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GENERAlJZED SOLUTIONS TO THE MINIMAL SURFACE EQUATION 

1. SINGULAR MINIMAL HYPERSURFACES 

In 1969 E. Bombieri-E. DeGiorgi-E. Giusti (B-DeG-G) proved that the (2k -i)-area of 

the :.cones 

M = ~(x.y)lx ERIc. y ERic .lxl=lyB 

is a minimum as k ~ 4. That was already known as being false for ic < 4. It was so proven 

that the co dimension one Plateau problem admitted singular solutions for higher dimen-

sions. 

B-DeG-G original proof consisted in approximating M by smooth hypersurfaces 

minimizing the (2k -i)-area. Those approximating hypersurfaces could not be graphs of 

functions. as M is not. That made their determination not too simple. 

What I want to show here is a 1983 result due to U. Massari and myself. consisting in 

proving that the cylinder MxR minimizes the 2k-area. for k ~4. as a consequence of the 

existence of a convenient family of graphs approximating it. 

To this problem consider the fourth degree polynomial 

The minimal surface operator 11 applied to P gives 

Since 

we get. for Ixl > ntl. 
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and the inequality goes into the opposite direction if Ixl <IYI. Since k ~ 4 is equivalent to 

B( 4k + B) - 16· 12 ~ 0, we obtain, for k :2: 4: 

MP(x,y) > 0 if Ixl > IYI, 

MP(x,y) < 0 if Ixl < Iyl . 

In other words, the polynomial P is a subsolution to the minimal surface equation in the 

open set Ixl > IYI and a supersolution in the open set lxl <Iyl, as k ~ 4! 

This differential property of the polynomial P is equivalent to the following varia

tional property of its graph (see [3], pp. 101-103): any 2k-dimensional hypersurface sit-

ting below the graph P and coinciding with it outside a compact subset of 

Hx,y) 11x1>lYll xR , 

has a 2k-area greater than the 2k-area of graph P. (Surely, the two areas are infinite, 

What I mean comparing them has to be intended as the area comparison of the two por-

lions of hypersurfaces contained in the compact region where they are different.) The 

same fact is true for 2k -dimensional hypersurfaces sitting above the graph P and coincid-

ing with it outside a compact subset of 

consider now, for p> 0, the omotethie 

p:R2k +1 -) R2k+l 

(x,y,t) (px,py,pt). 

The hypersurface graph P is transformed by p into the hypersurface 

graph Pp 

where Pp is the polynomial 
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The hypersurfaces graph Pp have the same variational property as graph P and they tend 

to the hyper surface 

M x R, as p -) +00 . 

Therefore, the 2k -area of M x R has the following minimum property: any hypersurface, 

sitting in 

Hx,y) 11x1~IYllx(O,+oo) 

and coinciding with M xR outside a compact subset of R2k x (0,+00), has a 2k-area greater 

than the 2k -area of M x R. Similarly, any hypersurface, sitting in 

Hx ,y) 11x1~IYB x (-00,0) 

and coinciding with M x R outside a compact subset of 

R21c X (-00,0) , 

has a 2k -area greater than the 2k -area of M x R. 

Since M x R is a cylinder, that proves that M x R minimizes the 2k -area, which surely 

means that M minimizes the (2k -I)-area. 

Another approach for the approximation problem is the following: the "finite" 

cylinder 

can be approximated by graphs of solutions to the minimal surface equation. 

Consider in fact the Dirichlet problem for the minimal surface equation: 

(
Ill (x ,y) = 0 for 1x12+1Y12 < 1 

I (x ,y) = Pp(x ,y) for 1x12 +1Y12 = 1 . 

This problem has a unique solution I p satisfying 
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f p(x,y) ~ Pp(x,y) ~ 0 if Ixl >Iyl, 

f p(x,y) ~ Pp(x,y) ~ 0 if Ixl < IYI· 

Therefore 

graph f p --+ (M nB) xR as p --+ +00 , 

which is sufficient to conclude that M minimizes the (2k -I)-area. 
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2. GENERAIJZED ~LUTIONS 

In order to make as natural as possible the definition of generalized solutions, it is 

convenient to look at regular solutions to the minimal surface equation (m.s.e.) as codi

mension one minimal manifolds. That is, if n is an open set of Rn and f E ce(O) is a solu

tion to the m.s.e., we consider hypersurface (codimension one manifold) in Rn+I given by 

the graph of f 

graph f = ~(x,f (x) I x E O~ . 

As we already said in Lecture 1, graph f is not only a manifold of zero mean curvature 

but it minimizes the n-area with respect to local modifications contained in Ox R. 

In Lecture 1 we have also proved the existence of singular minimal hypersurfaces. as 

are the cones 

Hx,y) Ix ER" ,y ER" ,1x1=lyl~ , for k~4 . 

It is then useful to refer to a definition of minimal hypersurface, covering the singu

lar cases as well as the case of regular manifolds. A definition satisfying such a require

ment was given by DeGiorgi in 1960. 

(DeGIORGI) DEFlNITION OF MINTIlAL HYPERSURFACES: an n dimensional minimal 

hypersurface is a closed subset M of an open set A of Rn +1 with the following property. 

for all Z EM there exists a positive real number p and a Lebesgue measurable set E of 

Rn+I s.t . 

MnBp(z) = aEnBp(z). 

where aE is the boundary of E and Bp(z) is the ballRERn+lll~-zl<pL 

An(aE nBp(z» ~ An (aG nBp(z» . 

(1) 

(2) 

where G is any other Lebesgue measurable set with (G-E) u(E-G) CCBp(z), and An is 

defined by 
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To understand where An comes out from, recall that if BE is sufficiently regular for 

the divergence theorem formula to hold 

J div ¢(t;)dt; = J ¢·v(t;)dHn (t;) , 
E DE 

where v is the exterior unit normal vector to BE and Hn is the n-dimensional Hausdorff 

measure in Rn+1, then 

What is actually true for graph f, when f is a solution to m.s.e., and the cones 

~(x,Y)lxE:Rk,YE:Rk,lxl=lyl~ when k~4, is that they are minimal hypersurfaces in 

DeGiorgi's sense (see [3], pp. 101-103 and pp. 146-150). 

The aim of this lecture is to show how one can get the singular minimal hypersur-

faces as limits of the regular ones. 

To this purpose, remember what was done at the end of Lecture 1: the finite 

cylinders 

were proven to be limits of graphs of solutions to the m.s.e. Essentially the same argu-

ment can be used to prove the following 

THEOREM. The cylinder constructed over any minimal hypersurface is locally the 

limit of minimal graphs. 

PROOF. Being that our statement is a local one, we can assume the minimal hyper-

surface to be the boundary of a Lebesgue measurable set E, all over a given open set 

o c Rn. Let us consider now any ball B cc 0, s. t. 

Hn - 1[aB n aE] = 0 . (4) 

.. 
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This condition does not bother us, since the Hn - 1 I fJE is locally finite in O. Consider now 

the Dirichlet problem for the m.s.e. in B with boundary values 

P on 8B n E , -P on 8B - E . 

The family U pl of solutions to this problem is compact with respect to the convergence 

a.e. in B (we do accept -00 and +00 as limit values). A detailed proof of this fact and of 

other facts used here will be presented in Lecture 3. There exist then sequences Pi l' +00 

s.t. U Pi l,- has a limit a.e. in B. 

Put Ii =1 Pi and 

We claim that the boundary of P is a minimal hypersurface in B and that P coincides with 

Eon aBo Therefore also the set 

(E-B)uP 

has minimal boundary in O. Since a minimal boundary is analytic except for closed sets 

which cannot disconnect it, the analytic continuation applies to get P = En B. One simi

larly proves that 

These two facts give to 

graph / j """*(8EnB)xR . • 
What we shall do now is to investigate the properties of: 

GENERALIZED SOLUTIONS TO TIlE V.S.E.: a Lebesgue measurable function 

g:O"""* [-00,+00] , 

is called a generalized solution to the minimal surface equation if the set 
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E = ! (x . t) I x E: l1 . t < g (x ) l 

has minimal boundary in (} x R. 

We shall refer to the part of the boundary of E contained in (} x R as the graph of g 

(graph g). 
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3. MINIMAL HYPERSURFACES 

We recall the main properties of minimal hypersurfaces that will be used to study 

generalized solutions. 

MONOTONlCITY THEOREM. If E is a measurable set whose boundary is a minimal 

hypersurface in the open set 0 of Rn +1, then the real function 

is non decreasing for p E: (0, dist (x ,aO)). 

BOUNDS FOR THE n-AREA. Since aE is a minimal hypersurface, the following inequal-

ities must hold: 

An (aE n Bp(x)) ~ Hn (E n aBp(x)) , 

An(aE nBp(x)) '::?! Hn(aBp(x) -E) . 

If c.>n+l is the measure of the unit ball of R n +1, we have 

therefore, (5) and (6) imply 

If x is a regular point of aE nO, then 

This will give 

(5) 

(6) 

(7) 

(8) 

(9) 

for all regular points x E: aE nO and p E: (0, dist (x ,aO)). The inequality (9) remains valid 

for singular points of BE n 0, because they all are limit points of regular ones. 

Inequalities (5) and (9) imply 
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(10) 

for x E: aE nO and p E: (0, dist (x ,a~)). Similarly (6) and (9) imply 

p-Cn+l) meas (B (x) - E) ~ c.>n . 
p n+l 

(11) 

DeGIORGI'S REGULARITY THEOREM 

If aE is a minimal hypersurface in 0 and there exists a tangent cone at x E: aE nO, C·) 

then x is a regular point for aE. C··) 

EXISTENCE OF TANGENT CONES 

Geometric measure theory arguments prove the existence of tangent cones for An-

almost all points of aE nO. This, together with DeGiorgi's regularity theorem, implies that 

the singular part of aE n 0 must be closed and have An -measure equal to zero. Inequality 

(9) will then imply that the singular part of aE n 0 must have Hausdorff n-dimensional 

measure equal to zero. 

FURTHER REMARKS ABOUl' SINGUlAR POINTS 

If there exists a minimal hypersurface in Rn +1 with a singular point, then there must 

exist a singular minimal cone in Rn+1 . 

If a minimal singular cone of R n +1 has singularities outside its vertex, then there 

must exist minimal singular cones in Rn. 

SIMONS' THEOREM 

There exists no minimal singular cone in R7. 

Footnotes (t) and ( .. ) appear at the end of this paper. 
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FEDERER'S REMARK 

The singular part of a minimal hypersurface must have codimension greater than or 

equal to 7. That is. the Hausdorff s-dimensional measure of the singular part of an n-

dimensional minimal hypersurface. is zero for all real s > n -7. 

BOMBIERI-GIUSTI'S srRONG llAXI1WM PRINCIPLE 

Assume E to be the set below the graph of a generalized solution 9 : 0 ~ [ -00. + 00]' If /.I 

is the exterior unit normal vector to the regular points of BE n (OxR). we have 

/.In+l ~ 0 . (12) 

(13) 

where !:l is the Laplace operator over BE and c 2 is the sum of the squares of the principal 

curvatures of BE. Bombieri and Giusti were able to show that (12) and (13) imply 

inf /.In+l > 0 or /.In+l I Bp(z) = 0 • 
Bp(z) 

whenever x E: 0 x Rand p < 'l(n) dist (x .BO x R). for a convenient choice of 'l(n) E: (0.1). 

All results stated in this lecture can be found in [3]. Their first proofs appeared in 

[4].[5].[6].[7]. and [8]. 
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4. FlRST APPIJCATIONS OF GENERAIJZED SOLUTIONS 

Let 9 be a generalized solution to the m.s.e. in an open set of 0 c Rn . As a conse-

quence of the strong maximum principle due to Bombieri and Giusti, the following 

theorem can be proven (see [5] or [3] pp. 218-220). 

SfRUCTURE THEOREM:: For any given generalized solution g: 0 --+ [ -00, +00], there exist 

three subsets G,P,N of 0, with the following properties: 

(i) G is an open set, giG is real analytic and a solution to the m.s.e., 

(ii) P is a Lebesgue measurable set with minimal boundary in 0 and 9 I p = +00, 

(iii) N is a Lebesgue measurable set with minimal boundary in 0 and giN = -00, 

(iv) 0 = GupuNu(apnBNnO), 

(v) 9 is continuous at all points of 0 - ap n aN. 

This structure theorem has many quite interesting consequences when applied 

together with the following compactness property of generalized solutions: 

COMPACTNESS TIlEOREM: For any increasing sequence !OJ l of open sets and any 

sequence g,: OJ --+ [ -00, +00] of generalized solutions to the m.s.e., there exist an increasing 

sequence of integers j (s) and a generalized solution 

with 

g: 0 = lIOj --+ [-00,+00], 
J 

gj(S)(x) --+ 9 (x) , for almost all x E: 0 , 

This compactness property is a straightforward consequence of the analogous pro-

perty for hypersurfaces with equally bounded measure (see [3], pp. 70-71). 
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1st APPlJCATION: DIRICHLET PROBLEM FOR THE M.S.E. IN AN UNBOUNDED CONVEX 

DOMAIN DIFFERENT FROM A HALF SPACE 

Let n be the intersection of at least two half spaces and cp: an -l R a continuous func-

tion . 

For any P > 0 let gp be a solution to the m.s.e. in!x E: n Ilxl <pj satisfying 

g p(x} = ~(x) , whenever x E: an , Ixl = p . 

Consider a sequence Pj'f'+oo such that 

gPj(x)~g(x), for almost all xED . 
J 

Consider now the set P =!x EOlg(x}=+ooj . We want to show that P must be the 

empty set. If not, P should have not only minimal boundary in 0, but also minimal boun-

dary in R n , as a consequence of the convexity of D. But this would imply P = halfspace, 

as we will show in the next lecture. This would imply 0 = halfspace, which is the case we 

have excluded by hypothesis. Then P = ¢ and the same can be said for N. The structure 

theorem will then say 

n=G 

or g is real analytic in 0, and a solution to our Dirichlet problem. 

2nd APPlJCATION: REMOVABLE SINGULARITIES FOR CLASSICAL SOLUTIONS TO THE M.S.E. 

Assume 0 to be an open set of R n and X a closed subset of n with 

Assume 

f:O-X-lR 

to be a classical solution to the m.s.e. 

It makes sense to ask whether f is a generalized solution to the m.s.e. in 0 itself, f 

being defined almost everywhere in it. 
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A non difficult calculation using the hypothesis 

and the definition of Hausdorff measure, shows that f is actually a generalized solution to 

the m.s.e. in O. The values +00 or -00 can be given to f only in points x EX; therefore, the 

sets P and N must have measure zero. But a set with minimal boundary is either of posi

tive measure or empty, then 

P=N=¢. 

The structure theorem applied to the present case will then give 

0= G, 

that is, f is analytic in 0 and a solution to the m.s.e. over there. 

.. 

eo 
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5. BERNSTEIN'S THEOREM 

In 1912 Sergei Bernstein published the following result: 

if f: R2 -+ R solves the m.s.e. then V f = constant . 

. ., 
In 1957 J.C.C. Nitsche was able to connect the validity of Bernstein's statement to that of 

Liouville's theorem, so after 1957 Bernstein's theorem is as true as the fact that a 

bounded harmonic function defined in the whole R2 is necessarily constant. 

In 1962 a new story, having Bernstein's theorem as protagonist, was started by W.H. 

Fleming. k:. J.C.C. Nitsche had given the most elementary and most two-dimensional 

proof of Bernstein's theorem, so W.H. Fleming gave the most sophisticated one, 

apparently almost independent of dimension. 

Fleming asked the question: are there measurable sets E With minimal boundary in 

R n , other than the halfspaces? 

FLEMING FUNDAMENTAL REMARK. If E has minimal boundary in Rn , then also 

has minimal boundary in Rn for all p > o. 

Since the family of measurable sets 

is compact, there exist sequences Pjt+ oo such that 

where E"" is again a measurable set with minimal boundary in Rn. Because of its origin 

E"" must be a cone, say 

E~ = (E~)p = ~x rcRn !px rcE~l . for all P>O. 

A cone that has to be regular at its vertex is necessarily a halfspace. 
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If Eoo is a halfspace, then 

for all positive p, and 

We would then have 

Assuming 0 E: BE, and recalling that 

is non decreasing and greater than or equal to CJn-lo we can conclude 

for all positive t. This implies E itself must be a cone. If 0 is a regular point for BE then 

E must be a halfspace. 

What we have proven is: if E and Eoo are regular at 0, then E must be a halfspace. 

W.H. Fleming was able to prove that there are no minimal singular cones in R3. 

Therefore, for n = 3 Eoo is always regular at o. The above argument proves then that there 

are no subsets E c R3 with minimal boundary. regular at 0 and different from a halfspace. 

In particular. there cannot be non-trivial solutions to the m.s .e. in R2 (Bernstein's 

theorem). 

We will see in Lecture 6 how the non existence of minimal singular cones in R S actu-

ally implies the validity of Bernstein's theorem for functions of three variables. F.J. 

Almgren. Jr., proved the non existence of minimal singular cones in R 4
, J. Simons 

extended such result to R7. Therefore . Bernstein's theorem in the stronger form we have 

presented is valid in the ambient space R7. 
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The validity of BERNSTEIN'S STRONG THEOREM is stopped in RB by the fact that 

(x ERBI xf +x~ +x~ + xi = xg +x~ +x? +x« ~ 

is a minimal boundary. 
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6. EXISfENCE OF NON-LINEAR ::DLUl10NS TO THE M.S.E. IN THE WHOLE SPACE 

Assume 

to be a generalized solution to the m.s.e. For allp > 0 the function 

is a generalized solution too. 

Assume now p /t+ 00 to be chosen in order to have 

Assume 9 (0) = 0 and 0 to be a regular point for graph g; Fleming's remark would irnmedi-

ately give, for n ~ 6 

graph 9 = hyperplane. 

Observe that, in order to get 0 to be a singular point for graph 9 '"'' we must have 

graph goo = cylinder; therefore, its horizontal cross-section would provide a minimal 

singular cone in R e. This proves, in particular, that the existence of a non trivial general-

ized solution to the m.s.e. in R n implies the existence of a singular minimal cone in R n 

itself. This remark, together with Simons' result about minimal cones, extends the vali-

dity of Bernstein's theorem to generalized solutions of seven independent variables. 

An equivalent formulation of this result is the following: for n ~ 7, given any sequence 

of generalized solutions to the m.s.e., with 

then 

• 

.. 
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for almost all x belonging to a convenient halfspace. On the contrary, in RB we can try 

the following: for any given p > 1, consider the unique solution f p to the m. s. e. in 

equal to a convenient positive real number M (P) on 

and to -M(p) on 

The value M(P) is determined by the requirement 

f p(l,O, .. . ,0) = 1 . 

The function f p must be, for symmetry reasons, strictly positive for Ixl >Iyl and strictly 

negative for Ixl <1Y1. If Pi'~+oo is chosen in order to have the existence of 

for almost all (x, y ) EO. RB, we get 

f",,(x,y) ~ 0 , for Ixl>lYl . 

We cannot have 

f ... (x,y) = 0 , for all (x,y) , 

nor 

If",,(x,y)1 = +00 , for all (x,y) , 

because 

f ".,(1,0, ... ,0) = 1 . 

We have so obtained a non trivial generalized solution to the m.s.e. in RB. Such a solution 
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is a classical analytic solution over a convenient open non empty set [} that is not neces

sarily equal to RB. In other words the solution f 00 can assume the values +00 and -00. 

In order to have a classical solution in the whole R B, recall the way indicated by 

Bombierii-DeGiorgi-Giusti: the function 

is a subsolution to the m.s.e. where Ixl >IYI and a supersolution where Ixl <IYI. There exists 

now another function G: RB ~ R that is a supersolution if Ixl > wi and a subsolution if Ixl < wi. 

Moreover, G satisfies 

O~ F(x,y)~ G(x,y) , for Ixl>lyl, 

G(x,y)~F(x,y)~O, for Ixl<wl. 

The solution Fp to the m.s.e. in Bp with the boundary values F on aBp, satisfies 

IF(x,y)I~IFp(x,y)I~IG(x,y)1 , for all (x,y). 

Therefore, any convergent sequence !FpjL with Pj 'r+ 00, provides a classical non trivial 

solution to the m.s.e. in RB. 
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FOOTNOTES 

(*) 

A tangent cone at x ~ a E n Q is a Lebesgue measurable subset C of Rn + I, such that 

(i) Y ~ C, A> 0 => AY ~ C, 

(ii) there exists a sequence of positive real numbers Pj' converging to zero, such that 

(**) 

in the measure theoretic sense, i.e., 

liIfl meas [(Ej - C) u (C - Ej )] n K = 0 , 
J 

for all compact subsets K of Rn+1. 

x is regular for aE if there exists a positive number P such that 

is the graph of a real analytic function defined over an open set of Rn. 
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