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Abstract 

A correction for loss of events due to dead time in dynamic positron 

emission tomography is presented. The model employs a paralyzing dead time 

to describe the behavior of the tomograph over the range of event rates 

normally encountered in patient studies (up fo 200,000 events/sec/detector 

layer). The Donner 280-Crystal Positron Tomograph is characterized by a 

dead time of 1.8 ~sec/event for observed count rates of less than 

200,000 events/sec. The dead time correction factor is 1.8 at 

180,000 events/sec. The correction is applied to projection data and to 

region of interest analysis of dynamic PET studies, and the covariances of 

the corrected data are calculated. At 180,000 events/sec, the variance of 

the actual' (corrected) number of events in a region containing 3.3x105 
r 

actual events is predicted from the model to be 3.9x106 events 2, which is 

more than 10 times the variance that would be expected from a naive 

assumption of Poisson statistics. These statistical results are verified 

experimentally. The necessity and importance of dead time correction in 

dynamic PET is shown by an example of an observed error of 25% in 

myocardial flow if dead time compensation is not applied. 
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Introduction 

A correction for dead time is necessary for quantitative positron emission 

tomography, in addition to the corrections for attenuation and detector 

sensitivity. All these corrections are applied to emission data in which 

each bin corresponds to a chord between two crystals in a circular detector 

array. The corrected number of events in the kth bin, Pk, depends on two 

observations: an emission dataset acquired after a positron emitting 

radionuclide has been introduced and a transmission dataset acquired 

previous to injection and used for attenuation correction. In the 

transmission experiment an annular source of 68Ge surrounds the patient 

port and data are taken with the patient in position, in analogy to X-ray 

CT. Both datasets are subject to the effect of dead time, so that the 

number of events detected in a time interval is a nonlinear function of the 

activity in the tomograph. In addition, each of these datasets has 

associated uncertainties that must be accounted for throughout the analysis 

in order to estimate the variance of the result. 

Defining qek and qtk as the emission and transmission datasets, the 

corrected number of events is given by 

P = feqe 
k k 

(1) 

where Tt is the acquisition period of the transmission data. The dead time 

correction factors for the emission and transmission files are fe and ft. 

Hk denotes theoretical unit duration transmission data with the tomograph 

empty and incorporates the correction for detector efficiency and geometry. 



The Hk are determined empirically through phantom studies but with such 

' 
precision that they are taken to be non random parameters in the analysis 

below. 

In section 1, the dead time correction problem is approached by 

constructing a simple model of the dead time behavior of the .positron 

tomograph, assuming that it may be paralyzed and can be described in a 

limited range of count rates by a single dead time. No attempt is made to 

model the event processing logic.of the tomograph, which is described 

elsewhere (Derenzo et al 1981, Huesman~ al 1980). The parameters of the 

model are determined through experiments with a short-lived positron 

emitter, 82Rb. In section 2, we derive estimates of variance for 

histogrammed data and regions of interest. Results of both sections are 

validated by another experiment in which we sample the statistics of the 

18 events detected by the tomograph at a wide range of count rates using F 

68 and measure the dead time correction ·factor directly using Ge. This 

method is similar to that proposed for dead time correction in Anger 

2 

cameras (Adams et al 1973, Budinger~ al 1973). An application to dynamic 

PET flow studies demonstrating the importance of the dead time correction 

appears in section 3. 

Section 1: Dead time correction 

· Model for events 

The positron tomograph detects an event when photons strike two detectors, 

producing electrical pulses of the appropriate energy within a fixed 

coincidence window. Events involving two photons are due either to the 

annihilation of one positron with both photons detected (called actual 

.•. 

i 



.. , 

f,W. 

'" 

3 ' 

events here) or to one photons from each of two annihilations (called 

accidentals). The total numbers of actual and accidental events that would 

be recorded in an interv~l in the absence of dead time are denoted A and B, 

respectively. Events involv'ing three or more photons, triples, result from 

the annihilation of at least two positrbns and are rejected by the 

electronics. 

In order to determine the dead time of the tomograph, one can observe 

the decay of a source. The total number of events in equal time intervals 

of duration T from a positron emitter placed in the tomograph behave 

approximately according to: 

A(i) = alexp(-Ati) 

B(i) = ~lexp(-2Ati) 
(2) 

where X is the decay constant of the positron emitter, ti is the time at 

the center of the ith interval, and a1 and a1 are the number of actual and 

accidental events in the first interval. It is assumed that the duration of 

the intervals is small compared with the half-life of the positron emitter. 

Notice that A(i), the number of actual events, is proportional to activity 

in the tomograph while B(i), the number of accidental events, is 

proportional to activity squared. 

68 
The Donner 280-Crystal Positron Tomograph employs a Ge hoop source 

for transmission studies. When the hoop is retracted into a groove in the 

collimator for emission studies, its scattered photon emissions appear to 

the detectors as a source of single photons. A few true coincident events 

due to the hoop are also detected because the metal cover on the hoop is 

not thick enough to stop all positrons. There are also a small number of 

· events due to background radiation. The relations above may be easily 
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modified to account for the presence of 16ng-lived ~mitters: 

A(i) = a1 exp(-Ati) + a2 
(3) 

B(i) = B1 exp(-2Ati) + 82 exp(-Ati) + 83 • 

Here a2 is the number of actual events due to a long-lived positron 

emitter, 83 is the number of accidental coincidences due to a long-lived 

radionuclide, and 82 represents events with one photon from the. short-lived 

positron emitter and one from the long-lived radionuclide. · 

The total number of events in coincidence in an interval is A+B (where 

(i) has been dropped). In order to estimate A an estimate of B is 

subtracted from the total. The estimate of B is obtained with a second 

coincidence window of equal duration but with a sufficient time delay 

inserted on one input channel so that only accidentals are detected. The 

first coincidence window will be referred to as the on-time window and the 

second as the off-time window. 

Model for losses due to dead time 

In our simple model, the dead time processes are lumped into a single 

paralyzing dead time T (see for example Evans 1955), simply described by: 

observed rate = rate x exp(- T x rate ) (4) 

Events from both the on-time and off-time windows generate the same dead 

time, thus the number of events lost due to dead time will be determined by 

the total event rate (A+2B)/T • If N is the number of observed on-time 

events and M is the number of observed off-time events, then 
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A + B 

N = f 
B (5) 

M = -f-

where f is the dead time correction factor given by 

(A + 2B) 
f = exp[ T 

T 

and 1 - 1/f is the fraction of events lost due to dead time. 

Figure 1 shows data acquired with 82Rb in the Donner 280-Crystal 

(6) 

Positron Tomograph. Notice that in order to correct data an estimate of the 

real count rate, (A+2B)/T, must be calculated using the total observed count 

rate (N+M)/T and equation (4). This nonlinear equation is solved using 

Newton's method, with the range restricted a priori to values less than the 

maximum observed (N+M)/T. 

Estimation of dead time 

To obtain a dataset from which T could be determined, 40 ml of saline 

solution containing 50 mCi of 82Rb were injected into a vial placed in the 

sensitive plane of the tomograph. N and M were recorded for 80 sequential 

intervals of 10 sec. The data are plotted in figure 1a. It is not obvious 

that the entire dataset can be characterized by a model based on only one 

paralyzing dead time. In practice our interest is restricted to the lower 

range of count rates and we assume that other dead times are too short to 

induce losses in this range. Unless specified otherwise the discussion 

below will pertain to this subset of the data, which appears to the right 

of the peak in N+M (see figure 1). 

It was anticipated that the dead time might be sensitive to the 

fraction of accidentals, not accounted for in the model. The fraction of 
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accidentals becomes larger when rnany scattered photons reach the detectors. 

These photons may change the effective dead time of the circuits used for 

pulse height selection for e~ch crystal (Arnold ~ al 1974, Muehllehner et 

al 1974). In order to test this hypothesis, the experiment was repeated 

with the vial immersed in a beaker of water so that the path of each photon 

traversed approximately 10 em of water, r~sulting in significantly higher 

accidental rates. These data are displayed in figure lb. 

The data for the fit were the recorded quantities N and M with count 

rates (N+H)/T between 10,.000 and 200,000 counts/sec. The decay constant of 

82Rb was fixed corresponding to a 75 sec half-life, and the parameters a1, 

a2, 81, 82, 83, and T were estimated to fit equation (3), (5) and (6) using 

a weighted least-squares criterion and a Marquardt-type algorithm 

(Marquardt 1963). In order to test the validity of our model, another set 

of data recorded at low event rates was also fit. The observed values of N 

and M were used as estimates of variance of these variables for the 

weighted least-squares fits. 

The results of these fits are summarized in figure 2. The dead time 

estimates were 1. 789 ± 0.006 lJSec/event for the vial o.nly and 

1.819 ± 0.006 lJSec/event with the water phantom. The dead time correction 

thus depends on the accidental rat~, but the effect is small compared to 

the correction itself. The dead time correction factors obtained by using 

these two values are very close as can be seen in figure 3a. 

Validity of the model 

In order to test the validity of the model the following exper~ment was 

performed: A source containing ~ 28 l!Ci 68Ge (half-life 282 days) and a 

,•. 
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source ~ 59 mCi 18Fluoro-deoxy-glucose in 29 ml water (half-life 110 min) 

were placed in the tomograph. A series of 80 files (1 sec each) was 

collected every half hour for 24 hours. Datasets for attenuation correction 

were also taken with each of the vials replaced by a lucite phantom. 

Regions of interest including each source were drawn on a reconstructed 

image (figure 4), and the total number of events in each region was 

computed for each series of 80 files (Huesman 1984). By looking at the 

events at the 68Ge location we were able to estimate an experimental 

correction factor for different total count rates, neglecting the GSCe 

decay during the 24 hour experiment. Neglecting the decay of the 18FDG 

during each series of 80 files, experimental values for the covariance of N 

and M were calculated. 

The dead time correction factor determined from the 68ce region agrees 

closely with fhat obtained from the model using T = 1.8 J..lSec/event 

(figure 3b) in the range of count rates included in the scope of this 

study. Fitting the 68ee- 18FDG dataset with the model gives a value of 

1.794 ± 0.014 j..lsec/event, not significantly different from the values 

obtained with the 82Rb datasets. 

Discussion 

The model of event handling in the tomograph does not explicitly include 

three photon events, or triples, as do other previously published models 

(Hoffman et al 1983). These events are rejected by the tomograph but still 

contribute dead time. This is absorbed by T, which is really an effective 

dead time. Because the triples rate is not expected to be proportional to 

the total event rate some model error is introduced. Based on the 

experiments described above and a coincidence window of 25 nsec, the 
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triples rate can be predicted. We consider two types of triples: those 

involving two annihilqtion events which occur at a rate equal to the 

product of the window duration, the actual events rate and the singles 

rate; and those involving three annihilation events, whose rate is the 

product of the window duration, the accidentals rate and the singles rate. 

We neglect the small number of annihilation events which yield three 

photons. The triples rate for the 82Rb study with scattering at an observed 

total count rate of 200,000 events/sec is estimated at 20,000 events/sec, 

while ~he actual and accidental rates are 100,000 events/sec and 

150,000 events/sec, respectively. Thus triples are about 5 percent of the 

two photon rate (actual + 2 accidental) at the highest count rate 

considered, and it is not unreasonable to neglect them. 

Another type of event rejected by the tomograph is that in which the 

photons scatter from one crystal into its neighbor, resulting 4n pulses 

from both photomultipliers. Both actual and accidental events are equally 

likely to be rejected in this way, so that these events merely contribute 

to the effective •· 

To test the validity of using a single paralyzing dead time to correct 

in this range, we constructed a model with a paralyzing dead time cascaded 

with a nonparalyzing dead time. Fitting this model to the dataset with 

count rates less than 200,000 events/sec yielded a nonparalyzing dead time 

less than 1 nsec/event, which is not significant. This reflects the 

exclusion of very high count rates, which makes the two models very similar 

(Sorenson 1975). 

We limit the range of count rates to less than 200,000 events/sec for 

three reasons: higher count rates have not been encountered often in human 

or animal studies; the variance of the corrected data can become very large 
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at high count rates (see Section 2); and while the tomograph exhibits 

paralyzing behavior, it does not follow a single dead time model beyond the 

peak in the observed events vs. actual events curve. A multiple dead time 

model that·yielded stable parameter values when fit to different datasets 

was not found • 

Section 2: Variance propagation formula for dead time correction 

Preliminaries 

In this Section, the dead time correction scheme is applied to transmission 

and emission data to produce a dataset corrected for detector sensitivity, 

attenuation and dead time •. Recall that the model of Section 1 ass-umes that 

the number of events lost due to dead time depends only on the total count 

rate A+2B and that Pkt the overall corrected value in the kth bin,' is 

defined as: 

P = feqe 
k k 

The superscripts t and e denote transmission and emission datasets, 

respectively. Since the Donner tomograph substracts accidentals as they 

occur, the observed quantities are 

qX = [nX - m.X] 
k k K 

where nXk and mXk are on-time and off-time events in the kth bin 

respectively. 

(1) 

(7) 

The individual n~ and mXk's are not observed in the Donner tomograph, 

but their sums over k, NX and f1X are counted. Variance estimates from the 

68Ge-18FDG experiment discussed in Section 1 are shown in figure 5. The 
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results suggest that it is reasonable empirically to assume a Poisson 

distribution for the sums over all bins for total event rates less than 

200,000 events/sec. Estimates of the covariance of Ne and Me, computed for 

the Ge-FDG experiment, confirm the assumption of independence between these 

two variables. We make the additional assumption that the individual bin 

values are independent and Poisson distributed in this .range of event 

rates. 

Variances and covariances of Pk's 

Equation (1) states that Pk is a function of all of the n~ and m~ 

through the dead time correction factors fX. To estimate the covariance of 

Pj and Pkt expand to first order: 

apj 

X 
ani 

(n~-E(n{)) + (8) 

where E(x) denotes the expectation value of a random variable, and Pjo 

denotes Pj evaluated with the mean values of nXi and mxi, respectively. By 

definition, 

so that to first order: 

Equation (10) may be written: 

where 

ap. 
var(nxi) + _ __.,_J_ 

anx 
i 

(9) 

var(m{) (10) 

( 11) 



P = Lx 

and 

2fXfX' + (fX' )2(NX-Jt1X) 

(fX)2 

11 

(12) 

See Appendix 1 for evaluatipn of the derivatives in equation (9) and the 

derivation of equations (11) and (12). 

Variance and covariance estimates for counts in regions of interest (ROI) 

The correlation among data in different projection bins introduced by 

dead time correction propagates through region-of-interest calculations and 

contributes correlation among regions in addition to that which is 

intrinsic due to reconstruction. Let Ra and Rb be the number of corrected 

events in two regions of interest. The covariance between Ra and Rb can be 

estimated by: 

(13) 

where cXj are coefficients depending only on the shape of the region and 

the reconstruction algorithm (Huesman 1984). Using equation (11), 

(14) 

This equation can be rewritten as 

(15) 

where fc is the compound correction factor fe/ft, ra and rb are the 

uncorrected value in the regions, and the covariance in the brackets the 

covariance between these uncorrected values (Huesman 1984). Note that the 
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corrected covariance is not fc2 times the uncorrected one, rather there 

exists an additional term fc 2Prarb to account for correlation between fc 

and the number of counts in these regions. 

Covariance between regions with two different emission datasets 

In dynamic studies, a sequence of emission datasets at the same 

location are acquired and analyzed. Correction of these emission data with 

a common transmission dataset introduces some correlation between the 

corrected emission data. It is useful to know this correlation for input to 

the algorithms used to fit the dynamic data to compartment models. 

Calculation of the covariance (or correlation) between bins and 

regions is a simple extension of equations (11) and (15). Superscripts u 

and v denote that the data may be from different emission data~ets. Then 

(16) 

where 

p* = 

and 
(17) 

The covariance between regions is 

(18) 

Validity of covariance propagation formula 

The validity of the variance estimates for the sum of events in all 

bins and for regions was assessed using data from the 68Ge- 18FDG experiment 

(Section 1). 
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Since computation of the total number of actual events, A, involves 

only the sums of on- and off-time events without any transmission data, 

equation (16) may be used to calculate an estimate of the variance of A. 

For comparison, 80 values of A at the same total count rate are estimated 

from our experiment, and from these a sample variance is computed. Close 

.. agreement between the sample variance and the predictio~ is demonstrated 

over a wide range of count rates in figure 6a. It is of interest to note 

that the coefficient of variation of A, plotted in figure 6b, has a minimum 

when the count rate is near 100,000 events/sec. Additional activity in the 

tomograph decreases the precision to which A is determined by a 

measurement. Analysis of this type can be extended to events within a 

region of interest in order to determine the optimum dose for a particular 

experiment. 

The estimates of the variance in a region (equation (15)) and the 

covariance between two regions were tested in a similar manner. In these 

cases the same transmission file was used so that variability due to the 

transmission correction could not be observed in the sample. 

Consequentially, the transmission variance was set to zero in calculation 

of ~· Since nek-mek is recorded by the tomograph while nek+mek is required 

for evaluation of qek, we assume that off-time events are uniformly 

distributed among Nbin bins, 

(19) 

so that an estimate of N+M can be calculated. Comparisons between predicted 

and sample variances are shown in figure 7 and again show good agreement. 

Covariances between regions are listed in table 1, where covariance 

estimates without dead time correction are included for comparison. 
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Note the relative sizes of the contributions of the first and second 

terms of equation (15) to the covariance. The second term is simply the 

multiplicative effect of the correction factor on the uncorrected 

covariance matrix, while the first term reflects the correlation introduced 

by the correction process. Table 2 shows the contributions to the variance 

68 for a background region, the Ge region and the 1Bf'DG region for the 

experiment described.above. It is evident that for regions with a large 

proportion of the total events, e.g. the 1Bf'DG region, that the first term 

is significant even at low count rates. 

Section 3: Application to flow computation 

A dead time correction was applied to 150 water flow studies on dogs 

using a dead time of 1.80 ~sec/event. A region of interest in the left 

ventricle is used to obtatn an input function to determine flow into 

regions in the myocardium (Budinger~ al 1984). The input function and 

residue in the myocardium are shown in figure 8. Comparison of the raw and 

dead time corrected curves shows that large corrections are necessary when 

the bolus of radionuclide passes through the heart. Fitting raw and dead 

time corrected data to a two compartment model yields flows of 1.83 ± 0.17 

and 1.39 ± 0.12 ml/min/g, respectively. The flow value determined from the 

microspheres reference organ technique was 1.47 ml/min/g. Dead time 

correction decreased the flow value relative to that obtained with raw data 

in all of twelve dogs studied. 

Section 4: Conclusion 

We have developed a simple model of .an emission tomograph and derived 

a general covariance estimate for the number of events in bins and regions 
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of interest, incorporating corrections for dead time, detector sensitivity, 

and attenuation. The dead time correction and covariance estimates have 

been verified experimentally on the Donner 280-Crystal Positron Tomograph. 

The experiments demonstrate the importance of dead time correction at 

modest count rates, and the strong dependence of the covariance of the 

actual number of events in regions on the dead time correction factor. The 

covariance estimate is the link between the amount of activity administered 

and the covariances of the parameters to be determined in an experiment. A 

major conclusion from this theoretical work, verified by experiment, is 

that in situations \-lith high activity in the tomograph, the covariance of 

the corrected data will be greater than predicted from a naive estimate 

based on Poisson statistics for corrected data. 
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Appendix Derivation of covariance formula 

Recall from section 1 that qek and qtk were defined as the emission 

and transmission datasets and Pk the·corrected number of events in the kth 

bin as: 

(1) 

where Tt is the acquisition period of the transmission data, fe and ft the 

dead time correction factors for the emission and transmission datasets. 

Equation (1) states that Pk is a function of all of the nXk and m~ through 

the dead time correction factors fX and the q~. Since fX is an implicit 

function of the total observed count rate·GX = (NX + MX)/TX, we can define 

a function fX' as: 

, 
fX = 

for all k. For the model of Section 1: 

• 

vle can further remark that since qXj = nXj - mxj, then: 

- 0 0 • x,y j,k 

(20) 

(21) 

(22) 

(23) 

.. 
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Using logarithmic derivatives in (1), the partial derivatives of Pj are: 

ap. oi . fe' 
J pj ( ,J + ) 
e e feTe ani qj 

, 
ap. oi, j 

fe 
J = pj (- + ) 
e e feTe ami qj 

(24) 
ft' ap. oi, j J = -p. ( + ) 

t J t ftTt ani qj 

ap. oi . ft' 
J = -p. (- ,J + ) 
t J t ftTt ami qj 

Using these derivatives, each term of the double sum in the right side of 

equation (10) of section 2 may be computed. According to previous 

assumptions, var(nXi) = nXi and var(mXi) = mXr; then the generic term of 

this sum becomes: 

The first term in the brackets is null unless i=j=k, and then the sum over 

i of these terms may be written: 

0. k J, 

The sum over i of the second term is easily computed as a constant 

(independent of j and k) times the total number of counts N4l'1x; due to 

(25) 

Kronecker functions, only two terms remain when summing the third terms, 

one when i=j, the other when i=k. Since qxj = nXj-mxj, this partial sum 
, 

reduces to twice fX /(fXTX) (independent of j and k). 



Defining as in section 2 the sum over i of the last two terms as: 

2 fx' fxTx + (fx' )2(Nx#1x) 

(fxTx)2 

18 

(26) 

I 
and Qk_ and P as the sum over x of qxk and FX respectively, equation (10) 

becomes: 

• ( 11) 
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Figure 1. Data from 82Rb dead time experiment: (o) events in coincidence 

window; (*) events in no-coincidence window; (~) total number of events. 

a) Source without scattering material. b) Source with scattering material. 

Figure 2. Data and fitted curves for 82Rb experiments: (o) events in 

~oincidence window (*) events in no-coincidence window; (solid lines) 

fits. The fits were performed for total observed count rate < 200,000 

events/sec. a) Source without scattering material. b) Source with 

scattering material. 

Figure 3. a) Correction factors computed using dead time estimates from·the 

82Rb experiments with and without scattering material (solid and dashed 

line, respectively) as a function of the total observed count rate. 

b) Correction factors from the 68Ge- 18FDG experiment (o) and the model with 

a dead time = 1.8 ~sec/event (solid line). 

Figure 4. a) Transmission image of phantoms. b) Emission image with regions 

of interest: 1- 68Ge source, 2- background, 3- 18FDG source, 4- patient 

port. 

Figure 5. Counting statistics at different times during 68ce- 18FDG 

experiment. Sample mean and variance for on-time events (o and •, 

respectively) and off-time events (* and V, respectively). This figure 

supports the assumption of Poisson noise for on-time and off-time events in 

the practical range of interest. (right of the dashed line) 

20 



Figure 6. Statistics for corrected number of events, A, as a function of 

the total observed count rate. a) Sample mean (*) and variance (o); 

predicted variance (solid line) using equation (15). b) Predicted· 

coefficient of variation. 

Figure 7. Predicted vs. observed variance of the number of events at three 

different total observed count rates in three regions. 

(68Ge (o), background (•), l8FDG (17)) 

Figure 8. Input (a) and residue (b) curves from an Hz 15o dynamic study with 

(e) and· without (o) correction for dead time. Using the microsphere 

technique, the flow value (ml\min\g tissue) was measured to be 1.47; the 

flow values derived from the 1Iz 15o experiment were 1.83 before and 1.39 

after correction for dead time. The correction factor at the time of the 

peak of the input curve was 1.8 for a 180,000 events/sec total observed 

count rate. 
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' Table 1. Comparison .of observed and predicted covariances and correlations 

of number of events in two pairs of regions for .68ce-18FDG experiment at 

three different count rates, with and without dead time correction. (see 

Figure 4b for regions) 

Regions Observed rate Covariance 
(10 3events/ sec) (correlation) 

predicted predicted 

observed with without 

correction correction 

40 4.27x10 3 4.60x10 3 3.16 xlO 3 

(.14) (.16) (.14) 

1 '4 90 5.00x10 3 7.15x1o3 2.94xl0 3 

(.06) (.09) ( .07) 

180 7.25xl0 4 3.98x10 4 2.33x10 3 

(.13) (.08) ( .03) 

/ 

40 7.85x10 4 8.64x10 4 6.21 xlO 4 

(.86) (.85) (.86) 

3,4 90 3.56x10 5 3.18 x10 5 1.44xl0 5 

( .90) (.90) / (.86) 

180 5.30x10 6 3.92xl0 6 2.82 xlO 5 

/ 

(.96) ( .95) ( .83) 
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Table 2. Statistics for prediction of number of events in three regions 

(see Figure 4b) at three different count rates. The two columns at the 

right are the contributions to the total variance (in %) of the additional 

variance due to the correlation between corrected number of events in 

different bins introduced by the correction process and the simple 

multiplicative effect of the correction factor. These correspond to the 

first and second term of equation (15), respectively. 

Region II Total observed Ra in region Variance eq. 15 ed. 15 
rate 1st term 2n term 

( 10 3events/sec) (%) (%) 

Background 40 6.07 xlO 1 8.16x103 o.o 100.0 

2 90 1. 39 xlO 2 1.65xl0 4 o.o 100.0 

180 3.04xl0 2 5.80x10 4 o.o 100.0 

Low source 40 3.25xl0 3 7.88x103 0.6 99.4 

strength 90 3. 27 xlO 3 1.99xl0 4 0.4 99.6 

1 180 3.59 xlO 3 7.93x10 4 0.6 99.4 

High source 40 4.76x10 4 9.75x10 4 10.5 89.5 
/ 

strength 90 1.22x10 5 3.48 x10 5 26.3 73.7 

3 180 3.34x10 5 3.86x10 6 72.3 27.7 
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Figure 2a 
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Figure 2b 
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Figure 3a 
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Figure 5 

250. 

200. 
G 

•• 
("") 0 • 0 0 ...-l 

X • •• N 150. ,....,. 
Ul 
4-J 
~ • Q) 

:> 
Q) 

'-" 

~ 
0 

Ul 100. 
4-J 
~ 
Q) 

:> 
Q) 

so. 

• o. 
o. 2. 4. 6. 8. 10. 

time in number of half-lives 

XBL 846-7179 



("') 

0 
r-l 

X 

N 
........ 

CIJ 
l-l 
l=l 
<1l 
:> 
<1l ......., 

1-1 
0 

CIJ 
l-l 
l=l 
<1l 
:> 
<1l 

Figure 6a 

1500. 

1000. 

500. 

o. 
o. so. 100. 150. 

3 
total observed rate in events/sec x 10 

32 

200. 

XBL 846-7191 



33 

Figure 6b 
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Figure 7 
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Figure 8b 

4000. 

• ,;.., 

(.) 

3000. Q) 

Cll 
-....;.. 

N a 
(.) -Cll 
.w 
1=': 
Q) 

:> 
Q) 

Q .,., 
Q 
0 2000 • . ,., 
bO 
Q) 

H 

Q 
·r-i 

>.. .w 
·r-i 
:> 

·r-i 
.w 
(.) 

Cll 

1000. 

-~--

o. 
o. o.s 1. 1.5 2. 

time (min) 

XBL 846-7195 



,, 

' Correction de temps-mort et statistiques de comptage pour la tomographie a 

positrons. 

Les auteurs pre'sentent une correction pour les pertes de comptage dues aux 

temps-morts dans les etudes dynamiques utilisant un tomographe ~ positrons. 

Un unique temps-mort paralysant permet de modeliser la reponse du 

tomographe pour les taux d'evenements (evt) rencontres en routine. Le 

"' I tomographe a 280 cristaux du Donner Laboratory est ainsi caracterise par un 

temps-mort de 1.8 ~sec/evt pour des taux inf~rieurs a 200,000 evt/sec. A 

180,000evt/sec le facteur de correction vaut 1.8. Cette correction est 

effectuee sur le nombre d'evenements de chaque projection et de chaque 

I i d' ,- "' 1 '-reg on interet pour toutes les images d une etude dynamique, et la 

covariance des donn~es corrigles est calcul~e. Pour un taux global de 

180,000 evt/sec, la variance du nombre d'annihilations (apres correction) 

dans une region en contenant 3.3x105 est de 3.9x1o6, 10 fois superieure a 

la valeur predite a l'aide d'un simple mod~ie Poissonien. Ces r:sultats 
, , , 

statistiques ont ete verifies experimentalement. La necessite et 

l'importance de cette correction de temps-mort dans les ~tudes dynamiques 

utilisant la tomographie a positrons est mise en evidence dans un exemple 

ou l'absence de correction entraine une surestimation de 25% de la 

perfusion du myocarde. 
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