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Abstract 

The self-consistent interaction of high-frequency antenna-generated field 

with low-frequency plasma motion is derived for multifluid dynamics and 

magnetohydrodynamics. Field Hamiltonians and Poisson brackets are obtained, 

for the low-frequency evolution of plasma, low-frequency field, and high-

frequency amplitude. Casimir functionals are combined with the Hamiltonians 

to form Lyapunov functionals, yielding stability criteria. Application to 

ponderomotive stabilization of unstable equilibria is discussed. 

* This work was supported by the Office of Fusion Energy of the U.S. 
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Recent experiments on r.f. stabilization of the flute instability of 

plasmas confined in mirror machines [1] have stimulated new theoretical 

research to describe the nonlinear interaction of high frequency fields with 

low frequency modes of the plasma [2-4]. Such a stabilization process, if 

successful, would allow the use of axisymmetric mirrors for. plasma confinement, 

implying simpler design and better transport properties than for minimum-B 

mirrors. The chief aim of the theoretical work is to determine stability 

criteria and the threshold intensity of r.f. field necessary to achieve' 

stabilization. 

The conventional description of the stabilizing effect of high frequency 

field is based on consideration of ion drifts [5-7]. It is argued that 

stabilization is' achieved when the ion ponderomotive drift balances curvature 

and magnetic gradient drifts,' so that the charge separation produced by 

unfavorabl~ average curvature is reversed. This approach, however, ignores 

the mutual interaction between the particles and fields. The nece'ssary 

self-consistent treatment is given in Ref. 8, for the system composed of 

plasma, low frequency field, and high frequency field. This system is 

represented by a field Hamiltonian with ponderomotive term, and its associated 

Poisson bracket. 

We shall u~e a'l~grangian action prinCiple, averaged over the fast time 

scale (the period of the applied antenna current), to derive the ponderomotive 

Hamiltonian and Poisson bracket for each of two mori~ls: the multi~luid plasma 

and ideal magneto~drodynamics. The Hamiltonian formulation in the Lagrangian 

description is converted to the Eulerian description. The resulting evolution 

equations, for oscillation center densities, momentum densities and low 

frequency electromagnetic field, involve ponderomotive forces and 

magnetization current created by the r.f. field. The Hamiltonian formalism in 

- 2 -

\ 



the Eulerian description is degenerate, i.e., there exist Casimir functionals, 

whose Poisson bracket vanishes with any other functional of the Eulerian 

dynamical variables. It allows the use of recently developed techniques [9) 

that establish sufficient conditions for Lyapunov stability. The Hamiltonian 

is combined with the Casimir functionals to form a Lyapunov functional, whose 

local extrema in functional space are stable equilibria. By this method we 

shall derive sufficient criteria for stability of plasma equilibria in the 

presence of the r.f. field, and discuss the application of these stability 

criteria to axisymmetric mirrors. 

The system we consider has four components: first, the plasma, considered 

as a continuous medium, whose state at time t is represented by the position 

field r(zD ,t) (ZD is the Lagrangian coordinate in some reference state, with 

nD(zD)dzD particles in volume element dzD); second, the electromagnetic field, 
-+-+ 

represented by the vector potential A(x,t), with x an Eulerian spatial 

coordinate (we choose the radiation gauge); third, the antenna, modeled by an 
-+ -+ 

applied high-frequency current density j (x}exp(-iwt); finally, a , a 
-+ 

gravitational field -vo/(x) to mimic the unfavorable average curvature of the 

magnetic field. 

A complete description of the dynamics is provided by the total Lagrangian 

action, including the action of the plasma, of the electromagnetic field, and 

of the antenna. Variation of the action with respect to the position field 

;(ZO,t) yields the Newton-Lorentz equations, and with respect to the potential 
-+ 
A(x,t) yields the Maxwell equations with plasma and antenna current sources. 

Since the frequency w of the antenna field is typically of order of the 

ion gyrofrequency, much larger than the rate y at which the flute instability 

develops, a separation of time scales is appropriate. We represent the total 
+ D 

motion rtot(z ,t) of a particle as the sum of the low frequency motion 
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;~(ZO ,t) of its oscillation center, and of the high frequency oscillation, 
-+ 

with amplitude r(iO,tJ modulated at 
-+ -+ 

low frequency: rtot(t) = rc(t) + 

-+ 
Re [r(tJexp(-iut)], We use a similar representation for the field: ,th~ vector 

,-+ -+ 
potent i a 1 Atot (x ,t) is the sum of a slow n ow frequency) 

-+ 

comp.anent As and 

of a high frequencY'component of amplitude A: Atot(tt) 
-+ -+ = As(x,t) + 

-+ -+ . 
Re[A(x;t}€xp(-i~tr]; . 

The ac'tion, expres'sedin tennS of these variables, fs expanded to' second 

order in the amplitudes and averaged over the fast· time scale, assuming that 

no resonance takes _p1ace~ . Tenns of order' y/w are neglected. The new fonn of. 

the actitin S is the sum 6f thre~ tontrib~tions: 

The oscillation-center action is 

a sum over species is implicit. The slow-field action is 

~s = fdt fd3x [( c~s/at)2>(811C~) -. (curl, As)2/811] • 

The ponderomot'ive 'e'nergy V collects terms in the high frequency amplitude: 

3 -+* -+' 2 . . 2 '. -+ 2 . -+ok 4-
V = jd x [-(A :~'A)(w /1611c ) + Icurl AI /1611. - Re(ja'A)/2c]. 

(1) 

(2) 

(3 ) 

(4) 

Here t' is the hermitian (since we .have excluded resonances) dielectric tensor 
, . '. ". '. i 

at fre.quency w. The .equation satisf.ied ,by the high frequency field. amplitude 
. . " . : . 

-+ -+ 
A, obtained by sett.ing to .zerothe variati,on of V with .respect to At is the" 

driven wave equat~on 

(5) 

", ~' ... 
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~ -+ 
It is important to note that the dielectric tensor £, the wave solution A, 

the ponderomotive energy V, and the actions Soc and Ss are functionals of 
+ + + 

the fields rc(zO ,t) and As(x,t). Thus, in the cold plasma approximation 

adopted in this paper, the dielectric tensor is a local function [10] of the 
, ... 

oscillation center densities na(1,t) and of the slow magnetic field B(;,t), 

,J which will be precisely defined later. The variation of the new action (1) 

+ -+ 
with respect to its variables rc and As provides the complete set of 

Lagrangian eguatic'is for the system. The ponderomotive effects appear as a 
+ + 

ponderomotive force Fp on an oscillation center, Fp(zO,t) = -v(oV/on
a

) 
-+ + + + 

at x = rc(zO ,t), and as a magnetization current density jm(x,t) = 
+ 

curl{-6V/6B) in A[ ~re's law. The ponderomotive potential and the 

magnetization are [11] 

+ -+'k ~ + 2 2 
6 V / 0 n ( x) = - [A I (0 d an ). A J ((J / 161fc ), 

a a 
(6 ) 

(7) 

respectively. This Lagrangian description leads to a number of useful results 

[8J and is appropriate for comparison with particle simulations, but for many 

applications an ~ulerian description is more convenient. We show that the 

latter is provided by the appropriate Hamiltonian structure of the system. 
I 

Following standard procedure [12], we derive from the expression (l) of the 
+ ° ++ + ° action the fields pc(z ,t) and n(x,t), canonically conjugate to r (2 ,t) . e 

-+ + 
and As(x,t). The Poisson bracket in terms of these variables is of course 

the canonical one. The corresponding Hamiltonian is obtained as the Legendre 
+ + + 

tranfonn of the Lagrangian, and is a fun:tional of re , Pe,As ' 
+ + + 

and n. Thus one finds the conjugate variables, pc(ZO,t) =-oS/orc = 
° ~ + + -'> + -+ 2 

n [mrc + (q/c)As(rc,tlJ and 'If(x,t)· = 6S/o(aA/atl = (aAs/at)/41fc , the 
+ + 4+ + + +-'> 

canonical Poisson brackets {rc{zo), PC(ZOI)} = I 6(ZO_ ZO,) and {As(xl,w(x ' )} = 
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-+ ->- -+ ' J ° ° ~2 -+ I 6(X-X'), and the Ham"iltonian [l3] H:: V + n dz [~mrc + ljI(rc )] + 

fd 3x [(aAslot)2/811c 2 + (curl As)2/811 + 1: U (n)]. It so 
cr cr cr 

happens that H can be expressed entirely in'tenns of the Eulerian fields and 

that the Poisson bracket of any two of these fields is expressible a's a . , 

functiori of themselVes [14,15]. 
. . 

The Eulerian dynamical fields for a cold 1 

plasma are the oscillatfon center dens:iti'es no(x,t') =!nOdiO 6[;-;C(ZO ,t)) 
-+,-+ ' ~ -+-+ 

and flux densities 9
o
(x,t) = jnOdzO rc 6[x-rc{zO,t)] or velocities 

-+ -+ -+ -+ -+ -1 -+ 
Us=9s/ns' and the slow fields B = curl As and E = -c'oAslot. 

In these Eulerian variables, the Poisson bracket becomes the Spencer-

Kaufman bracket·[14,15] 

f d3x r [~n m l '+ n '¥ 
o 000 0 0 

and thE:, Hamiltonian i~ the total energy: H = V + 

+ U (n )] + /d3x (E2 
+ B2)/811~ wher~' V is now to be 

o 0 
-+ 

considered as a functional tif the fields n (x) and B(x). Thi~ Hamiltonian 
o 

structure yields the evolution of any functional F of the Eulerian fields 

according to dF/dt = {F,H}. Thus we find the complete system of equations 

(species ~abel suppressed)~ 
-+ 4' -+-+-+ 

m(aulat + U tvu} =q(E +uxB/C)'V('¥ + dU/dn + oV/on)" 
-" 

aB/at = 
-+ 

c curl E, - an/at + 
-+ 

y.(nu)=O, 

curn; + 4116V/oB) = (411/c)'r qn; + c-l:oE/at,' in which'the ponderomotive 
o 

forces and magnetization current appear, as defiried in Eqs. (6), (7). 
-

One important consequence of this Hamiltonian fonnulatfon is that it' 

allows the us€' of Arnold's stability method [9,16]. This method produces 

simple criteria sufficient" for stability of certain nonstatic equilibria, and 

, 

is generalizable t'o nonlinear stability analysis [9,17J~ Itexploi'tsthe t,~ 

existence of Casimir functi~nals for degenerate Poisson -brackets, in order to V 
construct Lyapunov functionals. We first disc~ss th~ two-dimensional 

multifluid case, with B in the z direction. ' It isler-own [17] that a fi'rst 

family of Casimir functionals is given by Cl = fdxdy r n ~ (Z ), 
a a 0 a 
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where Z = (w + r. )/n , w = 'I-curl ~ is the vorticity, r. is 
(] 0000 0 (7 

the signed gyrofrequency, and ¢' is an arbitrary function of its argument. 
(7 

-+ ... 
A second family of Casimirs is C2 = Jdxdy (r

o 
qona - 'Y' E/411}_(x), 

where 0 is an arbitary function of x. 

Our Lyapu~ov functional is the sum of the Hamiltonian and the Casimirs: 

.J Hc = H + C, + C2. The functional Hc can in fact be considered as a 

Hamiltonian, equivalent to H since they generate the same evolution: for any 

functional G, one has {G,Hf={G,Hc }' 

The critical points of the Lyapunov functional Hc are eguilibrium 

solutions of the system. Th(; first variation 6Hc vanishes for all 

variations of the Eulerian fields, which provides the set of equilibrium 

equations: ~ " - \'~; B2/411 + B6V/eB + L Q d1:>/dZ = 0; 
(7 

mnu = Z' x V'Zd 2.;,/dZ2; "1 ml + \jJ + eV/en + dU/dn + qi? + 1:> - Zd¢/dZ =0, 

for each species. The functional derivatives of V are given by Eqs. (6) and 
-+ 

(7), and the high frequency field A is a solution of Eq. (5). It is easy to 

check that the solution of this system is stationary: an/at=1n,H}={n,Hc}=0, 

etc. 

The equilibrium is linearly stable if the Lyapunov functional Hc is 

locally a minimum at the stationary point, i.e. if its second variation is a 

positive definite quantity. The second variation, 62Hc' is the conserved 

Hamiltonian for the motion linearized around the equilibrium solution where 

oHC vanishes, see. see Ref. 9. Consequently, when the quadratic form 

62Hc is positive definite, it provides a norm which is preserve<:l by the, 

linearized equations; hence Lyapurlov stability in terms of this nonn is 

implied for the linearized motion. Thus, for the two dimensional multifluid 

plasma case, the sufficient stability condition is 
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o (-2 62H = Jd3x L mnl6u + u6n/nl 2 + fd\ [(oE)2 + (06)2]/411 c cr _ 

+ Jd\ L: (on)2(d2U/dn2 - mu 2/n) + Jd3x L: (oZ)2d2~/dZ2 
a a 

+Jd3xfd\'[6B(x) oB(~') 62V/oB08' + 2'r on{x) oBex') 62V/on6B' 
a 

-+ -+ 2 -+ -+ 
+ L: ,6n (x) on ,(x'.) 0 V/6n (x)on ,(x')], 

00 0 a 0 a 
,"1 

where 6Z = {z·curl 6U'+ noB/B- Z on)/n. 

In particula~~ the second ~ariation 62Hc is po~itive deiinit~ if ihe 

equilibrium flows are subsonic: mu2~< nd 2U/dn2,if the equilibdum'is 

such that d2 <l'/dZ 2 > 0, and if the second variation of the p'onder'omotive 

energy V is positiv-e definite. The self-consistent modification of the high 

frequency field is the physical process described by 'the second variation of 

V, which is given explicitly by 

-(161fc 2/i)02V = fd 3x A*.'t(2).A-JJd3x d3x' K*{;)'G(;';')'Ki;'), 
<+ ' ~ 2, 2 2, 

where G is the Green's function of the operator £ - c curl /w " 

evaluated at 'eqUilibrium;; ;.t<1).;; t-(l) = 68 a~hB ~ L: 6n at/an, 
. c a a 

and ~2) = ~(oB)2 a2t/as2 + L: 68 6n c2~/a8an_. 
- a _ a a . -

We have previously [8] shown that V is equal to the antenna inductive 

energy. This interpretation allows one to draw the important conclusion that 
, . ' ' 

the self-consistent modification, of the fields is stabilizing if the antenna 

inductance; in the presence of plasma, is minimum for the equilibrium 

configuration. Note that the pondero'motive effects 'influence the stability, 

not only'be contributing directly to the perturbed energy, but also by 

modifying the equil ibrium, and therefore the functions ¢ • 
a 

~ 

A similar analysis can be carried out for the two-dimensional 

magnetohydrodynamic model, as'we outline briefly. Now'the Hamiltonian' is a 

functional of the fluid density n{x,y;t), the magnetic fieldB{x,y;t), and the 
-+ : ' 

velocity field u(x,y;t) contained in the ~-y -plane: 

H =- V + fdxdy (!z mnl + n'¥ + U + B2/8n). The associated PoiSson 
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bracket is that of Morrison and Greene [16J. The resulting evolution 

equations are: an/at + \,·(nii> = 0, aB/at + V'(BO) = 0, 

m n ( au fa t + u· 'iu) = - v (B 2 /8.,r) - B \' ( 6 V /6 B) - n \7 ('¥ + dU / d n + 0 V / 6 n) , 

and the Casimir functional associated with the Poisson bracket is [9] 

C = J dxdy n ¢ (B/n), where ¢' is an arbitrary function' of its argument Y=B/n. 

The appropriate Lyapunov functional is, as before, Hc = H + C. from oHc = 0, 

we obtain the stationary equilibrium equations: u=O; B/4w + oY/6B + d¢/dY = 0; 

r + 6V/on + dU/dn + ¢ - Yd~/dY = O. 

The linear stability condition obtained from o2Hc > 0 is 

o < 2 62Hc = /d3x [mn(ou,2 + {oB)2/4n + (6n)2d2U/dn2 + (oy)2(S2/nld2¢/dy2] 

+ Jd3x Jd3x'[6n(~)on(;' }62Y/onon' -t 6BC~)6B(~' )62Y/6B6B' + 

-+ -+ 2 
26n(x)6B(x')6 V/on6B'J, where 6Y/Y = 6B/8 - 6n/n. The equilibrium is 

certainly MHO stable if the second variation of Y is positive definite, and if 

the equilibrium is such that d2~/dy2 > O. 

It is interesting to note the connection of the second variation of the 

Lyapunov functional Hc with the ~W variational principle derived in Ref. 8. 

If one expresses the variations 6n (etc.) in terms of the plasma displacement 
-+ ' -+ -+ -+ 
s(x,t), i.e., 6n = -\"(ns), 6B = -\7'(B~), and 6U = O~/6t, then the condition 

62Hc > 0 is equivalent to ~W > O. 
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