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Abstract
The self-consistent interaction of high-frequency antenna-generated field
with low-frequency plasma motion is derived for multifluid dynamics and
magnetohydrodynamics. Field Hamiltonians and Poisson brackets are obtained,
for the lTow-frequency evolution of plasma, low-frequency field, and high-
frequency amplitude. Casimir functionals are combined with the Hamiltonians
to form Lyapunov functionals, yielding stability criteria. Application to

ponderomotive stabilization of unstable equilibria is discussed.
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Recent experiments on r.f. stabilization of the flute instability of
plasmas confined in mirror machines [1] ha?e stimulated new théqreti;a]
research to describe the nonlinear interaction of high frequency fields with
Tow frequency modes of the plasma [2-4]. Such a stabilization process, if
sucéessfuf, would allow the use of axisymmetric mirrors for plasma confinement,
implying simpler design aﬁd better transport propertieéﬂthah f&r minimum-B
mirrors. ' The chief aim of the theoretical work is to determine stability
criteria and the threshold intensity of r.f. field necessary to achieve‘
stabilization. |

‘The conventional description of the stabilizing effect of high frequency
field is based on consideration of jon drifts [5-7]. It is afgued that
stabilization is achieved when the ion ponderomotive drift balances curvature
and magnetic gradient drifts, so that the charge separation. produced by
unfavorable average curvature is reversed. This approach, however, ignores
the mutual interaction bétween the particles and‘fieids. The necessary

self-consistent treatment'is given in Ref. 8, for the system composed of

plasma, low frequency fié]d, and high frequency field. This system is
represented by a field Hamiltonian with ponderomotive term, and its associated
Poisson bracket. . |

" We shall use a Lagrangian action principle, averaged over the fast time
scale (the period of the applied antenna current), to derive the ponderomotive

Hamiltonian and Poisson bracket for each of two mocels: the multifiuid plasma
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and ideal magnetohydrodynamics. The Hamiltonian formulation in the Lagrangian
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description is converted to the Eulerian description. The resulting evolution
equations, for oscillation center densities, momentum densities and Jow
frequency electromagnetic field, involve ponderomotive forces and

magnetization current created by the r.f. field. The Hamiltonian formalism in
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the tulerian description is degenerate, i.e., there exist Casimir functionals,
whose Poisson bracket vanishes with any other functional of the Eulerian
dynamical variables. It allows the use of recently developed technigques [9]
that establish sufficient conditions for Lyapunov stability. The Hamiltonian
is combined with the Casimir functionals to form a Lyapunov functional, whose
local extrema in functional space are stable equilibria. By this method we
shall derive sufficient criteria for stability of plasma equilibria in the
presence of the r.f. field, and discuss the application of these stability
criteria to axisymmetric mirrors.

The system we consider has four components: first, the plasma, considered
as a continuous medium, whose stéte at time t is represented by the position
field ?(z°,t) (z° is the Lagrangian coordinate in some reference state, with
n°(z°)dz° particles in volume element dz°); second, the electromagnetic field,
represented by the vector potential K(;,t), with X an Eulerian spatial
coordinate (we choose the radiation gauge); third, the antenna, modeled by an
applied high-frequency current density ga(;)exp(—iut); finally, a
gravitational field -v¥(x) to mimic the unfavorable average curvature of the
magnetic field.

A compiete description of the dynamics is provided by the total Lagrangian
action, including the action of the plasma, of the electromagnetic field, and

of the antenna. Variation of the action with respect to the position field

‘¢(Z°,t) yields the Newton-Lorentz equations, and with respect to the potential

K(x,t) yields the Maxwell equations with plasma and antenna current sources.
Since the frequency w of the antenna field is typically of order of the

jon gyrofrequency, much larger than the rate y at which the flute instability

develops, a separation of time scales is appropriate. We represent the total

> (-]
motion r_ {2z ,t) of a particle as the sum of the low frequency motion

tot



Lr (z° ,t) of its oscillation center, and of the high frequency osc111at1on,
with amplitude r(z ,t) modulated at Tow frequency: rtot(t) = r (t) +
Re (;(t)exp( jut)]. - We use a similar representation for the field: ‘the vector
potent1a. A+ t( xst) is the sum of a slow (low frequency) component A and
of a h1gh frequency component of amplitude A Ktot(;,t) = ZS(;,t) +
Re[A(xft)exp(-idthé '
The action, expressed in terms of these variables, is expanded to second
order in the amplitudes and averaged over the fastAtime scale, assuming that
no resonance takes place. Terms of order y/w are neglected. The new form of.
the action S is the sum of three contributions: ~ : S
S =S ts - far v, - - A A b
The oscillation-center action is
) o, o %2 U T ot va. = ’
}Htfndz[%m% +(WbHCAJrvt)—W(Q)L (2)
a sum over spec1es 1s 1mp11c1t The slow- fxeld actton is

,fd*_fd X [(aA /at) /(8nc ) - (curT,As) /By] . , SR )

The ponderomotive”energy V collects terms in"the high frequency amplitude:
C g o A o > o - > L .
S&x [-(A ";‘A)(uz/]fﬂcz) + lcurl Al%/16n - Re(j,-A)/2c]. (4)
Here € is the hermitian (since we have excluded resonances) dielectric tensor

at frequency u. The equat1on satisfied by the high frequency f1e1d amp11tude

A obt a1ned by - sett1ng to zero the variation of V with respect to A, is the _

dr;ven wave equation

(uz/csz-A;-*cur1 curl A= -(4n/c)j,. =~ - (5)

N

TN



L,

It is important to note trat the dielectric tensor't, the wave solution ;,
the ponderomotive energy V. and the actions Soc and SS are functionals of
the fields ;c(z°,t) and XS(;,t). Thus, in the cold plasma approximation
adopted in this paper, the dielectric tensor is a local function [10] of the
oscillation center densities no(;,t) and of the slow magnetic fie]dlg(;,t),
which will be precisely defined later. The variation of the new action (1)
¥ith respect to its variables ;E and Ks provides the complete set of
Lagrangian equaticus for the system. The ponderomotive effects appear as a

g >

ponderomotive force Fp on an cscillation center, Fp(z°,t) = -v(aV/cno)
> >

-> -+ ) .
at x = rc(z°,t), and as a magnetization current density jm(x,t) =

-
curl(-sV/eB) in A~ -re's law. The ponderomotive potential and the

magnetization are {11]

sV/on_(X) = -[K" (s57an )-K] (¥/160c?), | (6)
- GV/GE'(;) = [R*—(atyag)' Kj (u2/16nc2). (7)

respectively. This Lagrangian description leads to a number of useful results
[8] and is appropriate for comparison with particle simulations, but for many
applications an Eulerian description is more convenient. We show that the
latter is provided by the appropriate Hamiltonian structure of the system.
Following standard proceduré [12], we derive from the expression (1) of the
action the fields 3&(z°,t) and 7(x,t), canonically conjugate to ;;(z°,t)

and KS(;,t). The Poisson bracket in terms of these variables is of course
the canonical one. The corresponding Hamiltonian is obtained as the Legendre
tranform of the Lagrangian, and is a functional of F;, E;,,K;,

and 7. Thus one finds the conjugate variables, ;;(z°,t) ='65/6;; =

-

n°[m3; + (q/c);;(;;,t)] and :(x,t% = 63/6(8;;/at) = (aAs/at)/4nC2, the

-+ > >

: > o R o o >
canonical Poisson brackets {;;(z°), pc(z 'Y} = Teslz-2"") and {As(x),w(x')} =
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? e{x- '), and the Hamiltonian [13] H V + fn°dz° [l'mrc + w(r )] +
fa3x 1 aK /ét; /8nc? + (curl AS) 2 18 +_zo Ud(no)l. It so
happens that H can be exbresse& entirely in terms of the Eulerian fié1ds and
that the Poisson bracket of any two of these fields is éxprésSib]é as a
function of themselves [14,15). The Eulerian dynamical fields for a cold ,
plasma are the cscillétibh Center densities ﬁé(x t) éffn‘dz°=6{;;: (2°,t)]
and flux densities g (x t) = fn dz° i- 6[x r (z°,t)] or velocities
H /ns, and the slow fields B = curl A and E = ¢ aA /at

In these Eu?erian'variables,'the Poisson bracket becomes the'SpenCer;‘ '
Kaufman bracket![14;15] énd‘the-Hami]tonién is‘the total energy: H =V + l
fd3x z°[a§$;m°u§ 4‘ncwo + Uc(no)] + fd3x (£2 + Bz)/Bn, whefé'y is now to be-
considered as a functional of the fields n, (X)'and E(x) This Hamiltonian
structure yields the evo]ut1on of any funct1ona1 F of the Eulerlan fields
according to dr/dt = {F,H}. Thus we find the complete system of equat1ows g
(speéiesi1abe? éuppressed)} ' ' '
m(sB/et * 0+ v0) = q(E *+ uxB/c) - v(¥ + dU/dn *+ eV/sn),
sB/3t = - ¢ curl E,* sn/at + v.(nu) = 0,

]aE/aL{ in whmch the ponderomot1ve

- > S
curl(B + 41&V/35B) = (4n/c)g qnu +C
forces and magnetization current appear, as deflned in Egs. (6), (7).

One important consequence of this Hamiltonian formulation is that it
allows the use‘bf Arno]d's?stability method [9,15]. This method produces
simple critéfia sufficient for stability of ceftaihtnoh§fatic equilibria, and
is genera1%zab1e to hbn]inéa? StabfTity analysis [9;17]1 It:éxpioiis'the
existence of Casimir functionals for degenerate Poisson brackets, in order o
constrict Lyapunov function$1s. We first discuss the two-dimensional
multifluid case, with B in the 2 direction. It is known [17] that a first

family of Casimir functionals is given by C, = fdxdy-z0 n o (Z),

o,
{ N
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where Zo = (w0 + Qo)/na,‘wo = Z-curl J; is the vorticity, 2, is

the signed gyrofrequency, and ¢, is an arbitrary function of its argument.
A second family of Casimirs is C2 = fdxdy (zo g,n, -V E)4n)¢(;),

where ¢ is an arbitary function of ;.

Our Lyapurov functional is the sum of the Hamiltonian and the Casimirs:
HC = H+ C] + CZ' The functional Hc can in fact be considered as a
Hamiltonian, equivalent to H since they generate the same evolution: for any
functional G, one has {G,H{={G,H_}.

The critical points of the Lyapunov functional Hc are equilibrium
solutions of the system. The first variation ¢H. vanishes for all
variations of the Eulerian fields, which provides the set of equilibrium
equations: £ = - vé;  BZ/An + BeV/sB + r, o do/dZ = 0;

mid = 2 x vzd2e/dz%; umul ¢ v+ eV/en + dU/dn * gf * ¢ - 2de/dT =0,
for each species. The functional derivatives of V are given by Egs. (6) and
(7), and the high freguency field ; is a solution of Eq. (5). It is easy to
check that the solution of this system is stationary: an/at:{n,H};{n,Hc}=0,
etc.

The equilibrium is linearly stable if the Lyapunov functional Hc is
locally a minimum at the staticnary point, i.e. if its second variation is a
positive definite quantity. The second variation, 52Hc, is the conserved
rnamiltonian for the mction linearized around the equilibrium solution where
5Hc vanishes, see, see Ref, 8. Consequently, when the quadratic form
GZHC is positive definite, it provides a norm which is preserved by the.
linearized equations; hence Lyapunov stability in terms of this norm is

implied for the linearized motion. Thus, for the two dimensional multifiuid

plasma case, the sufficient stability condition is




0 <%2‘62HC = ]d3x Zq mnlst + den/nl? + fd3x [(GE)Z + (68)21/4x
+ fd3x L, (5n)2(d20/dn2 - muz/n) + fd3x z§<5232d2¢/d22 |
*.fd x.fd [6B(§) 68(;') GZV/GBGB' + 2~*o sn(X) 63(?') 62V/6n6§'
£z en (X sn_y (K1) s V/én (R)engi (3" 1, o -
where 87 = (z cur] su QsB/B - Z cn)/n N
‘In part1cu]ar, the second var1at1on 62H ‘is positive definité if the

W2 < nd U/dn . 1f the equ111br1um 1s

equ111br1um flows are subson1c mu
such that d ¢/dZ2 > 0, and if the second variation of the ponderomotwve
energy V is pos1t1ve def1n1te The self- cons1stent mod1f1cat1on of the h1gh
frequenry f1e1d is the prys1ca1 process descr1bed by the second var1at1on of
V, which is g1ven exp11c1t1y by ,

-(16nc?/u?) 62V = fadx B¢ #2L R g’ ¢¥x' K*x)-Glx,x')- K(x'),

where 2.15 the Green s function of the operator T - czcurl /

eva]uated at equ111br1um, K = f*l) A ‘4]) _‘sB ae/aB g eho as/anU;
and'“(z) = 2(68)2 2 e/aB * I 6B eén_ 2 s/aBan . | |

We have prev1ousiy [8] shown that V is equal to the antenna inductive

~energy. This interpretation allows ohe to draw the important conclusion that

the se]f-consistent'modification‘of the fields is stabilizing if the antenna

inductance, in the presence of plasma, is minimum for the equilibrium

configuration. Note that the ponderomotive effects influence the stability,

not on]y be contr1but1ng d1rect1y to the perturbed energy, but a]so Qy ,
mod1fy1ng the equ111br1um, and therefore the functions ¢ } '

A 51m1lar ana]ys1s can be carr1ed out for the two- d1mens1onal
magnetohydrodynam1c‘mode1, as’ we outline br1ef1y Now ‘the Ham11ton1ah'is e
functiona] of the fiuid dens1 y n(x,y t) the magnet1c f1e1d B(x,y t), and the

velocity f1e1d u(x,y t) conta1ned in the x-y plane:

H=V+ fdxdy (4 mnu2 +ny+U+B /8n); The associated Poigson

(R
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bracket is that of Morrison and Greene (16]. The resulting evolution
equations are: an/at * v.(nu) = 0, aB/at *+ y-(BU) = 0, |

mn{a0/st *+ U-70) = - v(B%/8x) - Bu(sV/sB) - ny (v *+ dU/dn *+ oV/sn),

and the Casimir functional associated with the Poisson bracket is [9]

C = fdxdy n ¢(B/n), where ¢ is an arbitrary function of its argument Y=B/n.
The appropriate Lyapunov functional is, as before, Hc =H+ (., From 6Hc =0,
we obtain the stationary equilibrium equations: u=0; B/4x + &V/6B + d¢/dY = O;
¢+ &V/sn + dU/dn * o - Yda/dY = O. |

The linear stability cbndition obtained from 52HC > 0 is

0 < 2 6%, = SPx [mn(sur? + (68)%/4n + (sm)Pd%u/an? + (s1)2(8%/n)d%0/av?]

+ fd3x,fd3x'[6n(;)6n(;')62V/5han' + 68(;)68(;')62V/6868' s
Zén(;)GB(;')62V/6néB'], where 6Y/Y = 6B/B - sn/n. The equilibrium is
certain]y'MHD stable if the sécond variation of ¥ is positive definite, and if
the equilibrium is such that d2¢/dY2 > 0.

It is interésting to note the connection of the second variation of the
Lyapunov functional Hc with the aW variational principle derived in Ref. 8.
If one expresses the variations &n (etc.) in terms of the plasma displacement
g(x,t), i.e., &n = -v-(ng), 6B = -v'(Bg), and su = 6275t, then the condition
62HC > 0 is eguivq]ent to aW > O.
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