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- Abstract

A‘correction for loss of events due to dead time in dyﬁamig positron
emission tomography is presented; The model employs a paralyzing dead time
to describe the behavior pf‘the tomograph over the range of e#ent.rates
normally encountered in patient studies (up to 200,000>;vents/sec/detector
layer). The Donner 280-Crystal Positron Tomograph is characterized by a
dead tihe of 1.8 usec/event for observed count rates of less than

200,000 events/sec. The dead time correction factor is 1.8 at

180,000 events/sec. The correction is applied to pfojection data and to
region of interest analysis of dynamic PET studies, and the covariances of

the corrected data are calculated. At 180,000 events/éed, the variance of

~the actual (corrected) number of events in a region containing 3.3x103

[

actual events is predicted from the model to be 3.9x106 events 2, which is
more than 10 times the variance that would be expected from a naive
assumption of Poisson statistics. These statistical results are verified
experimentally. The'ngcessity and importance of dead time correction in
dynamic PET 1s shown by an example of an qbserved errorvof 25% in

myocardial flowvif dead time compensation is not applied.



Introduction

A correétion for dead time is necessary for quantitative positron emission
tomography,.in addition to the corrections for attenuation and detector
sensitivity. All these corrections are applied to émis;ion data in which
each bin corresponds to a chord between two crystals in a circular detector
array; The corrected number of events in the kth bin, pg, depends on two
observafions: an emission'dataset acquired after a positron emitting
radionuclide has been infroduced and a transmission dataset acquired
previous to injection and used for attenuation correction. In the
transmission experiment an annular source of 68ce surrounds the patient
port and data are taken with the patient in position, in analogy to X-ray
CT. Both datasets are subject to the effect of dead time, so that the
number of events detected in a time interval is é nonlinear function of the
éctivity in the tomographe. In addition, each of fhese datasets has
associated‘uncertgintiés that must be accounfed for”throughout the analysis

in order to estimate the variance of the result.

Defining qék and qtk as the emission and transmission datasets, the

corrected number of events is given by

N

= feqe ' )
P = o =% B o : ' (1)_'

frqg

whefe Tt is the acquisition period of the transmission data. The dead time
correction factors for tﬁe emission and transmission files are f€ and ft.
s

Hy denotes theoretical unit duration transmission data with the tomograph.

empty and incorporates the correction forvdetector efficliency and geometry.



The Hy are determined empirically through phadtom studies but with such
precision that they are taken to be nbn random parameters in the analysis

belowe.

In section 1, the dead time correction problem is approacﬁed by
constructing a simple’mode1>of the dead time behavior of the,positfén
tomogréph, assuming tﬁat it may be paralyzed and can be described in a
limited range of count rates by a single dead time. No attempé'is made to
model the event pfocessing logic of the tomograph, which is &escribed
elsewhere (Derenzo et al 1981, Huesman et al 1980). Thé parameters of the
model are determined throdgh experiments with a short-lived positron
emitter, 8%Rb. In section 2, we derive ¢stfmates of va;iance for
histogrammed data and regions of interest. Results of both sections are
validated by another experimént in which we sample the statistics of the
events detected by the tomograph at a wide range of count rates using_lSF
and measure the aead time cofrection'factor directiy using 68Ge. This
method is similar to that proposed for dead time correction in Anger
cémeras (Adams g£_3£'1973,.Budinger et al 1973). An application to dynamic
PET flow>studieé demonstrating‘the.importance of the dead time correction

~

appears 1n section 3.

Section 1: Dead time correction
'Hddel for events

The pbsitron tomograph detects an event when photons strike two detectors,
producing electrical pulses of the appropriate energy within a fixed
coincidence window. Events involving two photons are due either to the

annihilation of one positron with both photons detected (called actual

-



events here) or to one photons from each of two annihilations (called
accidentals). The total numbers of actual and accidental events that would
be recorded in an interval in the absence of dead time are denoted A and B,

respectively. Events involving three or more photons, triples, result from

~ the annihilation of at least two positrons and are rejected by the

electronics.

In order to determine the dead time of the tomograph, one can observe
the decay of a source. The total number of events in equal time intervals

of duration T from a positron emitter placed in the tomograph behave

»approximately according to:

A(1)

ajexp(-Aity) : 2)
: 2
B(1)

Biexp(=2Xty)

where ) is the decay constant of the positron emitter, t{ is the time at
the ceﬁter of the ith 1nterval, and aj and Bl'are the number of actual and
accidental events in the firét interval. It 1is assumed that the duration of
the intervals is small compared with the half-life of the positron emitter.
Noticé that A(i), the number of actual events, is proportional to activity
in the tomograph while B(i), the number of accidental events, is

proportional to activity squared. ’

The Donner 280—Crystal Positron Tomograph employs a 68Ge hoop source
for transmission studies. When the hobp is retracted into a groove in the
collimator for emission studies, its scattered photon emissions appear to
the detectors as a source of single photons. A few true coincident events

due to the hoop are also detected because the metal cover on the hoop is

- not thick enough to stop all positrons. There are also a small number of

" events due to background radiation. The relations above may be easily



modified to account for the presence of long-lived emitters:

A(1) =03 exp(—kti):+ 1)

(3)

B(1) By exp(-2Aity) + Ba exp(-Aty) + B3

Here a9 is the number of actual events due to a long-lived positron
emitter, B3 is the number of accidental coincidences due to a long~lived
radionuclide, and By represents events with one photon from the short-lived

positron emitter and one from the long-lived radionuclide. -

- The total numbér of events in goincidence in an intgrval is A+B (where -
(1) has been droéped). ‘In ordér to estimate A an estimate of B is
subtracted from-fhe total. The estimate of B is obt;ined with a second
coincidence window of equal duration but with a sufficient time delay
ihserted on one inputvchannel so that only accidentals are deﬁected.. The
first coincidence window will be referred to as the on-time windo& and the

second as the off-time window.

Model for losses due to dead time

In our simple model, the dead time processes are lumped into a single

paralyzing dead time Tt (see for example Evans 1955), simply described by:
" observed rate = rate x exp(- T x rate ) : %)

Events from both the on-time and off-time windows. generate the same dead
time, thus the number of events lost due to dead time will be determihed by
the total event rate (A+2B)/T . If N is the number of observed on-time

events and M is the number of observed off-time events, then



N = A+ B
£
B (5)
M=
where f is the dead time correction factor given by
A + 2B) '
£ = el T AT (6)

and 1 - 1/f is the fraction of events lost due to dead time.

Figure 1 shows data acquired with 82Rb in the Donner 280-Crystal
Positron Tomograph. Notice that in order to correct data an estimate of the
real count rate, (A+2B)/T must be calculated using the total observed count
rate (N+M)/T and‘equation (4). This nOnlinéar equation is solved using
Newton’s method, with fhe rahge restricted a priori to valﬁés less than the

maximum observed (N+M)/T.

Estimation of dead time

To obtain a dataset from which T could be determined, 40 ml of saline
solution containing 50 mCi of 82Rb were injected into a vial placed in the
sensitive plane of the tomograph. N and M were recorded for 80 sequential
intervalé of 10 sec. The data are plotted in figure la. It is not obvious
-that the entire dataset can be characterized by a model based on only one
paralyzing dead time. In practice our interest is restricted to the lower
range of countvrates and we assume that other dead times are too short to
induce losses in this range. Unless specified otherwise the discussion
below will pertain to this subset of the data, which appears to the right

of the peak in MM (see figure 1).

It was anticipated that the dead time might be sensitive to the

fraction of accidentals, not accounted for in the model. The fraction of
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. accidentals becomes larger when many scattered photons reach the detectors.

These photons may change the‘effective dead time of the circuits used for
pulse height selection for each crystal (Arnold 35133'1974, Muehllehner et
al 1974). 1In order to test this hypothesis, the e#perimen?‘was repeated -
with the vial immersed in a béaker of water so that the‘path of each photon
traversed approximately 10 cm of'water, resulting in sigpificantly higher

accidental rates. These data are displayed in figure 1lb,

The data for the fit were the recorded quantities N and M with count

" rates (N+M)/T between 10,000 and 200,000 coqnts/sec. The decay constant of

82Rb was fixed corresponding to a 75 sec hélf-life, and the parameters qp,
ag, B1, B2, B3, and T were estimated to fit equatioh (3), (5) and (6) using
a weighted least-squares criterion and a‘Mafquardt—type algorithm
(Marquardt 1963). 1In order to fest the validity of our model, another set
of data.recorded at low event rates was also fit. The observed values of N
and M Were’used as estimates of variance of these variables for the

weighted least-squares fits.

The results of these fits are summarized in figure 2; The dead time
estimates were 1,789 * 0.006 usec/event for the vial only and
1.819 * 0.006 usec/evgnt»with the water phantom. The dead time correction
thus depends on the accidental raté, but the effect is smallvcomparéd to
the correction itsélf. The dead time correction factors obtained by using

these two values are very close as can be seen in figure 3a.

Validity of the model

In order to test the validity of the model the following experiment was

performed: A source containing = 28 uCi 68Ge (half-life 282 days) and a

v
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source = 59 mCi 18Fluoro—deoxy—glucose in 29 ﬁl water (half-life 110 min).
were placed in the tomograph. A series of 80 files (1 sec each) was
collected every half‘hour for 24 houré. Datasets for attenuation correction
were also taken with each of the vials replaced by a lucite phantom;v
_ Regionstf interest Including each source were drawn on a reconstructed'
image (figure 4), and the total number of eventé in each region was
computed for each series of 80 files (Huesman 1984)., - By looking at the
events at the 58Ge location we were able to estimate an experimental
correction factor for different total count rates, neglecting the ©8Ge -
decay during the 24 hoﬁr.experiment. Neglecting the decay of the e
during each series of 80 files, experimental values for the cova;iance of N

and M were calculated.

The dead time correction factor determined from‘tﬁe 68Ge region agrees
closely with that obtained from the model using T = 1.8 psec/event
‘(figure 3b) in the range of count rates included in the scope of this
study. Fitting the 68Ge~18FpG datasét with the model gives a value of

1,794 * 0.014 psec/event, not significantly different from the values

obtained with the 82Rb datasets.

Discussion

The model of event handling in the tomogfaph does not explicitly inqlude
three photon events, or tripleé, as do other previously published models
(Hoffman et al 1983). These events are rejected by the tomograph but still
contribute dead time. This is absorbed by T, which is really an effective
dead time. Because the triples rate is not expected to be proportional to
the total event rate some model error is introduced. Based on the

experiments described above and a coincidence window of 25 nsec, the



triples rate can be predicted. We consider two types of tripies: those
invblving two annihilation evénts which occur at a rate equal to the
product of the window dufation, the acfual eQents rate and the singles
rate; aﬁd those involving three annihilation events, whose rate is the
prodﬁct of the window duration, the accidentals rate and the singles rate.
We neglect'the small number of annihilation events‘which yield three |
photons. The triples rate for the 82Rb.study with scattering at an observed
total count rate of 200,000 events/sec is estimafed'at 20,000 eventé/sec,
while the éctual and accldental rates are 100,000 events/sec and

150,000 e§ents/sec, respectively. Thus triples are about 5 pefcent of fhe
two photon rate (actuél + 2 accidental) at the highest count rate

considered; and it is not unreasonable to neglect them.

Another type of event rejected by the t&mograph is that in which the
photons scatter from one crystal into its neighbor, resulting <in pulses
from both photomultipliers. Both actual and accidental events are equally
1ike1§ to be rejected in this way, so that these,événts merely contribute

to the effective T

. To test the validity of using é single pafalyzing dead fime to correct
in this range, we constructed a modéi with a paralyéing dead time cascaded
with a nonparélyzing dead time. Fitting this model to the dataset with |
count rates less than'200,000 events/sec yielded a nonparalyzing dead time
less than 1 nsec/event, which is not significant. This reflects the
exclusion of very high count rates, which makes the two models very similar

(Sorenson 1975).

We limit the range of count rates to less than 200,000 events/sec for
three reasons: higher count rates have not been encountered often in human

or animal studies; the varlance of the corrected data can become very large



at high count rates (see Section 2); and’while the tomograph exhibits
paralyzing behavior, it does not follow a single dead time model beyond the
peak in the observed events vs. actual events curve. .A multiple dead time
model that~yie1ded-stab1e parameter values when fit té different‘dataseté;

was not found.

Section 2: Varilance propagation formula for dead time correction

Preliminaries

In.this Section, the dead time correction scheme is applied to transmission
and emission data to produce a dataset éorrected for deﬁector sensitivity,
attenuation and dead time. -Recall that the model of Section 1 assumes that
the number of events lost due to dead time depends oniy on the total count
rate A+2B and that py, the overall corrected value in the k?h»bin,\is
defined as:

Tt

. = e e

P = ey Ftqt Heo oo ' (1)
Tk

The superscripts t and e denote transmission and emission datasets,
respectively. Since the Donner tomograph'substracts accidentals as they

occur, the observed quantities are
q¥ = [nX - wX] | o )
where n¥} and m¥y are on-time and off-time events in the kth bin

respectively.

The individual nxkvand m¥k ‘s are not observed in the Donner tomograph,
but thelr sums over k, NX and MX are counted. Variance estimates from the

68Ge~18FDG experiment discussed in Section 1 are shown in figure 5. The
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results sﬁggést that it is reasonable empirically to assume a.Poisson_
distribution for the sums over all Bins for total event rates.less than
200,000 even;s/séc. Estimgtes of the covariance of N® and M®, computed for
the ‘Ge-FDG experiment, confirm the assumption of independenqe between these
two variables. We makebthé additional assumption that the individual bin
values are independent and Poisson distributed in this range of event

rates .

‘Variances and‘covariances of py’s

Equation (1) states that py is a function of all of the n¥; and m¥
through the dead time correction factors f¥X, To estimate the covariance of

Pj and pg, expand to first order:

' ‘ apj X X apj X Xy
Py =Py + Ly ——e (EGMD) + — @i-E@D) (8)
, oAy amy

where E(x) denotes the expectation value of a random variable, and Pjo
denotes Pj evaluated with the mean values of n¥; and m*;, respectively. By

definition,

so that to first order:

oy dp, I dp, 9p .
cov(p ,Pk) = z Zi — k var(n?) + k var(m?) . (10)
IR X anX - an¥ nX  amt |
i i i i .
Equation (10) may be written:

where
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26%6% + (£%7)2(WRR1X) N
P = Zx = Zx F ’
- ‘ (fX)Z v

and

(12)

e M x
G = b T L%

(qﬁ)2

See Appendix 1 for evaluation of the derivatives in equation (9) and the

derivation of equations (11) and (12).

Variance and covariance estimates for counts in regions of interest (ROI)

The corfelation among data in different projection bins introduced bf
dead time correction propagates through region-of-interest calculations and
contributes corfelation among regions in addition to that which is
intrinsic due to feconstruction. Let R2.and RP be the number of corrected
events in two regions of interest. The covariance between R2 and RP can be
eétimated by:

coV(Ra,Rb) % EjZk cov(pj,pk) c% CE , ' | (13)
where cxj are coefficients depénding only on the shape of the region and

the reconstruction algorithm (Huesman 1984). Using equation (11),

cov(Ra,Rb) =P (Zj c? pj)(zk cﬁ pk) + Xi c? c? Qi p% . - (14)

This equation can be rewritten as
cov(Ra,RDb) ='fg (Prarb+ cov(ra,rb)) , (15)

where f. is the compound correction factor f&/ft, r2 and rP are the
uncorrected value in the regions, and the covariance in the brackets the

covariance between these uncorrected values (Hueéman 1984). Note that the
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corrected covariance is not fc2 times the uncorrected one, rather there
exists an additional term f.%Prarb to account for correlation between f.

and the number of counts in these regions.

Covariance between regions with two different emission datasets

In dyﬁamic studies, a sequence of emission datasegs.at the same
location are acquired and anélyzed. 'Correction of these emission data with
a common transmission dataset introduces some correlation between the
corrected emission data. It is useful to know this correlation for input to

the algorithms used to fit the dynamic data to compartment models.

Calculatioﬁ of the cbvarianée‘(or correlation) between bins and
regions is a simple exténsion of équations (11).and (155. Superscripts u
and v denote that the data may be from different emiésion datasets. Then

cov(p$,py) = pYpy ( B*+ 654 Qc) | (16)

where

_ nt : e
P =F + Gu,v F~ ’

and
(17)
* _ ot | e
Qe = Q + 6u,v Q -
:The covariance'between-regions is
cov(Ra’u,Rb’v) = p* R3sU gDV 4 g [ ci c? QI pg p¥ ] . (18)

Validity of covariance propagation formula

The validity of the variance estimates for the sum of events in all

bins and for regions was assessed using data from the 68Ge—18FDG experiment

(Section 1).

-
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Sincé computation of the total number of actual events, A, involves
only the sums of on— and off-time events without any transmissiod.data,
equation (16) may be used to calculate an estimate of fhe variance of A.
For comparison, 80 valﬁes of A at the same total count rate are estimated
from our experiment, and from these a sample variance is computed. Close
agreement'between the sample variance and the prediction is demonstrated
over.a wide range of count rates in figure 6a. It is of interest to note
that the coefficient of variation of A, plotted in figure 6b, has a minimum
when the'count rate is near 100,000 events/sec. Additional activity'ih the
tomograph decreases the precilsion to which.A is determined by a
measurement. Analysis of this type can be extended to events within a
region of interest in order to determine the optimum dose for a particular

experiment.

The estimates of the variance in a region (equation (15)) and the
covariance between two regions were tested in a similar manner. In these
cases the same transmission filg was used so that variability due to the
transmission correction could not be observed in the sample.
Consequentially, the fransmission variance was set to zero in calculation
of Q. Since 0€,-n€y is recorded by the témograph while n®,+m®y 1s required
for evaluation of Q®,, we assume that off-time events are uniformly

distributed among Npi, bins,

o =iy . - . (19)
so that an estimate of N+M can be calculated. Comparisons between predicted
and sample variances are shown in figure 7 and again show good agreement.
Covariances between regions are listed in £able 1, where covariance

estimates without dead time correction are included for comparison.
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Note the relative sizgs of the contributions of the firsf and second

terms of equation (15) to the covariance. The seéond.term is simply the
multiplicative effect of the correction factor on the uncorrected
covariance matrix, thle the first term reflects the corfelation introduced
by the correction process. Table 2 shows the contributioné to the variance
for a background'region, the 6.BCe region and the 18ppG region for the
. experiment described above. It is evident-thét for regions with a 1argé
proportion of the total events, e.ge the l8ppg region, that the first term

is significant even at low count rates.

Section 3: Application to flow computation

A.dead time correction was applied to 150 water flow studies on dogs
usiﬁg a dead time of 1.80 usec/event.’ A region of interest in the left
ventricle is used to obtain an input function to determine flow into
vregions in the myocardium (Budinger et al 1984). The'input function and
residue in the myocardium are shown in figure 8. Comparison'of the raw aand
dead time corrected curves shows that large corrections are necessary Qhen
tﬁe bolus of radionuclide passes through the heart, Fitting raw and dead
time corrected data to a two compartment model yields flows of 1;83 *0.17
and 1.39 * 0.12 ml/min/g, respectively. The flow value determined from the
microspheres reference organ technique was 1.47 ml/min/g. ' Dead time
correction decreased the flow value relative to that obtained with raw data

in all of twelve dogs studied.

Section 4: Conclusion

We have developed a simple model of an emission tomograph and derived

a general covariance estimate for the number of events in bins and regions
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of interest, incorporating corrections for dead time, detector sensitivity,
and attenuation. The dead time correction and covariance estimates have
been verified experimentally on the Donner 280-Crystal Positron Tomograph.

The experiments demonstrate the importance of dead time correction at

-modest count rates, and the strong dependence of the covariance of the

actual number of events in regions on the dead time correction factof. The
covariance estimate is the link between the amount of activity administered
and the covariances of the parameters to be determined in an experimént. A
major conclusion from this theoretical work, verified by éxperiment, is
that in situations with high activity in‘thé tomograph, the coQariance of
the qorrected data will be greatervthanrpredicted from a naive estimate

based on Poisson statistics for corrected data.
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Appendix : Derivation of covariance forﬁulé

Recall from section 1 that qek and qtk were defined as the emission

~

and transmission datasets and py the corrected number of events in the kth

bin as:

Tt

&

LA | | W

‘= feqe
f qk

Py t

t
£q,
where Tt is the acquisition period of the transmission data, f€ and ft the
‘dead time correction factors for the emission and transmission datasets.

- Equation (1) states that py is a function of all of the n¥*y and m¥y through
the dead time correction factors fX and the qXg. Since fX is an implicit

function of the total observed count rate GX = (NX + MX)/TX, we can define

a function f¥’ as:

.,  OofX ofX - fX
fx = - =.Tx’ - = TX % (20)

for all k. For thé model of Section 1:
£fX = exp(T £X6%X) . | . T (21)
s . ’ T (fx) .
£X = 1 £ XX + F5¥X ) = (22)
: : 1 - 1 f%¢¥ -

. We can further remark that since qxj = nxj - mxj, then:
aq% _ 3% ' '

i.s s i -5 s | - (23)

. 1Y . . .
an) X,y bk ) %5y 3k
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Using logarithmic derivatives in (1), the partial derivatives of pj are:

3p . s, . fe’
i . 1,3 s
- p. ( + )
any J q? £e7¢
p. § e’
_fL = - i’j ’
. p. ( + )
~3m ] ¢ £€1¢
i 1j ,
- - , (24)
p. 8 ft
pJ - - i,3 ’
" p. ( ot )
9ng J qj f°T
3p. s, . £t
ey 1;3 i)
dm J a; £°T

Using these derivatives, each term of the double sum in the right side of
equation (10) of section 2 may be computed. According to previous
assumptions, var(n¥;) = nxi‘and var(m¥;) = m*{; then the generic term of

this sum becomes:

n;{-i-m}i( ol 2 Xy X x 61 j 61 kyrox_ x
pipi [ 8g, 38 W5 + (fx,x (nf+m) + o (=2l + 25 fa]) ]
93 9k T T 93 i

The first term in the brackets is null unless i=j=k, and then the sum over
1 of these terms may be written:
8 $ —Eﬁjfg— ' 25
3,k% T O3,k T (25)
(qk)
The sum over i of the second term is easily computed as a constant
(independent of j and k) times the total number of counts NX4MX; due to
Kronecker functions, only two terms remain when summing the third terms,
one when i=j, the other when i=k. Since qxj = an—ij, this partial sum

reduces to twice fx'/(fXTx) (independent of j and k).
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Defining as in section 2 the sum over 1 of the last two terms as:
2 X £X1% 4 (6% )2(N¥nr%)

F* = - " (26)
(fxTx)Z .

and Qy énd P as the sum over x of Q¥k and FX respectively, equation (10)

becomes:

COV(Pj:Pk) .= Pij ( Gj;ka.+ P ) . , (,11)
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Figure 1. Data from 82Rb dead time experiment: (o) events in coincildence
window; (*) events in no-coincidence window; (@) total number of events.

a) Source without scattering material. b) Source with scattering material.

Figure 2. Data and fitted curves for 82Rb experiments: (o) events in
\coinéidence window ; (*) events in no-coincidence window; (solid 1inés)
fits. The fits were performed for total observed count rate < 200,000
events/sec. a) Soufce without scattering material. b) Source with

scattering material,

Figure 3. a) Correction factors computed using dead time estimates from -the
82Rpb experiments with and without scattering material (solid and dashed
line, respectively) as a function of the total observed count rate.

b) Correction factors frém the 68Ge—lSF"DG experiment (o) and the model with

a dead time = 1.8 usec/event (solid line).

Figure 4. a) Transmission image of phantoms. b) Emission image with regions
of interest: 1- 68Ge source, 2~ background, 3- 18pDG source, 4= patient

port.

Figure 5. Counting statistics at different times during 68Ge~18rDG
experiment. Sample mean and variance for on-time events (o and e,
respectively) and off-time events (* and ﬁ, respectively). This figure
éupports the assumption of Polsson noise for on-time and off-time events in

the practical range of interest. (right of the dashed line)



Figure 6. Statistics for corrected number of events, A, as a function of
the total observed count rate. a) Sample mean (*) and variance (o);
predicted variance (solid 1line) using equation (15). b) Predicted "

coefficient of variationmn.

Figure 7. Predicted vs. observed variance of the number of events at three
different total observed count rates in three regions.

- (%8Ge (o), background-(o), 18rpG (V)

Figure 8. Inppf (a) and residue (b) curves from an H2150 dynamic study with
(®) and‘@ithout (o) correction for dead”time. Using the microsphere
technique,bthe flow value (ml\min\g tissue) was measured to be 1.47; the
flow values derived from the H2150 experiment were 1.83 beforé and 1.39
after cofrection for dead time. The correction factor at the ﬁime of the
peak of the input curve was 1.8 for a 180,000 events/sec total observed

count rate.
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Table 1. CbmparisonAof observed and pfedicted covariances and correlations
of numBer of events 1p.two palrs of regions forisgce—leFDG experiment at
three different count rates, with andeithogt dead time correction. (see

Figure 4b for reglons)

Regions Observed rate Covariance
(103events/sec) (correlation)
predicted predicted
obéerved with withoﬁt
correction correction
40 4.27x103 4,60x103 3.16x103
(.14) 16y (.14)
1,4 90 5.obx103 7.15x103 2.94x103
(.06) (.09) (.07)
180 7.25x10" 3.98x10" 2.33x103
(.13) (.08) (.03)
40 7.85x10% 8.64x10" 6.21x10"
(.86) (.85) (.86)
3,4 90 3.56x10°  3.18x10° l.44x10°
(.90) (.90) (;86)
180 5.30x108 3.92x106 2.82x10°
(.96) (.95) (.83)




Table 2. Statistics for prédictioh of number of events in three regions

(see Figure 4b) at three different count rates. The two columns at the

right are the contributions to the total variance (in %) of the additional

variance due to the correlation between corrected number of events 1In

different bins introduced by the correction process and the simple

multiplicative effect of the correction factor. These correspond to the

first and second term of equation (15), respectively.

Total observed

Region # Ra in region | Variance | eq. 15 eq. 15
‘ rate ' 1st term | 2nd term
(103events/sec) % (%)

Background 40 6.07x10} 8.16x103 | 0.0 100.0
2 90 1.39x102 1.65x10% | 0.0 100.0

180 3.04x102 5.80x10% | 0.0 100.0

Low source’ 40 3.25x103 7.88x103 | 0.6 99.4
strength 90 3.27x103 1.99x10* | 0.4 99.6
1 180 3.59x103 | 7.93x10% | 0.6 99.4
High source 40 4.76x10"4 9.75x10% 10.5 89.5
strength 90 1.22x10° 3.48x10°% | 26.3 73.7
3 180 3.34x105 | 3.86x106 | 72.3 27.7
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Figure 1b
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Figure 6a
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Résumé 

Correction de temps-—mort et statistiques de comptage pour la tomographie a

positrons.

Les auteurs présentent une correction pouf les pertes de comptage dues aux
temps-morts dénslles'études dynamiques,utilisant un tomographe 3 positrons.
Un'unique tempstort para;ysant permet de modéliser la répohse du
tomographe pour les taux d’événemeﬁts (evt) rencontrés en routine. Le
tomographe a 280 cristaux d@ Donner Laboratory est ainsi_caracterisé par un
temps;mort de 1.8 psec/evt pour des taux inférieurs a 200,000 evt/sec. A
180,000evt/sec le facteur de correction vaut 1.8. Cet;e correction est
effectue sur le nombre d’événements de chéque projection et de chaque
région d’intérét pour toutes lés images d’une etude dynamique, et 1la
covariance des données corrigdes est calculée. Pour un taux global de
180,000 evt/sec,'la variance du nombre d’annihilations (aprés correction)
dans une région en contenant 3.3x107 est de 3.§x106, 10 fois supérieure é-
la valeur prédite a 1’aide d’un simple modéle Poissonien. Ces rgéultats
statistiques ont ete verifids experimentalenment. La necessité et
1’importance de cette correction de temps-mort dans les &tudes dynamiques
utilisant 1la tOmographieVE positrons est mise en évidence dans un exemplg
du 1’absence de correction entraine une suresfimation'de 257 de la

perfusion du myocarde.
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