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ABSTRACT 

Elastodynamic Stress Intensity Factors 
of an Interface Finite-Width Crack 

Huey-Ju Pearl Yang 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 

and 

David B. Bogy 

Mechanical Engineering Department 
University of California, Berkeley 

Many applications in industry utilize a layered elastic structure in which a relatively thin layer of one 
material is bonded to a much thicker substrate. Often the fabrication process is imperfect and cracks 
occur at the interface. 

This paper is concerned with the plane strain, time-harmonic problem of a single elastic lay,er of one 
material on a half space of a different material with a single crack at the interface. The derivation of the 

. required Green's functions for dilational and rotational point sources in the uncracked layered half space 
are outlined here. These functions are used with the appropriate form of Green's integral theorem to 
derive the scattered field potentials for arbitrary incident fields in the cracked layered half space. These 
potentials are then used in turn to reduce the problem to a system of singular integral equations for 
determining the gradients of the crack opening displacements in the scattered field. The integralequa
tions are analyzed to determine the crack tip singularity, which is found, in general, to be OSCillatory, as it 
is in the corresponding static problem of an interface crack. For many material combinations of interest, 
however, the crack tip Singularity in the stress field is one-half power, as in the case of a homogeneous 
material. In the numerical work of this work attention is restricted to this class of composites and the 
integral equations are solved numerically to determine the Mode I and Mode II stress intenSity factors as a 
function of a dimensionless wave number for various ratios of crack length to layer depth. The results are 
presented in graphical form and are compared with previously published analyses for the special cases 
where such results are available . 



INTRODUCTION 

Many structures, both man-made and of natural origin, are composed of different elastic materials 
formed in layers. Often the layers are bonded together along common faces, but it can happen that the 
bonding is not perfect and flaws occur as cracks or regions of poor bonding in the interface. It is of 
importance to be able to detect these interface cracks, and one of the most practical methods for accom
plishing this, in the cases of engineering interest, utilizes the scattering of elastic waves and the subse
quent detection of these scattered waves by appropriate transducers. The goal of this work is to contri
bute to the theoretical basis for detecting the interface flaw by these means. 

The previously published works that bear directly on this problem are those of Neerhoff [1], which 
considered the corresponding problem for the case of anti-plane strain, and the paper by Keer et al. [2], 
which was concerned with the· plane strain problem of a crack parallel to the boundary in a homogeneous 
half space. Also the paper by Farnell and Adler [3], that studied the various types of free surface waves 
that can exist in a half space with a single layer on top, as well as the paper by Bogy and Gracewski [4] 
on the same topic, are of major significance to this work. This paper is based on the Ph.D. dissertation of 
Yang [10]. 

The method utilized here to solve the plane strain interface flaw problem is similar to that used by 
Neerhoff [1] for the antiplane problem. First we formulate the problem, where the elastic f·ield is separated 
into the incident and scattered fields. The incident field is left arbitrary in the analysis until a particular 
choice is made later on for the purpose of obtaining. numerical results. In Yang [10] the Green's functions 
were derived for dilatational and rotational sources in the layer as well as' the substrate. These Green's 
functions are used in conjunction with the appropriate form of Green's integral theorem, to reduce the 
problem to a system of singular integral equations. These integral equations are analyzed to determine 
the order o~ singularity in the stress field at the crack tip, and it is found that this singularity is of the 
oscillatory type, except for a certain class of composites. The methods of Muskhelishvili [5] and Erdogan 
and Gupta [6] are then utilized to reduce these singular integral equations to a system of algebraic equa
tions suitable for numerical solution. 

These equations are solved numerically for several sets of composites, and the results are 
presented· in the form of Mode I and Mode II stress intensity factors plotted as functions of dimensionless 

. wave number for various ratios of layer depth to crack length. 
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Fig. 1. Layered half space with interface crack and incident waves. 
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Fig. 2. Domain to which divergence theorem is applied. 
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THEORY 
We consider the steady time-harmonic plane-strain problem for the cracked layered elastic half 

space shown in Fig. 1. 

The time-reduced form of the displacement equations of motion for an isotropic media is 

The displacement and stress can be decomposed into the sum of incident and scattered parts 
according to 

y ==_ .Y,(i) + y(S) , :£, == :£,(i) + :£,(S) . 

The solution of the scattered field problem formulated here is obtained in the following sections by a 
method of integral equations in a manner similar to that used for the corresponding anti-plane problem in 
Ref. [1]. This method utilizes Green's functions corresponding to point sources in the uncracked layered 
half space. 

Use the Green's functions derived in Ref. [10] for the uncracked layered half space to reduce the 
problem formulated for the cracked layered half space to a system of integral equations. For this pur
pose we make use of Green's (divergence) theorem in the following form (for 3-D elasticity solution). 

where aD denotes the boundary of the region 0 and n is the outward unit normal to aD as shown in Fig. 
2. Letting !t-iS) , !f-.!!t. and It-iS) , !:!B_~, respectively, where u(s) is the displacement of the scattered 
field and .!:!L' Yt denote the dilatational and rotational wave fields associated with the Green's functions, 
we can derive· the potentials tP(S)~, ~(S)~ for the scattered field. 

Then we can obtain the result: 

in which 

a 

tP(S)~) == - _1_ f [u~S)p-ix + [u~S)p-~ dx, 0 <Zp < d 
~kf -a 

a 

- ~'~~2 L [u~S)p-ix + [u~S)p-~ dx, d < Zp < 00 

[u (S)] == lim u (s) - lim u 'Is) 
x z-<l+ x z-<l- x 

[u~S)] == lim u~S) - lim u 'Is) 
z-<l+ z-<l- z 
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and the integrals are taken along the crack and therefore the quantities Tix, etc. are evaluated along z = 

d. 
Next we compute the interface tractions corresponding to the scattered wave potentials and impose 

the traction free conditions on the crack face to obtain integral equations for determining the unknown 
crack opening displacements and obtain the following pair of integral equations 

[ 
oof ip2(k) [ ]] . 1f' (il 

- ~(k)k cos k(x-xp) dk fz(x) dx = -, TZJ( (xp) 
o ~~ 

[ 
oof P3(k) . [ ]] _ 1f' (il + 0 ~(k)k sin k(x-xp) dk fz(x) dx - ~~' Tit (xp), -a < xp < a. 

where 

and 

a a 

f fx(X) dx = 0, f fz(x) dx = O. 
-a -a 

The problem has therefore been reduced to the system of integral equations, which need to be 
solved for fx and fz for prescribed T~, T~, and subject to the resultant conditions above. 

The integral equations we obtained appear to be of the first kind but the kernel functions contain 
infinite integrals which may have singularities. We know that the function ~(k) has zeros corresponding to 
the propagating surface modes of the type studied in Ref. [3]. These roots may occur on or off the real 
k-axis and they determine poles in the complex k-plane of the integrands in the kernels. We must deter
mine their locations for given geometry, material parameters, and frequency and take them into account 
in our. numerical solution. 

In addition to the zeros of ~(k), we must investigate the behavior of the kernel integrands in the limit 
k - 00 and k - O. Also, the multi-valued functions "YL, "Yr' "Y~ and n, defined as "Yt = kt - k2, etc., have 
branch pOints at ± kL' ±~, ± k~ and ± k~, respectively. We choose the branchs such that Re("YL) ;;;,: 0, 
Re("Yr) ;> 0 on the path of integration. 

Making use of the asymptotic expressions to remove the singularities from the kernels, we obtain 
the following integral equations 
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a 

-i J M{xp,x)fz{x)dx = ~ T~ (xp), 
-a ~~ 

a 

-i J L*{xp,x)fz{x)dx = ...!!.., T~ (xp). 
-a ~~ 

The kernels L{Xp'x), M{xpx) are regular, which means that the system has only Cauchy singularities. 

We next· analyze the singular integral equations to determine the order of singularity in the solution 
functions fx{x) and fz(x). Here we follow the technique in Ref. [5j and define F x{x), F z(x) through 

fx(x) = Fx{x)/{a2-x2)", fz{x) = Fz{x)/{a2-x2)", Ixl < a 

where Re{a) < 1 and Fx,Fz are Holder continuous. Using the result 

1 Ja. fx{x) Fx( -a)cot{1fa) Fx{a)cot{1fa) 
t/J{x ) = - -- dx = _. 

P 1r' -a x-xp (2a)"{a+xp)" (2a)"{a-xp)" 

together with a similar result for fz(x) , and Eq. (4.11), we obtain, by analyzing the dominant part and tak-
ing the limit xp _ a (or xp _ -a), . 

This system requires, for a nontrivial solution, 

which is the same as the equation that determines the stress singularity at the tip of an interface crack in 
static problems (see Ref. [7j). In fact, it can be shown that (for plane strain) 

~ = {3 = ~'{1-20')-~{1-20'1 
01 2~'{1-0')+2~{1-uJ 

which is one of the composite parameters introduced in Ref. [8j. 

The solution for a is 

1 i -1 1 i 1 +{3 a == - ± - tanh ((3) = - + - In (--) . 
2 r 2 2r 1 - {3 

Therefore, the well-known oscillating singularity occurs in the solution of the integral equations, unless {3 = 

O. If {3 - 0, the crack tip singularity is 1/2, as in the cas~ of a homogeneous material. We will restrict our 
numerical solution of the integral equations to this case. 

We· now approximate the system of integral equations by a corresponding set of algebraic equations 
by first introducing dimensionless variables then decomposing the problem into its physically symmetric 
and anti-symmetric parts with respect to x. Next we recall the approximation formulas from Erdogan and 
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Gupta [6], when the functions fx(x) , fz(x) appear in integrals with Cauchy kernels or with regular kernels. 
For functions appearing outside of integrals we use Lagrange interpolation polynominals together with the 
symmetries. Then we replace the integral equations to their algebraic approximation, which provides two 
complex two complex (n X n) linear algebraic systems for determining the 2n complex unknown F~(77j)' 
F:(77j), F~(77j)' Ft(77j). i = 1,2 •.... n/2. We may write the complex system symbolically in matrix form as: 

ELFL. L = S.A 

in which 

Then we obtain two real linear (2nX2n) systems 

L = S.A 

L = S,A 

We are now ready to solve numerically the system except for the singularity in the integrands of the 
integrals. These singularities are poles that occur in the complex k-plane at the zeros of .::l(k), It was 
shown by Farnell and Adler [3] that in the "loading" case. for which the shear wave velocity of the layer is 
less than that of the substrate. only one Rayleigh-type pole occurs. and it is on the real k~axis. However. 
for the "stiffening" case. for which the substrate shear wave velocity is greater. more than one such pole 

. may occur. depending on the frequency. In both cases. it is found (see Bogy and Gracewski [4]), that the 
poles never occur in the fourth quadrant (Re(k) > O. Im(k) < 0) of the k-plane. 

Two different ways have been used by others for dealing with these poles. Kundu and Mal [9] use a 
technique of removing the singularities from the integrands. The other technique, used by Neerhoff [1] 
and Keer et al. [2]. merely deforms the contour of integration below the real k-axis, as shown in Fig. 3. so 
that no poles occur on the path of integration. We chose the later method in this work. 

NUMERICAL RESULTS 
Various numerical results can be obtained from our analysis. We shall restrict the presentation here 

to the dynamic stress intensity factors'KI and KII' at the crack tips, due to an incident wave resulting from 
a harmonic uniform normal traction applied at the boundary z == O. 

Numerical calculations were carried out for three different material pairs: nickel/iron. aluminum/zinc, 
and nickel/gold. Both materials were considered as layer and substrate in each case. The material 
parameters were Slightly adjusted in each case in order to satisfy the condition {j = O. The actual values 
for the material parameters used are given in Ref. [10]. 

Figure 4a and 4b, respectively, show KI, and KII versus k~d for various ratios of layer thickness d to 
crack half length for three sets of material combinations. One set is for a nickel layer with iron substrate. 
one set is for iron layer with iron substrate, and the third set is for an iron layer on a nickel substrate. 
The material parameters for these two materials are not very different and the computations for this case 
caused less difficulties than for other cases in which the materials are radically different. 

Figures 5a,b show KI and KII' respectively, as functions of k~d for various values of d/a for the case 
of an aluminum layer on a zinc substrate. Figures 6a,b show the corresponding results for a zinc layer on 
an aluminum substrate. 

Finally, Figs. 7a,b show KI and KII , respectively, as functions of k~d for various values of d/a for the 
case of a nickel layer on a gold substrate. Figures 8a,b show the corresponding results for a gold layer 
on a nickel substrate. This pair of materials had the greatest mismatch of material parameters of the 
three pairs considered. 
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DISCUSSION 
In order to optimize accuracy and computation time, judicious choices of the two parameters kl and 

k2' that determine the deformed path, are required. k2 must be chosen beyond the Rayleigh poles 
corresponding to the two materials, and hence it depends on frequency. The value of kl needs to be 
large enough to offset the path sufficiently from the singular points but not too large because the magni
tudes of the hyperbolic functions increase rapidly· with the imaginary part of k. In our calculations we 
found that the choices of kl and k2 are highly dependent of w, d and Cr/cr in order to get accurate and 
consistent results . ... 

Some difficulties were encountered in the numerical computations, especially when the material 
parameters for the layer and substrate were quite different and for the larger values of k~d. Further work 
is planned to, investigate these problems in more detail. 

CONCLUSIONS 
We have presented the plane strain solution for the problem of elastic wave scattering from an inter

face crack in a layered half space for the case of a single layer. The stress field has an oscillatory singu
larity, in general, at the crack tips, but it is a non-oscillatory square root singularity for a certain class of 
composites. The numerical solution of the integral equations was restricted to this class of composites 
and to the case when the incident wave is generated by harmonic uniform normal tractions on the boun
dary. 

The stress intensity factors K\ and KII . show resonances at specific values of k~d and the locations 
as well as peak values of these resonances depend on the material combinations. As shown in Figs; 6 
and 7 we observe that the k~d value for resonance is smaller, for a pair of materials, in the loading case 
(Cor < cr) than it is in the stiffening case (Cr > cr). . 

ACKNOWLEDGEMENT 
This paper was prepared under U.S. Department of Energy Contract No. DE-AC03-76SF00098 with 

Lawrence Berkeley Laboratory. 

REFERENCES 

[11 F.L. Neerhoff, "Diffraction of Love waves by a stress-free crack of finite width in the plane interface of 
. a layered composite," Applied Scientific Research 35, 265-315 (1979). 

[21 L.M. Keer, W. Un and J.D. Achenbach, "Resonance effects for a crack near a free surface," J. Appl. 
Mech, to appear. 
[31 G.W. Farnell and E.L. Adler, "Elastic wave propagation in thin layers," in Physical Acoustics 
(Academic, New York, 1972),9,35-127. 
[41 D.B. Bogy and S.M. Gracewski, "On the plane-wave reflection coefficient and nonspecular reflection of 
bounded beams for layered half-spaces underwater," J. Acoust. Soc. Am. 74, 591-599 (1983). 
[51 N.J. Muskhelishvili, Singular Integral Equations, Noordhoff Int. Publ. (19n). 
[61 F. Erdogan and G.D. Gupta, "On the numerical solution of singular integral equations," Quart. Appl. 
Math. 30, 525-534 (1972). 
[71 D.B. Bogy, "Two edge-bonded elastic wedges of different materials and wedge angles under surface 
tractions," J. Appl. Mech. 38, 3n-386 (1971). 
[81 J. Dundurs, Discussion, J. Appl. Mech. 36, p. 650 (1969). 
[91 T. Kundu and A.K. Mal, "Calculation of the surface response of a layered solid to a point dislocation 
source," private communication. 
[101 H.-J. P. Yang, "Elastic Wave Scattering from an Interface Crack in a Layered Half Sapce," Ph.D. 
Dissertation (1984). 

14 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
produ~t by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



TECHNICAL INFORMATION DEPARTMENT 

LA WRENCE BERKELEY LAB ORA TOR Y 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

" 



.. 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



· ..... 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

, ...... ~~ ....10 


