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Existing models of long-period superstructures are re-examined in the light of 

the recently developed Axial-Next-Nearest-Neighbor-Ising (ANNNI) Model. In this 

model, long -period phases are contained in a triangular shaped phase diagram 

region bounded by a Lifshitz point on the uppermost transition temperature line and 

a nwltiphase point at zero absolute temperature. Periodic antiphase structures are 

produced by a square -wave modulation of the ordered ground state, resulting in new 

types of long - period superstructures, here denoted as "Fujiwara phases." The role 

of configurational entropy in stabilizing long-period phases is emphasized. The 

applicability of the ANNNI model to periodic antiphase structures in ordered alloys 

is examined, and the striking resemblence between predicted structures and those 

observed experimentally in Ag"j"Mg and AU"~"Zn is pointed out. The difference 

between "straight" and "wavy" (CUAu II) antiphase domain boundaries is discussed in 

the light of the model. 

*This work was supported by the Director, Office of Energy Research ~ Office 
of Basic Energy Sciences, Materials Sciences Division of the U. S. Depart
ment of Energy under Contract No. DE-AC03-76SF00098. 
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1. DlTRODDC'l'IOH 

The stability of long -period superstructures has for years 

intrigued many investigators. In particular , the fact thai; well-defined 

ordered sequences of one or two-dimensional patterns repeat regularly over 

long distances appears to require very long -range interactions, the origin 

of which remained a subject of some controversy. 

The currently accepted explanation for the stability of such 

structures in ordering systems is the one first proposed by Sato and Tot.h 

ClJ, and later modified by Tachiki and Teramoto {2J. More recently, the 

problem has been considered by Vul and Krivoglaz {3J • The Sato and Toth 

( ST) theory is based upon the idea that a periodic modulation of the 

structure introduces new Brillouin zone boundaries, thereby lowering the 

electronic energy if these zone boundaries fall close to flat portions of 

the permi surface. Good experimental agreement with theory was found by ST 

{4 J on vapor -deposited thin films of alloys of various compositions. very 

recently, Gyorffy and stocks {5J have performed ICICR -CPA computations of 

the Permi surfaces in CU - Pd alloys of different average concentrations. The 

calculated Permi surfaces exhibited rather flat portiOns separated by 

distances 2kp in the <110> directions which, when introduced in the ST 

formalism, predict.ed values of long -period wavelengths in good agreement. 

with those found experiment.ally. 

Thus, the ST Permi -surface theory would appear to be well 

substantiated, were it. not. for the fact. t.hat, since t.he model is based 

solely on electronic energy minimizat.ion, at least in its original form, it 

contains no in-built. t.emperature dependence, no configurational entropy 
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effects. It. might then be argued that the model should be valid- only at low 

temperatures; but it ispreci.sely in those regimes that the ST theory fails 

most conspicuously: as be recalled in Sect. 5, long -period 

superstructures are often found in intermediate temperature ranges,. and 

tend to disappear a1 low temperatures. 

Recently, -a radically different model has been proposed to explain 

the' phenomenon of periodically modlilated magnetic order in certain rare 

earths, particularly in CeSb. This model, already proposed in 1961 by 

Elliott [6], now goes under the designation of ANNNI model, for Axial Next 

Nearest Neighbor Ising model [7,8] • As the name implies, the model, 

recently reviewed by Selke [9], makes use of a very simple Ising 

Hamiltonian with neareSt (nn) and next-nearest neighbor (nnn) interactions 

along a single "axial" direction. Mean-field theory c[7,lO,ll], soliton 

theory [ll, 12], Monte 'carlo simul.ations [13], and low -temperature 

expansions [8,14] are used to find approximaJ;e solutions to the 

three -dimensional Ising problem. _ Configura1ional entropy effects are 

displayed prominently, but no effort is made to evaluate the near -neighbor 

interaction parameters which appear in the Hamiltonian. - It. will be argued 

below, however, thai; the Fermi -surface and ANNNI modelS are by no means 

mu~y exc~ve. 

We begin, in Sect. 2, by defining what; we mean by the term 

modulated structures t which requires a slight extension of the classical 

notion of phase. A phenomenological description of such phases is propoSed 

in Sect. 3, whilst a thermodynamical treatment is intoduced in Sect. 4. 

possible. applications to well-knoWn ordering systems are then discussed in 

Sect. 5. 
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2. MODULATED PHASES 

Let. us consider crystals Which are sufficient.ly anisotropic t.hat. 

t.heir ground states can be described as a st.acking of perfect.ly ordered 

layers normal t.o a unique axIal direct.ion. The layers can disorder 

progressively at higher t.emperatures, of course, but, below t.be highest. 

t.ransit.ion t.emperature, it. must. always be possible t.o label each layer 

unambiguously by a single symbol: + or say. The (+ , - } sybols might. 

designate, for example, (spin-up, spin -down} , (A,B} at.oms, (unshifted 

ordered layer, shifted ordered layer}, et.c.. Layers could - but. need not. 

be individual lat.t.ice planes, t.beir st.acking paUem creat.ing a 

one -dimensional modulatIon of layer -:averaged magnet.ization, composit.ion, 

degree of order, et.c.. When t.he modulation is perfectly periodic, a t.rue 

long - perIod superstructure result.s. 

n is well known t.hat. electronic or elast.ic effects can lead t.o 

long -wavelengt.h modulat.ions • To develop a t.ract.able statist.ical 

t.hermodynamical model, it. is necessary t.o map t.hese act.ual physIcal 

int.eract.ions ont.o a small set. of effectIve near-neighbor pair int.eractions. 

Specifically, we shall consider single nn int.eraction 3 0 within t.he layers, 

and two axial interactions, 3.1. and 3 z for t.he nn and nnn neighbor 

interactions, respectively, in t.he direction perpendicular t.o t.he layers. 

Such is essentially t.he ANNNl: Model. 

n is of considerable int.erest t.o det.ermine what long-period 

superstructures may be st.able under what conditions and in what t.emperature 

ranges; in other words, one would like t.o det.ermine t.he phase diagram for 

t.his model. The vertical axis t.radit.ionally represents the temperature, t.he 
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horizontal. axis (axes) representing an external magnetic field, a chemical 

potential, or some other physical parameter. In the present study, all 

phase diagrams - will be plotted in a (T , 1<) plane, where T is the absolute 

temperature and I<=J 2./J J. is the ratio of axial pair interactions. Vanishing 

applied field, either magnetic or "chemical", will always be assumed. 

Features common to many ANNNI phase diagrams are indicated 

schematicallly in Fig. 1.. Pour main phase regions are represented: a 

high-temterawre disordersd (D) phase (~ore symmetric, sometimes designated 

as "normal" or "paramagnetic") t an ordered phase (OJ.) of "simple" structure 

(less symmetric, ' "ferromagnetic" or "antiferromagnetic") , another somewhat 

more complex ordered phase ( ° 2. ) , characterized by a modulation wavelength 

of four times the layer spacing, and, occupying a central position between 

those three phase regions, that of the modulated phases (Mod). 

Two especially interesting pointS are found in the phase diagram 

of Fig • 1 ( excluding the one at infinity t Lao) : a multicritiCal point called 

Lifsbits 'point at' L, at Which a disordered t . an ordered, and' a "modulated 

phase" come together, and a multiphase POint of infinite degeneracy of 

ground states at T=O , at a critical value 1<0 of . the competing interaction 

parameter ratio of J 2. to J J. • Recent theoretical studies, to be summarized 

in. sect. 4, have made systematic use of those two points in elucidation the 

nature of the transition to the modulated phases, mainly by performing ( a) 

a r.andau expansi~n about; the Lifshits point L, and (b), a low-temperature 

expansion about; the multiPhase point 1<0' Unfortunately ,there exists no 

tractable mathematical model valid for the whole T and I< ranges; the global 

phase diagram has to be assembled in a somewhat fragmentary fashion. 

ACtually t the region labeled "Mod" , is composed of infintely many 

commensurate and incommensurate phase regions, but, before going further, 



-5-

it is necessary to define operationally the words commensurate and 

incommensurate. To that end, consider a pedecUy periodic modulation of 

half -wavelength 

'It./2 = Md ( 1) 

measured by the dimensionless number M in units of the interlayer 

spacing d. Mathematically, the modulation period is commensurate with the 

one -dimensional lat.t.ice of layers if 

M = P/Q (P > Q) (2) 

where P and Q are relative primes. The period is incommensurate if M cannot 

be expressed as a rational rv.unber. n is seen, by Eqs. ( 1) and ( 2 ), that 

modulation and lat.t.ice will be in registry at multiples of the interval 

A = Pd = Q'It./2 (3) 

The integer P will be called the commensuration number, the commensuration 

Ilavelength being equal to A When the integer Q is even, and 2A when Q is 

odd. Examples will be given in the next Section. The set of rational 

fractions l/M has measure zero in the set of real rv.unbers in the [0,1] 

interval, hence, if all values of M were equally probable, incommensurate 

periods would be infiniltely more densely distributed than commensurate 

ones [15}. Actually, because of coupling effects between the modulation 

and the lat.t.ice , there will be a tendency for the modulation period to locl( 

in at weU -defined commensurate .values, particularly at low temperatures. 

These points will be discussed further in Sect. 4. 3 • 

COmmensurate long-period superstructures can be considered as 

crystallographic phases with very long unit cells, or polytypes. When the 

modulation half -wavelength evolves from one commensurate value to the next 

( as temperature, or composition or I< varies) , the space group of the 

corresponding polytype changes, if for no other reason that translational 



~6-

symmet.ry elements are gained or lost. in t.he process. Hence_t a definit.e 

phase bourldary must exist.. on the phase diagram bet.ween successive 

commensurate phases. Thus t at least. in: those regions where t.he lock-in 

t.endency is weak t the diagram of Fig. 1. int.he Mod region may consist. of 

infinitely many commensurate phase, regions t often of extremely narrow 

extent. ~ 

Clearly t it. is not. possible to determine the phase fields of all 

such commensurate structures: resolut.i.on t theoretical or experimental t is 

finite; furthermore t since t.he driving force for transforming from _ one 

commensurate long "'period superstructure to the next one must. become very 

small as the commensuration number P becomes large t equilibrium will be 

pract.ically impossible to achieve for polytypes . with very narrow phase 

fields. n thus. becomes imperative to adopt a more practical though less 

mathematical definition of commensurate /incommensurate periods: a 

commensurate lona-perlod structure shall be that "hose half-period can be 

expressed as H=P /9. P and 9 being small relative primes. For example t a 

fixed upper limit. Pmax might. be imposed on the commensuration number P. 

According to this practical definition, one thus expects to find, in some 

parts of t.he phase diagram, commensurate phase fields separated from each 

other by incommensurate phase regions in Which t.heperiod M can apperar to 

vary cont.inuously. Thermodynamically, of course, phases with modulation 

period varying by finit.e amounts are not allowed, this possibility existing 

here only as an artefact of t.he operational definit.ion adopted for t.he word 

"commensurate" • 

Long-period superstructures will. now be examined in more detail. 
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3. CBARACTERISA'nOR OF SUPERSTRUCTURES 

The essential features of diffraction patterns obt:.ained from long 

period superstructures will be briefly, reviewed in Sect.. 3 .1, along with 

the interpretation thereof. More direct. evidence obtained 

high-resolut.ion elect.ron microscopy will be described in Sect.. 5. 

remarkable feature of all long -period superstructures resulting 

by 

A 

from 

square -wave modulations of a one -dimensional lat.t.ice will be presented in 

Sect. • 3. 2 and in Appendix I. 

3 . 1. Diffract.ion Pallerns 

Only t.he briefest diffraction treatment will be given here. Por 

details concerning, say, which superlat.t.ice reflect.ions are associated with 

periodic antiphase sateUit.es, or concerning the way t.he phases of Pourier 

amplitudes contribute t.o sate lUt.e intensit.y, or concerning possible 

disordering and displacement effects, t.he reader is referred 1;0 the work of 

Perio and collaborators C 16 • 1 7 J • 

Por simplicil;y, only one -dimensional modulations will be 

considered. Let. x be a continuous variable in the direction of t.he 

modulation. Atomic layers - such as lat.t.ice planes, single or double - are 

placed normally 1;0 the x axis at equidistant points 

(p=O,1,2, ••. N-1) 

d being t.he inter -layer spacing, and N being t.he total. number of layers. 

Now define a modulating function f(x) of the continuous variable x which 

imparts 1;0 each pth layer the value fp = f(lCp) for the physical paramet.er 

considered, be it composit.ion , degree of order, "antiphasing" or 
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magnetization. 

In the kinematic approximation, the diffracted amplitude per layer 

due to the modulation is proportional to CIS1 

A(k) = 
1 N-1 -iky
- I: f(Xp) e --""}o' 
Np=O 

where k is a discrete variable having reciprocal space values 

k = :l:2TTh/d 

with Miller index 

h = B/N (H=O, 1,2, ••• ) • 

(3) 

(4) 

(5) 

Equation ( 3 ) , which is assumed to contain impliciUy the scattering power 

of the modulation f, can also be written 

(6) 

where F ( Ie) is the Fourier transform of the modulating function f (x) • In 

Eq. (6), the integration is performed over an appropriate region of 

continuous reciprocal space • The expression Lpexp( -i( k -Ie) Xp] in Eq • ( 6 ) 

yields . a set of scatterlnR functions with sharp peaks of height :l:N at all 

values of the argument k-lC equal to a reciprocal lattice vector gH=2rrH/d of 

the layered structure, B indicating the order of the reflection. The 

scattered amplitude is then proportional to 

A(k) = I:p SF(k-g) (7) 

where s , a factor of modllius unity, takes care of the shape and sign of the 

scattering functions •. 

Now let the modulating function be periodiC of period 2 Md. Its 

Fourier transform then consists of a set of 8 functions of weight en at 
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K -space positions 

Kn = ±rm/Md ( n=O , ~ , 2, • • • • ) • (8) 

The resulting satellite amplitude spectrum, by Eqs. (7 ) and (8), appears as 

a convolution of the Fourier harmonics of f (x) with the reciprocal lattice 

of the layers: 

A(k) = L £ sen 8(k-ga+Kn)' 
B n 

In general, sharp satellite reflections Will thus be found at positions 

2HP + nQ 
h = B + n/2M = 2P 

(9) 

(~O ) 

where, as in Eq. (2), P and Q are relative primes. Satellite reflections 

will therefore be placed ~/2P apart (in ~/d units), so that the satellite 

spectrum can become infinitely dense when the commensuration period 2P 

becomes very large. In practice, satellite intensity 

I(k) = IA(k) I ~ 

Will decrease rather rapidly with the reflection order, so that only a few 

peaks Will be observed about each fundamental B • An apparently uneven 

satellite spacing may then result, as explained below for the case of a 

square wave modulation. 

Among the better-studied modulated structures, both by X-ray 

diffraction and transmission electron microscopy, are the so called 

periodic antiphase structures. These are found typically in ordered alloys 

in Which antiphase boundaries occur at regular intrvals, in one and two 

dimensions • Here, only one -dimensional conservative periodic antiphase 

structures Will be considered. Evidence suggests that, in many ordered 



-10-

systems, the modulating function f (x) , which fixes the location of the 

antiphase boundaries, can be idealized as an almost perfect square wave. 

Bence, f (x) must have a Fourier spectrum consisting only of odd harmonics 

at ± (2m+ 1) 12M, with intensities decaying as ( 2m+ 1) - 2. , (m=O ,1,2 ••• ) • The 

decay law of the satellites themselves will be somewhat different because , 

by Eq. ( 9), higher harmonics can contribute to all satellite orders. 

Por commensuration number P finite, no matter how large, the 

modulation satellites can be regarded as fundamental reflections of the 

correponding polytype of long unit cell 2Pd in the direction of the 

modulation. Bence, as can be also inferred from Eq. ( 10), it is the number 

1/2P, rather than 112M, which fixes the satellite spacing, a conclusion 

which is not apparent in the early work of Fujiwara [ 181 , but which was 

clearly stated in that of Perio and Tournarie [161. Two additional factocs 

must be taken into account in analysing satellite spectra: systematic 

extinctions and gradual intensity decay with harmonic order. Por example, 

if Q is odd, then the numerator on the right side of Eq • ( 10) is also odd , 

and satellites can only occur at odd multiples of 1/2P; if Q is even, then P 

must be odd, and satellites will occur at all multiples of 1/p. 

Furthermore, as mentioned above, harmonic intensity decay will cause 

higher -order satellites to be practically invisible, thereby resulting in 

apparent unevenness of spacing in each reciprocal unit cell' and precluding 

unambiguous determination of P and Q. 

This latter effect will be particularly noticeable for modulations 

of large' commensuration number P. As an illustration, consider the three 

following polytypes whose structures (to be 

sub-section) are similar, and whose half-periods are: 

(a) M = 25/14 = 1.7957 ••• 

described in the next 
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(b) M = 67/14 = 4.7857 •.. 

(c) M = 9/5 = 1.80 
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The correponding spectra are indicated in Pig. 2 a, b ,c • In this schematic 

representation, the diameter of the spots represent approximate reJ.at;ive 

intensi.t.y, i. e • the most intense spot corresponds to the first harmonic of 

the modulating square wave, the next intense to the third harmonic, etc ••• 

n is seen that, in case (a) , 23 harmonics are necessary to occupy all 

satellite positions predicted by Eq. (10) 

still higher orders begin to superimpose 

after that , intensities of 

wereas in case (b), after the 

same number of harmoniCS, the spacings are still irregular: 65 harmonics 

would be necessary to produce an even spacing. 

The observation that satellite sequences do not "mesh" at the 

Brillouin Zone boundary (h=O .5) has sometimes been taken as a criterion for 

"incommensurability" C 191. From the foregOing, hoWever, it is clear that 

such a criterion is, at best, a reJ.at;ive one: in case (a), if all 23 orders 

are observed, the structure would be said to be commensurate, if only 9 

orders are observed, for example, the structure would be classed as 

incommensurate. Case ( c), with 9 orders observed, would be a commensurate 

structure. 

Nevertheless , these observational considerations , far from 

infirming the practical commensurability criterion proposed in Sect. 2, 

actually provides a convenient estimate of Pmax , t:he COIrullensuration number 

beyond which a modulation is defined operationally as being incommensurate. 

Since, as can easily be shown, the satellite spectrum is "complete" , in the 

sense of Eq. (10), when harmonics of up to order n=2m+1=P (or P-1) have 

been used up, then Pmax may be set equal to nmax' the maximum harmonic order 

which will significantly contribute to the satellite intensities. In the 
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above examples, if llmax=23 , both modulations (a) and (c) will be 

commensurate, ( b ) incommensurate; if nmax=9, only (c) will be commensurate. 

3.2. square Wave Modulation 

Consider the' case of an observed satellite intensity spectrum 

which is consistent with a perfect square wave modulation f(x) of 

half -period M=P /Q. The effect of this modulation on the layer lattice is 

then qUite straighforward to interpret: any layer of index p can then be 

assigned unambiguously the· sign + or according to the parity of the 

integer 

qp = [pQ/P + e] (11) 

representing the largest integer contained in the' bracketed expression. In 

Eq. ( 11) , the rational fraction e . allows for an arbitrary 'shift of t.he 

square wave origin with respect to that. (p=<» of the layer lattice. 

FUjiwara' (18] showed that. the layering sequence resulting from a square 

wave modlllationof half-period K = 9/5 = 1. 90 [example (c) , above] was as 

follows: ' 

( 2222122221 •••• ) .. ( 12) 

a symbolic notation signifying: two "+" layers, followed by t.wo "-" layers, 

followed by a unique "+" layer, followed by t.wo "-" layers, etc... ,In 

what. follows, the short-hand notation of Fisher and Selke.. (8] will be 
.' 

adopted for describing such sequences: <241> , in which angle brackets 

indicate a repeating period (or half -period) • 

Fujiwara gave other examples of layer arrangements, such as 
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(2221221221 ••• ) (13 ) 

which also produced sharp satellites at posil:ions h = H ± ( 2m+ 1) /2 M , With 

intensity decreasing roughly as ( 2m+ 1) - z • Fujiwara descibed layerings such 

as those given by formulas (12) and (13) in the following terms: 

(i) Regular arrangements With uniform mixing. 

Other arrangements were also considered by him: 

(ii) Regular arrangements with non -uniform mixing 

( iii) Irregular arrangements with almost uniform mixing 

(iv) Irregular arrangements with non-uniform mixing. 

Arrangements (ii) and (iv) were shown to produce specra not in agreement 

with observation, although some degree of "irregularity", as in (iii), 

could still yield acceptable spectra. 

Fujiwara's terminology can be translated into the present one as 

follows: 

Regular arrangement - perfect commensuration period 2P 

Uniform mixing - perfect modulation periodicity 2M. 

Although it was not stated by Fujiwara expliciUy, it is clear from the 

diffraction equations recalled above that the idealized periodic antiphase 

structures which produce sharp satellite intensity at the correct posil:ions 

are those which result from a modulating square wave of perfect 

periodicity. n. does not matter in the least that the modulating wave be a 

fWlction in fictitious , continuous x-space, with period 2M totally 

unrelated to that of the layers, the lat.t.er existing in real, discrete 

xp-space. Clearly, it is the "regularity" of the modlliating fW'lction itself 

which produces proper satellite spectra, it is the nature of f(x) which 

determines the arrangement of layers. 
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n is then of interest to inquire into· the structural properties 

of the polytypes which result from general' square -wave modulat;ions of 

perfect period 2M. It is desired to cqnstructan algorithm for obtaining 

explicitly one half -period of the layering sequence given· by Eq. ( 1.1.) • 

Surprisingly, the required algorithm is precisely the one derived 

independently in 1.978 by Hubbard (201 for the case of electrons occupying 

the sites of a one -dimensional lattice in an organic conductor such. as 

TTP-TCNQ, and by Pokrovsky and Uimin (211 for the case of ad-atoms 

occupying the sites of a one ... dimensional substrate lattice. In both cases , 

electrons or ad -atoms are assumed to interact with long -range repulsive 

convex pair interactions, such as those resulting from a COUlomb potential. 

The ratio ( <1. ) of interacting particles ( electrons or ad -atoms) to the 

number of lattice sites is fixed. The algorithm will now be described in 

the ,(slighUy modified) notation of Hubbard (201. 

First, one must; expand the rational half -period M in a continued 

fraction 

M = ~ = no + ~o 
Q 

n1. + Y, 

n z + Yz 

(1.4) 

Since M is a rational fraction, the continued fraction expansion must 

terminate at some level, say k. AI; any level i, the integers ~ are 

determined uniquely by the remainder (r) at level i-1. I 

(1.5) 
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-1/2 < ri ~ +1/2 

so that. 

(16) 

Now define t.he sequences {X} and {Y} by the recursion formulas 

Xo = no ( 17a) 
'. 

Yo = no + Yo ( 17b) 

Xi = (Xi_1)ni -1 Yi-1 } (i = 1,2, .. ,k-1) . n-+y- -1 
Yi = (Xi-1) 1 1 Yi-1 

( 17c) 

(17d) 

The formula for polytype of half -period M is t.hen 

<X> = XJc. ( 18) 

A proof that this algorit.hm indeed yields the correct. polytype structures 

result.ing from a square wave modulation is given in Appendix I, along with a 

numerical example. All polytypes (X) t.hus generated will henceforth be caUed 

FujlJ1ara ( FW) phases for short.. The three square -wave modulat.ions whose spect.ra 

are illust.rated in Fig. 2 have symbolic formulas 

Other examples will be found in Table I which lists aU FW phases with P=73 

and 1. 5<M<2, and in Table II which lists aU FW phases with commensurat.ion number 

P<20, for the same range of modulating period. Table II also indicat.es t.he 

level k at. which t.he cont.inued fract.ion t.erminat.es. The structural formulas given in 

Tables I and II were calculat.ed directly from Eq. ( 11) with E = O. As explained in 

Appendix I, the result.ing polytype formulas may differ in appearance from those 

derived from the cont.inued fract.ion algorit.hm, but. both are complet.ely equivalent., 

due to the t.ranslat.ional symmetry of the long -period structures. 
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It. follows fron Eqs. ( 14) to ( 18 ) that all FW phases consist of, 

say, a units of type Xojyo and (3 units of type Xoj-J.yo. The total number of 

both types of units is then 

S=a+(3 ( 19) 

and the total number of "domains" , or square -wave modulation half -periods 

is 

Q = j(a+(3) + a 

Hence the half -period of the modulation must be equal to 

M = Xo ± S/Q 

(20) 

(21) 

the sign being taken in accordance with that in Eq. ( 16 ) • The fractional. 

part of M thus depends only on the repetition numbers j , a, and (3, and not 

on the domain lengths Xo and Yo' Examples ( a) atld (b), above, illustrate 

the latter property. The fraction P /Q itself, of course, is equal to the 

total number of layers· in the polytype's st.ructurel formula divided by the 

total number of Xo and Yo units contained therein, i • e • by the sum of the 

"exponents" in the formula. 

3 .3. Smooth - Profile Modulation 

It. is often observed experimentally that the satellite intensity 

decreases faster with order m than the (2m+1) -z law characteristic of 

. square wave modulation. One then readily concludes that the modulating 

function f ( x) must have a profile smoother than that of a square wave. In 

the limit, the modulation could be purely sinusoidal. 

It is not clear a priori how a smooth profile is to be interpreted 

physically. The uncertainty results from the fact that ( complex) satellite 
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amplitudes are not observable, only intenstites. Recently, however, 

high-resolution transmission electron microscspy has helped resolve some of 

the ambiguities of interpretation.. In particular, it appears from the work 

of Guymon!; et al • (19 J , thai; the periodic antiphase structure of CuAu II 

presents wavy aniphase boundaries, whereas those of Ag3Mg, for example, are 

perfecUy staight. The observed difference between these two fcc-based 

ordered systems has led these authors to conclude that the Fujiwara (FW) 

model is applicable to the Ag3Mg case, w~ the Jehanno and Perio (JP) 

model (17 J might be more applicable to the CUAu case. 

Formally, it is merely required to look. upon the Ag:3Mg long period 

superstructures as resulting from a square wave modulation ( giving rise to 

the FW phases described in the previous section) , those of CuAu then 

resulting from a modulation "with comers rounded off" • The representative 

smooth function f (x) must then represent an ant/phasing probability, 

interpreted as the projection of actual antiphase shifts along the axial 

direction of the long period. Such is, of course, the JP model, but in the 

present view, both FW and JP models derive from the modulating function 

f (x) , being merely distinguished from one another by the sharpness of the 

profile. 

The most likely interpretation of a smooth profile is illustrated 

in Fig. :3 , drawn so as to resemble schematically high -resolution TEM 

micrographs of typical CUAu II samples (22J. Segments of Cu (light) and Au 

(dark) (00l.) lattice planes are shown stacked along the vertical direction, 

With antiphase shifts occurring approximately every five ( 100) lattice 

spacings. Random errors have been introduced for the positions x at which 

these phase shifts take place, resulting in the projected antiphasing 

modulation f(x) shown just below the schematiC representation of the 
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structure. Such an interpretation was already proposed by Jones [23} and by 

Portier and Giatias [24} ~ 

n is apparent that. the "staggered domain" configuration depicted 

in Fig. 3 leads 1;0 "wavy". antiphase domain boundaries as observed by 

Guymont et al. [22J. Indeed, it will be argued in the next; section !;hat. this 

"wavyness" could be the resull of an Interface roughening transition. Such 

a transition is quite apparent in Monte Carlo simulations carried out by 

Selke and Fisher [ 13} • Not;ethat., whether antiphase boundaries are straight 

or wavy, i • e • whether the projected profiles f (x) have sharp or diffuse 

interfaces, satellite intensity should remain quite sharp as long as the 

ti:todulat;ing function is perfectly periodic. 

.' 
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4. THERMODYNAMICS OP SUPERSTRUCTURES 

Two regions of the schematic ANNNI model phase diagram of Fig. 1. 

have been investigated in some detail: that in the neighborhood of the 

['ifshitz point [, and that in the neighborhood of the multiphase point KO' 

Recent results pertaining to those two regions will be summarized in Sees • 

4.1. • and 4.2., respectively. 

will be presented in Sect. 4. 3 • 

A complete, albeit schematic, phase diagram 

4 .1. • Lifshitz Point 

The presence of long -period modulations near a second -order 

transition are intimately linked to the existence of the so-called 

"Lifshitz point," a term coined by Bomreich, Luban and Shtrickman {25]. 

These authors defined the new type of multicritical point in the following 

terms (slightly modified to conform to present notation) {26]: the Lifshitz 

point Is a multlcrltical point which divides a line of second-order 

transitions Into two segments on one of which the equilibrium order 

parameter is characterized by a fixed wave vector If' , al10wed by the 

Lifshitz condition, whilst on the second, 1< varies continuously from 1(0 as 

a parameter, In the present case K, Is changed • The L point is also the 

terminus of a second line In the T-t( plane which separates the ordered phases Into 

two regions, one with k=If' and the other wltb l<=1<lt";tIf'. 

Let us assume that the free energy P of a cystalline solid 

solution in an arbitrary state of partial order in the vicinity of a 

transition has the Landau expansion (27] 
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M' = Pz + P s + p .. + ", (22 ) 

where AP is the difference between F and its value in the disordered state 

land Pn is the nth order term in the. expansion, expressed as a 

configuration -independent coefficient times the product of n concentration 

wave amplitudes r, taken as order parameters [28 , 291 , The first -order term 

vanishes at equilibrium and therefore does not appear in Eq, ( 22) '. The 

second order term has a particularly simple form [291: 

(23 ) 

where N, the number - of lattice planes and k, the wave vector have been 

defined . earlier in Eqs. ( 3 ) - ( 5 ) • For simplicity, as in sect , 3.1, only 

one -dimensional concentration variations will be considered, in the axial 

direction of the modulation. The coefficient P" is the second derivative 

of the free energy with respect to concentration -wave amplitude squared, 

evaluated . in the disordered state • In the present Study, F" will be 

regarded as a known function of two intensive parameters 

P" = 41( T, Iq K. ) (24) 

with T the absoli.tt.e temperature and I( the ratioJ z./J ~ of two effective pair 

interactions, for example, 

Let us further assume that the disordered phase ( 0 , in Pig. 1) can 

t.ransform by a second -order t.ransition to the ordered (0 ~) and modulated 

( Mod) phases, The case of first -order t.ransitions is more difficult. to 
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handle, and has not. yet been treated in detaU. In the second -order case 

then, the transil:.ion normally occurs at the vanishing of the coefficient F" 

evaluated at the wave vector kO of the relevant ordering wave [27J. The 

Lifshitz condition restricts kO to so-called "special points" [28,29 ,30J in 

reciprocal space, at which two or more symmetry elements intersect at a 

point C27J. At; these points, any function of k having the symmetry of the 

disordered state's crystal structure, in particular the function F ot = ell { k) , 

must exhibit a local maximum, minimum or saddle point [28J. 

Any regular function having the proper k -space symmetry can be 

wrlt.ten as a sum of trigonometric functions times appropriate coefficients , 

1Iln, say. In one dimension, the functional form is a very simple one: 

ell = ~ - w~ cos 2rrh - Wz cos 4rrh - •• , (25) 

the coefficients IIln being themselves functions of T and K. In Eq. ( 25 ), h is 

the Miller Index in the axial direction as defined by Eqs. ( 4 ) and ( 5 ) • In a 

general Bragg -Williams (mean-field) approximation, the coefficients w~, 

wz • • • would be constants proportional to, respectively, ;] ~ ,;] z ••• , the 

effective pair interaction parameters, whilst; would be simply 

proportional to temperature [29] • According to more general free energy 

models, such as the Cluster Variation Model ( CVM) [31] , the values of the 

coefficients W must. result from the minimjzation of the free energy at each 

T and K, and must therefore depend on these variables. Generally, the CVM 

free energy minimjzation must be performed numerically [32J. 

cases, however, such as in the one -dimensional Ising 

nearest-neighbor interactions the (exact) result of 

In simple 

the 

with 

CVM 

minimization shows that w~ is proportional to kBT times the hyperbolic 
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tangent of J 1,/kBT , kB being Boltzmann's constant C 32J • Ii both first and 

second neighbor interactions are included in the Ising chain, the second 

derivative F" takes the form ( 25 ) , limited to three terms (as shown) with 

coefficients now being rather. complicated algebraic 

expressions involving the exponentials of J 1, and J 2 divided by kBT C 33J • 

Expressions forw.1. and Wz must be asymptotic to J.1. and J z , respectively, in 

the limit of high temperatures. . In the qualitative analysis. that follows, 

we shall therefore regard the expansion ( 25 ) as limited· to the indicated 

first three terms, with· w.1. and Wz behaving roughly as J.1 and J 2 in the 

neighborhood of the critical temperal:ure Tc , provided that J .1/kBT or J z/kBT 

are not too large. 

Since the second -order transition Tc occurs at the vanishing of 

the second derivative F", it is necessary to determine at which values of k 

( or h). 41 takes on its minimum values • For the simple form of. 41 adopted , 

extrema occur at 

W1. sin 2Trh + 2 Wz sin 4Trh = 0, 

i . e. at values of h which satisfy 

sin 2Trh = 0 

and 

cos 2rrh = 

Equation (26a) yields all "Bragg peaks" at 

h = 0, ~, 2, ••• 

and the "superlattice peaks" 

h =! 3 
2 t 2 t ••• • 

(26a) 

(26b) 
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Such are the "special-point extrema, " the positions of which satisfy the 

Lifshitz condition [271. The corresponding wave vectors will be designated 

by the symbol kO (or hO ), regardless of Whether the corresponding 

modulation is of "clustering (ferromagnetic) type" (integral values of h) 

or of "ordering (antiferromagnetic) type" (hali -integral values of h). 

Accidental. extrema of the function ~ can also be found at. values 

of h which satisfy Eq. (26b), provided that (il1,/4(,)2 be smaller than one in 

magnitude, i. e. for 

x = (il2/(il1, ~ 1/4 

if (il.1. and (il2 have same sign, and 

X ~ -1/4 

(27a) 

(27b) 

if (il1. and (il2 have opposite sign. n is clear from Eq. ( 25 ) that special 

point ( S P ) extrema at. integral values of h correspond to actual minima if 

(il1. is positive ("clust.ering" or "ferromagnetic" case, J 1,>0) , whilst SP 

extrema at half -integral values are minima of 41 if (il.1. is negative 

( "ordering" of "antiferromagnetic" ase , 3.1. <O) • n is also clear from 

Eq. (25) that accidental minima occur in both cases only if (il2 is negative, 

from which one normally expects 3 2 to be negative as well. In sect. 4.2., 

it will appear that; the condition for the existence of long period 

modulations at. very low temperatures is expressed by I J 2 I / 131. I ~ 1/2, 

whereas, in the mean field (BW) approximation, the condition for the 

existence of accidental minima , leading to long -period modulation, is 

expressed by 13z l/13,11 ~·l./4, a<:cording to Eqs.(26a,b}. This discrepancy 

indical:.es thai:. , although the BW model may yield approximately correct 

results at. reasonably high temperatures, it cannot be relied upon near zero 

absolute. 

In Sect. 4.2, it will also be seen that II( I =1/2 local:.es the 
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multiphase point 1<0 at oot<: beyond which longer-period -ground state 

structures ( 02.) are expected. It will now be shown that 

IXI = ~ = -4l. 
IW,1.1 

(27C) 

locates the Lifshitz point L along a line of second -order transitions (T c) • 

Consider now the expansion of the second derivative P" (the 

function 41) in powers of the difference q = h -ho between the Miller index at 

some wave vector k in the axial direction and its value hO at the 

appropriate special point: 

(28) 

In Eq. (28) , odd derivatives do not appear since they must vanish by 

symmetry at special point kO at which they are evaluated. The coefficients 

4In in Eq. (28) can be obtained by taking derivatives of the cosines in 

Eq. ( 25) at integral or half-integral values of h: 

. l. [a~] 
4In(T,I<) = iii ahfi k,o ( n=O , 2 , 4 , 6 , • • ) 

yielding, in the clustering case, 

and in the ordering case, 

Hence, we have, for both cases, 
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~2 ll!t 0 for I X I ~ 1/4 

and 

~ 4 ~ 0 for I X I ll!t 1/16. 

n is thus seen t.hat t.he coefficient. ~4 must. be always posit.ive whenever 

!:he condition for the existence of long -period modulations 

IXI li!!t 1/4 

obtained from Eqs. (27a) and (27b), is satisfied. 

This is cont.rary to the conclusion reached by Aslanyan and 

Levanyuk [341 who claimed that a negative ~4 coefficient. was more likely 

than a positive one. These aut.hor's conclusion is based on the 

consideration of first -neighbor pair interactions only, and therefore 

cannot apply to modulat.ed st.ructures • Only the int.roduction of pair 

interaction of greater range than the second axial neighbor, or the 

presence of anomalous ent.ropy effects, could possibly reconcile a negative 

~ 4 with the condition for the eXist.ence of modulations. 

Since the coefficient. ~o4 was shown, in all likelyhood, to be 

posit.ive for the model considered here, then, as in the usual Landau 

theory, is sufficient. t.o t.erminate expansion (29) at. t.he 

fourth-order t.erm. We now seek the optimal wave vector which minimizes t.he 

f!mction cit at arbit.rary point. T , I( , i • e., we must. find q" = h .. -hO which 

minimizes 

~ = ~o + ~2 q2 + ~o4 q4 • 

set.t.ing the derivative equal to zero yields two values 

q .. = 0 

and 

(29) 

(30a) 
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( 30b) 

the second solution being valid, for 41z < O. Inserting Eq. (30) into (29) 

gives 

ro for 

CZtmin(T,I<) = 41 _! 41zz for o 4 41 
4-

Note that setting cZImin equal to zero in Eq. (3l.b) 

41z 

41z 

is 

> 0 

< O. 

equivalent to 

(3l.a) 

(3l.b) 

(3l.C) 

which is the condition for the polynomial (29) to have a double zero of 

value q = O. 

Both branches of CZtmin join smoothly at 41z = O. so that. in 

accordance with the Lifshitz point definition, point L must have 

coordinates ,( TL , I<L) determined by the conditions 

(32) 

The line of second -order transitions in the (T, 1<) plane is thus given by 

4Imm(T ,I<) = 0 (33) 

since, by EqS. (23). and (24), it is the locus of the topmost 

(highest-temperature) vanishing of the coefficient F" of the second-order 

term in the Landau expansion. The locus CZtmin = 0 is shown as a heavy dashed 

line in the schematic diagram of Fig. 4, drawn for the case of both J.1. and 

The Lifshitz point L is located at the intersection of this line 

and that which represents the vanishing of 41z • In a mean-field (BW) 

treatment of the ANNNI model, the value of I<z would be l./4, as explained 

above. To the "left" of I<L' the disordered phase ( D ) will transform 
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continuously to the ordered phase 0.1. , of S P ordering wave vector k *=JcO ; to 

the right, the disordered phase will transform continuously to a modulated 

phase (Mod) of non-SP wave vecl:or k*;&!ko. The value of q *, Eq. ( 30). will 

increase continuously from its value zero as the parameter I< increases from 

its limit value I<L. 

The locus of ~o=O to the "right" of I<L is also indicated in Pig. 4 

(light dashed line). n is clear that the latter line must. lie below the Tc 

line (~min=O)' so that ~o=O must represent a "special-point instability" or 

ordering spinodal [28,29} below which the amplitude of the appropriate 

( clustering or ordering) S P wave can grow spontaneously if, perhaps for 

kinetic reasons, the JPOd'llated phase were prevented from developing. Signs 

of the functions ~in' ~o and ~z in various regions are also shown in 

Pig. 4, in that order. 

Figure Sa i.llust.rat.es the behaviour of the second derivative P" 

centered about a special point. ; the full curve represents the function ~ of 

Eq. (25) with IW2oI/lw201 = 0.45, and the dashed curve is its Taylor'S 

expansion, Eq. (28), taken to 4th order only. Pigure 5b indicates 

schematically the behaviour of the function ~ at points on the (T , 1<) plane 

at corresponding points in Fig. 4. 

Pigure 6 illustrates the formation of "domains" by a harmonic wave 

of half-period M= 98/19 = 5.1579 a typical value for CuAu II periodic 

antiphase structures (see Sect. 5) • The modulating function f (x) t of 

amplitude A can be Written 

f(Xp) = A cos 2rrh*p = A cos 2rr(h°+q)p 

= A[ cos 2rrqp cos 2rrhOp - sin 2rrqp sin 2rrhOp] 

Where p is a space coordinate which takes on int.eger values at all lattice 

plane positions. Since, at these positions, the sine terms in the expansion 
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of the. cosine must vanish according to ·Eq. ( 26a) , the modulating function 

can equivalently be conSidered as a cosine ordering wave of index hO. (full 

curve in Fig. 6) amplitude -modulated by a long -period wave of index q, i. e • 

of (half) wavelength M (dotted curve). The effect on the lattice of this 

amplitude-modulated wave is exactly the same as that of the original f(xp), 

the latter' shown as a dotted curve in Fig. 6 • 

The transition between 0.1. and Mod phases can be first or 

second -order, depending upon the relative symmetries of the phases. The 

transition line is the locus of equality of F'* and pO evaluated at the wave 

vectors which minimize the free energies in modulated and 0.1. phases, 

respectively. If the transition is second -order then, by continuity, the 

optimal wave vector at the transition must be kOitself, so that the line of 

critical temperatures between 0.1. and Mod regions must coincide with the 

line 4Iz=O ( dot -dash curve in Figure 4). If the transition is first -order, 

the locus of equality of free energies (full line) must lie in the negative 

4Iz region, but must meet the cIImin=O at the Lifshitz point where the 

transition becomes second -order. 

The case 41 4 >0, just described, was initially treated by Hornreich, 

et al.(25 ,26J, but already anticipated by Haas (35J; the case 414 <0, 416>0 

was first proposed by Aslanyan and Levanyuk (34J. Both cases were 

" summarized by Toledano (36], including that of expansions of 41 containing 

odd powers of q. However: , because the present authors consider the case 

41" <0 to be highly unlikely, it will not be treated here. Instead, the 

lo~-temperature expansion of the exact free energy of the ANNNI model about 

the multiphase point 1(0 will now be summarized. 
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4.2 Multiphase Point 

The low-temperature expansion of the ANNNI model's exact free 

energy was performed about inultiphase point 1<0 by Fisher and Selke ( PS ) 

[%4J. Let us summarize here the PS method and re9Jl.ts. The model treated by 

these authors is the one depicted in Pig. 7 : atoms on a tetragonal lattice 

interact via in-plane (square lattice) effective pair interactions :Io , and 

via first (:I .d and second -neighbor (:I z ) pair interactions along the 

four-fold rotational symmetry axis. 

The free energy is 

p = - kBT In Z (34) 

where the configurational partUion function is expressed as 

(35 ) 

in Which the configurat.ional energy for this model is given by 

1 
E = - 2 r r r [:Io a(p,r)a(p,r+p) 

prp 

+ J 1 a(p,r)a(p±1,r) + :Iz a(p,r)a(p±2,r)], (36) 

for exactly equiatomic concentration of A, B atoms (no applied magnetic 

field, in the language of magnetism). 

In Eq • ( 35 ), the summation is over all possible stal:es of energy 

E ( a) , wi.I:h a designating any configuration defined by assigning to the 

"site occupation operator" the values I 
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, {+1 if atom A is at site (p,r) 
a(p,r) = 

-1 if atom B is, at site (p,r) 

to each lattice site at pOsition r in lattice plane p'normal to the axial 

direction. The summations in Eq. (36) are over all positions r in all 

planes p, and, in given layer p, over first neighbors p of points r. 

Thus far, the treatment is exact, but of course the summation in 

Eq.(35) cannot be carried out. At very low temperatures, there are only a 

few "wrong" site occupancies, however, so that configurations which 

contribute significantly to the free energy F are very few, and can be 

enumerated explicitly. The problem treated by FS was the clustering 

(ferromagnetic) case, for which both 30 and 3J. interactions are positive. 

In order for long-period structures to develop, the interaction J 2 must 

"compete" with JJ.' Le. create frustration, hence J 2 must be negative 

(antiferromagnetic). With these aSSignments for the choice of signs of J o , 

3 J.' 3 2 , FS were able, to predict the existence of long -period polytypes of 

structure type <2 j 3>, according to the notation described in Sect ~ 3.2. 

These authors also derived a phase diagram showing regions of stability'of 

such phases in the vicinity of a multiphase point found to be located at 

T=OOJc and'1(0=IJ2 1/3J.=1/2. 

A simple transformation allows the application of FS results to 

the ordering (antiferromagnetic) case, characterized by J o , JJ.' J 2 , all 

negative, as was shown elsewhere [37J. Let us summarize those results 

here. A simple square lattice with negative (antiferrortlagnetic) 

nearest-neighbor interactions possesses a ground state in which each site 

has four nearest neighbors with the opposite value of a so that there are no 

"wrong bonds." The results of FS can then be directly applied to this case 
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in the following manner. First, notice that each lattice site in a simple 

tetragonal structure can be labeled as "even" or "odd" such thai; each even 

( odd) site has four in -layer nearest neighbors and two axial nearest 

neighbors which are all odd ( even) • NOW, changing the signs of J o and J.1. is 

equivalent 1;0 a transformation in which all the signs of the a variables on 

odd (or even) sites are reversed • To see this, consider the 

configurational energy given by Eq. (36). In the nearest neighbor 

summation, the products of a variables always appear in even -odd pairs , 

while in the axial next -nearest neighbor summation, pairs are always 

even -even or odd -odd combinations. Thus, in a given configuragion, a 

transformation thai; reverses all a's at the odd ( or even) sites while 

simultaneously changing the signs of J o and J.1. leaves the configurational 

energy (36) invariant. The conclusion is the equilibrium 

configurations, for the case J o , J.1. , J z<O are obtained from those for the 

case J o ,J.1.>O' Jz<O simply by reversing the signs of a (A, B occupation) on 

all odd (or even) sites • 

Pigure 8 is a schematic drawing of the phase diagram in the I<-T 

This diagram is really the same as that 

derived by PS [l4}, being obtained by applying the aforementioned 

transformation 1;0 all the phases predicted by P S • An example of this 

transformation applied 1;0 a one -dimensional chain is il1.ust:rated in Fig • 9 

showing how a structure <2h> is transformed 1;0 <2j+.1.1>. An example of the 

<2 1> phase on the full three -dimensional laI;I;ice is shown in Fig. 10 , 

inspired from thai; given in Ref. [38}. 
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4.3. Schematic phase Diagram 

n is instruct.ive to combine, in a qualit.at.ive manner, the results 

of expansions at both Lifshitz and Mult.iphase points into a global phase 

diagram incorporating , wherever possible, information gained from mean 

field ell] and Monte carlo studies {Z3]. Only t.he zero - field case 

(vanishing magnet.ic field or difference of chemical potentials) will be 

t.reated. The result.ing schemat.ic phase diagram shown in Fig. 11 is believed 

to be a plausible 

which now populate 

one, even though the nature of the long -period phases, 

the "Mod" region shown previously in Fig. 1 , is not. 

known with cert.aint.y. n will be argued here t.hat. all of these phases must 

be "Fujiwara-t.ype", i.e. must have structures derived from the continued 

. fraction algorithm described in Sect. 3.2. 

The case J 1 <O, Jz<O, In(n~3)=O was chosen for i1lust;ration, hence 

the long-period phases must. be {2 j 1} polyt.ypes, as indicated in Fig. 1l. 

The Lifshitz point. L has been placed near it.s BW value of 1/4, and the 0-01-

and D-Mod t.ransitions (in the not.at.ion of Pig. 1) have been assumed to be 

second -order. consequently, at and just. below Tc , to t.he "right." of L (K 

increasing) , quasi -sinusoidal ordering waves of infinitesimal amplitude are 

expect.ed to become stable, with wave vector index h* given by Eq. (26b). 

Since all possible values of h * ( or q * ) are a priori equally probable, an 

infinit.y of incommensurat.e phases' are expect.ed. In fact., incommensurate 

modulations will dominate the phase diagram in t.hose t.emperature ranges 

since ClS], from a strictly mathematical viewpoint., the set. of rational 

numbers p/q has measure zero in the field of real numbers. 

As t.he t.emperature in the Mod region is decreased, the modulat.ion 
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wave amplitude will increase, and the profile will sharpen, approaching 

that of a square wave. Although Monte carlo simulations have shownCZ31 

that the third harmonic of the modulation flU'lction f (x) tends to persist to 

temperatures close to Tc , no evidence has been fOlU'ld for even harmonics , 

thereby supporting our contention that only square -wave, or PW phases can 

be present in an equilibrium phase diagram of this sort. AI; lower 

temperatures, both increase in amplitude and "squaring" of profile will 

enhance the tendency of the modulations to "lock in" at commensurate 

wavelenths (in the sense of the definition given in Sect. 2) with 

relatively small commensuration rwmber P. Hence, well below Tc , phase 

regions of "simple" PW polytypes will tend to broaden, or bulge out , 

thereby practically squeezing out incommensurate phase fields. This bulging 

out is particularly noticeable in the <21> phase region; it is already 

apparent in the curvature of the <21>: <221> boundary in Pig. B, calculated 

by the low-temperature expansion, and is demonstrated in mean -field 

calculations C 11 J • 

As long as the lock-in tendency is weak, the modulation wavelength 

\ 

will tend to vary almost. continuously with temperature, at given value of 

I< , the correct q'* being obtained by minimizing the free energy in k -space. 

Monte Carlo studies [Z31 indicate that, close to Tc , the average wavelength 

appears to vary continuously with T ( or 1<) • In these simulations , 

wavelength increase is observed to take place by means of a mechanism 

similar to the one that has been described elsewhere, in another context: 

[39J, as a "local doubling of the period". The actual modulated structure 

will appear to be rather irregular; indeed, two-dimensional MC simulation 

[40J shows quite clearly that the bOlUldaries between domains have the 

"wavy" appearence described in Sect. 3 • 3 • Such "non - rigid soliton walls" (in 
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the words of Bak and von Boehm [ 11 1) are associ.ated wi.th high 

configurational entropy, and are thus favored at high temperature. 

At. lower temperatures, wavy boundaries cost too much internal 

energy, so that planar domain walls should be the rule below a certain 

"interface roughening transition". n is not known at present whether this 

transition is sharp or gradual, although three -dimensional Monte Carlo 

studies [131 indicate a rather sharp one, as does a much earlier model of 

Inglesfield's [421 which treats antiphase boundary motions as a 

two-dimensional . Ising model. Below this transition, sharp or diffuse, the 

modulation period .should vary discontinuously, jumping as it were from one 

commensurate phase to the next. As the temperature is further reduced, the 

ANNNI model predicts the complete disappearence of long-period phases, 

leaving only the ordered phases denoted 01 and 02 in Pig. 1,or <1> and <2> 

in the particular example illustrated in Pig. 11. 

The conjecture that all polytypes in the ANNNI model must be PW 

phases was stated above. Clearly, the low-temperature expansion predicts PS 

phases, which form a subset of PW phases. Recently, DUXbury and Selke [421 

have shown, by mean -field calculations, that polytypes whose sl:ructure 

formulas are combinations of PS units «2h> in this instance) appeared in 

the phase diagram through a "structure combination branching mechanism" , 

i.e. the· boundary- between two PS phases, such as <23> and <223> splits to 

produce a <23223> phase, which then gives rise to «23)222 3>, etc •• These 

authors have demonstrated the stability of polytypes which belong to the 

set of PW phases, whose sl:ructural formulas are derived by the continued 

fraction algorithm described in Sect. 3 .2 , and shown in Apendix I to 

correspond to a square wave modulation. 

In Pig. 11, we have attempted to show schematically this branching 
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mechanism, producing FW phases of increasing complexity, i • e • of increasing 

level of continued fraction expansion. Only phases of levelland 2, 

selected from Table II, have been indicated in Fig. 11. Around and in 

between the illustrated phase fields will presumably be found infinitely 

many long -period structures of infinitely increasing commensura.tion number 

P, with infinitely decreasing field extent, separa.ted by phase boundaries 

of progressively decreasing first -order character. Because of the very 

small free energy difference between neighboring high-level polytypes, it 

will be very difficult to calculat.e the domains of existence of these 

phases and very difficult to observe them experimenl;ally. 

Note t.hat;, because of the bulging of the central <21> phase field 

at fixed I( just grea.ter than 1/2, the long -period wavelenth will tend to 

decrease as the temperature decreases in the higher temperature range, 

close to Tc , whilst the opposite effect should be obseved in the 

temperature ranges just below the bulge. At. large values of I( , however, the 

ANNNI model predicts that the modulation wavelength should inrease 

monotonically With decreasing temperature. All of those conclusions should 

be reversed for <23> -type phases. 

Such are some of the predictions of the simple ANNNI model. Let us 

now see whether these results can be applied to real ordered alloy systems. 
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5. APPLl:CATIOII TO FCC ORDERDIG 

Two well studied alloy systems have ant.iphase st.ructures which are 

st.rikingly similar t.o those of t.he polyt.ypes described above: the 

e lect.ronically similar Au 3 Zn and Ag 3 Mg ordered phases at. and slight.ly off 

st.oichiomet.ry • The former belongs to the <2h> t.ype, the lat.t.er to the 

<2h> t.ype. St.ructures <2 3 3> and <241> are shown in Pigs. 12a and 12b, as 

det.ermined by high -resolution t.ransmission elect.ron microscopy by Van 

Tendeloo and Amelinckx [431 and by Portier et al. [381 , respectively. 

Pormally; the correspondence bet.ween Pigs. 12 and 10 can be accomplished by 

subdividing the ( disordered phase) fcc lat.t.ice into t.wo t.et.ragonal 

sublat.t.ices, one 'occupied by alt.ernating Au (Ag) and' Zn (Mg) at.oms, the 

other by noble met.al atoms only. . If one ignores the pure noble met.al 

. sub -lattice one obtains exacUy the st.ructures il1ust.rat.ed in Pig. 10 , 

depicting PS phases predict.ed by the low-t.emperature expansion of the ANNNI 

model. One must. of course assume that. the t.rue fcc near -neighbor 

int.eractions in these systems produce the correct. ground-stat.e structures, 

the axial int.eract.ions J 1. and J 2 then being considered as superimposed 

effect.ive pair interactions responsible for the . long -period modulat.ions • 

These arguments can be made more rigorous, as explained in Appendix II. 

The DOZ3 ground stat.e, <2> in the PS notation, has been observed 

in both Au 3 Zn and Ag 3 Mg, and PS phases <2h> , with j=2,3,4, and 6 have been 

reported in Ag 3 Mg [381. PS phases <2 3 3> and <3> have been seen in Au 3 Zn 

[431. There is as yet. no unambiguous evidence of higher-level PW phases, 

although Portier et al. have published a Ag 3 Mg high-resolut.ion micrograph 

(Pig. 7 of Ref. [381) with both <241> and <2 3 1> polyt.ypes present.. The 
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authors concluded that the microstructure presented "stacking disorder" • In 

fact, the micrograph in question shows no "faults" , and the whole structure 

could be described as <2 4 1.(24 1.2 3 1.)m>, with integer m unknown because the 

imaging field was not large enough to cover the whole period. The polytype 

structure just given can be easily proved to be a PW phase, an example of 

which, with m=4, was given in Table I (Q=41.). 

These experimental findings can be interpreted in the light of the 

ANNNI model in the following way: let J 1. and J 2 be effective axial pair 

interactions; then, J1. must be positive for Au 3 Zn, negative for Ag 3 Mg, and 

J 2 must be negative for both. The value of I( must be greater than 1./2 since 

the ground state must be the DO 23 structure, represented by <2> . 

Furthermore, the in-plane interaction J o must be negative to produce 

two-dimensional ordering in the planes normal to the axial direction, and 

the absolute value of this parameter is expected to be relatively large 

since antiphase boundaries remain straight in the temperature ranges 

investigated. Available evidence C 441 indicates that the average domain 

size M increases with increasing temperature in Ag 3Mg , thus suggesting that 

the measurements were performed in the temperature region above the <21.> 

bulge in the ANNNI phase diagram, with values of I( just greater than 1./2. 

The interpretations just given must be taken with some caution, 

however, as phase equilibria in actual alloy systems may differ appreciably 

from those deduced from the simple ANNNI model. Furthermore, the 0-01.' or 

D-Mod transitions may well tum out to be first-order, if they could be 

brought about experimentally. Nevertheless , the analogy between the 

observed Ag 3 Mg polytype structures and the PS predictions is really 

striking. This can be seen most dramatically in Pig • 1.3, a very 

high -resolution TEM micrograph gratiously provided to the present authors 
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by Drs. N • Kuwano, and T. Eguchi [451 • In t.his figure, the bright. spots 

represent. the poSit.ions of projected columns of Mg atoms, the ,Ag atoms 

being out. of cont.rast.. The periodic ant.iphase 'shifts of doUble and single 

! 

lines of Mg atoms Clearly iridicat.e a <2 3 1.> struct.ure. 

Historically, the best -known ' long -period superst.ructures are those 

of the CU -Au system. In the phase field t.radit.ionally labeled CuAu II, 

close to the equiatomic compoSition, the average, modult.ion half -period has 

value M, of about 5. Recent. TEM work [221 has shown clearly that. the 

ant.iphase boundaries have a "wavy" appearance, unlike the very st.raight. 

ones of Au 3 Zn or Ag 3 Mg. To iriterpret these observations iri the light. of the 

ANNNI model, it. is necessary t.o postulat.e long-range effective pair 

irit.eractions at. least out. to fourth axial" neighbor. n is irideed shown iri 

Appehdix III thai; , with J 1.>0 and 3.<0, and all other pair int.eract.ions 

small iri magnitude, the ground stat.e for '1<'=-3./31.>1./4 should be given by 

<4> , and the cent.ral "bulgirig" phase should have structure formula <5> • The 

ground stat.e for 1<' <:1./4 is then <co> , as iri. the original S P . calculat.ion, 

which, with 3 0 <0 , represents the simple Ll.oordered structure, i.e. CuAu1. 

A phase diagram much like the one of Fig. 1.1. should then result. , but. with 

phase fields appropriat.ely relabeled, as iridicat.ed schemat.iCally in Pig. 

1.4. Near-stoichiomet.ric CuAu could then be modeled with a 1<' vaiue somewhat. 

smaller than its value at. the multiphase point '. 1<0. The fact. that. antiphase 

boundaries experimentally are found to be wavy would iridicat.e that. the 

range of stabilit.y of the "Mod" phases lies above the postulat.ed int.erface 

roughening t.ransition • 

. An interesting effect. was observed on CuAu by Guymont and 

co-workers [221: a stoichiometric alloy quenched directly from high 

t.emperature into t.he CuAu II phase field produced the <5> structure with M 
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exactly equal to 5. However, the same alloy held for a long time just above 

the CUAu II transition temperature produced, upon subsequent aging in the 

CuAu II phase field, a periodic antiphase structure with M slighly larger 

than 5. The authors interpreted these results in terms of "easy long-period 

fluctuations" assumed to exist just above the ordering temperature. We 

suggest. an alternative interpretation based on the diagram of Pig. 14: for 

the indicated value of 1<' , the <5> phase field is seen to be preceded in 

temperature by a narrow Mod region which must: contain closely spaced 

quasi -incommensurate PW phases with practically continlously varying 

modulation period. A direct quench from the disordered phase 0 into <5> 

would produce the expected average period of M=5, but the intermediate 

aging treatment in the incommensurate phase field would resull; in a stable 

PW phase with MiJI!5. Because of the very small differences in free energies, 

the resulting incommensurate structure could well remain in metastable 

equilibrium after contin.ted aging in the CUAu II phase field proper. If the 

transition from D-Mod( incomm. ) were second -order, it would be very 

difficult indeed to distinguish experimentally the incommensurate stable 

phase field from a solid solution phase field with "easy long -period 

fluctuations" • 

The characteristic difference between Ag 3 Mg-type and CUAu-type 

long period superstructures has led Guymon!; and Gratias C 19 J to propose the 

following empirical rule: those periodic antiphase structures uhlch display 

straight domain ualls have long-period strucures (polytypes) ulllcll persist 

to lou temperatures. those uhlch display uavy boundaries have long period 

structures uhlcll disappear at lou temperatures. We would prefer to regard 

both types of structures as two different manifestations of the same 

ANNNI-like behaviour: the "straight" systems would correspond to I< values 
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to the "right" of the multiphase point, the "wavy" systems to t< values to 

the "left" of that point. The fact that, in the former case, antiphase 

boundaries appear straight may simply be due to the experimental 

impossibility of getting close to the disordering temperature, thus 

precluding preparation of an ordered phase above the interface (antiphase 

domain wall) roughening transition. That long -period phases persist to low 

temperatures in the "straight" case may be explained by the very small 

difference between the free energy of FW phases and that of the <2> phase, 

itself having a (relatively) long period. By contrast, the disordering 

temperature is readily accessible in the CUAu case, with Mod phase fieldS 

lying above the roughening transition, as already mentioned. To confirm the 

validity of. this interpretation, it would be necessary to discover a system 

for which the inerface roughening transition could· actually be followed 

experimentally. 
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6. DISCUSSION 

The main theme developed here is that, with the ANNNI model, we 

finally have a promising framework for coming to grips with the enigma of 

long -period superstructures. This is not to say that. older theories, such 

as t.hose of Sato and Toth ( ST) and later modifications are thereby 

supplanted; certainly not. I the ANNNI model t.reatment. has nothing to say 

about. the physical. origin of t.he effective pair interactions J 1. and J 2' so 

!:.hat., ultimately, an electronic theory will be required to justify, for 

example, the value of I< used to model a given alloy system. What was lacking 

in earlier treatments , of course, was the all- important statistical 

mechanical aspect. Not. that. gallant efforts had not. been made to 

incorporate thermodynamics into previous models; but. all these aUempt.s had 

relied on mean fIeld. actually Brage- Ii Illlams (BW) theories. Not 

surprisingly then, essential aspects of long -period behaviour could not be 

explained, such as I the variation of modulation wavelength with temperaLure 

at constant interaction parameters, the tendency for the modulation to lock 

in at small "Commensurat.ion numbers" , the disappearence of long period 

superst.ructures at low lemperatures, the "straight to wavy" transilion, and 

the very nature of the structural polylypes themselves. True, the 

mathematical difficulties encoumered in solving even the simplest ANNNI 

model has, so far, precluded a completely sat.isfact.ory resolut.ion of the 

difficulties, but at least, as we have at;tempted to show, a general 

coherent picture is beginning to emerge. 

Recall that. a low-temperature expansion of t.he exact. free energy 

( P S ) has predicted unambiguously the existence of <Xojy 0> polytypes (with 
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Xo ,Yo differing by one integer). Although a formal thermodynamical proof is 

still lacking, there are good indications [ 42] that the more· general 

polytypes <xjy> [with X and Y representing nested PS stacking sequences, as 

determined by the continued fraction algorithm] will be the actual 

equilibrium phases. Exact treatments of the one -dimensional ANNNI chain 

[33] have also shown how, at fixed 1<, the SRO modulation wavelength varies 

continuously with temperature, from its predicted BW value to that given by 

the exact ground state analysis. If electronic theories (such as that of 

ST) were to yield reliable estimates of, say, J 1. and J z , then Eq. ( 26b) , 

with. J's substituted for w's, would predict the modulation wavelength 

reliably, Thus, paradoxically, the original ST theory, though actually 

derived for zero temperature, is eXpected to do well only at high 

temperatures. AS the temperature is lowered, the w'S in Eq. (26b) are no 

longer equal to the J's, and more accurate statistical models than the BW are 

essential for precise determination of the modulation wavelength. 

Hence, the average modulation (half) wavelength M is determined by 

a combination of factors: the ratio J z/ J J. , the configurational entropy 

correction to the J's, the lock-in to simple polytypes. If the mathematics 

were tractable, it would then be possible to compute theoretically a model 

phase diagram such as that of Pig. ~~, with no guesswork. n is important 

to emphasize that, If the ANNNI Hamiltonian represents the essential 

. physics of the problem , then· an exact statistical thermodynamical theory, 

or at least a reliable approximate formulation thereof, will yield all the 

desired features: the structural formulas of stable polytypes and their 

phase fields, the nature (first or second -order) of the transitions, and 

the character of the antiphase boundaries, straight, wavy, sharp or 

diffuse. Of course, the simple ANNNI Hcimil.tonian may not be adequate to 
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model an actual alloy system; it may well be necessary to -include more 

elaborate schemes of effective interaction parameters, including long -range 

elastic forces. The resulting phase diagram may then be substantially 

modified, but not, we beleive, in an essential way. 

The formal connection between the ANNNI model and the square wave 

modulation idea ( Fujiwara phases) has not been made yet, but we are quite 

confident that a more detailed mathematical analysis of the model will 

confirm our conjecture about the structure of stable polytypes to be found 

in the phase diagram. It may appear unlikely that a phase such as <2!71>, 

say, should be stabilized by relatively short-range forces only: how does 

the system "know" that after 37 double-plane domains the 38th one should be 

single -plane? Actually, the system needs to be "aware" only of the 

modulation wavelength M=P /Q , a value which, as, just mentioned, is fixed by 

effective pair interactions whose range is of the order of M . The polytype 

structure itself is determined geometrically by the square wave modulation: 

it is as if the antiphase boundaries, at fixed M , interacted with one 

another through convex repulsive potentials. The commensuration number (75 

in the above example) results simply from a sort of Vernier effect. 

The continued fraction algorithm provides a criterion for 

determining whether a given stacking sequence of ordered lattice planes, 

observed by high resolution electron microscopy, represents an equilibrium 

phase or an "intergrowth" : it suffices to count the number of lattice 

planes (P) in the period and to divide by the corresponding number of 

domains ( Q). The ratio M must then be expanded in continued fraction as in 

Eq. (14) and the structural formula <X> of Eq. ( 18 ) compared to the 

observed stacking sequence. If there is perfect match, then the obseved 

microstructure is that of a single equilibrium polytype, otherwise not. 
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7. ·SUMMARY 

The most important points made in this paper are the following: 

An operational definition of commensurate and incommensurate 

modulat.ions was proposed (Sect. 2). 

The name Fujiuara phases was proposed to designate. the polytypes 

conjectured to be found in the ANNNI model phase diagram. It was 

demonstrated that. these "PW phases" resulted from· a modulation of the· 

lattice by a periodic function having only odd harmonics in its Fourier 

spectrum t for example a square wave. 

structural formulas for Fujiwara phases were shown to resull from 

the continued fraction expansion of the modulation (half) period (APpX. I). 

The most lik.ely aSsignment of signs in the Lifshitz point 

expansion of the ANNNI model was discusseq. (Sect. 4.1). 

The low temperature expansion of the exact free energy of· the 

ANNNI model was summarised (Sect. 4.2), and the original result of Fisher 

and Selke was extended to the case of ordering on an fcc lattice 

(Appx. ll). 

A schematic ANNNI model phase diagram was proposed based on the 

results of published calcula.t.ions (Sect. 4 • 3) • 

Ag 3 Mg-type 

understood 

n . was shown qualitatively' how the characteristics of both 

and CuAu II -type periodic 

in terms of the ANNNI model. 

antiphase structures could 

The respectively "straight" 

be 

and 

"wavy" nature of the antiphase boundaries for those· two types of systems 

were argued to represent but two aspects of the same phenomenon: in the 
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former case, the observed structures must be formed below an interface 

roughening transition, in the latter case, above. 

II:. was shown how a different scheme of effective axial pair 

interactions could lead to longer range average modulation periods, such as 

those encountered in the CuAu II long-period superstructures (Appx. III). 
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APPENDIX 1: 

The proof t.hat t.he conl:.inued fract.ion algorit.hm described in Sect.. 

3 • 2 generat.es t.he correct. square wave modulat.ion polyt.ypes ( or FW phases) 

rests on t.he approximat.ion of a rat.ional fraction P /Q by its. successive 

approximants Pi/Qi, obtained by I:.runcating the continued fract.ion. expansion 

at. levelsi = 0,1, ••• ,k. These approximants are given byt.he formulas: 

PklQk = P/Q = M. 

At the lowest. level (level 0), the best. approximation for M is 

clearly Po/Qo with Qo = 1 and Po = no = Xo. The "domain" of Xo ident.ical 

layers comes closest. 1:.0 fil:.l:.ing in one half -period M of modulating square 

wave. The next. best. approximation of M by idenl:.ical layers is then Yo = no 

+ Yo (Yo = :n). Bence, Xo will be called the majority. domain and Yo .the 

minority domaIn at. this level. 

The next. approximat.ion (level 1) consists of fil:.l:.ing a composit.e 

domain int.o a mult.iple of half -periods M: instead· of using only a single 

sequence of identical layers, one t.ries a mixture of majorit.y and minorit.y 

domains according 1:.0 the formula 

(A2) 
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so that exactly P1 ( + and - ) layers fit into exactly Ql. square wave 

half -periods. We must then have, by Eqs. (Al , a) and (Al, b) , 

Pl. = jXo + j'Yo = nl.Xo + Yo 

and 

Ql. = j + j' = nl.. 

The only possible solution is then 

j = nl. - 1 and jt = l. (A3) 

Hence, formula (l.7,c) is proved for level l., along with formulas (l.7 ,a) and 

(17,b). 

U the continued fraction expansion for M does not terminate at 

levell, which is the level of all FS phases, one proceeds to level 2 by 

using as building blocks Xl and Y l. , the latter, consisting of just one more 

or one less Xo domain than Xl., clearly being the minority domain 

approp~e for level 1. Let P1 t be the commensuration number for Yl.. i.e. 

the number of layers contained in domain Y1, and Ql.' the corresponding 

number of square wave half-periods in Y1. By following the same line of 

reasoning that was used for level l. , one can show by direct computation 

that the polyt;ype structure at level 2 is <X2> = (Xl.)j(Y1)jt with j = n2-1 

and j' = 1. 

Let us now prove that the procedure is correct at arbitrary level 

i, assuming it to be correct at the previous level i -1. We must have 

(A4,a) 

and 

Qi = jQi-1 + jtQti_l. = niQi-1 + Yi-1 Qi-2 (A4,b) 

in which Pi, Pi-l. and Pi-2 are the commensuration numbers of <Xi>, <Xi-l.>, 

and <Xi-2>, respectively, with Pti_1 and P'i-2 the corresponding ones for 

The Q's are defined similarly for the number of square 
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wave half -:-periods at the indicated levels. By using results assumed to be 

correct at level i.,.l, it can then be shown that both Eq. (A4,a) and (A4,b) 

are satisfied by j = ~ - 1 and j' = 1. Since Eqs. ( A4 ) are two linear 

equations in two unknowns, the solution is unique. Hence, by induction, 

the algorithm defined by Eqs • ( 14) to ( 17 ) has been shown to be correct at 

all levels , including the terminal one <X> = ~, which is Eq. (18). At each 

level, the Xi domains fit exactly in the approximant Mi = Pi/Qi, and the 

sequence terminates at i = k. This completes Ul,e proof. 

As an example, take M = 73/46. Repeated use of Eq. (15) produces 

the following continued fraction 

73 1 
M= = 2 -

46 2 + _=1_ 

The partial. quotients are thus 

i 

0 

1 

2 

3 

4 

nj 

2 

2 

2 

3 

3 

2 + ..l:...-
3 - ~ 

3 

. Xi 

-1 

+1 

+1 

-1 

0 

The successive approximants are 

Ml = ~ =~ = 1.5 
Q1 2 

M2 ~= 8 = 5 = 1.6 Q2 

P3 27 
1.5882 ••• M3 = = = 

Q3 17 
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73 
46 = l..5869 ••• 

The corresponding partial polytype structures are then 

Xc, = no = 2 

Yo = no+Yo = 2-l. = l. 

Xl. = 21. 

Yl. = 2 zl. 

X2 = (2l.)( 2 zl.) 

Y2 = ( 2l. )z( 2 zl. ) 

X3 = (2l.2zl.)Z[(2l.)Z2zl.] 

Y3 = (2l.2zl.)[(2l.)z2zl.] 

Note that direct. application of Eq. ( 1l.) will give a structural 

formula identical to that derived from the cont.inued fration algorit.hm only 

for particular choices· of t.he shift parameter E • For t.he natural choice 

E = 0, these t.wo procedures will yield apparenUy different. structures. 

However, because of t.ranslation symmet.ry, t.he structures are in fact. 

equivalent. , the cont.inued fraction formula being built. up from xjy units 

with the majorit.y domain X always leading off, the direct. computat.ion with 

E = 0 being built. up from the same units, but. with largest. commensuration 

domain leading off. Hence, according to the latter method, inversions xjy 

- yx j may take place at any level. n is easy to show that. such inversions, 

at. any level i, say, merely cause a t.ranslation of the final structure by 

Yi. This is because the explicit. expansion of <X> int.o Xi and Yi symbols 

always contains Yi to the ''power'' one only. Hence, a sequence such as 

can be writ.ten as either 
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In the above example, formula ( 11) with E = 0 would have given, instead of 

(AS) : 

<X> = [(2 2121)321]2[(22121)221], 

as shown alSo on line "Q=46" in Table II. The latter equation can be derived 

from (AS) by the transformation 

(21)(221) - (221)(21) 

(21)2(221) - (221)(21)2, 

equivalent to a translation by domain (21). 
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APPENDIX n 

In this appendix we show how an ANNNI-type model might be applied to an 

A3B ordered structure on an fcc lattice. To begin, consider a simple pair 

'. interaction model with interactions out to second nearest neighbors. The 

energy can be written 

E = - i r [r J o a(i) a(i+po) + r J~ a(i) a(i+p~)] - ~ r a(i), 
i i Po p~ 

where the a's are defined in the text, i labels the latt:.ice site, and ~ is 

an external field (difference of chemical potential). The vectors Po are 

the set of twelve vectors connecting a site to its nearest neighbors at 

(1/2 )<110>. The p~ comprise the set of six vectors <100> connecting a site 

with its second nearest neighbors. Here, a represents the edge of the 

standard cube of the fcc latt:.ice • We consider the case where J 0<0, J ~>O , 

and ~ falls in the appropriate range to give an L1z structure. 

Alloys that exhibit long periods are known in many cases to have flat 

regions of Fermi surface normal to the <110> directions, and these are 

expected to give rise to long range pair potentials • With this in mind, we 

introduce a third pair interaction into our model that will end up 

stabilizing a periodically antiphased structure. This interaction, 

characterized by a strength J z = -I<J ~ < 0, couples a given site with its 

twelve neighbors at the positions <220>. n is thus a relatively long 

range interaction, but such effective interactions are not unexpected when 

Fermi surface effects are involved. 

The occurrence of a long period in one direction will break the cubic 

symmetry of the L1z structure. There is equal probability for the long 
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period t.o occur along anyone of t.he t.hree cubic axes. In this - example, let. 

us choose [100] as the direct.ion of t.he long period. Then t.here are t.wo 

t.ypes of planes normal t.o [100] : pure A planes and mixed A - B planes. 

Denot.e t.hese planes as p and m respect.ively (see Fig. 15). Notice t.hat. 

eight. of t.he t.welve <110> direct.ions have components along ±[lOO]. Thus, .. 
eight. of t.he t.welve 3 z couplings will play a role in stabilizing t.he long 

period. These eight. interact.ions couple sit.es in planes which are t.wo unit. 

cells apart. , so 3 z here plays essent.ially t.he same role as the int.eract.ion 

3 z in the original ANNNI model. 

We assume t.hat. t.he only effect. of int.roducing 3 z is t.he possible 

occurrence of ant.iphase boundary planes normal t.o [100] • With this 

assumption we now det.ermine the ground stat.es. 

We first note that. there are several cont.ribUtions to the ground stat.e 

energy which remain unaffect.ed by the presence of antiphase domains • These 

cont.ribUtions are: 1) energy due to the external field JL; 2) energy of 

any atom in a p-plane; 3) energy due t.o first. -neighbor couplings of an atom 

in an m -plane; 4) energy of an atom in an Iri -plane due t.o the four second 

neighbor int.eractions along [001] , [ooi] , [010] , and (010] ; 5) energy of an 

at.om in an m -plane due t.o the four 3 z couplings along [011] ,[011] , [011] , 

and [oi!] . One can calculat.e the energy per atom AE from these 

cont.ribUt.ions and one finds 

AE = 1 JL - 3~ (~ - 4K) 
2 2 

(AI1-l) 

The interest.ing cont.ribUt.ion to the ground stat.e energy comes from the 

t.wo second neighbor int.eract.ions along ±[lOO]·· and from t.he eight. 3 z 

coulings mentioned above. These are the competing int.eract.ions that. 
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stabilize the long periods • We shall refer to this contribution to the 

energy as the "axial" part. 

If we allow antiphasing , there are two possibilities for the 

configuration of an m -plane. These two possibilities are the same as those 

indicated on the tetragonal lattice of Fig. 10 • As in that figure, we 

designate the two cases as a and (3. Now, we adopt the definition given by 

FS of k-bands. A k-band is a sequence of k consecutive m-planes of the same 

type ( i. e., no antiphasing) terminated at both ends by antiphased m - planes. 

From this point. , we can apply the analysis of F S • There are no 1-bands (no 

domains of size one) just as FS showed for the original ANNNI model. 

A particular m-plane or site in an m-plane can be characterized by its 

relationship (antiphased or not) with the neighboring m -planes. As in FS, 

we must consider the following five possibilities, where the overstrike 

denotes the plane or site in question. 

0 aaCiaa 

11 aaCia(3 

p /3aCiaf3 

a aaCi{3(3 

T /3aCi{3(3 

The labels 0 ,11 ,p, a , and T are the same as those used by F S • 

assume 2N atoms in the crystal, there will be N atoms in the m-planes • 

If we 

Then 

we can use the expressions obtained by FS for the numbers of the various 

types of sites. These are 
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No = N r: (k-4)Rk' 
k~5 

N1T = N r: 2.1lk, Np = NR3 (AII-2) 
k~4 

Na = N r: 2Rk, NT = 2NR Z • 

k~3 

Here, we have used the structural variables .Ilk defined by 

where ~ is the number of k-bands in a given configuration of the system, 

and L is the total number of m-planes (number of unit cubes along the [l.OO] 

direction) • 

. 
We also need the contribution to the axial energy· from each of the five 

types of sites. These contributions will be essentially those calculated 

by FS but modified to ~e account of the multiplicity of the J z 

interactions • Defining I< = l./8 + S, we have 

~o= - l./2 (l.-88)J1.' 

~1T = - J, AEp= - l./2 (3+8S)J1.' (AIl-3) 

AEa = 0, AET = - .l./2 (l.+88)J1.. 

Combining results (AIl -l.) , (AIl - 2), and (AIl - 3 ) we find the ground state 

energy per atom: 

The expression in square brackets is identical to that obtained by FS since 

the axial part of our model is essentially the same as the ANNNI. model. 

Thus, for 1«1/8, the structure is Ll.z and for 1<>l./8, the structure is DO z 3. 

At. 1<=l./8 ,the ground state is infinitely degenerate. 
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-
We next perform a low temperature expansion to first order about the 

multiphase point at T = 0, K = 1/8. That is, we examine the free energy at 

temperatures sufficiently low !;hat, aside from the ground state, the major 

contribution to the partition function is from the first excited states, 

i. e • states in which one A ( or B ) atom is replaced by a B ( or A) atom. we 

define the following expansion parameters: 

For the first excited states, the Boltzmann factors arising from .1 0 and IJ. 

are 

Wo -4 wlJ. for replacing A by B, 

Wo 12 WIJ. -1 for replacing B by A. 

The analysis is made simpler if one chooses IJ. = 8 1.10 1 • This means that 

This value of IJ. is within the range for an L12 

st.ructure • This Choice of IJ. is not. necessary, but it. facilitates counting 

t.he excit.ed states. With t.his value for IJ., we can apply the first. order 

results of F S almost directly. The reduced free energy to first order may 

be written 

Cl. ) 
f{ 21d = -Fz.N{ 2lc,} ~ -Eo + ~2N 

2N lc,B T kBT 2N' 

where ~~) represents the contribution from the first excited states. This 

quantity is described in FS and the reader is referred to these authors for 

details. Our reduced free energy is 

7 -48 
8 1 2 + B - lC1 B+ - wx (2 + x 3 8 ) 
3 6 

+a2 (8)J2 + r alc,(B) lc, 2k 
k~ 
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where, to leading order, 

7 
8 2 "2-48 

a z ( 8) = - Kj. 8 - - wx (2- 3X 1.+e8 + X 3+e8 ) 
3 6 

and, for k ~ 4, 

7 -48 
k ak(8) = - j Kj.8(k-3)- i wx

2 [~ (k-3) - (k-4)x1.-e8 

- 2xZ + ! kx3 +e8 ] 
3 ' 

The previous three expressions are the same in all important respects 

to the analagous ones derived by FS. We thus conclude that there are at 

least three regions of stable phases originating at T = 0, K' = 1./8: (a) an 

L~ z structure, (b) a structure with antiphase domains of size 3 , that is, a 

( 3 ,3) ant.iphase or <3> stat.e, and (c) a DO 23 or <2> structure. The phase 

boundaries at low T should then look like those in Figure ~ • The boundary 

between L~z and <3> is a. true phase boundary at low enough temperatures, 

but the <3> -<2> boundary may be unstable in higher order With respect to 

the occurrence. of more complex polytypes consisting of domains of size 2 

and 3. 

We note that if oJ 1. is SUfficiently negative to stabilize a D02Z 

structure for oJ 2 = 0, then a finite oJ z<O will stabilize a <21.> phase in the 

region near I( == 1./8 • The <2> phase will again be stable for SUfficently 

large 1(. 
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APPENDIX III 

We present here a low temperat.ure expansion to first order of the model 

mentioned in Sect. 5 ; this is a simple modification of that discussed in 

Sect. 4.2, where we replace 3 2 by 3", i • e., we consider a pair interaction 

out to the fourth axial neighbor. 

second and third axial neighbors. 

We neglect any interactions between 

The configurational energy for this 

model is given by Eq. ( 36 ) if we make the replacement 3 2 -3" and 

a(p±2,r)-a(p±4,r). We choose 3 0 <0, 3~<0, and 3,,<0. 

At. low temperatures, individual layers will be ordered such that each A 

atom has four B atoms as nearest neighbors and vice versa. The two 

possibilities for a given plane are denoted ex and J3 as in Appendix II. The 

configuration· of the entire system at low temperat.ures is then described by 

specifying each plane as ex or J3. 

of k -bands described in Appendix II. 

n is thus convenient to use the concept 

Determining the grOWld state is essentially a one dimensional problem. 

One can show, using a cluster method [ 46] , that for 13" /3 ~ I S I< < 1/4, the 

grOWld state is <00> (no antiphase boundaries), while for 1<>1/4, the 

structure <4> has lowest energy. A 4-band is in fact the smallest band that 

will occur, even at the multiphase point T=O, 1<=1/4. We shall perform a 

first -order low temperat.ure expansion about this multiphase point following 

the analysis presented by P S • 

To begin, we must express the energy in terms of the struct.ural 

variables Rk described in Appendix II. We first classify each plane ( or 

site) by speCifying its four neighboring planes on either side, keeping in 

mind that there will be no k-bands for k<4. As in Appendix II, we have the 
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following classifications: 

~. CXCXCXCXCXCXCXCXCX 7. /3/3CXcxcxCX/3/3/3 
-2. cx<?,cxcxcxcxcxcx/3 8. /3/3CXcxcxcxcx/3/3 
-3. cxcxcxcxcxcxCX/3/3 9. /3CXcxcxcxCX/3/3/3 
-4. cxcxcxcxcxcx/3/3/3 10. /3CXcxcxcxcxcx/3/3 

5~ 
- -cxcxcxcxCX/3/3/3/3 ~l. /3CXcxcxcxcxcxcx/3 

6 .• /3CXcxcxcx/3/3/3/3 

Following FS, we calculate the numbers of each of these types of site. We 

must also determine the energy of each type • Omitting the details, we give 

the result for the energy, defining I( == 114 + 8: 

Eo{fk} = -2Jo - (3/4)JL8, [1 - 4 L (k-6)fk + 8f. + 4f 5 ]. 

k~7 

We have used the identity L k fk = 1. For T = 0, minimization of Eo with 
k~ 

respect to thefk is consistent·· with the result already cited that for 

I( < 114 ( 8<0) the system is in the <00> state and for I( > ~I 4 ( 8>0), the 

system is in the <4> state. 

We next analyze the first excited states. The reduced free energy is 

= 

with the expansion parameter w = exp( 2J o/kBT) • The quantity ~N ( L ) IN is 

the contribution to the partition function of the first excited states and 

is described more fully in P 5 • Again, we omit the details and cite the 

result. The second expansion parameter is x = exp( -2J L/kBT) and Ki=.J'i/kBT 

for i = 0, ~. The reduced free energy is then: 



f = 2Ko + 

+ 

where 

and, for k~8, 

3 + ~ K 1 
4 KJ. 8 + - (2 + 5 J. 5 

a",(8) I", + I: k. ak.(8) 
k.~ 

5 
+28 

3x
2 

)w4 

Ik. , 

~ +28 
2 + x ), 

3 
--28 

8 1 2 = - 5 KJ. 8(k.-5)+ 5 w"'(2(5-k.)+5(k.-8)X 
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This result is similar to that obtained by FS for the original ANNNI model 

and the arguments (appropriately modified) carryover. For 8 on the order 

of w'" , we obtain two phase boundaries in the 8 -T plane. The first is a 

boundary between <(X» and <5>, and its locus, 8 -oo( T), is given by 

113 

1 ~ 2)2( 2 ) 3 2] 4 w~(l-X 1 + 2x + 3x + 2 x 

This boundary is stable in higher order as well. The second boundary is 

between <5> and <4>. Its locus, 8 J. (T), is given by 

1 5 
122 = 4W"'( 4 - 5x + x ) + O( we ) . 
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We expect. t.his boundary t.o be unstable in higher order wit.h respect. t.o t.he 

occurrence of longer polytypes consisting of ant.iphase domains of size 4 

and 5. 

We not.e t.hat. one can change t.he sign of J.1. and obtain t.he t.hree phases 

<l.>, <2l.l.l.>, and <2l.l.> in place of <00>, <5>, and <4> respect.ively. Such 

polYt.ypes have been observed in CU 3 Al [47]. 
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TABLE I 

All Fujillara phases IIltll P = 73. sucll tlJat 1. 5 < H < 2.0 

~ H Structure 

48 1.5208 <[221(21)10]221> 

47 1.5532 <[221(21)3]421> 

46 1.5870 <[(22121)321]2[(22121)221]> 

45 1.6222 <[(221)221]522121> 

44 1.6591 «221)1421> 

43 1.6977 <[231(221)2]4221> 

42 1. 7381 <231[(231)4221]2> 
'- -- -- ... - ~ -

41 1. 7805 <241(241231)~ 

40 1.825 <251[(251)2241]2> 

39 1.8718 «271)4261> 

38 1.9211 «2121)22111> 

37 1.9730 <2361> 



TABLE II 

All possible FujlllaTlt p1Jases 1l1tb 2 .~ P ~ 20 and all possible 9's such 

tbat 1. 5 ~ H = P /9 ~ 2 

M P/Q Level k Stnlcture 

1.5 3/2 1 <21> 

1.5454 17/11 2 <221(21)4:> 

1.5555 14/9 2 <221 (21)3> 

1.5714 11/7 2 <221(21)2> 

1.5833 19/12 3 «22121)221> 

1.6 8/5 2 <22121> 

1.625 13/8 2 «221)221> 

·1.6363 18/11 2 «221)321> 

1.6666 5/3 1 <221> 

1.7 17/10 2 <231(221)2> 

1.7143 12/7 2 <231221> 

1.7272 19/11 2 «231)2221> 

1.75 7/4 1 <231> 

1.7777 16/9 2 <241231> 

1.8 9/5 1 <241> 

1.8333 11/6 1 <251> 

1.8571 13/7 1 <261> 

1.875 15/8 1 <271> 

1.8888 17/9 1 <281> 

1.9 19/10 1 <291> 

2.0 2/1 1 <200].> = <2> 

-67-
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Pl:GURE CAPTIONS 

Fig. 1. Schematic phase diagramindicatin~ Disordered ( D) , Simple Ordered 

(0.1.) , Complex Ordered (0 z) , and Modulated (Mod) pase regions. Lifshitz 

point at L , Multiphase point at 1<0. Coordinates are temperature T and 

interaction parameter ratio I< • Full curves represent first -order, dashed 

curves second -order· transitions. 

Fig. 2. Simulated diffraction patterns for long -period polytypes decribed 

in text. Sizes of filled circles indicate relative intensities. Open 

circles represent fundamental reflections at Miller index h = 0 and 1. 

Fig. 3. Stacking· of A and B-rich planes with . antiphase shifts occurring 

approximately every five lattice spacings in the x direction. Bottom 

portion of figure indicates ,projected, antiphasing modulation f(x) • 

illustrating smooth profile corresponding to wavy antip~e boundary in 

upper potion of figure. 

Fig. 4. T-I< Phase diagram in vicinity of Lifshitz point L. Loci of 

vanishing of various functions are indicated. Triplets of signs denote 

regions where functions 4»min, 4»0' and 4»z, respectively, have the indicated 

signs. Behaviour of function 4» at temperatures Ta , Tb, Tc, Td, (at I< _) T 1.' 

Tc, Tz , and T3 (at 1<+) are shown in Fig. sb. 

Fig. Sa. Second derivative function 4»( h) about POint h=1/2 ( ordering case), 

full curve, and its Taylor's expansion to 4th order, dashed CUrve; both 

plotted for I< = 0.45 • 

. Fig. sb. Values of function 4» (Taylor's expansion) plotted versus modulating 

wave index q, at values of I< ( 1<+ and 1<+ ) and temperatures indicated in 

Fig. 4. Triplets of signs have same meaning as in Fig. 4. 
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Fig. 6. Antiphase domains formed by modulat.ing wave f(xp) , dot.t.ed curve. 

Effect. of this wave on the lat.t.ice is the same as that. of amplitude 

modulat.ed ordering wave, full curve, whose envelope is the long -period 

modulation shown as dashed curve. Half -period of lat.t.er modulation is 

M = 98/19 = 5.1579. 

Fig. 7 • Tetragonal unit cell for ANNNI model, indicating lattice -site 

notation and effective pair interaction parameters J. 

Pig. 8. ANNNI model phase diagram obtained by PS low-temperat.ure expansion 

for "ordering" case: J 1.<0 and J 2<0. 

Fig. 9. Sign transformation procedure for deriving "ordering" from 

"clustering" phase diagram. 

Fig.10. Antiphase structures <241> (a) and <2 3 3> (b) with associated 

t.etragonal unit cell (t.op portion of figure). 

Pig .11. conjectured ANNNI model phase diagram, similar to diagram of Pig. 1 

but with breakup of Mod phase field indicated schematically. Only a few FW 

phases are shown; infinitely many others are expected, for instance in 

regions covered by light. dashed lines. 

Fig .12. periodic antiphase structures observed in fcc alloys: <241> in 

Ag 3 Mg (a) and <2 3 3> in Au 3 Zn (b). Note similarity with Figs. 10a and 10b, 

respectively. 

Fig .13. High-resolut.ion TEM micrograph taken by N. Kuwano using the 

JEM-1000 Microscope at the HVEM Laboratory of Kyushu University, Japan, of 

Ag 3 Mg exhibiting long-period superstructure <2 3 1>. Light dots are 

projections of rows of Mg atoms, Ag atoms are not imaged. 
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Fig • ~4. Portion of ANNNI model phase diagram assumed to be appropriate to 

CuAu II-like systems. At indicated value of parameter 1<', the long-period 

polytype phase field <5> is shown surmounted by a narrow phase field of 

"incommensurate" modulations produced from the disordered phase D by a 

second -order transition. 

Fig • ~5. TWo types of (~OO) planes in the L~ z ordered structure: m planes present 

A -Bordering, p planes contain only one type of atom. 
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