BBES5T0 69551347 +02264272 « 71819619 « 35528026 «85792761
-e37112821 ' .
9e17 99617 322-1
533 84467 L 322-2
5467 84433 322-3
9e58 9958 322-4
67408 157408 322-5
55633 145633 322-6
6792 15792 _ 322-7
5483 144483 329-1
6975 15975 329-2
6908 159408 329~3
56633 146633 . 329-4
6933 15933 329-5
69633 159433 329-6
55092 145092 329-7
BeS 9829 329-8
) Be92 98092 329-9
- Se42 B4e58 329~-10
10e17 100617 - 336-1
8e50 98450 336-2
1175 10175 336-3
s 10667 10067 '336-4
3458 B86+42 336-5
4050 B5e50 336-6
7647 97447 337-1
55492 145492 337-2
68e¢31 158431 337-3
56628 146428 337-4

3675 B6e25 337-5
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APPENDIX C.

A Computer Program to Calculate the Magnitude and Direction of

the Shape Change Associated with the y»o Martensitic Transformations

The magnitude and direction of the shape chgnge'are calculated
using the method described by Bowles and Morton.23fTﬁe specimen normal
ié the (QQI)Y. The reference vector used to caléulaﬁe the angle
required to fotate the result from the J basis to the austenite basis
is the [100]Y. The geometry of the measurement is shown in Fig. 5.
The input data ére the direction of.the fiducial line (F), the angle
between the fiduciai‘line'and the transformed line (ALPHA); and the :
angle betwéen the nomalvof the tilted a martensiteicrystal and the |
(OOI)Y surface (PHI). The angle PHI is.measured'such that the nomal
to the filted surface,.the (001)Y and the habit ﬁlane nomal all lie on
the same great circle. The unit vector defining the habit plane nomal
is also required. The output is the magnitude of the shape change _
and a unit.vector defining the direction of the‘shépe change.

" The input data for PROGRAM SHAPE are as follows:

Card 1: Col. 1-3 N the number of habits plane nomals to be tested
' for each measured ALPHA and PHI

Col. 4-6 M the number of values of ALPHA and PHI

Card 2: Col. 1-10

Col. 11-20 v direction of fiducial line
Col. 21-30 '
Card 3: Col. 1-10 ALPHA

Col. 11-20 PHI
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Card 4: Col 1-10 2 h
Col 11-20 k Habit plane normal
Col 21-30 S 1 |
Repeat Card 4 N times _
Repeat Card 3 This sequence repeated M times

Repeat Card 4 N times

Fortran listing and example of input data follows.
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PROGRAM SHAPE ( INPUT «OUTPUT « TAPES= INPUT » TAPE6=0UTRPUT)
REAL Jl(o)on(J)OJJ(J)OH(B)OF(j)oFl(B)'MD(B)oQOT(JvJ)oMDD(3)wHH(3)
J3(1)=F1(3)=0.0,
J3(2)=F1(2)=0e0
J3(3)=F1(1)=1e0
READ(S544) NoM

4 FORMAT (13+13)
READ(Se1) F
DO 100 K=1+M
READ(Se1) ALPHAWPHI
WRITE(641) ALPHAPH] oF

1 FORMAT(8F10.5)
ALPHAZALPHAX3414159/180
PHI=PHI*3¢14159/180.
DO 100 I=1sN
READ(Se1) H
WRITE(6s1) H
CALL CROSS (HeJd3sul)
CALL CROSS(J3eJ1sJ2)
CALL DOT(JU3sHIBETA)
CALL DOT(J1+FsROW)
ROWP=ROW+ALPHA
CALL DOT(J1+F1+THETA)
A=1e0Q/TAN(PHI) _
B=COS(BETA)+SIN(BETA) *A
C=1e0289176
MD(3)=C/B -
MD(2)=C*A/B~1e0/SIN(BETA)
AA=1¢0/TAN (ROW)
MD(1)=C*A/ (B*TAN(ROWP))=AA/SIN(BETA)
CALL AMAG(MDD)
D IS THE MAGNITULUE OF THE SHAPE STRAINe
MD(3)=MD(3),/D
MD(2)=MD(2) 7D
MD(1)=MD(1)/D
WRITE(6+3) MDD

3 FORMAT(5X1F 10e695XF10e695XsF 1066 ¢5XsF 10e6)
ROT(141)=ROT(2+2)=COS(THETA)
ROT(1+42)==SIN(THETA)
ROT(2+1)=SIN(THETA)
ROT(143)=ROT(243)=R0OT(341)=ROT(342)=0e0
ROT(3¢3)=1e0
CALL GMPRD (ROT «MD+MDD934341)
WRITE(642) MDD

2 FORMAT(SXeF10e6¢5X+F10e6¢SXeF10e6)
ROT(141)=ROT(1e3)=ROT(2+2)= nor(z.s)-nor(3.1)-ROT(a.z)—o o
ROT(1+¢2)=ROT(3¢3)=140
ROT(2+1)==140
CALL GMPRO (ROT «MDOD+MDe30e30¢1)
CALL GMPRD(ROT +MD+MDDs3430¢1)
CALL GMPRD(ROT sHeHMHes3e3e1)
CALL GMPRD(ROT sHHsHes3¢341)
WRITE(64+2) MDD
WRITE(6+2) H
WRITE(6+5)

S FORMAT(//)

100 CONTINUE
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STOP

END

SUBROUT INE GMPRD (AsB1ReNsMsL)
DIMENSION A(9) +85(9)R(9)

IR=0

IK=-M

DO 10 K=1,L

IK=Ik+M

LO 10 J=1sN

IR=IR+1

JI=U=N

IB8=1IK

R(IR)=0

DO 10: I=1sM

JI=JI+N

IB=1B+1

10 ROIRI=SROIRI+A(UI #B(1B)

RETURN

END

SUBROUTINE DOT(A«BsANG)
DIMENSION A(3)+8(3)

ANGE=ACOS (AL *¥B 1) +A(2)#B(2)14+A(3)*¥B(3))1/SCRTACII*A(1)I+A(2)XAL2) +
SA(3)XA(3))/SQRTIB(1)I*B(1)+B(B)*B(2)+B(3)%*B(3)))
RETURN

END

SUBROUTINE CROSS (A+BeC)
DIMENSION A(3)+B(3)+¢C(3)
Cl1)=A(2)%B(3)-A(3)*B(2).
C(2)=A(3)*¥B(1)-A(1)*B(3)
C(3)=A(1)*B(2)-A(2)*B(1)

CALL AMAG(C+D)

C(1)=C(1)1/D

C(2)y=Cc(2)s0 i
C(3)=C(3)/0

RETURN

END

SUBROUT INE AMAG (A B)
DIMENSION A(3)

B=SURT (A(1)*A(1)+A(2)*A(2)+A(3)IXA(3))

ERE
4 8
-1e0 —~1e0 QeO
=55 -9e0
—0ed479 - =D e812 De333
-0¢333 -0e8B1l2 Qed79
-0e812 -0e479 06333
-0e812 - -e333 Oed79
6_‘6 110
—-0e479 ~-04812 0e¢333
~0e¢333 ~0e812 0e479
-0e812 ~0e479 0e333
-0e812 ~¢333 0e479
Seb G960
-0e479 -0e8l2 0e333

~0e333 ~0.812 0e479



-0.812
-0e8B12

-6e6
-0e479
~-0333
-0e812
-0e812

. SeS
~Qed 7Y
~0e3233
-0e812
’0.812

-6e6
-0 el79
-0e333
-0e812
~-0e812

-5e5
~0e479
-0e¢333
~-0e812
-Qe812

66
-0e479
-0e333
-0e812
-0e812

-76-

-0e479
-0 333
=110
-0e812
~-0e812
-0 o479
-¢333

—~Ge0
-0 e812
-0e812
-0 0479
—e333

110
~0e812
-0 e812

06479

—e333

9e0
-0e812
~0e812
-0 e479
~e¢333
=110
-0e812
-0e812
-0 6479
- 333

0el333.
Ced79 "
0333
0479
Q0e333
0479

0+333
OCet4 79
0333
Oe479

Ce333.
Qed79
0e333
Oed79

Qe333
0ed479.
O0e333
0ed79

0e¢333
Ced79
0e333
QCed79
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APPENDIX D

The Mechanism of the y+€ Deformation Induced Phaée Transformation

The pbjective of this discussion is to preéent data'that indicates
that the critical resolve shear stress (CRSS) acting on {111}Y planes
in (112)_ directions can dictate the variants of € martensite that can
form by plastic deformation in low stacking fault energy materials.

The results showed that slip and € martensite were observed

o only two of the expected four {lll}Y planes for the [100]Y

tensile axis specimen and on only one of the expeééed'two {lll}Y planés _
for the [Iide tensile axis specimen. There are.of course experimental
reésons that could cause these results. These are errors in cutting

the crystals (crystal orientation) and poor axial aiignment and during
tensile testing. The ideal tensile axes wanted ana éctual tensile axes
obtained in these single crystals were usually wiﬁhin two degrees of
each other. :The crystal orientation and Schmidt féétors for all the
slip systems bossible in these crystals are presented in Tables IX and
X. Great care was excercised to control the axial alignment of the
crystals. However this is always a difficult problem_when testing

small crystals; in this study the gauge length of the specimens were
between 10 ;nd 15 mm. With these problems in miﬁ&, it appears the fact
that slipvand therefore € martensite are not forming on specific {1-11}Y
planes, and the fact that the total volume fractioﬁ of € associated

with the [100]Y.is 1ess than that observed for other ofientations testgd

may be consistent with previous studies.



-78-

Gaunt and Christian47 have studied the f.c.c. to h.c.p. trans-
formation in cobalt and cobalt-nickel alloys. The f.c.c. to h.c.p.’
martensitic transformation occurs in this alloy gy Béth quenching below
the martensite start temperature and by elastic énd élastic strain
above this temperature. The h.c.p. phase exists as sheets'parallel to
{111} f.c.c. planes. An important observation was the fact that the

{111} f.c.c. plane that exhibited the presence of the h.c.p. phase

was not necessarily the {111} f.c.c. plane of highest resolved shear

stress. Kotual and Honeycombe48 studied tﬁe f.c.c. to h.c.p. (a»Z)
transformation in the Copper-Germanium system. 'Thisvtransformation

is also formed under stress and by thermal activétidn. They es£ablished
the orientation relationship as (lll)a i (0001)C and'[ilO]& li [llﬁO]g,
the same relationship is now clearly established for the Y>€ transformation
in low stacking fault energy Fe-Ni-Cr alloys. Kéfual and Honeycombe |
calculated the angle of tilt that should be obsefved-oh the specimen
surface if the ¢ phase was forming by the motion of-%=<112)a Shockley
partials on alternate {lll}a planes, which results iﬁ a half-twin shear
1/(2/2) as first proposed by Christian.49 Three différent tilt angles
associated wifh each of the three a/6 (112)a.shears on a {ill}a plane |

were obtained. The significant result obtained when the a+;’trénsformation

is induced by stress was the fact that for any given set of {lll}agplanes,

surface tilts associated with only one a/6 (112) shear was observed.

Other studies using Fe-Ni~Cr-C polycrystalline alloys tend to support
this behavior but add little to the basic understanding as to why the
state of stress tends to control which variant of the_h.c,ﬁ. phase that

forms.so’51 o ’



-79-

Copley and Kear52 have calculated the dependence of the width of
a dissociated dislocation on dislocation veloCiﬁy-and have shown that
the dynamic width of a Shockley pair is dependenf'oﬁ the CRSS on each
dislocation. When the leading_partial has the highest Schmidt factor
its posSible.for one partial to glide out of thé éfyétal leaving the
partial wiﬁh the lower CRSS behind. The crystal now has a large
intrinsic stacking fault.. For the case where the trailing partial
has the highest Schmidt factor the partials glide together due to the
apprlied stress. Continued motion of these partials would cause the
formation of an extrinsic stacking fault. If the energy of the
extrinsic fauit is enoughlarger than the entrinsic fault, it is
possible the extrimsic fault would not form in the crystal, and that
- plastic deformation in these low stacking fault energy Single crystals |
will be due to the motion of leading Shockley partical dislocation
that have higher Schmidt factors than the trailihg}shbckley particals.
A.figure frbﬁ Copley and Kear's papér52 showing how.the orientation
dependence of the tensile axis will control the spacing between Shockley
partials as a function of dislocation velocity is given ih Fig. 19.
In this figure D' is the force per unit length of_dislocation line,
v* is a velocity near the sheér wave velocity, V'fhg'dislocation
velocity aﬁd AX the spacing between Shockley partiai:dislocatidns.

Krishhé Seshan53 was ask to review the single crystal results
presented in this thesis to see if the observed selectivity of €
marteénsite formation as a function of the direction of the tensile
axis 1s consistant with Copley and Kears results and. previous studies

Qf the f.c.c..+ h.c.p. transformation already discusséd. Seshan
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concluded that if oniy one kind of stacking-fault'can form in the
material, these single crystal results were consistant with Copley
and Kears calcglations.52 Hirth and Lothe54 diséﬁss the formation
of stacking faults in f.c.c. metals. Throughout this discu;sion_
it becomes clear that extrinsic faults are rarely found in f.c.c.
metals. It is therefore possible that only intrinéic faults are
forming in fhis Fe-15Ni-15Cr alloy and a detailed SEudy of faults

could form the basis of an interesting research project.
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APPENDIX E

The Volume Fraction of € and o Martensite ésea Function of Strain

Gunther and Reed31 have measured the volume fraction of a and €
martensite in a polycrystalline Fe-18Cr-9Ni alloy &eformed at 77°K.
They observed that the volume fraction of € martensite increased
répidly to a maximum of 0.35 at 9% tensile strain and then decreases
to 0.10 at 267 tensile strain, the apparent strain at fracture. The
volume fraction of d at this strain was 0.90. Thgsé“results suggested
that the e»0 transformation was occurring. Howevérfﬁreedis and '
Kaufman20 have demonstrated that the e transformétion should not
occur in these Fe-Ni-Cr alloys at temperatures below 500°K. Also no

known electron microscopy studies have shown o martensite in a region
. i

of a specimen that was at one time clearly € martenéite. The variation
of € and o ﬁértensite as a function of strain andvtemperature is.of
considerable interest. A separate study was iniﬁiated to make
measurements of the volume fraction of € and o marténsite as a

function of strain to fracture in this alloy,45 but this work has not

yet been completed.

It appears that the quantity of € martensite prgéent in Fe—lSNi—lscr
single crystals increases from zero to 8-9 percent By~voiume in abouﬁ
lO% tensile strain. The quantity of € then remaiﬁsinearly constant in
specimen ﬁhat initially had the [§i3]Y tensile axis, but shows a sharp

decrease in the [IIZ]Y tensile axis specimens. This is shown in
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Fig. 17. This reduction of € is in agreement with polycrystal stainless

31 If plastic deformation in the

steel resulté of Guntner and Reed.
austenite is responsible for the y+¢ transforﬁation it is necessary to -
ask why the amount of € stoﬁs increasing even pqugh the amount of plastic
strain increases significantly. One possibility iéithat the é+Y
transformations begins to occur at a. rate equal to or greater thén the -
Y€ transformation. The popular mechanism for thg'Y+é transformation
is that of slip in the'austenite of every other (111)Y plane, thﬁs
forming the regular hcp structure. The €>y transformation could occur
in the reverse manner.
A second possibility is that as soon as the ﬁétrix is partitioned
by the e; the majority of plastié deformation, afuleast to thé strains
tested tb in this program, occurs on the basal plahe.of the new hcp
phase. Largé slip stepsat small tensile strains would support thié mode
of deformation. The surface of specimens tested to:15% tensile straiﬁ
at 242°K and 5% tensile strain at 185°K are presented in Fig. 18A and
B respectively. The results clearly indicéte largé élip
steps.
Oﬁe final piece of perhaps unconvincing data is_ﬁhe somewhat‘larger
then expeéted temperature dependence of the flow stress observed in thié
alloy when only the y»€ transformation occurs (242° and 273°K). Materials
with the fcc crystal structure usually exhibit a weak temperature .
dependence of the flow stress. .These crystals tesﬁedfat 273°K and 242°K
(a 31° temperature difference) exhibited a 2 kg/mrﬁ2 in;rease in the .

tensile flow stress with decreasing temperature. This is large for a
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fcc metal and suggests the possibility of a different mechanism for
slip in this alloy. This behavior is shown fér.;he [i]_.2]Y and
[§I3]Y ténsile specimens in:Fig. 14 and 15 res?edﬁifely.

Whatever the case may be, this phenomenon should be studied using
in situ tensile testing of thick fcils in the hiéh voltage electron
microscbpe.-'It is quite possible the study coula be carried out at
room temperature in this alloy. There is no reason to expect that the
€ phase will not form at room temperature in single crystal foils

although this point has not been checked.



TablevI. Calculated solutions that
magnitude of one shear is

produce {252}Y o martensite habit planes where the

Zero.

S SHEAR T CHEAR MAGNITUDE  MAGNITUDE = MAGNITUDE SHAPE CHANGE HABIT PLANE ANGULAR DEVIATION
S SHEAR T SHEAR SHAPE CHANGE  VECTOR NDRMAL  FORM K-S RELATIONSHIP Key¥
PLANE DIKECTION
(11 ®r-1 1 11 ¢ 1 0 ul 1 -11  .00000000 =.25210794 +28539530 =-.15804210  -.34059760 .2 1.14 (2)
-.54153353  =-,81154891
+82568616 - 47474377
(11 0 =11 1 ¢ 1t ¢ LI 1 -11 -.02000000 .26360641 28207180 -.09526621  =.34904589 1.23 .96 (2)
-.54832164  =.81829585
.83082353  =.45666246
€ 1 1 O 1-11 11 (=1 0 11 [ 1-1 11 .04000000 .23321870 .29224581 =.5711€323  =-.76299505 1.50 1.12 (1)
=.19516451  =.38754428
« 79729755 ~. 51734707
( 1 1 ® (-1 t 11 (-1 6 1) ¢ 1=1 1] .02000000 .24291902 .28802745 =.55060692  =. 78784512 .91 1.12 (1)
- 17784509  =.36438389
81151701  =.49651229
¢ 11 o0C-1 1 11 (=1 0 1 1-1 1} ,00000000 .25210794 .28539530 -.54153953  =.81154891 .39 1.16 (1)
-.15804210  =.34059760
82568616  ~.474743171
C 1 1 (-1 1 11 (=1 0 I 1-1 1] =.02000000 .26070952 .28432186 =.52605668  ~.83366441 .20 1.15 (1)
~.13588413  =.31663806 -/
] _ 83952360  -.45248645 ‘ ,
(1 1 0O =1 1 11 (=1 0 1 { 1=l 11 -.04000000 ' .26866393 = .28478504 =-.51026401  =.85387367 .61 118 (1)
- : : -.11160749  -.29295701 - '
.85274522  -.43020453
¢ 1 1 o (-1 1 11 €=1 0 11 { 1-1 1) =-.06000000 .27593192 .28672272 =-.49427364  -.87200101 1.00 1.21 (1)
-.08554141  -.26995998
86508742  -.40833302
( 1 1 00 t=1 1 1) (=1 0 1)( 1-1 1] -.08000000 .2824962¢ .29005020 -.47820031  =.BB8O0642 1.37 1.25 (1)
~.05808138  -.24797284
87632814  -.38723904
*Key: (1) (111) It (o11)_ ; foil] I [111]
Y ) Y o
(2) - (111) I (o11) ; [ro01] # [111]
Y a’ - Y a



Table II.

MAGNITUDE

Calculated two shear solutions that produce {252} o martensite habit planes.

S SHEAR T SHEAR MAGNITUDE  MAGNITUDE SHAPE CHANGE HABIT PLANE ANGULAR DEVIATION
S SHEAR T SHEAR SHAPE CHANGE  VECTOR NORMAL FORM K-S PELATICNSHIP  Key¥
PLANE DIRECTION

(1 1 o)t -1 1) 1 ot 1 -1)  .14000000 ~.29163118 ,26415648 -.08922845 . 17076391 1.19 .79 (2)
. ~.55010180 -.88389193
.83031698 ~.43540183

{1 1 9 -1 11 -1 11 «1" 11 .06000000 ~ .28091268 ~ .25663259 =.60424815 - .B093451% .40 T 1.49 (1)
: ~.05025460 -+ 21858294
79520981 -.49342209

1 1 01 “1 11 (- 1) - 1=1 11  .04000006 .27166559  .26555575 =.58311913 - .@81027732 40 1.35 (1)
-.08863132 - .321250217
.80753735 - . 48616656

1 1 0t -1 11 -i 1 =1 1] ..02000000 26203627 .27517099 -.56213502 -« 81099138 .39 1.2z (1)
-.12457413 - .33448317
.81760962 -+ 48001457

t 1 1 ot -1 1) -1 1t -1 11  .00000000 .2521079%¢ .28535530 ~-.54153953 -.81154891 .39 1. 14 (1)
: ~.15804210 -.34059760
.B2568616 ~. 47474377

(11 0t -1 11 -1 1) -1 1] =-.02000000 .24194201 .29615715 =-.52151179 -.81199165 .39 1.08 (1)
~.18507801 -.34582630
.83203062 -.47018479

11 0t -1 1) -1 1) {. 1=1 1] =.04000000 .23158463 .30739447 =.50217628 -.81234855 .39 .98 (1)
: ~.21777921 -.35034352
83689378 -, 46620730

1 1 0t -1 11} -1 1L -1 11 =-.06000000 .221070S6 .31905323 =.48361300 - e81264012 .38 .92 (1)
-.24427587 -.35428180
.84050447 - .46270989

t 1 1 0t -1 1 ~1 0t -1 11 =-.08000000 .21042825 .33108625 -.46586708 -.81288118 .28 .86 (1)
» - .26871546 -+ 35774339
.84306576 ~e45961272

€1 1 0 ¢ -1 11 ~1 uf -1 11 =.10000000 .19967786 .34345234 =.44B95701 -.81308262 .38 .81 (1)
C S E ~.29125188 ~.36080828 - :

, _ 184475437 -. 45685231

t 1 1 ot -1 11 -1 0 -1 1] -.12000000 .18883674 35611546 =.43288160 -.81325258 ° Y .17 (1)

: ' ' ~.31203824 -.36353983 .

LB4572197 ~.456437763

t 1 1 0yt -1 1) -1 vt =1 1! =.14000000 17791854 .36904406 =.4176255% -.81339723 .38 .13 (1)
~.33122224 -.36598880
.84609735 -.45214726

(1 1 0 -1 1) -1 1 «1’ 11 -.16000000 .16693432 .38221047 =-.40316378 -.81352132 .38 .69 (1)
' -.34894335 ~.36819627
84598907 -.45012729

t 1 1 o1 =1 11 (=1 1 -1 11 =-.18000000 15589315 .39559040 =~.38946478 -.81362853 .38 .66 (1)
~+36533138 ~. 37019585

«84%48812

~.44828970

_g8_



Table II. Continued.

S SHEAR T SHEAR MAGNITUDE MAGNITUDE MAGNITUDE <SHAPE CHANGE HABIT PLANE ANGULAR QEVIAT!?N Kev¥*
S SHEAR T SHEAR SHAPE CHANGE VECTOR NORMAL FORM K=5 RELATIGNSHIFP ey
PLANE DIRECTION
(-1 1 o0} 1 1«1 ¢ 1 O 1 I[ 1 1=1] «» 18000000 =.15589315 «39559040 =.36533138 =+ 37019585 .38 « 66 (2)
=.38946478 -. 81362853

«84548812 =~.44826970

(-1 1 00 1 1=1) ¢ 1 0 LT 1 1-=11} 16000000 =, 16693432 « 38221047 =.34894335 - ~,36819627 «38 « 69 (2}
. . =~.40316378  ~.81352132
.84598907  =445012729

(=1 1 0yl 1 1«1} € 1 0 L) { 1 1=1) «14000000 =.17791854 » 36904406 =.33122224 ~.36598880 .38 .73 (2]
-e41762555 -.81339723
84609735 -.45214728

(=1 1 o0l 1 1~1) ¢ 1 0 Lo 1 1-=1] »12000000 ~.18883674 +35611546 =.31203824 ~¢ 36353983 .38 « 77 (?)
. T =.43288160 -.81325258
«84572197 ~.45437763

(=1 1 0V 1 1=1] ¢ 1 O LI 1 1-=11} 10000000 =~,19967786 « 34345234 =-.29125188 -.36040828 +38 .81 (2)
-.44895701 -.81308262
« 84475437 -, 45685231

el 1 000 1 1=13 ¢ 1 C-1)y1L 1 1=11 .08000000 =~.21042825 «33108625 ~.26871546 ~.35774339 .38 86 (2)
~.46586708 ~. 81288118
+84306576 -e45961272

(=1 1 9y 1 1=-1) ¢ ¥ 0o LY 1 1-=-11 .06000000 =~,22107096 «31905323 =.24427587 =.35428180 .38 .92 (2}
~.48361300  =.81264012
84050447 ~« 46270989

(=1 1 000 1 1=1 ¢ 1 0 110 1 1=11} «04000000 =~.23158463 30739447 ~.21777921 ~+ 35034352 -39 .98 (2)
-.50217628 ~«81234855
«83689378 ~+46620730

.( -1 1. 00 C 1 1-12 ¢ 1 o L 1 i-=1] « 02000000 =~.24194201 «29615715 =.18907801 ~.34582630 «39 1,05 (2}
=.52151119 -.81199165

«83203062 ~.47018479

(<1 100 [ 1 1-17 {1 0 1 { 1 1=1] .00000000 =.25210794 .28539530 =.15804210  =.34059760 39 Lere- (2)
: : . ~.54153953  -.81154891 S
82568616 . =. 47474377

(=1 1 00 1 1«11 ‘l 0 1y 1 1 =11 =.02000000 =.26203627 «27517099 =.12457413 ~e33448317 39 1.23 (2)
~.56213502 & ~-.81095138
«81700962 -. 48001457

t=1 1 0 € 1 1=1) ( 1 06 11 1 1=11 =,04000000 ~,27166559 « 26555575 =,08863132 -32725027 « 40 1.35 (2)
~-.58211913 ~.81027732
« 807531735 —+48616656

(=1 1 0b([ 1 1=-11 ( 1 0 1){ 1 1=1) =.06000000 =-.28091268 .25663259 =.05025460 ~.31858294 .40 1.49  (2)
-.60424815 e 80934514
. 79520981 -, 49342209

¢ 11 o 1-1 1) ¢ 0 1 1){ 1=1 1] ~-,28000000 .26490374 .27227523 ~-.56827832  =~.B81079984 .39 1.26 (1)
. -.11425598 -+33248350

«B81486523 ~e48172435



Table

*¥Key

IT. Continued.
S SHEAR T SHEAR
1 OV 1=-1 11 ¢ 0 1 11 '1~-1L 1)
-0 0 1=1 17 € 01 DI 1.1 11
1 00 f 1=1 1) ¢ 0 1 1 1-1 11
1 olf 1-1 11 € 0 1 1 1=1 11
1) (111) 0 (o11) ; [o1I] |
(1) () 1 (on) ;5 [oa]
(2) (111), I (011); [10I]_ |

MAGNITUDE
S SHEAK

=+30000000

=+32000000

-~ +34000000

-+36000000

[iil]&

MAGNITUDE MAGNITUDE
T SHEAR SHAPE CHANGE

« 24114693 « 29701041
«21457950 » 32636666
+18597553 35948725
» 39557192

+ 15590833

SHAPE CHANGE HABIT PLANE ANGULAR DEVIATION

VECTOR

-.51998972
-+19138060
+83245670

~. 47266707
~a25944912
«84218288

- .42879541
-.31722717
+84587317

-.38948307
~.36530977
.+ 84548904

NORMAL

-.81202202
-+34619930
-+ 46985773

-.8127927¢
-+ 35044879
- 46077356

-« 81329282

T =e36420871

-+ 45376956

~.81362839
-e37019324
~+4482G211

.39

.38

38

.38

FORM K~S RELATIONSHIP
PLANE DIRECTION

1.05

.88

" 76

.66

Key*



Table III. Calculated two shear solutions that produced {252} twin related a martensite habits.

S SHEAR T SHEAR MAGNITUDE  MAGNITUDE  MAGNITUDE SMAPE CHANGE HABIT PLANE AMGULAR DEVIATION %
S SHEAR T SHEAR SHAPE CHANGE  VECTOR NORMAL  FORM k-5 RELATIONSHIP Key
' : PLANE DIRECTION

€ 1 0 1L 1 1=l € 0 1 1) 1 1«11 «,16000000 =.39912727 27993985 =.82166551 47762097 .39 1.18 (2)
. : » +55232436 81127190
14072523 33750128

¢ 1 0 DI 1 1-1] ¢ 0 1 1 1 1~11 =.18000000 =.35482363 25591349 =.79405752 +49409428 . .40 1.50 (2)
. .60603014 . 80925374
. 04690537 +31777228

t 1 0 I 1 1=1) ( 0 1 1) [ 1 1=1] =.24000000 .02803047 .26914863 =-.10264092  =.33016068 .39 1.30 (2)
. =.57507847  ~-.81357169
.81163391  -.48370182

t 1 0 DL 1 1=11 ¢ 0 1 L[ 1 1=1] =.26000000 .01913433 ,29731264 =.19219104  =.34633012 .39 1. 04 (2)

-.51645279 =-.81203264
«832€0519 ~. 46974296

{ 1 0 1YV{ 1 1-=11 ¢ 0 1 1 1 1-1) ~.,28900000 .07004022 .33162087 =.26974067 - =.35788534 .38 .86 (2)
-.46510932 -~. 81289076
+84315675 -.45948525

C 1 0 B C 1l 1-11 t 0 1 1)f 1 1 =11 -.30000000 .12352425 .37076472 ~.33363642 -.36629248 .38 i 7] (2}
-.41567650 ~. 81341466
.84€10861 -+ 45186991
(-1 0 1)[ 1=-1 1} ¢ 0 1 1} 1=1 1) «30000000 =.12352425 ,37076472 =.41567650 ~.81341466 .38 .72 (l}
~.33363642 = -.36629248
.84€10861 ~.45186991
fst 0 1{ 1-1 1) ¢ 0o 1 1 1=1 1) 28000000 =,07004022 ,33162087 =.46510932 -.81289076 .38 . 86 (l)
-.26674067 -.35788534
+84315675 -.45948525 )
{=1 02 101 .11 1} ( 6 1 L[ 1=1 11 °.26000000 =.01913433 ,29731264 -~.51945279 -.31203264 : .39 _ 1.04 (l)
. i . ; T T =.19219104 - e34633012 :
" .83260519 -, 46974296
(=1 0 VI [ 1=-1 13 € 0 1 N 1=-1 1) . 24000000 .02803047 ,26914863 =.57507847 ~-. 81057169 .39 1.30 (l)
~.10264092 ~.33016068
«81163391 ~.48370182°
(-1 0 L[ 1=-1 11 ¢ 0 1 I 1=i 1) .18000000  .35482363 .25591349 .60603014 . 80925374 «40 t.50 (l}
: ~.79405752 « 49409428
«04£90537 .31777228
(-1 0 1){ =1 11 € ¢-1 LI 1=1 1] . 16000000  .39912727 .27993985 55232436 .81127190 .39 1.18 (l)
-.82166551 «47742097

. 14072523 « 33750128

*Key: (1) (111-)Y I (011)a; [011] u‘[iilja'

(2) iy i (o11) 5 (101 | [o11],

-88-



Table IV. Measurements of the o martensite needle axis and habit Plane normal assﬁming'the;
habit plane is perpendicular to a {111}Y plane.

Unit Vector Defining the Long Axis of Unit Vector Defining the Interface Plane Arigle Between Intet-
Martensite Needles on the (I11)y Plane Normal for Martensite Needles on the (I11)y face Normal and
h b3 h k L (211)y Direction
-0.637981k2 0.12229693 - -0.76027835 - 0.50955508 0.80728565 -0.29773058 51.39
-0.6343300L 0.12805297 . =0,76238300° 0.51409345 0.80639265 -0.29229920 °'50.98
-0.64605652 0.10935841 -0.75541493 0.49927712 0.80913992 -0.30986280 52.30
-0.64019198 0.11878koL . =0.75897601 0.50677500 0.80781001 - -0.30103501 51.63
-0.62901910 0.13632438 -0.76534348 0.52057818 0.80503561 -0.28445743 50.39
-0.64387846 0.11287727 -0.7567551k 0.50208285 0.80865653 -0.30657368 52.05
~0.61447222 0.15840100 -0.77287322 0.537671k2 0.80098L26 - =0.26331284 48.81
-0.62LL66L4T 0.1k332271 -0.76778918 0.52603069 0.80381918 -0.277788L8 49.89
-0.74501901 -0.08318268 ~0.66183633 0.3340858L 0.81224830 -0.47816247 65.85
-0.74698L423 -0.08799094 -0.65899329 0.32966836 - 0.81174150 -0.48207314 66.19
-0.74554175 -0.08445573 -0.66108602 0.33291765 0.81211692 -0.47919927 65.9L
-0.73449311 -0.05839400 -0.67609911 0.35663221 0.81440580 -0.45777359 64,10
-0.7L4011221 -0.07143354 -0.66867867 0.34481964 0.81336579 -0.46854616 65.02
-0.7355k56k -0.06080464 -0.674TH100 0.35445632 0.81L22937 -0.45977305 64.27
0.09102861 0.74821292 -0.65718431 0.8114064T 0.32687015 0.48453632 6.40
0.10291886 0.75292631 -0.65000745 0.80998418 0.3158617L 0.Lgk122ky ST.2h
0.12874635 0.76263407 -0.63388773 0.80628224 0.29164351 0.51463873 9.07
0.1193036k 0.75916950 - -0.63986586 0.807733Lk 0.300546T4 0.50718670 8.ho
0.12282893 0.7604T7440 -0.6376454T 0.80720L488 0.29722946 0.50997542 8.65
0.12282893 0.760LTLLO -0.6376454T 0.80720L88 0.29722946 0.509975k42 8.65
0.10843235 0.75505982 -0.6L4662748 0.80926454 0.31072710 0.498537kk 7.63
-0.07606209 -0.66600086 -0.74206295 0.81294602 0.47234471 0.34060131 5.35
-0.0831463L 0.66185772 -0.74500406 0.81225203 0.47813285 0.33411917 5.84
-0.06187563 0.67413562 -0.73601126 0.81h14868 0.46066021 0.35348847: k.35
-0.06T769479 ~ ~  0.67082k92 -0.73851970 0.81368549 .. . .0.46546815 0.34821734 (S
-0.06769479 - 0.67082Lk92 _ =0.73851970 0.81368549 .0.46546815 0.3482173k (3
-0.06258547 0.67373371 -0.73631919 0.81k09kk2 0:4612L4782 0.3528L4660 ‘L.ho
h k 2
Specimen Normal -0.62452938 0.51327139 0.58865570 =+ 0.1°
Second Surface Normal 0.02682327 0.70555316 -0.70814917 +* 0.1°
Line of Intersection Between 0.7807972 0.4275636 0.4555712
Specimen Surface and Second Surface .

_68_



Table V. Shape change calculations that correspond to Fig. 6A, 6B and 6C. The specimen normal and
direction of fiducial line use in these calculations are respectively the [001] and [110]
The photomicrograph was rotated about the [110] [110]. and [001]. to show Y
that symmetrical solutlons exist. Y Y

Needle -~ Projected Measured Surface Magnitude = Direction of Habit
Code Deviation Surface Tilt used of Shape. Shape Change Plane Normal

of Fiducial Tilt for this Change h h
Line (degrees) (degrees) Calculation ‘ k k
(degrees) 1] 1

' ' . 0.125475 0.812

A 5.5¢0.2° 9.0t1° 10.0 0.223 -0.521830 0.333

0.844787 0.479

-0.140576 0.812

B -6.6+0.2° ' -11.0 0.277 0.551343 0.479

-0.822350 0.333

_ -0.562850 0.479

A 5.5%¥0.2° -9.,0t1° - 9.0 0.226 0.158440 0.812

: -0.811232 0.333

e , . 0.556964 g 0.333

B - © -6.6%0.2° - - 411.0 - - 0.250 -0.114648 . - 0.812

e S . o ‘ ' : 0.822586 0.479

0.521830 0.333

A -5.5¢0.2° 9.0¢1° 10.0 0.223 -0.125475 0.812

: 0.844787 0.479

: -0.551343 0.479

B 6.6t0,2° -11.0 0.277 0.140576 0.812

' 0.333

-0.822350

-.06—



Table_V. Continued.

_‘[ 6-

Needle Projected Measured Surface Magnitude Direction of Habit .
Code Deviation Surface Tilt used of Shape .Shape Change - Plane Normal .

~‘of Fiducial Tilt - for this Change . h . fn
'~ Line (degrees). (degrees) Calculation 'k k
(degrees) L1 1

-0.158440 0.812

A -5.5%0.2° -9.0+£1° -9.0 0.226 0.562850 0.479

' -0.811232 0.333

0.114648 0.812

B 6.6X0.2° 11.0 . 0.250 -0.556964 0.333

0.822586 0.479

-0.823889 .333

C 8.8t0.2° - 6t1° -6.0 0.238 0.136474 .812

' -0.550075 479

0.553593 479

D -7.2£0.2° 11.0 0.242 0.137058 .812

0.821432 .333

: _ . o ~0.824453 479

c 8.8t0.2° - 6£1° - -6.0 0.213 -0.090215 .812

' ~-0.558693 .333

: 0.55743 .333

D -7.2%0.2° 12.0 0.272 ~0.124679 .812

0.820802

479



Table V. Continued.

Needle Projected Measured Surface *. Magnitude Direction of - Habit
Code Deviation Surface Tilt used @ of Shape Shape Chang Plane Normal

of Fiducial Tilt for this - Change o h e h

Line (degrees) (degrees) Calculation ' k| Tk

o : (degrees) 1 L1

‘ 0.090215 0.812

C -8.8%0,2° -6£1° -6 "0.213 0.824453 0.479

' -0.55869 © 0.333

0.124679 0.812

D 7.2£0.2° 12.0 0.271 . =0.557439 0.333

’ ' 0.820802. 0.479

' ‘ -0.136474 _ 0.812

c -8.8t0.2° -6+1° ~-6.0 0.238 v 0.823889 . 0.333

' : -0.550075 0.479

_ -0.137078 - 0.812

D 7.2£0.2° 11.0 0.242 "~ ~0.553593 0.479

' 0.821432 ' 0.333

o -0.152874 0.812

. C 8.8t0.2° ' 6t1° - . 1.0 - 0.242 -0.815919 . 0.333

- ‘ C - : - 0.557589 : -0.479

_ , ~-0.132069 0.812

D 7.2%0.2° -12.0 0.304 0.548712 0.479

-0.825513 0.333

0.815919 ' 0.333

c -8.8+0.2° ' 6+1° 7.0 ‘ 0.252 0.152874 o 0.812

0.557589 ' 0.479

_ . ; , : : . =0.548712 0.479

D 7.2x0.2° _ -12.0 _ 0.304 0.132069 0.812

- -0.825513 0.333

_26—



Continued

Table V.
Needle Projected Measured Surface Magnitude Direction of Habit
Code Deviation Surface Tilt used of Shape Shape Change Plane Normal
of Fiducial Tilt for this Change h ' h
Line (degrees) (degrees) . Calculation 1k k
: - (degrees) 1 L1
-0.146879 0.812
E 6.5+0.2° 15°+2° 10.0 0.220 -0.547233 0.479
0.823992 0.333
. -0.546507 0.479
E 6.5£0.2° -15°+2° -11.0 0.276 0.144836 0.812
-0.824835 0.333

_€6_
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Table VI. Volume fraction of € martensite in single crystals tested
to 5% tensile strain. The error associated with these
measurements is *(.005.

Temperature °K

Tensile axis 185° C242° 273°
(213], 0.021 0.025  0.020
[112] 0.028 - -
Y

{110] 0.027 - -
Y

[100] 0.015 - . -
’Y .




TABLE Vil

Summary of volume fraction measurements for Fe—lSw/o Ni-lSw/o Cr
alloy tested to 5% tensile strain at 185°K

Symbol _ Variant [313] [112] [T10] {2001
. ot the KS orientatior - ) .
Relationship Tensile axis Tensile axis Tensile axis Tensile axis
CG. Cd . CO, ca
X] 1 (111)y |I(ilO)a; [1Io]y Ilv[ill]u 0.0072 0.0018 not observed
X1 2 [11oly # [T11]a 0.0033 0.0006 not observed Same
Xi 3 [T01]y ¥ [Til]a 0.0011 not observed not observed very weak
Xy & [Tolly # [111]e not observed not observed not observed peaks observed
X, S [01Tly I [T12]a  0.0137% =0.0006 not cbserved just above back-
X3 6 (0111 h {111 ] 0.0L21% 0.0019 not cbserved ground
B 1 (1I1)y 1(120)e; ([Toily ! [T11]a not observed 0.0132% 0.00L4
B [To1ly I [I11TJa  not observed 0.0056 0.0105*
B, [o11)y I} [111])a not observed not observed 0.0112%
| [o11]y # [T11)a not cbserved not observed 0.0032
| [120]y 1 [T11]a  not cbserved 0.0020 ~0.0003
B ¢ (1101y 1 [T11)a not observed 0.00k1 not observed
TOTAL o 0.067h 0.0298 0.0296 =0.002
. _ c, . ‘ c, ‘ c, c..
O 1 (111)y 1 (0001)e- not observed " not observed not FObser'yed 0.0102
® 2. (1T1)y 1(0001)e not cbserved 0.0194 0.0210 0.00L5
@ 3 (Ii1)y M(o001)e 0.021k4 0.0091 not observed not observed
@ L (11T)y 1 (o001)e not observed not observed not observed not observed
TOTAL ¢ 0.021k4 0.0285 0.0270 0.01h47
TOTAL o + ¢ 0.0888 0.0583 0.0566 0.0167

*

The majority of o martensite is always associated with the active austenite slip plene and girection.

_g 6._
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Table VIII.- Example of Calculations obtained by using PROGRAM LAUE to
: calculate the surface normal of a single . crystal using
five combination of Indexed poles from the same Laue back
reflection photograph.

Poigdiizi) r, cm Unit vector of specimen normal [unw]Y
(122 4.60° [0.02720366, 0.70525724, —-0.70842938]

(021) 3.89 _
(012) 3.82
(021) 3.89 [0.02952808, 0.70521071, -0.70838263]
(012) 3.82 :
(135) 3.21
(122) 4.60 [0.02873764, 0.70639197, -0.70723725]
(135) * 3.21 :
(012) 3.82
(122) 4.60 [0.02682377, 0.70555316, -0.70814917]
(021) 3.89 _
(122) 3.71
(135) 3.21  [0.02832692, 0.70577667, -0.70786784]
(153) 3.72

(122) 4.60




Table IX.

Schmid factors and measured directions of the tensile axis before and
the_[lOO]Y and [110]Y tensile axis specimens.

after testing for

*Actual

N e e N S N e )
|

**Actual Igeal “*Actual **Actual
Slip Systems . @ zero @ 4.75% {110] @ zero @ 5.0%

L Strain Strain Y strain strain

1 11)[1-10] .415202 .431676 0. -.011276 -.054441
1 11)[0-11] .012486 .020101 0. -.005506 -.025251
1 11) [-1 01] - -.402716 -.411575 0. .005770 .029191
1 11)[1-21] .246926 .260833 0. -.009689 -.046010
1 11) [-1-12] - -.225300 ~.226018 0. .000152 .002275
1 11) [-2 11] - -.472225 -.486851 0. 009841 .048285
-1 11)[1 10] - -.400955 ~.380137 0. .001174 .017465
-1 11)[1 01] - -.413330 ~-.397224 -.408248 -.402352 -.376961
-1 11)[0-11] 0 -.012375 -.017087 -.408248 -.403526 - -.394426
-1 11)[2 11] - -.470128 -.448809 -.235702 -.231620 -.207555
-1 11) [1~-12] - -.245781 -.239202 -.471405 -.465274 ~.445361
-1 11) [-1 -2 1] .224347 .209607 -.235702 -.233653 -.237806
-1 -11) [-1 1 0] .400770 .381047 0. .008957 .021061
-1-11) [0 11] -.001761 -.031438 0. .004596 .011725
-1-11) [1 01] - -.402531 -.412485 0. -.004361 -.009336
-1-11) [-1 2 1] .230368 .201846 0. . .007824 .018929
-1-11) [1 12} - -.233418 -.256299 . 0. -.000136 .001379
1-11)[2-11] - -.463786 -.458146 - 0. -.007689 -.017550.
1-11) {1 10] 415017 .432586 0. © . -.001145 -.015915
1-11) [-1 01] - -.413145 -.398133 -.408248 -.412482 -.415488
1-11) [0 11] 0 .001872 .034452 -.408248 -.413627  -.431402
1-11) [-2-11] - -.478139 -.479616 -.235704 -.237486 -.230694
1-11) [-1 1 2] - ~.237488 ~-.209971 -.471405 -.476955 -.488952
1-11)[1 21] 240691 .269645 -.235702 -.239469 -.258259

%[0.999763, -0.013002, o.0174531]Y
#%[0.997842, o.017615,.o.0632—59]Y

*[-0.705993, 0.708002, 0.017'524]Y
**%[-0.690949, 0.719926, 0.65542]Y

.-.L6_



Table X. Schmid factors and measured directions of the tensile akes before and after testing for the
[112]Y and [213]Y tensile axes specimens.

Ideal *Actual ~ *%Actual Ideal *Actual **Actual
Slip Systems [112] @ zero . @ 4.85% [213] @ zero @ 5.1%
S . Y Strain Strain Y strain strain
(1 11){1-10] 0. - -.000061 -.003031 0. -.001758 .003346
(1 11)[0-11] 0. -.001573 -.026786 0. ©.007037 -.030823
(1 11 [-1 01] 0. -.001512 -.023755 0. .008795 -.034169
(1. 11 [1-21]) 0. -.000943 -.017215 0. “¥ 003048 -.015864
(1 11) [-1-12] 0. -.001731 -.029179 0. : .009141 -.037523
(1 11 [-2 11} 0. '~.000838 -.011965 0. " .006092 -.021659
(-1 11[1 10] -.272166 -.256036 -.223984 -.349927 . -.346890 -.320341
(-1 11) [1 o011 .136083 .134620 .117870 .116642 .121964 .112263
(-1 11) [ 0-11] .408248 .390656 . .341854 466569 .- .468854 .432604
(<1 11 [2 11] -.078567 -.070099 -.061265 -.134687 -.129861 -.120134
(-1 11) [ 1-12] .314270 .303268 .265422 .336718 - .341109 .314579
(-1 11) [-1-21] .392837 .373367 .326687 .471405 .470970 .434713
(-1 -11) [-1 1 0] 0. _ -.032244 -.097820 174964 174226 .084397
(-1 -11) [0 11] .272166 .254524 .200229 .349927 .355685 .286172
(-1 -11) [ 1 01] .272166 .286768 .298049 .174964 - .181458 .201775
-1 -11) [-1 2 1] .157135 .128333 .059126 .303046 .305944 .213948
-1 -11)[1 12] .314270 ~.312515 .287681 .303046 .310120 .281717,
-1 -11) [2-11] .157135"- .184182  .228555 0. -.174421 -.232598 -
1-11) [ 1 10] -.272166 . -.288341 ~.324835 ~.174964 .004175 .067768
1-11) [-1 0 1] .408248 .422900 .439674 .291606 .294627 .348207
1-11) [0 11] .136083 .134559 .114839 .116642 .120206 - ,115609
1-11) [-2-11] .392837 .410635 .441389 .269374 .270805 .335328
1-11) [-1 1 2] .314270 ©.321849  .320148 .235702 .239504 .267784
1-11) {1 21) -.078567 -.088786 -.121241 -.033672 -.031301 -.067544
*[-0.384854, -0.433220, 0.814989]Y - *[-0.529029, -0.261995, 0.807147]Y

**[~0.349804, -0.495862, 0.7948_32]Y #%[-0.490865, -0.365358, 0.790927]Y

—86_
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Fig. 1. Lattice correspondence and lattice deformation
for the Y20 martensitic phase transformation in

iron alloys (after Bain7 and Waymanlo).
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Montage showing a large area transformed to € and o martensite.

The € cannot be seen because it is parallel to the plane of

the figure. The o appears as needles joining at straight

{llZ}a twin boundaries. There are no twins observable inside

the o martensite crystals.
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Fig. 3. Two surface analysis using the optical and electron microscopes.
The crystal was sectioned to expose the (Oli)Y and'(ill)Y
surfaces. This micrograph clearly proves the o martensite
geometry is acicular in this alloy. There are no twins

observable inside the o martensite crystals.
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XBL737— 1524

Fig. 4. The shape deformation due to a martensite plate.
Surface EFGH remains plane and tilted about EF
and GH. The scratch ABCD, originally a straight
line, remains continuous. The interfaces EFJI and
HGKL are undistorted and no line in these interfaces
is rotated by more than a small fraction of a degree

(after WaymanlO and Bilby and Christianzz).



Fig. 5.

-103-

Trace of
the (T11) plane

oo _Trace of fiducial line

~

\;\ Trace of transformed
line

e N ‘\\
Habit * "~

XBL737-1526

Sterographic projection showing how the J basis is defined,
the position of the normal to the tilted surface and habit

plane. All angles are positive as shown. (After Bowles

and Morton.23)
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XBB 747-4731

Gold shadowed carbon replicas of o martensite

needles cutting the (OOl)Y surface. The fiducial
lines used in shape change calculations are [110]

slip traces. The results of shape change calculations
from these electron micrographs are given in Table V.



Fig. 7.

| S

-105-

. UL

~ XBB 735-3369

°

Optical micrograph of (Ill)Y surface showing the deformation
induced o martensite needles bisecting (llO)Y directions.
This is a typical example of the microstructure used to

calculate the needle axis and habit plane normal.



Fig. 8.
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XBB 734-2477

Electron micrographs identifying the deformation induced €
martensite phase, showing the K-S orientation relationship
between Y(f)-e(h)-a(b) and revealing the structure of the
Y-£-0. interface, A is the bright field image. B is the dark
field image using_the (OIll)€ reflection, C is the dark field
image using the (200), reflection and D is the electron
diffraction pattern of the three superimposed phases.

/
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. XBB 737-4664

Fig. 9. Electron micrographs showing the deformations induced € phase
in a crystal containing no o martensite. In this example sheets

of € are laying on (ill)Y planes.
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) XBB 737-4665

Fig. 10. Electron micrographs showing that each o martensite needle pair
join at a {llZ}u twin boundary. Needles marked A and B are the

same orientation. The region marked C is the austenite.
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Sterographic analysis of Fig. 10 showing that the needles
A and B join at a (llf)a twin boundary.



Fig:

XBB 737-4790
12. Optical micrographs of a (lll)Y surface of a crystal
tested at 242°K showing (A). The slip line structure, (B)
same area after electropolishing, and (C) same area after
etching to reveal the € martensite. The circle over the

scratch placed on the specimen for a reference identifies
the same region of the crystal in each micrograph.
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Fig. 13. Stress-strain curves for each crystal tested at 185°K

to approximately 57% tensile strain.
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Fig. 14. Stress-strain curves for [112] tensile axis specimens

Y.
tested at 181°, 242° and 273°K.21’25
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tested at 188°, 242° and 273°K.21’25
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Three surface analysis showing (A) the (Ell)Y surface,
(B) the (Oll) surface, and (C) the (lll)Y surface of
a [213] ten81le axis specimen tested to 5% tensile

strain at 185°K.25
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Fig. 17. The variation of the volume fraction of deformation induced
€ martensite as a function of tensile strain and orientation

of the tensile axis.
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18. The slip line structure of (A) a [112]. tensile axis specimen
tested to 15% tensile strain at 242°K and (E) a specimen of the same
orientation tested to 5% tensile strain at 185°K. Note the large
slip steps in each of these crystals. The specimen tested at 185°K
transformed partially to o martensite.
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Fig. 19. Plot showing the dynamic separation of partial dislocations

as a function of resolved shear stress on the following and

leading partials for crystals with [lll]Ys [113]Y and [OOl]Y

tensile axes.



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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