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I. INTRODUCTION

High energy physics, perhaps more than any other branch of science,
is driven by technology. It is not the development of theory, or con­
sideration of what measurements to make, which are the driving elements
in our science. Rather it is the development of new technology which
is the pacing item.

Thus it is the development of new techniques, new computers, and
new materials which allows one to develop new detectors and new
particle-handling devices. It is the latter, the accelerators, which
are at the heart of the science.

Without particle accelerators there would be, essentially, no high
energy physics. In fact. the advances in high energy physics can be
directly tied to the advances in particle accelerators. ~~0king terri­
bly briefly, and restricting one's self to recent history, the Bevatron
made possible the discovery of the anti-proton and many of the reson­
ances, on the AGS was found the l.l-neutrino, the J-particle and time
reversal non-invariance, o~ Spear was found the ~-particle, and, within
the last year the Zo and W- were seen on the CERN SPS p-p collider. Of
course one could, and should, go on in much more detail with this survey,
but I think there is no need. It is clear that as better acceleration
techniques were developed more and more powerful machines were built
which, as a result, allowed high energy physics to advance.

What are these techniques? They are very sophisticated and ever­
developing. The science is very extensive and many individuals devote
their whole lives to accelerator physics. As high energy experimental
physicists your professional lives will be dominated by the performance
of "the machine"; Le. the accelerator. Primarily you will be frus­
trated by the fact that it doesn't perform better. Why not?
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In these lectures,
of accelerator physics.
accelerator physicists,

six in all, you should receive some appreciation
We cannot, nor do we attempt, to make you into

but we do hope to give you some insight into



the machines with Ivhich you will be involved in the years to come.
Perhaps, we can even turn your frustration with the inadequacy of these
machines into marvel at the performance of the accelerators. At the
least, we hope to convince you that the accelerators are central, not
peripheral, to our science and that the physics of such machines is
both fascinating and sophisticated.

The plan is the following: First I will give two lectures on basic
accelerator physics; then you will hear two lectures on the state of
the art, present limitations, the specific parameters of LEP, HERA,
TEV2 and SLC, and some extrapolation to the next generation of machines
such as the Large Hadron Collider (LHC), Superconducting Super Collider
(SSC), and Large Linear Colliders; finally, I will give two lectures on
new acceleration methods.
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On basic accelerator physics (which material is encompassed by this
article) I must, clearly, select some topics. Notice that everyone of
the machines mentioned in the last paragraph is a colliding-beam device.
The day of fixed-target machines, for high energy physics, seems over~

My choice of topics, and emphasis, will be made with this trend very
much in mind. In addition, I shall not go into anything in sufficient
detail to allow you to go out and design an accelerator, but I do plan
to present the basic physics and, thus, hopefully, give you some
appreciation of the limits and performance capabilities of colliders.
Lastly, I shall cover some topics where discrete particle effects are
dominant, such as in stochastic cooling.

The plan of topics is to first cover single particle dynamics. A
complete understanding of single particles is possible, and essential,
to the design of particle-handling devices. We can, conveniently,
break this up into transverse motion and longitudinal motion. Then I
shall cover some topics in collective effects. These effects can be
treated by perturbation theory (on the single particle motion), but one
must note that it is the collective phenomena which produce the limits
on performance and, hence, that it is a proper understanding of this
perturbation theory which becomes the essence of accelerator physics.
Lastly, I shall cover some topics where discrete particle effects are
dominant, such as in stochastic cooling.

There is much material on particle accelerators for this is, after
all, an art which is half-a-century old. The student might do well to
firstly, consult the five general references listed here. l ,2,3,4,5
These books then give references to original papers and other books.
The interested person will want to study the proceedings of the Inter­
national Conferences on High Energy Accelerators (there have been 12 of
them going back to 1956) and the many proceedings of the National
Accelerator Conferences. (Published as special volumes, by the IEEE
Trans. on Nuclear Science.)

Finally, by way of introduction, I shall not be elegant in my
treatment. Rather than presenting Hamiltonians and formalism, I shall
give the simplest approach which is adequate. Sometimes, this means
using a physical argument, or simply stating, that one can ignore one
thing or another. The doubtful reader, or the reader wishing a better
treatment, is invited to read the literature where he probably will
find what he desires.



PART A: SINGLE PARTICLE DYNAMICS

II. TRANSVERSE MOTION: LINEAR ANALYSIS

In analyzing the transverse motion it is convenient to break this up
into linear and non-linear effects. The linear approximation, i.e.
linear in the amplitudes of oscillation about a reference orbit, is an
exceedingly good approximation and serves to give one a great deal of
insight into particle motion in an accelerator. For this reason, the
linear theory has been highly developed and is, by no,~, quite sophisti­
cated. Furthermore, some very comprehensive computer programs have been
developed and are now used, throughout the world, to quickly perform
linear design of devices.

2.1 Equations of Motion

Everyone knows that in a homogeneous magnetic field B, a charged
particle moves in a circle of radius p where
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= ....R­
eB

(2.1)

where p is the momentum of the particles. The angular frequency of the
particle, its cyclotron frequency, is

eBw =
c my

where y = (1 - 82 )-1/2 is the relativistic factor and B ~s its
velocity in units of the velocity of light.

A convenient set of units ~s

(2.2)

P(m) = p(GeV/c) (2.3)

The first circular accelerator, the cyclotron, was based upon the
observation that for a non-relativistic particle Wc is a constant and
hence that fixed frequency radio frequency could be employed to accel­
erate these particles.

A modern accelerator, again as everyone kno,~s, does not, at all sub­
ject the particles to a constant field. In a general magnetic field
there exists a "closed orbit," or periodic solution of the equations
of motion. This orbit is usually planar and transverse motion in this
plane is described by the displacement x. Vertical motion (i.e. per­
pendicular to the median, equilibrium, plane) is described by the
displacement y.

From the Lorentz force or, more elegantly, from the Hamiltonian for
a particle in a static (but spacially varying) magnetic field one
obtains (keeping only linear terms):



1
pes)

~
p

4

(2.4)

The arc length along the equilibrium orbit is s, pes) is the radius of
curvature of this orbit, and k(s) which describes the focusing
property of the magnetic field is given by

k( s)
1- --Bp

(2,5)

From Eq. (2.0 one sees that Bp, the "magnetic rigidity" is just the
momentum of a particle and, of course, a constant in a static magnetic
field. The "momentum error" (i.e. from that of the "particle" which
defines the equilibrium orbit) is just ~p.

2.2 Matrix Formulation

Taking ~p = 0, at first, we note that both of Eqs. (2.4) are of the
form

(2.6)

with suitable definition of k(s) and with z being either x or y. From
now we work with Eq. (2.6). The function k(s) is periodic with period,
C, the circumference of the machine. Perhaps k(s) is periodic in a
length L < C corresponding to super periods.

We can write the solution of this second order equation as

(z(s), Z'(s)) = (Mll(S,Sa)

\Mz1CS,Sa)

Z(s) = M(S,sa) : (sO) (2. 7)

where we have, for convenience used a matrix notation. All of the
properties of the machine lattice are in the matrix M which is inde­
pendent of particular orbits. The determinant of M is proportional to
the Wronskian of the two linearly independent solutions obtained by
starting with (1) unit amplitude and zero slope and (2) zero amplitude
and unit slope. Thus the determinant of M is a constant and equal to
unity.

It 1S clear that if the lattice is made up of sections, then the
matrix M for transport through the full lattice is just obtained by
successively multiplying the matrices for each section.



If the focusing function k(s) is constant, and piece-wise con­
stants cover just about all cases one meets in practice, then the
matrix M is simply
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= (C_OS<l>

/k sin<\>

~ sin<\> ) ,

cos<\>

(2.8)

where <\> = Ik(s - SO). This form 1S convenient if k > o. If k < 0
then M simply transforms to:

COSh e
1

sinh

M( s ,sO) = I-k

I=k sinh 8 cosh 8
8) , (2. 9)

where 8 = I-k (s - sO). Note that both of these specific forms for M
satisfy the requirement det M = 1.

2.3 The a,~ y Formalism

Any 2 x 2 matrix can be written 1n the form

M
(

COS ~ + a sin ~

-y sin ~

6 sin

cos ~

(2.10)

Since our M has unit determinant

y =
2

1 + a
6

(2.11)

Notice that Mk can be written 1n the compact form:

k (cos k~ + asin k~ 6 sin k~ )
H =

-y sin k~ cos k~ - a sin k~ •
(2.12 )

Thus, for example, if M describes the motion once around the acceler­
ator then ~ describes k-circuits of the machine. It is evident, from
Eq. (2.12), that if ~ is real then all the elements of Mk are bounded
and hence that the motion is stable. A necessary and sufficient con­
dition for stability 1S simply

I Trace M 1.:'5..2 (2.13)

It is evident that we can find differential equations that are
satisfied by a, 6, y. Why, you ask, should the single equation
(Eq. (2.6)) be replaced with equations for a, 6, y? The thought is
simple: The original equation was for a particle orbit and hence the
initial conditions of special orbits come in. If we get equations for
a, 8, y we can get free of particular orbits.

Perhaps the easiest way to proceed is to invoke Floquet's theorem,
which states that two independent solutions of Eq. (2.6), with k(s)
satisfying a periodic condition with L the period, are
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-1 ~s

2
2

(s) = P2 ( s) e L (2.14)

where PI and P2 are periodic functions having the same period L. Now
one can show that (a problem for the reader!):

dB
- = - 2ex
ds

dex
ds

k8 - y (2.15)

and, of course, Eq. (2.11).

One can now write the solution, Eq. (2.14) in terms of these para­
meters and obtains (another problem for the reader~)

e (2.16)

where C is a constant and the phase advance ¢(s) 1S glven by

f ds
8(s)

(2.17)

The form of Eq. (2.16) is often used in describing accelerators.
Notice that all the machine focusing parameters are in the function
B(s). The amplitude is proportional to 8 1 / 2 ("Low 8" makes small
beams which is good for a colliding beam point) and the local wavelength
is 2'TT8. (At a "low-8" point, a focus, the particles have a lot of
transverse momenta, go at large angles, which is good for a crossing
because then the kick from the other beam is relatively less effective.)

From Eq. (2.16) and Eq. (2.14) we see that if we integrate Eq. (2.17)
over one machine circumference then

2'TTQ _ ~

c
J
a

ds
8(s)

(2.18)

one
circumference

where the "Q-value" is simply the number of betatron oscillations per
turn. Often Q is called the "tune."

In terms of ex, &, y we can form the quantity

E: = 1T
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which is an invariant, first introduced by Courant & Snyder. They, with
Livingston, invented the very concept of "strong focusing"; i.e. allow­
ing k to be a function of S rather than a constant. Demonstration that
the emittance, £, is a constant of the motion is left as still another
exercise for the reader.

Typica lly
era tor has an
(ion source).
a big subject.
handling.

£ will be limited by some aperture stop; i.e. the accel­
acceptance which is less than the emittance of the beam
Matching of acceptance (or admittance) and emittance is

Clearly, it is relevant to many aspects of beam

Since Eq. (2.19) is simply an ellipse for any values of a, B, Y
the focusing properties of a lattice can be completely described by the
motion of this ellipse. The relation between the invariant ellipse and
the parameters a, B, y is shown in Fig. 1. Since particles are usually
completely distributed in phase the ellipse curve is uniformly occupied.
Thus we only need to study ho~ the ellipse rotates, stretches, and dis­
torts (but keeps the same area~) as we move through the lattice.

2.4 The Dispersion Function, Momentum Compaction, & Chromaticity

In the last section we took a particle with
same energy as that of the reference particle.
the effect of a non-zero 6p.

6p 0; i.e. having the
We now want to consider

The dispersion, n (s), is defined as the periodic solution of the
first equation of Eq. (2.4). It isn't difficult to show that

z'
vlq / rr

------------+------t-----~:...---..L----------z

Fig. 1. The invariant ellipse, of area £, and some of its special
dimensions in terms of a, B. y.
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n(s) =
c

f
a (2.20)

The average value, over a circumference, of the dispersion is called
the momentum compaction times the radius, Ra. Since n ~ R/Q2, a ~ 1/Q2.
One can see that the name is very physical for a is a measure of how
compacted in transverse space are particles of different momenta.

The chromaticity, ~, is defined by

t;; = 6Q/Q
6p/p

(2 .21)

~.e. by the variation in tune with momenta. We will see that t;; comes
into an analysis of the coupling between energy oscillations and trans­
verse oscillations (The Head-Tail Effect).

2.5 Thin Lens Approximation

We can often employ thin lenses, rather than the thick lenses of
Eqs. (2.8) and (2.9). This is a good approximation frequently, and even
if it isn't adequate for detailed numerical predictions it can be used
to give insight.

In the thin lens approximation we simply let the arc length, s-so,
~n Eqs. (2.8) and (2.9) go to zero. Thus we get, for a focusing lens

M+ = Cl/i+ ~) (2.22)

where f+ ~s simply the focal length of the lens; that ~s

Similarly, for a defocusing lens

(2.23)

where

1 / L = 'K ,oR. ,

~) (2.24)

(2.25)

and (-f_) is simply the focal length of the defocusing lens.

2.6 The FODO Lattice

A very good lattice for high energy machines, it has been used in the
FNAL main ring and PEP and the SPS, is the FODO lattice which is shown in
Fig. 2.
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Fig. 2. The FODO Lattice

We can make a thin lens approximation to this lattice and determine
all of its properties. Thus, starting at a bend magnet we have:

(2.26)

where we have introduced (the obvious) matrices for the drift through a
bend magnet which doesn't focus but simply bends.

The reader might want to carry this through and determine a, B, y
as functions of position, as well as to determine conditions on f and L
to give focusing (in both planes~). One finds that

2
.-1

)..1 = s~n (2.27)

In addition, the dispersion n(s) and then the momentum compaction
and chromaticity can be determined.

2.7 Straight Sections and Low-B Insertions

Accelerators need free spaces for injection, rf cavities, extrac­
tion, etc. They also need low-B intersection regions. We have
developed a formalism which covers these cases, but we haven't expli­
citly discussed the subject.

Generally, one proceeds by making "insertions"; i.e. sections which
don't affect particle motion in the rest of the lattice. Thus one can
first optimize the lattice and then design inserts as needed.

A possible long straight section is shown in Fig. 3. This insert
has a phase advance of n/2 and in thin lens approximation

sl l!y

2 l/ys2 a

1 r. (2.28)
f a
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-8------R-
Fig. 3. A Collins Straight section

where ex, yare the parameters of the normal lattice at the "break
point" where the straight section is inserted.

Notice that the length of the straight section is (roughly) B.
Matching can be achieved in both transverse planes if Ox = - ely, Yx
= yy at the break point. If the dispersion and its derivative (n, n')
are both zero at the break point then the insert will not change n (or
ex) •

The design of lattices is an art to which people devote their whole
lives. A number of computer programs (Synch, Magic, AGS, Transport)
exist to aid in this process for it is exceedingly complicated since many
choices are at hand and better choices cost less, accomplish more,
or do both simultaneously.

The design of low-B sections is dominated by the variation of B in
a free-space region. (We consider a free region for detection of the
reaction products; having nearby magnets would help~). From Eq. (2.15)
we obtain in a region where k = 0

This has solution

2
8(s) = 8(0) + 8(0)

(2.29)

(2.30)

where 8(0) is the value of 8 at the crossing point. The very first
quadrupoles must turn 8 around and, because 8 is large there (probably
larger than anyplace else in the lattice), the beam is most sens~t~ve to
imperfections in the field or displacements of that quadrupole. This
sensitivity; i.e. tolerances in the construction of the first quadru­
poles, is what puts the limit on how low 8(0) can be made.

2.8 Machine Imperfections and Coupling Resonances

Up to this point we have been thinking of a perfect machine. No
such thing exists and there is, naturally, a highly developed field of
random errors, misalignments, etc.

Suppose there is an error in field, 6B, which extends over a
length L. It is easy to show that just at the error position the per­
iodic orbit is displaced from the periodic orbit when 6B = a by



u
1 8 (liB) L
2 B P

cot TIQ (2.31)
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Thus integral values
outside the machine.
integral values of Q.

of Q are bad because the new equilibrium orbit is
In designing a machine one must stay aWAy from

Suppose there is a gradient error; i.e. a thin lens of focal length
f is introduced into the lattice. Then, the new tune value is given by

80
cos ~ = cos ~o + 2f s in ~o

(Remember Q = ~/2TI.) If we let

(2 .32 )

then for lI~ « ~o we have, provided Sin ~o ~ 0,

or lIQ =

(2.34)

(2.35)

Thus there is a tune shift provided QO is not an integer or a half­
integer. If QO is half-integral or integral that is bad for the motion
becomes unstable. One must design machines to avoid these values. How
wide is the stop band? Clearly

(2.36)

and this small band must be avoided.

In an ideal machine the two transverse planes are independent.
Field errors introduce coupling and the Egs. (2.4) become:

k
x

dB
x =..J.._ -:l..

Bp dy

B
s

Bp
~
ds

x---
Bp

dB
x

dX

B
s

+-
Bp

dx
ds

where Bs is the field along an orbit. (For example a solenoid.)

The analysis of coupling shows that this can be large when

Qx + Qy = integer

integer (2.38)



These values, also, must be avoided; especially the "sum resonance"
(the + sign) where both x and y motion becomes unstable and grows
exponentially.

Non-linearities add to this subject, but we can't go into that In
this article.

III. TRANSVERSE MOTION: NONLINEARITIES

Is the solar system stable? Clearly it is for short times ("",,1010

years), but what about for long times? It consists of 10 major bodies,
and thousands of mInor bodies. What is the eventual configuration?
Will, for example, one of the larger bodies 'fall into the sun and the
other planets escape to infinity (while overall energy is conserved)?

The planets move near equilibrium orbits which are, approximately,
ellipses. The small deviations from these orbits can be shown to be
linearly stable. What, however, will the effect be of the non-linear­
ities?

Thus one can see that the situation is very similar to that in a
particle accelerator which has been designed, according to the theory
of Section II, so as to be linearly stable. In this section we address
the effect of non-linearities on the linearly stable motion of particles.
The first part is devoted to a general discussion and the second to a
particular, but terribly important, aspect of non~linear phenomena.

3.1 The KAM Theorem

Starting in the 1960s there has been a revolution in classical mech­
anics. Whole conferences are now devoted to stochasticity, solitons,
strange attractors, and the routes to turbulence. Much of this work is
built upon that of Kolmogorov, while the mathematicians Arnold and Moser,
who rigorously proved the (correct) intuitive approach of Kolmogorov,
where both, even at the time, very aware -- even motivated by -- the
importance of this work to accelerators.

The KAM Theorem, which takes hundreds of pages to prove, and many
pages to state precisely, is (roughly) the following: Consider a sys-,
tern of N degrees of freedom governed by the Hamiltonian

12

0.1)

where wk are real frequencies, V3 and V4 are cubic and quartic poly­
nomials in Pk and Ok' and A is a measure of the nonlinearities. Suppose
that:

1) 1: n
k

wk;ll! 0; for any integers n
k

such that 1: In
k

I < 4
k k

(That is; that low-order linear resonances are avoided.),

2) A is sufficiently small (but not infinitesimal, so the non­
linearities are small),



3) V3 B non-zero. (So there is some cubic non-linearity.)
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Then, the theorem states that except for a set of small measure, the
trajectories are quasi-periodic orbits lying on a smooth N-dimensional
surface in the 2 N-dimensional phase space.

Thus it has been proved that some non-linear (i.e. "real") dynamical
systems are not ergodic. In particular, a one-dimensional non-linear
system has a non-zero stable region around a linear stable equilibrium
point, with the phase plane looking like that in Fig. 4. For an N-dimen­
sional system -- there may be instability due to "resonance streaming,"
"Arnold diffusion," or by "modulational diffusion." Generally, for small
non-linearities these processes are negligibly small.

For large non-linearity the system is wildly unstable; ~.e. trajec­
tories which are initially close to each other separate at an exponential
rate. The system is said to be stochastic.

The dividing line between these two situations is a much-studied
subject. It is given (roughly) by the Chirikov condition lvhich is just
that the separation between stable regions (buckets) be equal to the
extent of the stable region (height of the bucket). (Clearly one only
takes the nearest resonance into account when computing the extent of
the stable region.)

3.2 Beam-Ream Interaction

The interaction of one beam with another is, generally, a many-body
problem, but we can consider (and still get most of the physics) the
interaction of a single particle with a charge and current distribution
("weak-strong" beams). If we restrict ourselves to this case we are
simply studying a non-linear dynamics problem and it has many of the
features outlined above.

Consider, for simplicity, the head-on collision of one particle with
a bunch of Nb particles. Suppose the bunch has length ~ , width w, and
height h. If w » h we need only consider the vertical force which is
linearly varying inside the bunch and then drops-off for larger verti­
cal distance y. The electric field inside the beam is

This electric field will change the particles momentum by

(J.2 )

top
y

(eE) ( ;c)C2) (J. 3)

where the time factor comes from the fact that the particle and the
bunch are both moving at the velocity c, and the factor of 2 comes
because the magnetic force is just equal to the electric force.

_ toy'
top

= ....:....:t.. =
p

2
4TTN

b
e ~y

~whcmcr
(J.4)



Fig. 4. The phase plane of one dimensional motion around a stable
fixed point. Notice the regions of instability (x-points)
alternating with regions of stability.
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The change in tune, 6Q, IS just
15

(J. 5)

!1Q

In terms of the B-function at the crossIng point. Combining Eq. (3.5)
and (3.4) we have

Nb rOB

why

where we have introduced the classical particle radius rO = e 2/mc 2 •

Now, if the kick were really linear then as long as !1Q is not large
enough to shift one to a machine resonance there is no problem. But
experimentally it is observed that'even with !1Q = 0.02 (a very small
number:) there is wild blow-up of the beam. Thus the "linear tune
shift," Eq. 0.6), is a measure of non-linear phenomena. Consequences
of Eq. 0.6), and the development of "low-B" sections (clearly a good
direction) will be covered in the lectures on specific machines.

Theoretical study of the beam-beam phenomena is a very large subject.
(~~ole conferences have been devoted to it.) Suffice it to say that many
dimensional (3) particle simulations are in good accord with the obser­
vations and with the basic physics that is described in Sec. 3.1.

IV. LONGITUDINAL HOTroN

The longitudinal motion of particles in an accelerator received
special attention with the discovery of phase stability by McMillan and
Veksler. Subsequently, the special problems associated with storage
rings caused a re-examination and new formulation of the theoretical
framework of the subject.

4.1 Basic Eouations

A particle, of energy ymc2 , circulating in a particle accelerator
will have an orbital frequency f. A particle of slightly different
energy will have a slightly different frequency and the relation between
these two quantities is the dispersion in revolution frequency, n.
defined by

df
dp

f np
(4.1)

The dispersion n has two contributions: A particle of energy
slightly larger than that of the reference particle, will slip out to
an equilibrium orbit of greater length (and hence have its frequency
reduced), but move at a greater speed (and hence have its frequency
increased). These two effects fight each other with the first clearly
winning at high energies where a particle hardly can increase its speed.
A typical figure is as shown in Fig. 5. We can show that

n = a
1

2 ­
Y

1---
2

Y

(4.2 )
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Fig. 5. Frequency vs energy in a typical accelerator.

where a is the momentum compaction factor and the transition energy, Yt,
is defined by Y~ = l/a.

Consider an accelerator with only one accelerating cavity which is
localized in azimuth and has an rf voltage impressed upon it so that
the voltage across the cavity 1S

v = Va S1n 2n frf t (4.3)

where the amplitude Va and the frequency frf could be (slm-lly) changing
1n time.

Let ~ be the phase of a particle relative to the rf. Clearly, on
passing the cavity the particle will have its energy augmented so that

dE f· J,.dt = eVa S1n 'I'

where f is the particle revolution frequency.
f is not equal to frf. Thus

(4.4)

The phase, ~, changes if

d~ =
dt

(4.5)

where the integer h is the harmonic number of the rf.

These two equations, Eqs. (4.4) and (4.5), are the basic equations
describing the energy oscillations, or longitudinal motion, of a
particle. Combining them, by taking the derivative of Eq. (4.5):

a 2n (dfrf _ h 2..i dE) (4.6)
d t2 dt dE dt

Using Eq. (4.4):

(4.7)

If the rf frequency 1S not modulated, and uS1ng the definition of
Eq. (4.1),



o (4.8)

17

Thus for ¢ near zero there are small stable oscillations at the
synchrotron frequency:

w
s

2
!leV0 (-n)

2TIE

provided (-n) is positive. At transition the sign of n changes and,
hence, the phase of the rf must be quickly changed by 90° so as to keep
the particle motion stable.

The motion is described by Eq. (4.8), which is an integrable system,
so that one can easily study non-linear phenomena. These phenomena are
very important in the design of systems which efficiently trap particles
at injection, or in systems which properly "stack" particles; i.e. make
the intense hadron beams one needs for collisions. A Hamiltonian formal­
ism is most advantageous for these studies since the motion is rather
complicated and the use of general theorems, such as Liouville's, proves
very powerful.

4.2 Hamiltonian Formalism

Introduce the "energy" variable w, which 1S like an angular
momentum,
by

E
w =--

2 TIf

Then the Hamiltonian

(4.10)

(4.11)

where ¢o 1S the phase of the reference particle, g1ves the equations of
motion

~
dt

hn(2TIf)

pR
w

dw
dt

3H __ eV0
= - - [sin ¢ -

a¢ 2 TI
s1n (4.12 )

which are just our basic equations 1n a slightly different notation.

Using this Hamiltonian we can, easily, study the size of the stable
region of oscillation (the "bucket"), non-linear variation of the syn-_
chrotron frequency, criteria for adiabatic variation of Vo and ¢O,
etc.



V. ADIABATIC VARIATION

Accelerators are designed, after all, to accelerate particles. So
far, our discussion has been restricted to parameters which are constant
in time and we now must generalize our work. The point is, of course,
that the synchrotron oscillation frequency, the circulation frequency,
and the betatron frequencies are all larger than the frequencies with
which parameters change. (This doesn't have to be so for rf modulation
and synchrotron frequencies, but one tries to observe the inequality in
practice.)

Thus acceleration, and injection and rf stacking, etc. are all adia­
batic processes. Thus all of our previous analysis is valid; i.e. it
describes properly the oscillations of particles. Any conditions we
derived, and we really determined many conditions on the lattice ele­
ments and rf system, must all be observed.

What happens as we change parameters slowly; i.e. adiabaticly? If
we formulate the theory in a Hamiltonian formalism then the answer is
very simple for the theory of adiabatic invariants, or the change of
diverse variables under change of parameters, is well worked out.

Take, for example, the longitudinal motion. The canonical vari­
ables are ~ and wand hence

fwd ~ = constant (S.l)

Thus if we take particles from one energy E, to a second energy EZ ' and
1n both cases they occupy all phases then the spread at energy EZ, ~EZJ

1S related to the spread at energy El' ~El by
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(5.Z)

A- very significant question in building~p intense hadron beams for
collision is how best to do this. The Hamiltonian formulation gives
insight into this process which has, quite naturally, been studied very
extensively.

For transverse motion it is easy to show that the emittance, €, de­
creases as By. (Here Band yare the relativistic factors not the orbit
parameters a, B, y.) Thus the transverse size of beams damps and beams
get smaller as the energy is increased. Thus one has millimeter size
beams at Fermilab as contrasted with the many centimeter size beams at
the Bevatron. (Note that the minor radius only damps (for B~ 1) as the
square root of the energy.)

PART B: COLLECTIVE EFFECTS

VI. EQUILIBRIUM LIMITS

The performance of accelerators is, in general, determined by col-_
lective phenomena. (The beam-beam phenomena, considered in Sec. III,
which is often a limit on performance but is, of course, a collective
effect.)



Block diagram of the Single Particle Motion approach
tc self-field phenomena
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Fig. .6 Block diagram of the single-particle approach self-field
phenomena.

Analysis proceeds by considering, firstly, equilibrium limits and
then, secondly, possible instabilities of the equilibrium. This was, in
fact, the historical path for it wasn't until the 1950s that it was
realized that instabilities of relativistic particle beams were possible
and, furthermore, imposed severe limits on accelerator performance.

Simple-mindedly, one can proceed as shown in Fig. 6. This approach
can always be used, but most of the literature employs the approach
shown in Fig. 7; i.e. using the collisionless Boltzmann equation or the
Vlasov equation. We shall, in this section, follow the approach of
Fig. 6; in the next section we shall follow the method Fig. 7.

Firstly, however, we must find the equilibrium configuration, and
as we shall quickly see, there is a space charge limit. In fact, this
was realized first, in 1940, by Kerst and Serber. Subsequently, of
course, this calculation has been done for much more general geometry.

A very simple approach assumes that we have N particles in a cylin­
drical beam of minor radius, a, going in a circle of radius, R. For
R » a, we can ignore the curvature and taking a coordinate system as
indicated in Fig. 8, w~ ~ave;

p r < a

r > a
(6.1)

where (p, j) are the beam charge density and current density.

From Maxwell's equations, the self electric and magnetic fields are:

E = 2TIp(z k + x i)_ self

(6.2 )

H_ self 2TIpS(z 1 - x k)

for r less than a.
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Block diagram of the Collision less Boltzmann
Equation approach to self-field phenomena

Assume a distribution function
Ij; (q, p, t)

Collisionless Maxwell's equations
Boltzmann Equation Dynamical information

Hamiltonian functional
H[q, p, Ij;(q, p, t)]

dlj; = 21.. ~ + E1. dp + alj; = 0
I

Hamilton's equations
dt aq dt ap dt at

~
dq = vH[q, p, Ij;(q, p, t)]
dt ap

dp _ aH[q, p, lj;(q, p, t)]
dt - - vp

A partial nonlinear integral
differential equation for the

distribution function

Fig. 7. Block diagram of the collisionless Boltzmann equation approach to self-field phenomena.
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(6.3)e (E - S H )
z x

The Lorentz force and Ha~ilton's equations, note how we are just
following the procedure of Fig. 6, imply

d
2

z
ym

d t
2

or uSIng Eq. (5.2) and remembering that there IS an external guide field:

2 aBO
= 2iT pe (l - B )z - eS a;- z (6.4)

Letting

Q 2 =
o (6.5)

and introducing the classical electron (proton) radius

2
e

=--
2mc

(6.6)

the solution IS

iQe
z ~ e (6.7)

where we have now bent the coordinate system so that z + Re. Clearly,

Q2 - Q 2 = - 2iTR
2ep

0 3 S2 2Y m c

or, uSIng Eq. (6.1),

(6.8)

A
k

•

------- rt------ /\
~-'------___1I___r_-+---------j

a

Fig. 8. Coordinate system for a simple derivation of the transverse
space charge limit. The beam moves in direction J.



Now we know from our work on machine resonances, Sec. 2.8, that
there is a limit on 6cf in order not to displace the operating point,
QO' to the nearest resonance; roughly that 6Q ~ 1/4. Thus we have found
an equilibrium space charge limit. Our work needs to be, and has been,
extended to elliptical beams and, also, curvature has been included.
Most importantly, image effects have been included by Laslett, and these
reduce the y3 to y. (The reason is that the precise cancellation, seen
in Eq. (6.4), is no longer true.) Of course this is a most significant
modification at high energies although it is nevertheless generally true
that the equilibrium space charge limit is not the limit in high energy
accelerators -- other limits come in first.

VII. LONGITUDINAL INSTABILITY

The simplest collective effect 1S longitudinal in a beam which in
equilibrium is uniform in azimuth. This is because, to good approxima­
tion, one has only one degree of freedom; namely the longitudinal coor­
dinate or azimuthal angle. Much can be learned from studying this
problem: all of the basic physics, really, and an approach which can be
used in much more complicated situations. In fact, it was this instabil­
ity which was first analyzed, and purely theoretically at that. Subse­
quently, the effect was found experimentally and still, to this day,
imposes a severe limit on machine performance.

7.1 The Negative Mass Effect

In the first half of the nineteenth century the composition of
Saturn's rings was a subject of considerable interest. Although one
possibility was that a ring consists of many small rocks, this was con­
sidered unlikely for such a configuration is staticly unstable (since
under mutual gravitational attraction the rocks will coalesce into one
moon). Thus in 1856 the Adam's Prize was to be given to the most illu­
minating essay on subject of Saturn's rings.

The prize was won by a 25-year-old who was, however, not unknown.
For 10 years previously he had his first paper read at the Royal Society
of Edinborough. Subsequently, James Clerk Maxwell was to make many
important contributions to physics, but his prize-winning essay was
characterized by the great mathematician, Sir George Airy, as "one of
the most remarkable applications of Mathematics to Physics that has
ever been seen."

Maxwell's argument was, essentially, the following. Let M be the
mass of Saturn and m be the mass of one rock moving with velocity v in a
ring of radius R. Balancing gravitational attraction with centripetal
force:
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2
mv

R
0.1)



The frequency, f, of the rock is:

f
v I J ~M= -- =

27TR 27TR

The energy, E, of the rock is:

C7.2 )
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2
E = 0/2) mv

GMm- --
R

- 0/2) GMm
R

C7. 3)

Combining these last two equations:

f = ( - E)
7TGMm

C7.4)

The variation of these last equations is shown in Fig. 9.

The many-body argument goes the following way. (Up to now the analy­
sis, has been trivial. Now, suddenly, we are going to consider a many­
body situation. The analysis jumps in complexity by orders of magnitude;
yet it is all done in two sentences. Think deeply!) Consider a region
of the ring where, for some reason (a fluctuation), the density is
higher than the average. A rock in front of this increase will be
pulled back and so its energy decreases and, hence, its frequency in­
creases and so it moves ahead. (Clearly, an analagous argument can be
made for a rock behind.) Hence a ring which is staticly unstable is
dynamically stable.

E f

-+-------R

f

-+-------- R

-----~~------E

Fig. 9. Variations of f, E, and R for a satellite. It is well-known,
in this space age, that as E decreases f increases; i.e. that
satellites "go~aster" (angularly) as they slow down.



Now it is clear that in a particle beam we have repulsion, not at­
traction, and thus a staticly stable situation is dynamically unstable.
(Historically, this dynamical instability was discovered by accelerator
physicists and it was only subsequently that they appreciated that Max­
well had been there 100 years earlier.) It is as if the particles have
a "negative mass"; i.e. repulsive forces produce attraction.

1Je shall now give an analysis of the negative mass effect using the
approach of Fig. 7. Thus we describe the particles by a distribution
function ~ (¢, ¢, t), where ¢ is the azimuthal angle. The distribution
function ~ satisfies to very good approximation the collisionless Boltz­
mann equation. (I realize we are not working in terms of canonical •
coordinates and momenta, but Liouville's theorem is valid in this ¢-¢
space.) (By ignoring collisions we are neglecting effects which can, ~n

fact, be treated separate. Some discussion of these effects is given
in Sec. IX.

We thus have:

24

d~ ~ ~
dt - at + ¢ 0.5)

A statio~ary solution to this equation is given by the arbitrary func­
tion ~O(¢) since there are no forces which tend to change ¢ in time.
In a "coasting beam" we can arbitrarily choose the distribution of
particles over energy, which is, of course, the same statement.

Let us look for small variations from this solution by letting

0.6)

Inserting this into Eq. (7.5) and linearizing the resulting equation we
obtain

•
¢ 0.7)

where d~/dt, which characterizes the force of space charge is linear ~n
~l. Note that ~O does not contribute to d~/dt since there are no
longitudinal forces from a uniform charge distribution.

We need now to evaluate d~/dt after which Eq. (7.7) ~s an integral­
differential equation for ~l. Clearly,

d¢ = 2TT 2.!
d t at

where f is the particle frequency.

We may write

df dE
dE at

(7.8)

(7.9)



and

dE
= 2nR feEat 0.10)
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where R is the radius of the orbit, and E is the electric field due to
space charge and taken positive in the direction of particle motion.
Thus, from Eq. (7.7), we obtain

.
= - <P (7.ll)

where (f df/dE)e is evaluated for a typical particle 1n the equilibrium
(stationary) distribution ~O(~).

The electric field E may be evaluated very easily in the case that
the wavelength of the perturbation is large compared to the gap G of the
accelerator tank. In this case the electric field may be taken to de­
pend only upon the gradient of the charge distribution at the azimuth
in question. Thus'

0.12 )

where g is a geometrical factor which depends logarithmicly on the ratio
of the-gap G, to the radius ~ of the coasting beam, and is given by

2G
g = 1 + 2 log ­

e 1Ta

Inserting this into Eq. (7.11) we obtain:

0.13)

= - 0.14)

which is an linear integral-partial differential equation for ~l'

We now seek solutions to Eg. (7.14) of the form

(7.15)

where since Eq. (7.14) is linear with real coefficients we may use a
complex solution, meaning always either the real or imaginary part.
Clearly if W is imaginary then the mode either grows or decays in time.
Inserting Eg. (7.15) into Eg. (7.14) we obtain

(7.16)

This integral equation for ~ (¢) may be solved immediately since the
dependence of tVl (¢) on <p is explicit. Let



.
n¢ - W

0.17)
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where C is a constant, and insert this into Eq. (7.16) which yields a
self-consistency requirement after cancelling C from both sides of the
equation, namely:

.
n¢ - W

•
d¢

0.18)

This equation is a dispersion relation between the "wavelength" nand
the "frequency" w.

For a nearly monoenergetic coasting beam we may take

1jJo (~) = { N21T(2Ll)

o

~ - Ll < ~ < ~ + LlA A

otherwise
(7.19)

corresponding to a beam of N particles uniformly
an interval of width 2Ll, about a mean value $A.
readily perform the integral in Eq. (7.18) since

spread in "energy" over
In this case we may

Equation (7.18) becomes

(7.20)

N
41TLl

or simply, by solving for w:

[2:;:gN (f ::)e + 62] 1/2! 0.22)

.
Thus the perturbation moves with the average speed of the beam, cPA.

If Ll is small then for real n, W will be imaginary for df/dE < 0, i.e.
for operation above the transition energy. It should be noted that in­
creasing the spread i~ beam energy (increasing Ll) is always a stabili­
zing influence. Recalling that the energy spread in the beam 6E is
related to /:, by

6E = ~2Ll(df
21T dE

e

(7.23)
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we may write Eq. (7.22) in the more convenient form:

(7.24)

Thus if the initial disturbance has n waves about the accelerator,
the perturbation will grow as e t / T where the time to increase by a
factor of ~, T is given by:

T 2'ITe
2

gN (f ii)
2 R dEY e

(7.25)

assuming that af/aE < 0, and the bracket is positive. If the bracket is
negative the motion, of course, is stable. Clearly this expression could
be used to find a criterion for stability in any given accelerator.

7.2 Longitudinal Resistive Instability

The negative mass instability, as its very name implies, and con­
sistent with Eq. (7.25) only occurs above the transition energy where
(af/aE) < O. There, of course, the Landau damping, namely the energy
spread within the beam, may be adequately large to prevent instability.

All of this is true on an ideal machine; that is a purely "reactive,"
in fact capacitive, environment where the electric field E is related to
the spacial variation (azimuthally) of the charge density by Eq. (7.12).
But this isn't the case in general: Resistive elements will produce a
phase shift between E and the derivative of the charge density.

This space shift will produce an instability even below transition!
The phase shift is usually quite small, but will have a dramatic effect;
a fact that wasn't appreciated until a number of years after the work
on the negative mass effect. A great deal of work has now been on this
subject and, roughly, one can write that

n
(7.26)

where 10 is the beam current and n 1S the dispersion 1n revolution fre­
quency; 1.e.

!1f
f = - QP.

n p (7.27)

and 211 is the longitudinal coupling impedance of the ring. Note that
this relation, which is the analog of the criterion of Eq. (7.25) is
only dependent upon Inl and must be observed below, as well as above,
the transition energy.
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7.3 The Coupling Impedance

It was an important step in the understanding of instabilities to
realize that the analysis of Sec. 7.1 could be generalized so that one
would obtain a relation such as Eq. (7.26) with a coupling impedance
2". Thus the problem shifted to calculating and measuring 211' In
fact, in the construction of all modern machines careful track is kept
of 2" and of each element's (such as pickup electrodes, kickers,
clearing electrodes, rf cavities, etc.) contribution to 211'

For a smooth wall, such as we assumed in Sec. 7.1,

C7 .28)

where 20 is the impedance of free space (377 Q or 4TI/c 1n Gaussian
units).

For other structures, such as those mentioned above, 2'1 has been
calculated. Suffice it to say that if one is very careful then 211 can
be kept to I to 3 Q.

VIII. TRANSVERSE INSTABILITY

A transverse instability of a beam.; Le. a coherent, collective, in­
stability, is due to the reaction of the electromagnetic fields caused
by an oscillating beam on the particle motion. In this regard it is just
like the longitudinal instabilities considered in the last section. The
situation is, however, more complicated now since both diverse ampli­
tudes of transverse oscillation and diverse particle momenta will con­
tribute to the Landau damping of the collective oscillation.

Clearly consideration of a uniform beam (a "rubber band") is simpler
than consideration of a bunched beam. In the longitudinal case we didn't
even treat in these lectures the case of bunched beams~ In the trans­
verse case, however, there are many different phenomena associated with
bunches than are disclosed by the analysis of uniform beams. One of
these phenomena. namely the head-tail effect, is discussed in Sec. 8.2.

8.1 Transverse Resistive Instability

Suppose an azimuthally uniform beam 1S displaced transversely, or
kicked. It will start to oscillate. as we discussed in Sec. II, and
will, as a result. excite electromagnetic fields. These fields should
be calculated taking into account the surroundings of the beam.

The electromagnetic fields act back on the particle motion. If the
fields are precisely in phase then they will simply change the frequency
of the oscillation and provided this shift is not great enough to move
one to a machine resonance there will be no bad effect. (The reader
should contrast this with the longitudinal case where the negative mass
made the situation very different indeed.)
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If, however, there is an out-of-phase component due, perhaps, to the
finite resistivity of the wall then the original oscillations can be
reinforced; i.e. there can be an exponential growth of the oscillation
amplitude; i.e. there can be an instability in which tiny oscillations
(due to noise or most anything) grow until the beam hits the vacuum
chamber walls (or is limited by non-linearities which is, also, usually,
unacceptable since phase density has been greatly diluted).

The calculation of transverse instabilities is a complicated task,
dozens of papers in the literature, with many interesting subtleties.
Roughly, taking only energy spread (and not amplitude spread) into
account, one obtains

2
4mc

12 1 ' < e I (n - Q) n + Q ~ I (8.1)

where n is the mode number, Q is the tune, n is the dispersion in the
revolution frequency, ~ is the chromaticity, ~p is the spread in momen­
tum, and 21 is the perpendicular impedance. In accord with the physical
discussion given above, instability only occurs if 21 has an imaginary
component. However, the real part of 2 1 contributes to the frequency
shift of the oscillation and must be "taken care of" by the Landau damp­
ing hence it is a good approximation to have the criteria involve the
absolute value of 2 1 (similar to Eq. (7.26).

Note that Eq. (8.1) only depends linearly on ~p and, roughly, is in­
dependent of energy since ~p is an adiabatic invariant. Note that unless
n and ~ are of the same sign then there will be trouble at some mode
number.

The transverse impedance, 21 , can
impedance 2/1 (Eq. 7.26 and Eq. 7.28).
and for an oscillation of frequency W
wQ is the revolution frequency:

be related to the longitudinal
For a chamber of half width b,

(In Eq. 8.1) W = n wQ where

(8.2)

For a cylindrical vacuum chamber, of radius b, containing a beam of
radius a, one obtains:

+ 2cR (1 - i) pic
Wb

3
(8.3)

where p is the resistivity of the wall (nm) and C is the skin depth.
This expression is only valid if the skin depth is small compared to the
thickness of the vacuum chamber.

8.2 The Head-Tail Effect

The head-tail instability is a coherent instability of the transverse
motion of particles in a bunch. It is driven by a coupling between the
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~p/p

~Q>O

Back Front

~Q<O

e

Fig. 10 A bunch showing the situation below transition (n > 0) and
for positive chromaticity (~ > 0).

frequency of transverse betatron oscillations and the momentum of
particles; i.e. by the chromaticity. Because of this correlation, as
particles move around a bunch, the phase of their betatron oscillations
will change as shown in Fig. 10. One can see that the trailing particle
always has the same phase shift with respect to the leading particle.
This phase change is, clearly,

(8.4)

where T ~s the bunch length (in units of time).

The leading particle will, through its electromagnetic wake, effect
the trailing particle. Even in the absence of resistivity, since the
chromaticity creates a phase shift, the resulting motion can be unstable.
Thus since the effect is present even in ideal structures it can be
quite large. This is in fact the case, and after a careful study of
signs one can see that if ~ < 0 then there can be an instability, but
if ~ > 0 there will be no trouble (above transition). Machines
"naturally" have ~ < 0 but modern storage rings all are made with ~ > 0
just to avoid the head-tail effect.

PART C: DISCRETE PARTICLE EFFECTS

IX. STATISTICAL PHENOMENA

This article quite accurately mirrors the design of an actual ac­
celerator. Firstly, one must be concerned with the motion of single
particles, as described in Part A. Secondly, one examines collective
phenomena, as in Part B; here the beam moves as a fluid but the single
particle motion can lead to Landau damping of the collective mode.
(Other means of damping, for example by feed-back, are not covered in
this article.)

Finally,
by particles
Lasers), but

one examines discrete
which can, of course,
often is incoherent.

particle effects such as radiation
be coherent (as in Free Electron
Although the phenomena of incoherent



radiation was known for a long time it was felt to be impossible to
"direct each particle" which seemed to be necessary to beat Liouville's
theorem (which was the basis for all the analysis of Part B). From
this point of view (a very prevelant view up to 1972), stochastic cool­
ing, the very concept and then its implementation, is quite remarkable.
We shall describe the basic physics of cooling, in the last part of this
section.

9.1 Radiation

An electron moving in a circular accelerator is, of course, accel­
erated and it will thus radiate. The amount of radiation is
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p 2 264 4e y c

3 R2
(9.1)

Hence the radiated energy per turn 1S

4
cE =

3

2
TIe 63 4

R Y (9.2)

or, 1n practical units (and taking 6 = 1):

(CE)(MeV) = 8.85 x 10-2 (9.3)

The radiated power, which for electrons can be very significant, is

P(Watts) 106 (cE)(MeV) I (A), (9.4)

where I is the beam current. This power loss must be made-up by the
rf. In superconducting proton machines this power can be a significant
source of heat at the cryogenic temperatures.

The frequency spectrum of the radiation is complicated; for low fre­
quencies it varies as w2 / 3 • The radiation drops off exponentially for
w larger that a critical frequency, wc ' where

W
C

3
~

R
(9.5)

Note that this frequency varies as '(3 times the circulation fre­
quency. Thus the radiation can extend up to very high frequencies.

The high intensity of the radiation, Eq. (9.4) and the high frequency
that the radiation extends to, Eq. (9.5), is the reason for the enthus­
iasm for synchrotron radiation sources. Special bending magnets, wigg­
lers, are used to make the local radius of curvature as small as possible
and hence to produce intense radiation of especially high frequency.

The emission of radiation has an effect on the radiating particle.
It is only for electrons that this is a significant effect, but the ef­
fect is vital in determining the property of beams in an electron
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storage r1ng. The radiation reaction can cause either damping or un­
damping of the electrons' oscillations (transversely and in energy)
about the equilibrium orbit. If we characterize this exponential damp­
ing rate by rate constants ax, a y , aE then

3
3 mc

2
e

(9.6)

where the damping partition numbers satisfy:

(9.7)

One can arrange by proper lattice design, as one must 1n a storage ring,
to have damping 1n all three directions.

Thus, on the basis of the above analysis, an electron beam in a
storage ring will just damp and damp so that its transverse size becomes
smaller and smaller. This is approximately true, and beams become very
small indeed, but they do not become arbitrarily small. Why not? Be­
cause quantum effects need to be taken into account; i.e. that electrons
radiate discrete photons and that the hard photons, which are radiated
statistically, kick the electron. In fact, the size of electron beams
is determined by these quantum mechanical effects. The energy spread
of the beam, which also damps to zero classically, is (in a uniform
field).

(9.8)

and one can see that the finiteness of aE is due to a quantum mechanical
effect: i.e. to the non-zero nature of Phanck's constant4T. A similar
formula can be given for the radial size of the beam. The vertical S1ze
is, clearly, determined by coupling to the horizontal motion.

Finally, the radiation reaction can lead to polarization of the
electrons, but an exposition of this topic will not be given here.

9.2 Intra-Beam Scattering

Discrete particle effects must be invoked to understand intra-beam
scattering. Generally. f course, we can ignore discrete particle
phenomena, but in storage rings where particles are stored for many
hours, or even days, attention must be given to even small effects.

The calculation of scattering must be done with careful attention to
relativity and to small angle multiple scattering. For low-energy beams,
say below 500 MeV, the scattering is important in determining equilibrium
beam size (which comes into the luminosity of colliding beams or as the
source size in synchrotron radiation sources).

One aspect of intra-beam scattering which is of historical interest
(It was the effect which dominated the behavior of the early storage
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ring ADA.), but highlights a physical phenomena, is the Touschek Effect.
In the beam frame of reference, we can conveniently speak of the
particles' transverse and longitudinal temperatures. It is easy to see
that these are quite different with the transverse temperatures being
greater than the longitudinal temperature. Intra-beam scattering, by
simple thermodynamic arguments, will tend to equalize these temperatures.
As a consequence the longitudinal temperature will increase and, as a
result, particles will be lost from the rf bucket. That is to say,
intra-beam scattering can lead to a greatly reduced beam lifetime which
is the Touschek Effect.

9.1 Stochastic Cooling

Stochastic cooling is the damping of transverse and energy oscilla­
tions by means of feedback. A pickup electrode detects ~ay), the
transverse position of an electron and send this signal, after amplifi­
cation, to a kicker downstream. The time delay is such that a particle
is subject to its own signal, which is done by cutting across an arc of
the accelerator.

Clearly if there 1S only one particle this will work. Equally
clearly, by Liouville's theorem, if there are many particles so that the
beam can be treated as a fluid, then there will be no damping. For a
finite, but very large number of particles there is a residue of the
single particle effect; i.e. some damping as was first realized by van
der Neer.

Consider N particles in a ring where f = liT is the revolution
quency of particles. Suppose the electronics has a band width W.
the pickup electrode effectively "sees" a number of particles.

N
n = 2WT

fre­
Then

Under the influence of the pickup and kicker this particle will have its
transverse displacement; Xi, changed

n
X. -+­

1
X.

1
- g L

j =1

X.
J

where g 1S the effective gain of the system. Consequently, the value of
(xi)2 will change by:

2
X.

1

- 2g x.
1

2
+ g

n

"2:
j=l

n

L
k=l

Initially there are no correlations between particles' positions
and hence on averaging over all particles we have
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This maximizes at g
amplitudes 1S

l/n and the rate of damping of rmS betatron

1
T

=
1
4

1
n

1
T

W
2N

(9.13)

where the T appears because the system works on anyone particle once
per turn and the factor of 4 reduction comes about from taking the rms
(1/2) and the fact that phase space is two-dimensional and only x (not
x') is being damped (1/2).

The assumption of no correlations is not valid, in general, and is
especially complicated if one has bunches. Much of the literature 1S
devoted to analyzing this case, which will not be discussed, here,
further.

Typically, W ~ 1 GHz and N varies from 10 7 to 10 12 • Thus the cool­
ing time varies from a few milliseconds to an hour. In the Fermilab
cooling ring the method, which is applied to all 3 degrees of freedom,
damps (for example) the momentum space phase density by a factor of 104 .
It is this large increase in density which has made p - p colliders
possible.

In the above analysis, which is, of course, very simple, we have
assumed no noise in the electronics. In real life there is noise and
one might think that if the amplifier noise is greater than the stoch­
astic beam signal then there will be no cooling because the feedback
system will heat the beam faster than it cools it. Not so. All one
needs to do is select a lower gain and there is cooling (of course, at
a reduced rate). (An analogy with a refrigerator is, perhaps, more
correct.)

If there 1S noise, then Eq. (9.10) goes into:

x.
1

+ (9.14)

where r is the amplifier noise expressed as apparent average x-amplitude
at the pickup. The analysis now proceeds exactly as before:

2Mx. )
1

22222
2g <x. > + ng <x. > + ng r

1 1
(9.15)

Assuming no correlations

1
T

(9.16)



and max~m~z~ng this one obtains

1 W= ----:----;-
T 2 N (l +uf)

where the factor

(9.17)
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uY= (9.18)

~s simply no~se power over signal power.
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PROBLEMS

1. Employ the constancy of the Wronskian of solutions of

d
2

z
+ k (s) 0z =dl

to show that the matrix 1n Eq. (2.7),

z(s) = M (s , sO) z (sO)-
has unit determinant.

2. Show that emittance, E, 1S a constant of the motion where

E = IT

3. Derive the equations of motion for the parameters a, B, y; namely:



dB
ds

= - 2a
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da = kS - a
ds

Show, also, that

z
±irj>(s)

c S 1/2 e

~(5)' f ds
TIs)

4. The sigma matrix formalism is often used in accelerator theory.
Define a 2 x 2 matrix a in terms of which the invariant ellipse
parameters of Fig. 1 become:

~E:.Shr ~~

~ E:y/n ~~

~ e:/nS --? ~ a22
(l -

2
r

12
)

~~ ~all (l -
2

r 12)

where

a
12

r
12

=

lall a 22

(all a 22
2 ) 1/2

E: = n - a
12

Given the matrix M (5, sO), which characterizes a machine lattice
(Eq. (2.7», show that a (at the point s) is given in terms of aO (at
the point sO) by

a = M aO MT

5. Use the Hamiltonian formalism for longitudinal motion, Eq. (4.11),
to evaluate the extent of the stable region in energy space; i.e.
the "height of a bucket." Derive the small amplitude synchrotron
frequency and, also, the synchrotron frequency as a function of
synchrotron oscillation amplitude.



6. Take into account "images"; i.e. boundary conditions, using the
geometry that is simplest for you, and show that the space charge
limit of Eq. (5.9) has y3 replaced with only a y-dependence at
large y. You will need to consider the appropriate boundary con­
ditions for a bunched beam. (Assume the skin depth, at the bunch
repetition frequency, is less than the vacuum chamber wall
th icknes s. )

7. Work out the geometrical factor, g, in Eq. (7.12) for a cylindrical
beam between conducting slabs (Eq. (7.13» and in a cylindrical
plpe where you will find

g = 1 + 2 log (bla)
e

8. Derive expressions for the transverse and longitudinal temperatures
(T1 and Til) of a beam in terms of the betatron frequency, amplitude
of oscillations, etc. Make a numerical evaluation of these tem­
peratures for some high energy machine.
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