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We discuss N = 1 supergravity coupled to gauged chiral matter. We 
retain noncanonical kinetic energy terms for both matter and gauge 
fields. The tree level spontaneous breaking of supergravity in such 
theories is investigated. Emphasis is placed on general results rather 
than any particular model. 

The tree level mass matrices are calculated, and used to derive a 
(mass)2 sum rule that retains the effects of the noncanonical kinetic 
energies.· Even in the presence of noncanonical kinetic energies it is 

shown that under not too restrictive conditions we can relate the masses 
ofleptons and quarks to the masses of their scalar partners by 

Attention is also drawn to the crucial role played by the analyticity 
of the superpotential at the origin of field space. 
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Introduction 

If supergravity has anything at all to do with the real world, then certainly it is a broken 

symmetry. Explicit symmetry breaking is inelegant and teaches us very little. On the other hand, 

if the underlying real theory is an extended (N>l) supergravity, the spontaneous breaking of the 

extended supergravity may take the theory through a N=l symmetric phase. For these reasons 

the study or N=1 supergravity coupled to gaugPd chiral matter is interesting in that it provides a 

framework that may be relevant to supergra\it.y theories in general. 

Now N=l supergravity coupled to matter is a nonrenormalizable theory [1,2]. Thus 

radiative corrections should not be taken particularly seriously. Perhaps the best viewpoint to adopt 

is that N=l supergravity is a low energy etl'ective theory engendered by some as yet not understood 

microstructure. Note that low energy in this case means E < mp "" 1010 GeV. If we adopt this 

viewpoint then N=l super gravity is not to be thought of as a fundamental theory. Rather its status 

is similar to that of the non-linear sigma model for pions. In particular, there is no justification 

for enforcing canonical kinetic energy terms in the Lagrangian. If nothing else we would expert 

noncanonical kinetic energies to be generated by radiative corrections in the underlying true theory. 

(For similar comments see [3)). 

For the reasons discussed above, all comments made in this thesis will apply at tree level 

only. In particular, I shall discuss the construction of acceptable vacua using tree level symmetry 

breaking only (for alternatives see [4]). Breaking the supergravity in an acceptable way is not 

trivial. Even If one succeeds in breaking the supergravity itself, it is distressingly easy to generate 

multiple vacua. The extra unwanted vacua commonly possess negative cosmological constant [5], or 

they may fail to break the gauge symmetry [6]; the extra vacua may even be degenerate with the 

phenomenologically desired vacuum (6]. At the very least the following must be satisfied: 

.. c;; 
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1) supergra,ity must be broken (ma/2 > 0). 

2) The cosmological constant must be zero (A= V]ooeu•m = 0). 

3) The gauge symmetry must be broken. 

4) Higgsinos and gauginos should be massive. 

In addition it is very desirable that: 

5) The vacuum occurs at the unique absolute minimum or the scalar potential V. 

Many models have been constructed that violate condition 5 ( eg ['7]), these models then have to 

deal with the problem of the decay of the false vacuum, a problem that I shall eliminate by flat by 

imposing condition 5. 

In this thesis I shall discuss general theorems indicating when these conditions may be 

satisfied at tree level. In addition an exhaustive discussion of mass matrices and sum rules is 

presented. The (mass )2 sum rule of Cremmer et IU. [2] is generalized to include the etl'ect of non

canonical kinetic energy terms. The leptoquark sum rule of Cremmer et IU.[6] is shown to be in

sensitive to the occurrence of noncanonical kinetic energies. The etl'ect of nonanalyticity in the 

superpotential is also discussed. 

The main tool used in this analysis is the component Lagrangian for N=l supergra,ity 

as constructed by Bagger [1], Witten and Bagger [1], and Cremmer et a/.[2]. These papers ditl'er in 

that Bagger shows how to gauge symmetries that are realised in a nonlinear fashion. AJso, Bagger 

uses a notation that is vastly superior in that' it makes manifest the geometrical structure of the 

various terms appearing in the Lagrangian. On the other hand, the work of Cremmer et IU. uses only 

linearly realised gauge symmetries but allows noncanonical kinetic energies for the gauge bosons. 

Cremmer et IU. also calculate the (mass)2 sum rule, whi.ch is not done by Bagger. 

For this thesis, I shall be using the Lagrangian of Cremmer et !U.[2]. but the notation 

will essentially be that or Bagger (1]. Extt>nsive use will be made of the g~ometry of Kabler 

.;: . 
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manifolds and in particular of the concept of the Kahler covariant derh'lltive. This will unfortunately 

net"essitate a short. chapter reviewing Kahler geometry. If one had attempted to use the notation of 

Cremmer et IJI_(2], the retention of noncanonical kinetic energies would quickly lead to calculations 

so cumbersome as to be prohibitive. 

-~ i;. 
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K&hler Manifolds 

In N=l supergravity coupled to matter the self-interactions of the scalar fields are described 

by a generalized nonlinear sigma model where the manifold of scalar field values is a Kahler manifold 

[1,2]. 

The geometry of Kabler manifolds is well understood. Easily accessible references are the 

books of Goldberg (8] and Flaherty (9] .. A Kabler manifold ffl is a complex manifold whose geometry 

is specified by a real valued function, the Kahler potential K. Complex coordinates on the manifold 

will be denoted by ¢;, their complex conjugates are denoted by ;;• .. The metric tensor of a Kahler 

manifold Is given by: 

lJ2 -
g;3• = --K(¢ ¢) = /J·lJ ·•K. 

lJ¢ilJ¢i" . ' • ' 

The metric tensor is thus automatically Hermitian. By assumption the metric shall be taken to be 

positive definite on m 0 Indices may be raised and lowered using the metric and its inverse: 

gii" = (g;,• )-1' 

for example: 

X;= g;;•Xr; yi" = gii"Y;; X,• = g;,•Xi; etc. 

Note In particular that: 

X;Y;=X;•Y;• =(X;Yi)" jii!!X;Yi. 

Christoffel symbols may be calculated in the usual manner. Because of the Kahler structure the 

expressions simplify radically. 



r I 
f 1;t = gom·8t(U;m•) = (g1m•8m•)8;8;K. 

r;•;•t• =gmt 8t•(gm;•) = (gm;• 8m)81~8k•K = (f1;tJ'. 

all other components are zero. 

Kahler covariant derivatives will be denoted by 6; we have 

6;X; = 8,X; + fim;Xm, 

6,x,.· = o,x, .. , 

61X; = 8;X;- rm;;Xm, 

6;X;• = 81X;•. 

Naturally the covariant derivative has been chosen so that"the metric is covariantly constant 

6;g;t• = 0 = 6;•g;k•· 

The expression for the Riemann tensor simplifies to 

R 1;tm• = 8m•f1;t = g040(8t8m•Y;k•) + (8m•g1k•)(8,g;k• ). 

The only nonzero components of the Riemann tensor are 

. . .. .. 
R';tm•; R';,.m; R' , .. ,.m; and R' ;•tm•· 

In fully covariant form 

R;;•tm• = -8t8m•U;;• + (8tYok• )gu• (Dm•uw ). 

The only nonzero components or the fully covariant Riemann tensor are 

R;;•tt•; R;;•t•t; R;•;kt•; and R;•;k·t· 

The Riemann tensor possesses the symmetry 

R';tt• = +R;t;t• = -R';t•k· 

c. 
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The Ricci tensor may be defined by 

_.,. lei. ltl. 
R;;• = y R.,•t;• = g R;;•tt• = g Rkt•oJ•· 

Observe that the Ricci tensor is Hermitian. The contracted Bianchi identities read 

8tR;;• = 8;Rk;•, 

8t•R;;• = 8;•R;k·· 

The contracted Bianchi identities are automatically satisfied in view of the relation 

Rw = -O;D;•{lndet(gtt• )}. 

Acting with covariant derivatives on the Kahler potential yields 

6;6;-K = 8;8;-K = g;;-, 

·~c• • 
6•6;K = g' u;t• = 6 i> 

6'. 6;•K = 6.-, •. 

The noncommutativity of the covariant derivatives is described by the Riemann tensor, in general: 

[6a,6&]X• = -R•,.&X11 • 

For the particular case of a Kabler manifold 

[6;,6;•)Xk = -n:,.,.-xm, 

[6;, 6;]Xk = o, 

(6;,6;-JXt = +R~;·Xm, 

[6;, 6t)Xk = 0, 

etc. 

~-
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On a Kahler manifold it is possible to define two distinct Laplacians 

.0. = 6'6;, 

3" = (6;6;)0 = 6;• 6,• = 6;6; ¢ .0.. 

7 

Acting on scalars .0. = 3"; acting on vectors however they differ by a term proportional to the Ricci 

tensor 

(.0.- 3)Xk = -g;t[6;, 6;-).Xk 

= +g;tRtli1•X1 

=Rt,x'. 

The lack of commutativity of the covariant derivatives will prove useful when calculating the scalar 

mass matrix. 

«: " 
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The Lagrangian 

The superspace form of the action for N=l supergravity coupled to gauged chiral matter 

is given in Cremmer et cll.[2). 

Here 

/..t tJfz = J tJfztJfsE(- 3exp(-!K(~.~e2v)) 
+Re[~W(¢)) 

+ Re[~/ .. ,(~) w:·cv) fa
6 W{(V>J} 

E is the superspace determinant. 

R is the chiral scalar curvature superlleld. 

~ Is the superlleld describing chlral matter. 

V is the superll.eld describing the gauge multiplet. 

w:(V) is the lleld strength superll.eld, a function of V. 

K is the Kihler potential. 

W(~) is the superpotential, a function of~ only. 

/ .. ,(~)describes the noncanonical kinetic energy terms of the puge bosons; 

it is a function of ~ only. 

Both Wand fall are analytic, since they are functions of~ only. However they need.not be entire-

isolated singularities and/or branch cuts are acceptable. There will be morl' discussion of this point 

later. The superpotential W may be thought of as a scalar, though at a more technical level Witten 

and Bagger [1) have shown the superpotential should actually be interpreted as an analytic section 

of some holomorphic line bundle whose base sp8("e is the Kibler manifold of scalar ll.elds. The gauge 
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metric lafJ(¢) is an analytic function transforming as a symmetric tensor in the adjoint representation 

of the gauge group. 

Note that the chiral matter has been gauged by making the substitution 

K(¢1,¢)- K(¢,'¢~v). 

Thus the Lagrangian of Cremmer et 111.(2) presupposes that the gauge group acts on the chiral 

matter fields according to a linear representation. Bagger [1) has extended this analysis to the 

gauging of symmetries represented nonlinearly on the Kibler manifold, but we shall not take up this 

particular possibility. Following Cremmer et Ill. then, we demand that the gauge group acts linearly 

on the Kihler manifold m. This condition is obviously not maintained under arbitrary coordinate 

reparameterizations of the Kihler manifold m. Though there are many coordinate systems available 

on the Kihler manifold, we shall only be interested in using a restricted set of coordinate systems, 

namely those coordinate systems in which the action of the gauge group is linear. 

¢; _ ¢; + 6a¢;; 6a¢; = i(€<> [t,.i;]¢1;) 

¢1• - ¢1• + 6aifi'•; 6a¢'. = -i(€" [t,. ,. ;• w·) 

Here the €" are a set of real parameters while the [t., i;] are a (in general reducible) representation 

of the gauge symmetry Lie algebra. 

(Note: t,.i";• = (t,.i;)•). 

The invariance of the action under the action of the gauge symmetry thus forces us to take: 

li> 
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I) K the Kahler potential is an~. 

2) W the superpotential is an~. 

3)/ofl the gauge met.ric is~. 

In terms of explicit coordinates then 

OK · OK ~ 
6aK=0=-

0
. 6a¢'+-6aifi', 

¢' O¢~i" 

so 

OK · · OK ~ .• OK . . • 
(O¢i [t.,';)¢')=(O¢i" [t,.• , .. )¢' )=(O¢>i [t,.';)¢'). 

'While for the superpotential we see 

ow . 
6aW = 0 = O¢>i 6a¢!', 

;' 
so that 

ow 
0¢i [t,. i;] ¢i = 0. 

To discuss the behaviour of f01fl• first recall that the t,. constitute a (possibly reducible) represen-

tation of the gauge group 

[t,., tfl] = ic,.fl" t". 

Then, since lafl is covariant in the symmetric adjoint representation, 

O/a8 6a¢>', 6afofl = 0¢1; 

Ofafl [t'l i ;) ¢i = c~,. fvfl + c~flf<>v· 
0¢>• 

o( 
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Note that my generators are normalized in a nonstandard way so that they contain a factor of the 

gaugt> coupling constant. 

The geometrical interpretation ofthe gauge metric fofl(~) is not particularly obvious. Let 

us interpret the.gauge fields (A0 ,:>.0 ,etc) as lying in some vector bundle over the Kahler manifold 

111. While !of! itself is complex analytic the real part JRofl =~(!of!+ loti) is real and symmetric. 

If we assume that jR of! is positive definite over all of m, then we can interpret JR of!( dJ) as a metric 

in th(' vector space fibre over ~- This now raises the question as to the appropriate definition for 

the covariant derivative acting on lafl . We shall define the covariant derivative acting on !of! to be 

just the ordinary derivative 

6;fofl = 8;/01/1• 

6;•/01{1 =0. 

At fl.rst glance, this definition looks highly noncovariant. We shall now give it a proper geometrical 

interpretation. 

If we make no assumptions concerning the afllne connexion in the vector bundle we may 

write 

6;(f,/t) = 8;(t,it)- r' Oli [tfli t) + rimdtOimt)- rm., [tO/im], 

6;•(t(Jli•) = a,•(t,,.i,)- r~, .. [t11i.J. 

Recall that the mixed components r';t• are zero. Now we have already argut>d that we should 

choose the coordinate system on m so that the gauge group is realized linearly. In particular, this 

implies that the representation matrices are constants, 

8;[toik] = 0 = 8..{toit]. 

( f) 

/ 
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Then 

6;(t,it) = -T11 ai [t/lit] +rim; [t,mt) + rm., [toim], 

6;•(t,i •l = -rfl.,,. [til; •I· 

It is now natural to demand the covariant constraint 

6;(toi t) = 0 = 6;•(toi t). 

The covariant constancy of the generators then implies that in the special class of coordinate systems 

where the gauge group is realized linearly 

\ 

rlloi = o, 

rimi [tom A)- rm., [t,/m) = 0. 

The first of these relationships implies that, in this special class of coordinate systems, 

6;fo8 = 8of0l/l• 

6o•fo/l =0. 

This now provides a geometrical interpretation of the Kahler covariant derivative acting on adjoint 

indices in terms of the covariant constancy of the generators. 

To check the consistency of this interpretation, we should show that in the special linear 

class of coordinate systems 

ri mi [t, m ·I== rm •• [tai ml· 

This is in fact easily seen as follows. The vector fields that generatt> infinitesimal gauge transfor· 

mations are 

V0 ° = i([fo1
;) dJi). 



The related one-forms 

v.,,. = i(g;•t [t.,. ;]4>i). 

are by hypothesis Killing one-forms of .the metric gw [1]. This implies 

go•t [t., * ;] = g;t• (to t• ,•]. 

Differentiate with respect to 4>1 

8tg0•t (ta * ;] = 8tg;t• (ta •• ,•]. 

r• ., [t., • ;l = r •• ,; [t.,•· ,•] g•;• 

= r •. ,j g ••• [to it] 

= r• jl [to.'t! as required. 
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Our proposed definition of the covariant derivative of the gauge metric is thus consistent. By 

hypothesis !Rap is positive definite and symmetric. Therefore the inverse UR- 1)"P exists and is 

well defined over the whole of the Kii.hler manifold m. JR and !R- 1 will be used to raise and 

lower adjoint indices. Note however that the action of raising and lowering adjoint indices does not 

commute with the action of the covariant derivative.Finally, observe 

6;(/R-1)aP = 8~(/R-1)aP = -(/R-1)"'"(6;f:,'f..fR-1)PP, 

R R 1 1 
6;/.,p = 8;/.,p = 28;/.,p = 26;/.,(J· 

We are now almost ready to write down the component Lagrangian for N=l supergravity 

coupled to gauged chiral matter. 

Let us define 

G = K +InW+InW, 

" 
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and further 

D.,= 6;G(t, 1;]4>i =6;K [ta';J4>i = D,. 

Define a differential operator d by 

d = (6;G)6; = (g'i* 6;•G)6;; 

so that 

(df)0 p = 6'G 6;/a(J· 

Following Cremmer et Gl.(2], we split the Lagrangian into 

..f =..fB +..fr,K +..fF,M· 

.-



" 

The individual pieces may now be transcribed as follows: 

e- 1..fs =- g;;• D,.¢' D"~· 

_ tfRafl pa,11 pflpv 

iJl pa F·fl pll 
-4 afl pv 

-!R 

- e0 (6;G6'G- 3)- !DaUR-1)"'fiDII. 

e-!..fF,K =- !JRafl >:"'('y·D)>.fl 

- {g;;•xL ;b · D)xR; + h.c.} 

- !e-l E""'" {(¢ p "'s 'YvD, 1/1,) + h.c.} 

- te-1 ! 1 af1D,.(e X 'Ys'Y" >.I') 

+ !fRaf1{(~L 0 'Y">.Rf1)(6;G D,.¢') + h.c.} 

+ iJR af1{(X 'Y"'(u· F)~' !/I,.)+ h.c.} 

- i{fXL; 6;faf1 (u· F)0 XL8) + h.c.} 

- !e-1E"'"'"(¢,.'Yvf/lp)(6;G D.,¢'+ 6;•G D,¢'A) 

+ {g;;•(~L,.(('y · D)~·h"XL ') + h.c.} 

+{(XL '(('Y · D)~JxR'.)(8;8;8,•G- ig;t•6;G) + h.c.}. 
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_) 

~- n 

e- 1..fF,M = + e0 12 ¢,.u""!/J., 

+ te0 / 2{df afi~R0 ).Rf1 + dfafi~L 0 ).Lfl} 

- e0 12 {(6;6;G + 6;G6;G)(XL 'XL;)+ (6;•6;•G + 6;•G6;•G)fXR;• XR;•)} 

+ !Da{(i¢L · "(XR0
) + h.c.} 

+ e0 12{(¢R · "( (6;G) XL')+ h.c.} 

- {(2i(6,4Da)(~R0XR' .. )] + h.c.} 

- !D<>{(i(6;/af1HXLi>.Lfl)) + h.c.} 

- t,{(g'3 .. (6daf1] (6;• /.,6])(~L <>>,Lf1)(~R"'}.R 6 )} 

+ fi{(JR a8r>:L 0 'Ym}.Rf1])2 } 

+ tJR afi{(X "f"u'"¢,.)(¢,,.,,>.8) + h.c.} 

+ i{(6;/af1 ((XL 'u""XL <>)(¢L11"f,."J..Rfl) + t(¢R · 'YXL1 )(~L <>>,Lf1)]) + h.c.} 

- !{[(g;;•XR;• 'YdXL ')(Eo&cdr¢a'Y&!/Ic]- !¢" 'Ys'Y4 !/Ialll + h.c.} 

+ a{((g;i"XL ''Y":XR' .. )(JR a/1~R 0"(pXL "~)] + h.c.} 

+ t,{((6;Jfl,(fR- 1 )"P 6J4 f,aXXL''Y,. XR;·){~R0'1" ).Lf1)] + h.c.} 

+ H!<XL 'XLjX~L axL11 )(6;6;faf1- !6;/ .. ,(JR-! )"' 6;f,f1)] + h.c.} 

- n{[(XL iu"" XLj)(~L <>u,.v>.L8 ){6;Ja,(!R-! )"P 6;f,f1ll + h.c.} 

+ i{((R.J4
.,.- !g;;•g.,•)(xL'XL AXXR;• XR1.)] + h.c.} 

16 

This component Lagrangian should be compared to the ones exhibited by Bagger [1], by 

Witten and Bagger [1], and to the Lagrangian exhibited by Cremmer et t11.(2]. Note that the benefits 

of the covariant notation at this stage appear to be modest .. The benefits ·at this stage amount to the 

recognition ofthe presence of the Riemann tensor in the quartic spin 1/2 term, the mild simplification 

or the quadratic spin 1/2 term when written using covariant deri\'8tivl's, and the supression of many 

explicit occurrences of thl' metric. It is true that the covariant notation has not led to any great 

simplification in the component Lagrangian itself. BowPver when we procl'ed to the calculation of 
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mass matrices the covariant notation will lead to immense simplifications. 

For the expert in the field I shall now give a brief critique contrasting the covariant notation 

used here with the notation or Cremmer et a1.[2], and that of Bagger [1]. 

1) In the notation of Cremmer et al. [2] the Kahler metric G11 ;i is negative definite. To conform to 

standard usage I replace G by -G wherever it occurs in the expressions of Cremmer et al. This 

is trivial. Nevertheless it does improve the readability of subsequent calculations. 

2) The index usage is completely different. Cremmer et al. only distinguish between index up and 

index down. The covariant notation uses four types of index; up without star; down without star; 

up with star and down with star; 

X;; X;; 
.. 

X'; X;•. 

These index conventions may be related to those of Cremmer et al. by inspection of the following 

table: 

Cremmer et al. Covariant Notation 

~i ~ 
~ = (~;)" ~,.· =(~t 

X; Xi 
yi Y' .. 

I G";iX; X;• = g, .. ;Xi 
G";;y; Y; = g;;-Yi• 

G'" ;iG'" ;•' gij·o, .. o.o,G = g;;·o.(g,;•) = r;,. 
-- -

.. t . 
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As an immediate consequence of this table we see that many explicit occurences of G" and G"- 1 

may be swept under the rug by being replaced by appropriate index contractions. Occurrences or 

G111 may often be converted into Christofl'el symbols and then combined with partial derivatives 

to yield covariant derivatives. 

3) Note that the indices occurring on the spin 1/2 partners of the scalar fields are related to their 

chirality thusly 

XL;; XL; and 
... - i. 

)(R ; XR • 

Bagger [1] does not choose to use this notation and must instead rely upon explicitly exhibiting 

(1 + 'Ys) factors in his Lagrangian. This leads to odd looking (but correct) terms involving 

contractions such as x;•Y;, ie contracting on mixed starred and unstarred indices. That the left 

and right chirality pieces of x transform difl'erently follows from the fact that x is a Majorana 

spinor: 

x=CxT =C-y0
/, 

therefore 

XR = c 'Y0 (xL)". 

So if XL - UxL then XR - u"xR, and so the left and right chirality pieces of x transform 

according to complex conjugate representations. 

This completes our comparison of the various notations and we now turn attention to the 

computation or various mass matrices. 

•. 

/ 
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The Mass Matrices 

The tree level mass matrices are obtained by looking at the quadratiC pieces of the expansion 

of the Lagrangian .f about the vacuum. Note that it is not su11!cient to look at the quadratic pieces 

in the potential, it is also necessary to investigate the behaviour of the kinetic energy terms at the 

vacuum. This arises because the noncanonical form of the kinetic energy terms introduces what may 

be thought of as a tree level wave function renormalization, which must he eliminat.ed in order to 

properly normalize the Buctuations and so deBne the masses. 

The scalar potential of N=l supergravity coupled to gauged chiral matter is given by 

V = e0 (6;G6'G- 3) + ~DaDa 
= e0 (6;G6'G- 3)+ ~(fR-l)af1DaDfJ· 

The vacuum by deftnition occurs at a minimum of V (i.e. 6;V = 0). Further, the vacuum is 

assumed to satisfy Vlvacaum = 0 so that there Is no induced cosmological constant at tree level. 

Observe that 

6;V = e0 ((6;6;G + 6;G63G)6iG- 26;G) + ~6;(DaDO) 
= tP[(M;G +6;G63G)6iG- 26;G) +(6;Da)Da- ~(6dRafJ)DODf1. 

It is sometimes more convenient to separately deBne 

V0 = e0 (6;G6 1G- 3), 

so that 

V = Vo +'DaDa. 

Note that Vo is the limit of V as the gauge coupling g is set to zero. Again observe that 

6;V0 == e0 [(6;6;G + 6;G6;G)oiG- 26;G]. 

... IJ 
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This particular combination of terms shall appear many times in the calculations that follow. 

Before proceeding with the calculations we introduce the concept. of the vielbein. We have 

two metrics present in the problem, one for matter (g;3•) and one for radiation (JR a(J ). We define 

vielheins e and h by 

1 ,. 
9t;•=e, eJ .. 61;•, 

/Ra(J = haA hfJB OAB. 

The vielheins have inverses in the usual fashion 

e,• e/ = 61
1 , 

(e/( = e;·1·, 

hs0 haA = 6sA. 

We can use the inverse vielheins to construct a noncoordinate basis for the tangent space to the 

Kahler manifold by employing 

6r = er'6,. 

In such a basis the commutator of 6r with 6r picks up extra contributions due to the ahoionomicity 

of the basis. With these preliminaries disposed or, let us turn to the problem or evaluating the mass 

matrices. 
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Spin 2 

The graviton remains massless: 

lm2=0., 

Spin 3/2 

The gravitino acquires a mass: 

I ma/2 = eG/2,1 

In obtaining this mass the gravitino absorbed the "would be Goldstino" and so finally has four 

polarization states. For more details, see the calculation or the spin 1/2 mass matrix. 

22 

Spin 1 

The relevant part or the Lagrangian is: 

e-1..f1 =-~!Roll F"' 1111 F/1 11"- g;;•(D11qi)(D"¢i\ 

where 

D 11 ¢; = (8116;;- i[to';]A0 
11)¢". 

Suppose the vacuum occurs at the point tf>t. Then expanding around the minimum and throwing 

away fluctuations in ¢" 

-t..f IJR F"' Fllllll ( '[t i ]Aa A.i)(+'(t ;• ]All"¢~·) e t=-4 oil I'" -g;;•-1 oj 11'1'0 I II~· 0' 

-t..f IJR Fo Flll'll ("'k" (t ;• J (t ; j.l.i)A"' As" e 1 = -- o/J "" - g;;• Y'O 11 -· g;,• "' i vro 1-1 · • 4 

Now observe 

6;D0 = 6;(6;-G (to;• ~·] ¢/c") 

= (6;6;-G)(toi
0

1c"] ¢/c" 

= g;r [t,i" d ¢•". 

This allows us to write 

e-1..f1 = -~JRo/Jri',FII 1111 - (6;DII6;Do)A"' 11AIJ". 

We define properly normalized gauge boson fields by 

AA = h0 AA.0 • 

Then 

e-t.fl = -~FA11,FA 11"- (hA"'hB 11(6;DII6;Da.))A.A 11 A
811 • 

.. 



,, 
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The (mass)2 matrix is now just. read ol!' as 

(mi)2 AB = 2hA"hB 11(6oDa6°DfJ), 

tr(mi)2 = 2(/R-1 )0 fi(60D,.6'DtJ). 

•: il 
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Spin 1/2 

Isolating the spin 1/2 mass matrix requires a little subtlety. The quadratic part of the 

fermion Lagrangian is: 

e-1(..fl/2 +..f3/2) =- HRofl X" b. D)V 

- {go;- XL 'h · D)XR;• + h.c.} 

- te-1
£ 11"'" {(~11"Y5'YvDptPtr) + h.c.} 

+ eG/2 ~,.u"",P, 

+ teG/2 {d/ o{J XR 0 '>.R 11 + dfofl XL 0 '>.L 11 } 

- eGf2 {(6o6;G + 6,G6;G'f..'XL'XLi) + (6,•6;-G + 6,•G6;•G)(XR 0• XR;")} 

+ ;D,.{(i~L · "Y '>.R")+ h.c.} 

+ eGf2 {(~R · 'Y (61G]XL 0) + h.c.} 

- {(2i(6a•D,.](XR"'XR;•)) + h~c.} 

- ;D"'{(i(6;folll(xLi>.LII)) + h.c.}. 

To get canonical kinetic energies for the spin 1/2 fields we must rescale using the vleibeins. Define 

I I · 
XL = e; XL',, 

'A- ...Lh A'o ' ,.,_-12"'"' 

The somewhat peculiar looking factor of ,f2 in the definition of'>.'" is not an error. It will prove to 

be an essential part of the algebra. 



Alter rescaling the spin I/2 fields, 

e-l(..fl/2 +..f 3/2) =-;;;A h. D)>.8 

- {XL'(;·DJA:R 1• +h.c.} 

- !e-1fi'VP" {(v;,.i5ivD,I/I.,) + h.c.} 

+ eG/2 v;,_.u"vtPv 

+ ~eG/2 {[hA "hB~dfa~J);"RAARB + [hA"hB~dfa_,J'XL A)..L 8 } 

- e0 12 fler;e;i(6;6;G + 6;G6jG)](XL1 XL 1 ) 

+ [er;• ert (6;•6;•G + 6;•G6;•G)](XRr• XR 1•)} 

+ "J2DA{(i"¢L · i ARA) + h.c.} 

+ e0 12 {(¢R · 'l[6rG)XL1
) +h. c.} 

- {J2[(2i[6;•Da)hA" er1\XRAXR 1•))) + h.c.} 

- ~D"{(i[6;fa~Jei hB.B(XL 1>.L 8 )) + h.c.}. 
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The "would be Goldstino" may be isolated as that linear combination or X and >. that couples to 

the gravitino t/J. Thus the "would be Goldstino" I'J is given by 

I'JL"' (e0 12 [6rG)XL'- *DA ALA). 

To properly tlx the normalization, consider the vector 

{= ..1...( 6rG ) 
,ra ..Le-G/2 D A 

../2 

ct = ..l..(orG. - ..Le-G/2 DA) .. ,ra '../2 ' 

then 

ete= WrG6I•G+ ~e-0DADA) 
= !{3+e-0 V) 

=I+ !e-0 V 

=I, 

where we have ll.nally used the condition that V = 0 at the minimum. 

The properly normalized "would be Goldstino" is now 

I'JL = et(X<) = (e0 12 [6rGJ XL 1 - ~D A ALA). 
AL . v2 

The gravitino-Goldstino coupling may now be written as 

.f3eG/2 {ViR. 'l I'JL} + h.c. 
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The terms quadratic in the spin I/2 fields can be read directly from the Lagrangian. These quadratic 

terms will not yet be the spin I/2 mass matrix because we have not yet eliminated the contribution 

or the "would be Goldstino". Let us call the terms quadratic in the spin I/2 fields the pseudo mass 

matrix P112· For lett handed fields we have 

p _ [pll PrA] 
112

- PBJ PAB 

Pu = -e0 12 {er 1e1 i[(6;6;G + 6;G6;G)]}, 

PrA = +iJ2{hA"er1[(6;Da)- ~D~(6;/Ra~))}, 

PAB = ~e012 {hA" hB~ df .. ~}. 

Note that the pseudo mass matrix for right handed fields is just P1t 2 , the complex conjugate or 

pl/2· 

The key to the problem of fermion masses is to realize that the "would be Goldstino" is an 

"eigenvector" of the pseudo mass matrix, speeillcally: 

pl/2 { = (-2e0 12 )( • 

... 



,-{ -~ 
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This seemingly odd "eigenvector" equation, with one vector complex conjugated and the other not 

is a refleCtion or the fact that P112 is a symmetric, complex, but not necessarily Hermitian, matrix. 

Establishing the "eigenvector" equation is unfortunately a matter or brute force: 

(
-e0 12 er'(5;6;G + 6;G6;G)6iG + (iJ2)( ~)e-012er'([6;Da]- ;vll[o;JR afi])D") 

pi/2F.= ..1... . 2 
• 

..ra (+iJ2)hAO'eo,DO'- ;vt~o,JRa11 )6'G+m<~)hA"' dfa11 Dll 

Now 

While 

So 

But 

So 

eoiDa- ;D11 [6i!Ra.s])D" = oi(,DaDfi(JR-1)"'11) = 6;(;DaD"). 

(dfati]D11 = o'G(6ifoti]DII = 2eoiG[6;/R afi])D11 • 

_ .J...(-e-0 12er1(e0 e6;6;G + 6iG6;G)oiG + 6;(;DaD")J) 
P1t2 f.- .,f3 +iJ2 6iG[6;Da]hA"' . 

6'G6;Da = 6iG 6;(6;•G(t.,;•,•],P11•) 

= o'G u;;•[t,/ ··liP•· 

= 6;•G[ta;• k 0 ]rP
110 

=Da. 

p t-...l... . (
-e-0 12 er'[6;V + 2e0 6;G]) 

1/2<.- .,f3 +iJ2DA 

Finally we use the extremum condition 6; V = 0 and obtain 

P112 F.= (-2e012Je•. 

.-: b 
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HaTing established the "eigenvector" equation we define 

m112 = P112 + 2 e012 f." ef. 

Note that, because F,f f. = 1 = e f.", it follows that m112 is a complex symmetric matrix satisfying 

ml/2f. = 0 = e ml/2·. 

Now m112 is in fact the physical mass matrix after eliminating the "would be Goldstino". This 

may seen by observing 

ex,X)PI/{~) = (x,>:")[m112 - 2e0 12 f.
0 f.tl(~) 

={ex. >:")m112(~)}- 2e0 12
fi'l 

={ex,>:")[/- teJm;12II- F.f.t(~)}- 2e0 12
fiTJ 

={ex, X)perp m112 (~t.J- 2e
0

1
2r;TJ, 

thus showing that the fields perpendicular to the "would be Goldstino" do indeed have mass matrix 

ml/2· 

Now observe 

2eG/2f." f.t = §eG/2 . . ../2 
[ 

61G61 G -...i....e-0 12o1GDA] 

-~e-012D861G -!e-0 DADB 

2[e0126rG61 G -...i....orGDA ] 
-- ../2 
-3 -..i..o,GDs -!e-0 12DADB . 

../2 

Thus we may explicitly e\-aluate the spin 1/2 mass matrix as 



[

m/J mrB] 
m112= · 

mAl mAB 

m/J = -e0 {er•e,i[6;6;G + !6;G6;G]}, 

m 1A = +iJ2{hA"e/((6;D0 )- ;DII(o;JR.,11 )- !{6;G)D0 ]}, 

mAB = {hA"'h~[,e012 dfa/l- !e-Gf2 DaD/I]}. 

This finally is the full spin I /2 mass matrix in all its glory. 
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To calculate the spin 1/2 contribution to the (mass)2 sum rule we need to e''llluate 

tr(m1/2mi/2l· This could be calculated by inserting the mass matrix just calculated and tracing. 

This is the strategy adopted by Cremmer et al.[2]. This strategy is however grossly inefficient when 

noncanonical kinetic terms are kept. A much more tractable strategy is to observe 

Then 

But now 

ml/2ml/2 = (PJ/2 + 2e0/2({t)(PI/2 + 2e0 /2{e) 

= pl/2pl/2 + 2eGf2(((-2eG/2e)+(-2eGf2(){T + 2eGf2( eJ 
= Plf2Plf2 - 4e0 (e. 

tr(mi/2ml/2) = tr(PI/2Plf2)- 4e0 . 

tr(Plf2Ptf2) = PuPrr + 2PAIPrA + PABPAB 

= e0 (6;6;G + 6;G6;G)(6'6iG + o'GoiG) 

+2[2(6;D"'- !DIIo;JR<>/IXfR-1 )"''~(6;D.,- !D6 6iJR 6.,)] 

+ te0 [df<>IIUR- 1 )il'~df ,sUR-1 to]. 

:!\"ow define 

Then 

tr(d/R/R- 1d/R/R- 1
) = tfdf<>/1 UR- 1 )II" d/ .,s (/R- 1 )6"']. 

tr(PJf2Pl/2) = e0 (6;6;G + 6;G6;G)(6'oiG + o•G6iG) 

+ 4[6;D.,Jl6'D11 ](/R-1 y•ll 

+ e0 tr(dfRfR-IdfRfR -I) 

- 2(6;D<>(/R-1)"'"f6'JR.,s]D6 ) 

- 2(6'Da(/R-1)"" (6;JR.,s]D 6 ) 

+ D" [6;/Ra/IH/R- 1
)11" [6'f~s]D6 • 
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Recall that lafl transforms like a symmetric tensor in the adjoint representation. This means that 

6ofafJ = 8;/afl (t.,';] ¢f {" = (6;/oii)(6'D-tl(', 

(6;/0 (1){6'D.,) = c.,o"/,/1 + c.,fJ" !ott· 

Applying this, we see that 

6' Do(/R-1 
)"'" (6;/R .,s)D6 = '((6°D.,)(6;J.,s)](/R-l )"" D6 

= !fco.,"!tts +cas"!tt.,]UR-l)'f"D6 

= !cas"(JR", + i/1 "")(fR-I }"0 D6 

= ~C.,s0D6 + if!cos" / 1 ,,(JR-1 P"Y], 

where we have already used the antisymmetry of the structure constants in the llr~t two indices. The 

purely imaginary piece will be cancelled when we add the complex conjugate term. Also c., II"' = 0 

since we can always choose the structure constants to be completely anti~ymmetrk. 



,, 
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Now observe that 

il.(/R-1) = 6'6;(/R- 1) 

= +(UR-1WJR(/R- 1 )6;/R]- ((/R-1)6'6;/R(/R-1 )] + ((JR- 1 )6;/R(/R- 1)6;/R], 

and note that 6'5dR = '6'(6;/) = 0, since f is chiral. In particular, 

JY> (6dRo,B](/R-1 ).8'1' WJR,.6]D 6 = 'Do[N;(/R-1)" 11]D.s. 

The trace now becomes 

tr(ml/2ml/2) = tP(6;6;G + 6;G6;GY..6i5iG + 6'G6iG) 

+ 4(6;D,.)(JR - 1 )'•.8(6'D.s) 

+ e0 tr(dfRfR -'d,fR fR -I) 

+ 'Dall.((fR -I )".B)D.s 

-4e0 . 

Utilizing the results obtained for higher spin we flnaJly obtain 

tr(ml/2ffii/2) = mat22(5;61G + 6;G6;GY..5'6iG + 61G6iG) 

+2tr(md2 

+ ma/22tr(dfRfR-Iji•fRfR-I) 

+ !Doll.((/R-1)".8)D,B 

_ 4mat22· 

il_ () 

\ 
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Spin 0 

Finally we calculate the mass matrix for the ·scalar.-bosons. The relevant part or the 

Lagrangian is 

e- 1..fo = -g;;•D,.~'D"¢1'~- e0 (5;G6'G- 3)- !DaUR-1 )'".8 D.s 

= -g;1•D,.~'D"¢'~- V(~,¢). 

Now suppose that V has its minimum at ~·o and define the fluctuation ll.¢' = ¢'- ~·O· Now by 

hypothesis V and 8V are zero at the minimum. So expanding In terms or the fluetuations we see 

e-1..fo = -(g;;•]D,.(Il.¢1)D"(Il.¢' .. ) 

.• . [8.-8;V 8;•8;•V](Il.¢i) 
- {ll.¢' ,ll.¢') 8;8;V 8;8,-•V ll.¢i• 

+ o(lll.¢13 
). 

Properly normalized fluctuations may be dellned IISing the vielbeins 

~~ = e/ll.¢', 

~~· = e, .. ,. ll.¢'•. 



Then 

e-1.1 o =- 811¢/811 ,P1• 

_ (,p'", ,p')[er•: e1i 8;•8; V er·'~ eri: 8;•8;• V.]( ,p
1
.) 

-e1 e;1 8;1J;V er'er' 8;IJ;•V tb 1 

+ o(I,PI3
). 

The (massf matrix is now seen to be 

(mof = [er'~eJi8,•8;V er'~eri:8;•8;•V] 
er'e1'8;8;V er'er' IJ;8;•V 

= [e,·'~e~:61•6;V er'~er:·6,•6;•ll] 
er'eJ'6;6;ll er'er' 6;6;•ll 

= [6r61ll 6r6rll] 
6r6;ll 6r6rll 

where we have repeatedly used the fact that IJll = 6ll = 0 at the minimum. 
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Evaluating the trace or the (massf matrix is relatively easy. Evaluating the (mass)2 

matrix itself is straightforward but tedious. Let us split the problem into manageable chunks as 

follows 

6,•6;ll = 6,•6i V0 + 6;•6i(~D,.D"), 
6;6;ll = 6;63v·0 + 6;6;(~D,.D"). 

• 

The gauge contributions are 

6;•6;(,DaUR- 1 
)"" DfJ) = (6,•6;D,)D" + ,D,.(6;•6;UR- 1 )"'")DfJ 

+ 6,•DaUR- 1 )"'"6;DfJ 

+ 6;•Da6;(JR-l )""DfJ + 6;Da6;•(JR- 1 )""Dfl. 

6;6;(~DaUR- 1 )afl DfJ) = (6;6;D,)Da + ~D,.(6;6;UR-t )"")DfJ 

+ 6;DaUR- 1
)
01"6;Dfl 

+ 6;D,6;(fR- 1
)

01 fJDfl + 6;D,.6;(fn- 1)"6 DfJ. 
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In general, nothing particularly enlightening can be said about the gauge contributions to the 

(mass)2 matrix. One simplification is to note that 6;6;Da = 0, since 6;61D, = 6;(g;k•[t,.k" 1 ·],P~") = 

0. In a similar fashion 

6;•6;Da = 6;•(g]k" [ta k"z•) ,P1•) 

= Uik" [ta k 
0

1•)61• ;• 

= 9jk" [tak";•) 

= taJi•· 

Now consider the contribution 66ll to the (massf matrix. We observe 

6;•6;llo = 6,•[e0 {(6;6kG + 6jG6kG)6kG- 26;G}) 

= e0 [6;•G{6;6kG + 6;G6kG)6kG- 26;G} 

+ {(6;•6;6kG + 6;•6;G6kG + 6;G6;•6kG)6kG} 

+ {(6i6kG + 6;G6kG)6;•6kG- 26;•6;G}]. 

( 



,,J n 

Now recall 6;6;-G = g;;-. Also observe 

6;•6;61G = (6;•,6;]6tG + 6j6;•6tG 

= Rm ti"j 6mG + 6;(gt;•) 

= Rmt;•;6mG. 

Combining these results 

6,~6;Vo = e0{(6,~61G + 6,~G6.G)(6t6;G + 6tG6;G) 

- 2g;•; + g, .. ;(6tG6.G)- 6;•G6;G 

+Rmt,~j6mG6tG}. 
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Notice In particular that the Riemann tensor contributes to the scalar masses. The final term or 

interest is now 

6;6;V0 = 6;(e0 ((6;6tG + 6;G6tG)6'G- 26;G}] 

= e0 {6;G((6;6tG + 6;G6,G)6•G- 26;GJ 

+ (6;6;6tG + 6;6;G 6,G + 6;G 6;6,G)6•G 

+ (6;6tG + 6;G6,G)6;6'G 

- 26;6;G}. 

Observing that 616;G = 6i;, we see that 

6i6;V0 = e0 {(6;6;G + 6iG6;G)+ 6;6;G(6tG6•G- 2] + 6;6;6tG)6'G 

+ (6;6tG6.G6;G + 6;6tG6.G6;G)+ 6;G6;G(6tG61G- 2)} 

= e0 {(6;6;G + 6;G6;G)(6tG6•G- 1] + (6;6;6tG)6•G 

+ 6;6tG6.G6;G + 6;6tG6.G6;G}. 

•: ;~ 

Now define 

G1 = e1'61G, 

Gu = er1eJi6;6;G, 

GuK = eJ1eJieK•6,6;6tG. 

The (maasf matrix decomposes to 

(mof = [(mo){1 (mof 1•r] 
(mo) IJ (mofu• 

(mo)2r 1 = msta2 {(6rJ + (GrK +Gr•GKJ[GKJ + GKGJJ) 

+6rJ(GKGK- 3)- GJ"GJ 

+RI"JKLGKGL} 

+tall" D'" + 6rDa(/R- 1 )0 fi6JDfl 

+ !Da(el"' .. eA6, .. 6;(/R-1 )"'fiJ)Dfl 

+ 6J"Da6J(/R-1 )011Dfl + 6JDa6r(/R-1 )afl D11 

(mofu = mata2 {(6161G + GrGJ)(GKGK- 1) + GuKGK 

+GJKGKGJ+GJKGKGJ} 

+ 6JDaUR-1 )"fi6JDfl 

+ iDa(eJ1eJi[6;6;(/R-1 )0 fi])D/I 

+ 6JDa6J(/R- 1 )"flDIJ + 6JDa6J(/R- 1 )'"fl D11. 
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This finally is the full expression for the scalar (mass )2 matrix. In Its presPnt form It is too unwieldy 

to be or any great use. Some simplifying ansitze will be discussed In subsequent chapters. 



Fortunately, the trace of the (mass )2 matrix is now very easy to evaluate 

tr(mo)2 = (mo)2
Ir + (mo)2 r1 

= o•o,v + 6,6;V 

=(.6.+~)V 

=2.6.V, 

since .6. =~when acting on scalars. The explicitly calculated formula for (m0
2)r 1 now yields 

tr(mo)2 = 2m3t2
2 {!n + (6;6;G + 6;G6;G)(6 1oiG + 6'G6'G)] 

+ n(o;G o1G- 3) 

- 6;G6 1G 

+ R' 11' o1G o,G} 

+ 2tr(ta)D'" 

+ 2(6;Da)(!R-1 
)"11(61D11 ) 

+Da (.6.(/R-1 )"/I)D/1 

+ 2(o'Da)6;(/R-1 )01ifD11 +2(6;Da)61UR- 1 )
0111 D11 . 
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The last two terms occurring here are complex conjugates of each other and have previously been 

shown to cancel against each other (recall the spin 1/2 calculation). We also utilize the fact that the 

condition V = 0 at the minimum implies 

2matl(6;G61G- 3) = -D,.D". 

Additionally, recall 

So we see 

And ftnally 

tr(md = 2(6;D,.)(JR-!)all(o'D11 ). 

tr(mo)2 = n[2mat22
- DaD"] 

+ 2mat22(6;6;G + 6;G6;G)(61oiG + 61G6iG) 

- (6ma122 - D,.D<>) 

+ 2mat22(R/6;G6;G) 

+ 2tr(t")D" 

+tr(md 

+ Do(.6.(JR -I )''11 )D/I. 

tr(mo)2 = mat22(6;6;G + 6;G6;G)(61oiG + 61GoiG) 

+ (n- 1}[2mat22 - DoD"'] 

- 4mat22 

+ 2maf22(61GR/6;G) 

+ 2tr(t,.)VO 

+ tr(mi)2 

+D,.(.6.(JR-l)<>II)D/I. 
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Having now exhaustively and explicitly evaluated the (massf matrices and their traces, 

the (mass)2 sum rule itself will be trivial. 



The Sum Rule 

Collecting terms, 

;{ ,_;. 

Str(m2) = tr(mo)2
- 2tr(mt/2f + 3tr(m!)2 - 4tr(ma;22) 

= (n- 1)[2ma/22
- DaD'"] 

+ 2m312
2(6;6;G + 6;G6;G)(6;6;G + o;GoiG) 

- 4ma/22 

+ 2ma122(6;GR;f oiG) 

+ 2tr(ta>D'" 

+tr(md2 

+Da(A(JR-1)"')DfJ 

- 2m3/ 2
2(6;6;G + 6;G6;G)(6;6iG + 6;G6iG) 

- 4tr(m,f 

- 2maJ22tr(dfRfR-1dfRfR-1
) 

- Da(A(/R-1)"')DtJ 

+Bma122 

+Str(md 

- 4ma/2
2

• 

Str(m2) = 2(n- l)[ma/22 - ~Da'D") 

+ 2tr(t0 )D'" 

+ 2ma;22(6;G R;i 6;G) 

- 2ma/22 tr(d/R fR -l dfR /R -I) 
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This should now be compared to the sum rule of Cremmer et al.[2). It is remarkable that the extra 

40 

contributions due to noncanonical kinetic energies are so simple. When comparing to the results of 

Cremmer et a1.[2], recall that (ta)Aere = g(ta)cremmer. and that (Da)Arre = -(Da)crrmmer· 

Having now exhibited the mass matrices and the sum rule assuming that V]~acvum = 0, 

we shall turn to the more general question of just how a vanishing cosmological constant may be 

obtained. 
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Tuning the Cosmological Constant Note that the use or conriant notation has allowed the proof to be derived for nonranonical kinetic 

energies with essentially no extra work over that which would be required for the canonical case. 

The scalar potential for N=1 supergravity coupled to gauged chiral matter is [1,2) 
Observe further that the above theorem shows us that the search for the zeros or 8G is as important 

V = eG(6;G6;G- 3) + ~DaD"'. for the breaking or supergravity as is the search for the zeros of 8 f in rigid supersymmetries. In the 

supergravity case the nonanalyticity of G leads to extra technical difficulties. We shall not pursue 

We shall define the cosmological constant to be the value or V at its absolute minimum. More 
this subject, rather we shall prove a sort of converse to the previous theorem. 

carefully we can account for the possibility that the absolute minimum occurs at infinity in field 

space by defining 
Let V. denote the potential V with all occurrences of G replaced by EG, being careful to 

remember that the index contraction 6;Go'G hides an occurrence or the inverse metric. Thus: 

A=infV. 

Here the inllnum is to be taken over the entire Kiilller manifold m or scalar field values. The key 
V, = e'0 [E6;G6;G- 3] + ~r2Dc:.D". 

to this section lies in the following simple obsevation. 

Theorem 
Theorem 

I1 3¢o E m : 8Gito = 0 
I1 inf(6;G6;G) = 'I > 0 

then 1) ¢ 0 is a critical point or V (8V14>o = 0) 
then 3Eo E (0,3/'1]: V.. bas A= 0. 

2) VI~.~ 0. 
frQQf 

Corollary 
Let A, = inf V,. Then 

I1 A = 0 and supergravity is broken 

then 'rf¢ E W,8G 'F 0. 
I) lim V. = -3, 

•-o 

Proof 
2)Vf ~ exp(~G)[h- 3]+ ~(~fD,.D"' ~ 0. 

The proof is trivial. We just observe that 
So 

6;V = eG[(6;6;G + 6;G6;G)oiG- 26;G) + ~6;(D01D"') 

= eG[(6;6;G + 6;G6;G)6iG- 26;G) + (6;D01 )D"'- ~(6;/R 01~)D"' D~ 
I)limA,=-3, 

•-o 
2)A(fl ~ 0. 

and 

Since A, is continuous in f, it follows that 3fo E (0,3/q] such that A,0 = 0. Note that inf(l~) is a 

Da = 6;G [t,.;;)</Y. 
continuous function or f even if the location or the absolute minimum is not a continuous function 

.. 
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of f. Further observe that in terms of the superpotential W the scaling transformation adopted here 

is: 

G~-+EG, 

K..+EK, 

w .... w-. 

Some comments on the analytic structure of the superpotentlal W are in order. It was pointed out 

by Bagger and Witten [1) that the superpotential W is an analytic section of some holomorphic line 

bundle constructed over the Kibler manifold m. The word analytic is. potentially misleading. What 

is re6ily required [2) Is that W be a function of the ¢'s only, not of the 'i's (ie W = W(¢)). But the 

superpotential does not have to be everywhere differentiable in order for the Lagrangian to make 

sense. In particular both poles and branch cuts are permissible, though they may be considered 

unpleasant. It is useful at this stage to classify superpotentials as follows. 

Class I : W analytic but not entire on m 
-so that poles/branch cuts exist. 

Class n : W entire but In W not entire 

-so that w has zeros on m. 

Class In: In W entire on m. 

It is common to restrict attention to Class n superpotentials. This would be Inappropriate in our 

discussion, since Class n is not closed under the action of the sealing transformation W .... W'. 

Indeed, elements of Class n are In general mapped into Class I by this transformation. While 

commonly occurring superpotentials are of Class n, the other possibilities should not be Ignored. In 

particular, If the Kahler manifold m is compact [1), then the superpotent.ial is either identically zero 

or is of Class I. 

" 
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It is possible to arrange for supergravity breaking with A = 0 by using superpotentials 

from any of the Classes I,n, or m. This may best be seen by explicit examples. 

Qlml 

Take 

K="1¢; W=¢1; 

G = 'i¢ + fln"1¢. 

A quick computation yields 

V = exp("1¢) ["1¢]-i ('i¢- f)2. 

The absolute minimum occurs at ¢'i = f, V = 0 withms;2 = e0 12 = eK/21WJ = (fe)i. 

This potential has been discussed by Ferrara d al.(lO), by Deser and Zumino [11), and by Gaillard 

d al.[l2). We shall later return to this example In a new disguise. 

~ 

Take the Polonyi potential [13): 

K= "1¢; W=¢+(2- J3), 

G = 'i¢+1n{l¢+ (2- v'3)12
}. 



QmJil 

Take 

K=#; In W = ;t,t~2 + i../31,!1; 

G = ~tP + ;t,t~2 + i../31,!1 + !T - i../3 ~. 

IJG = ~+ tP+iJ3. 

V = e0 [1~+ tP+iVal2 - 3] 

= eG(t,\1+~)2. 
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The absolute minimum oecurs at V = 0; Ret,ll = 0; and lmif> arbitrary, while 

ma122 = e0 = exp(~(Ret,\1)2- 2../3Im¢), 

ms/2 =exp(-Valmt,ll). 

These examples are suftlcient to indicate that all of the Classes I, n, and ID are potentially 

of interest. We shall now leave these toy models and return to a more general analysis. One reason 

that we have emphasised the dilJerent possible analyticity structures of the superpotential W is given 

by the following theorem. 

Theorem 

If A = 0 and supergravity is broken, 

then either the superpotential W is not analytic at the origin, 

or the model contains at least one gauge singlet superfteld. 

f.tQ2f 

Assume the contrary, that the superpotential is analytic at the origin, and that the model 

contains no gauge singlet superftelds. We shall show that under these conditions either supergravity 

,0 
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is unbroken or A 'f 0. 

If the superpotential is analytic at zero fteld, and does not depend on any gauge singlets, 

then the gauge invariance of the superpotential implies 

/Jwi =o. 
/Jt,\1' •-o 

Now noting that D01 = 0 at 1,!1 = 0 we see that 

V(t,\1 = 0) = eK {(6;W + W6;K)(6;W + W6;K)- 3WW} +!DaD"' 

= eKWW(6;K6;K- 3). 

The Kihler potential must itself be dilJerentiable (though certainly not analytic) at the origin. Then 

gauge invariance of the Kihler potential implies 

Therefore V(if> = 0) = -3eKWW. 

IJKI =o. 
/Jt,\1' .-o 

Thus, either A < 0 or 1,!1 = 0 is a minimum of V that does not break supergravity . 

The signiftcance of this theorem is that it informs us that supergravity breaking is always 

technically ugly. Either the model contains gauge singlet fields, [a fact that is mysterious at best, 

and at worst neatly foils any attempts at family uniftcation], !2L a scarcely more palatable possibility, 

the superpotential is not analytic at zero field. 

It is relatiVely easy to guarantee a zero cosmological constant but the price is high. To get 

A= 0 one need merely construct a nonanalytic real function G(t,\1,~) such that /J;G(t,\1,~) possesses 

no zeros. (More rigorously: we really want inf(6;G6iG) 'f 0]. Having found such a G it can always 

be tuned to set A = 0. Unfortunately, this is unnatural in two senses: 

1) The set of G's leading to A= 0 is of measure zero in the set of all G"s. 

2) One must live with either gauge singlets or a nonanalytic superpotential. 
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Whilt> some papers have appeared claiming to lift the unnatualness of the A= 0 condition (eg [14]), 

this can only be done by acts of severe violence to the framework we have been discussing. 

We shall now exhibit a model that uses the nonanalyticity of its superpotential to simul-

taneously break supergravity and its gauge symmetry. We shall then turn to a general discussion of 

models containing gauge singlets. 

.. 
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Nonanalyticity of.the Superpotential 

In the previous section we argued that supergravity breaking with A = 0 requires either 

a nonanalytic superpotential, or the existence of gauge singlet fields. However we have not yet 

exhibited any speciD.c examples or how the nonana)yticity or w allows us to avoid the presence of 

gauge singlets. 

My attention was first drawn to models of this type by the work of S.Rudaz [15]. Rudaz 

considers a model with · 

W(4>) = ma/2P2e-•"l2e(,/i-1-a)((•/P)-al[!.- a+ 1], ,., 

Z= f4>'H;;~· 

Here H;; Is some gauge Invariant matrix. Rudaz was able to show that this choice of superpotential 

simultaneously breaks supergravity and the gauge symmetry and that A = 0 at the minimum. The 

analysis of the previous section Indicates that the branch cut singularity in z is an essential ingredient 

In this result. We note that 

8W H;;4>i -J::d---8;• ../4>"H~cr4>1 
tor 4> near zero. 

The fact that(:~) Is not well behaved as 4>- 0 Is what permits us to avoid the use of gauge 

singlets. 

We shaU now exhibit a somewhat simpler example that exhibits the same behaviour. The 

example will be constructed by utilizing a systematic search among all power law superpotentials. 



Then 

Consider a model of the form 

K="it/J=t/J'.,p', 

w = (t/J,P)7 = (t/J't!J')7 

G = "it/J + '"(ln[(t/Jt/J){t/Jt/J)) 

ln1(6;G6;G) = inr(IOGj2) 

= inf(l¢ + 'ltml2) 

= inf(2')' + "it/J + ~[ (#;) )) 
(,;)(;,) 

0!: 2')' 

Thus, applying the theorems of the previous section, we see that: 

V')' > 0 3 E such that the model 

K = E("¢,p), 

W=(t/Jt/J)'7, 

G = E[("¢1/J) + '"(ln((t/Jt/J)(ffl)) 

has A=infV = 0. 
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Note that, beeause of the simple form of the Kibler potential, we can further simpify this by 

defining t/J,. • ., = ../i¢old· Then defining v = E'"f; p =-vinE, we see that the model 

K="it/J, 

W=p(¢¢)" 

G = "¢¢ + vln[(¢¢)(¢1/J)) + 2p, 

has A = 0 for at least some choices of v and J.l. 

• 

Let us now evaluate the scalar potential 

V = e0 {I¢+ 2vrrol2
- 3) + !("¢Wf, 

v = e0 
{"it/J[l + (,:n:,) I + 4v- 3} + ~(~t¢ )2' 

V = {e0 (t/J4>)-1(¢t/J)-1 }{~9'>((9'>1/J)(t/J¢) + 4v2) + (4v- 3)(1/Jt/J){t/Jt/J)} + ~(~t4>)2 , 

V = {e0(,P4>)- 1 (4>4>)- 1 }{~4>~14>c/>l- 2vl
2 

+ 2+~- ¢\~'#( + (8v- 3){t/Jc/>)(4>cf>)} 

+ ~(~tcj>f. 
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The potential has thus been reduced to a sum of squares. It is now easily seen that A= inf V = 0 

if and only if v =+&.For v = +i the model reduces to 

K = ~4>, 

W=(t/J¢)1, 

G = ¢t/J + f ln[(cf>t/J)(c/>4>)) + 2p, 

V= e2"e!141!(,pcj>)-•<H">-•{ ~t/J 114>ct>l- ~r + thl~-~mn+ ~<"itcf>f. 

The absoulute minumum occurs at 

a) 1(91¢)1 = t 
b)¢=/it/J 

c)D=O 

d)A=O 

e) ma/2 = e0/2 = e"/21WJ = p(fe)f 

Note that the condition 1(1/Jt/J)I = f leaves undecided the direction of the gauge symmetry breaking. 

Also note that all factors of Mp1•••" have been absorbed into my definition of the field variables. 

Consequently the physical scale of the gauge symmetry breaking in this model is Mplanc~:, while the 

scale of supergravity breaking is given by the free parameter m312. 

. . 
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This example shows that it is possible to simultaneously break both supergravity and gauge 

symmetry at the tree level. This is as far as I wish to pursue this particular avenue and we shall 

now return to a more general setting to consider the case of models with gauge singlets. 

., 
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Sector Structure 

We shall now turn to the possibility of ll(:hieving supergravity breaking by the inclusion 

of gauge singlets. The analysis 80 far has avoided making any simplifying assumptions about the 

structure of the Kahler potential (K), the superpotential (W), or the gauge metric UcztJ ). To leave 

the model 80 unconstrained would, at this stage, lead to unmanageable algebraic difficulties. To 

simplify life, we shall assume that the models divide Into uncoupled sectors. The dilferent sectors 

cannot be completely uncoupled, since, if nothing else, they all couple to gravity. At best we can 

try to minimize the cross-coupling. 

We shall start by assuming that the Kahler manifold describing the scalar fields is a product 

manifold m= ml ® m2, and that the metric on m is the natural one induced from ml ® m2. 
Splitting the coordinates on m according to¢= (¢1,¢2), this means that we may write 

K(¢,~) = Kt(rPt.~tl+K2(¢2,~2), 

[Ill 0] 
llii" = = 111 ED 112· 

0 112 'r 

This further implies 

Dcz = (B;G (to'iJ ¢') = Po,l +Do,2· 

A subtle point is the choice of condition to be imposed on the superpotential. The best choice 

appears .to be 

W(¢) = Wt{4>t) X W2(¢2). 
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For this choice 

G(¢,"¢) = Gl(¢J,¢d+ G2(¢1,¢2), 

thus leading to a clean separation when G is inserted into the scalar potential. This choice (W = 

W1 W2) is the one advocated by Cremmer et al.(6]. An alternative choice W(¢) = W1(¢>J) + W2(¢2) 

championed by Hall et 41.(3], fails in its primary objective, that or obtaining a clean separation of 

the sectors. 

There is no particularly appealing choice for the gauge metric fR 0111 and we shall leave it 

arbitrary. We obse"e 

V = e0 (6;G6'G- 3) + !D01.l)Of 

= e0 •+0 •(6;G16;G1 + 6;G26;G2- 3) +!(DOt,! +D01,2 )(D01 1 +D012l 

= e0•(e0 •(6;G16'G!- 3) + !DOt,l.l)Ofl) 

+ e0 • (e0 •(6;G26'G2)J + !!D01,2.l)Of2 + 2DOt,!.l)Ot2J· 

Our previous arguments have shown that in order to break supergravity and have an analytic 

superpotential we must have gauge singlets present in the model. Accordingly let us assume that 

sector 1 consists solely or gauge singlets, while sector 2 may contain both gauge singlets and gauge 

multiplets. Under this assumption Do, I = 0 and we have 

V = e0 •[e01(6;G 16'G1 - 3)J 

+ (e01(e006;G26'G2) + !D01,2.l)Of2] 

V = eG•(VIJ + (lt2). 

Here Vi is just the usual scalar potential for gauge singlets coupled to supergravity, while V2 is by 

construction positive semi-definite. We shall adopt the suggestive nomenclature or calling sector I 

the cosmological sector (A sector), and calling sector 2 the matter sector. 

.. .. 
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Indeed let us now write 

V = e0•VA + Vm, 

VA= e0 .t.(6;GA6'GA- 3), 

Vm = e04 e0 •(6;Gm6'Gm) + !D01D01 • 

Suppose now that the cosmological sector has been chosen so that VA has an absolute minimum 

at ¢A 0 with VA = 0. Suppose further that the matter sector satisfies 6;Gm = 0 at t/Jm 0 • Then 

the point (¢A 0, tfim 0) is an absolute minimum of the full scalar potential V with zero cosmological 

constant. This justifies the terminology "cosmological sector" since it is the cosmological sector that 

is responsible for setting the cosmological constant equal to zero. It may be tempting to consider 

renaming the cosmological sector the hidden sector. Resist this temptation. While it may often be 

the case that the particles in the cosmological sector are very heayy this need not in general be true. 

It should be noted that this analysis has provided a useful constructive technique for 

building models with zero cosmological constant. One starts with any set of gauge singlets whose 

mutual interactions satisfy A = 0. (Many such examples are known. For instance, recall the 

models we exhibited when discussing Class I,D, and m superpotentials.) Now one just pastes on any 

arbitrary collection or fields such that the equation O;G,.,.,,,,,d• = 0 has one (or more) solutions. 

Any model constructed in this way will still have A = 0 after inclnsion of the new fields. 

The most important result of hypothesizing a sector structure as detailed above is that it 

implies a radical simplification or the mass matrices. 
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By hypothesis the vacuum in such a sector model satisfies 

l)V =VA = Vm = 0. 

2)6;Gm =0. 

3)Da=0. 

4)6;V = 6;VA = 6;Vm = 0. 

(Naturally these conditions are interrelated.) Consider now-the terms contributing to the spin 0 

mass matriJ: 

(6;6;•V) = e0 •[6;6, .. VA) + e06;or[o~Gm6~Gml + !6;6;•[DaUR- 1 )'"11DIIl 

Now also 

= e0 •(6;6, .. VA) + e0 (g;;• + 6;6~Gm6;•6•Gm) + 6;DaUR-1 )'"11 6;•D/I· 

(6;6;V) = e0~(6;6;VA) +e0 6,6;(6•Gmo•Gm) + t6,6;(DaUR-1 )'"11D/I) 

= e0 •(6;6;VA) + e0 (26,6;Gm) + 6;DaUR-l)'"/lo;D/I. 

This tells us that the scalar (mas sf matriJ: decomposes into a direct sum 

(mof = (mof A$ (mof m 

[

6r61VA 6r6rVA] 
(mofA = eO• ·· 

6r61VA 6r6rVA 

\2 0 [6r1+GrK"GKJ 2Gr•r ] 
~01 =e · 

m 2Gu 6rr + GrKGK"r 

+ [61•DA61DA 6r•DA6rDA] 
61DA6JDA 0TDA6rDA 

where we have used the fact that Da == 0 in the vacuum to write: 

6rDA = 6T(hA'"Da) = hA'"(6TDa). 

Because Da = 0 at the minimum, the mass matrix for gauge bosons may be written 

I (m,f AB = 2(6rDA 61Ds). I 

In the fermion sector the "would be Goldstino• now resides solely in the cosmological sector 

'IL = ~(6rGA ~L 1 ). 

Thus the fermion mass matrix also decomposes into a direct sum 

ml/2 = mi/2A $ ml/2m' 

where 

(mi/2A)ll = -e0 f2{er 1eJi(o;6;GA + t6;GA6;GA)}. 

The matter spin 1/2 mass matrix mixes gauge non-singlet matter fields with the gauginos 

(ml/2m)u = -ma/2 6r61Gm 

(mt/2m)IA = i./26rDA 

(ml/2m)AB "':' !ma/2 hA0 hs11 dfa/l· 

Where dfa/1 now only picks up a contribUtion from the cosmological sector 

dfa/1 = 16'GAX6,fa/l)· 

56 
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This direct sum structure for the (massf matrices means that we can construct separate (mass)2 

sum rules for the cosmological sector and the matter sector. 

Str(PAm2
) = tr(mof A- 2tr(mt/2f A- 4mat22 

= 2mat22((nA- 1) + 61GA R/ 6;GA]. 

In the matter sector we see 

tr(mof m = 2mst22(n.n + M;G 616iG] + tr(m1f, 

tr(m112f m = mat22(6a6;G 6'6iG + tr(d/R!R -q/R!R - 1 )] + 2tr(m1f, 

Str(Pm m2) = tr(mo)2 
m- 2tr(m112f m + 3tr(m1 f, 

= 2mat22(nm- tr(dfRfR-1d/RfR- 1
)). 

Indeed the restrictions imposed by the assumed sector allow us to go even rurther in the reduction 

of the mass matrices. 

~ 
. , 
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The Matter Sector: Leptoquarks and Higgses 

The matter sector by construction contains both the leptoquark and Higgs fields of the 

model. Let us define the leptoquarks as those superfields whose scalar components do not acquire a 

gauge symmetry breaking vacuum expectation value. All other superflelds (including gauge singlets) 

will be called Higgs fields. Consider the object 6;D01 = 9a;•(t0 ' .. t•]tf>t•. Then by definition, 60D0 = 

0 for the leptoquarks. Thus we see that among the spin 1/2, fields leptoquarks do not mix with 

gauginos, though in general Higgsinos do mix with gauginos. For the scalar (mass)2 matrix we see 

that at least the gauge contribution does not mix sltiptosquarks wih Higgses. Indeed, we see that 

if any sleptosquark Higgs mixing, or leptoquark Higgsino mixing does occur, this mixing can only 

arise from the terms involving 606;Gm. 

We shall now ~that 6;6;Gm is a direct sum 

6;6;Gm = (6;6;G)LQ ffi 6;6;GH. 

A decomposition of this type could certainly be achieved if the matter sector itself had sector 

structure (Km = KLC~ +KH;Wm = WLQWH). The sector structure hypothesis is unfortunately 

too strong since in such a ease leptoquark masses are independent of the Higgs vacuum expectation 

values. Thus leptoquark multiplets get gauge invariant masses. To avoid this problem, a sufficiently 

general ansatz is 

Gm =GLQ+GH+Gm;,, 

where Gm;, is at least quadratic in leptoquark fields. An even more restrictive ansatz is 

Km=KLQ+KH 

Wm =WLQWHe0
, 

where 0, taken to be at least quadratic in leptoquark fields, is responsible for the mass splittings 

within leptoquark multiplets. However, It should be noted that the only assumpt.ion that is really 

.. 
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necessary is that 66G, decomposes into a direct sum when evaluated at the vacuum. Under this 

condition, the matter sector mass matrices themselves decompose into direct sums: 

(mof, = (mofLQ $ (mofH, 

(ml/2)m = (mi/2)U~ $ (mi/2)H. 

It Is now easy to see that 

( 
'12 2[6r 1 + (6J6KG)LQ(6K 6rG)LQ 2(61•6rG)LQ .] 

m01 L" = ma/2 K 
• . 2(616/G)LQ 61r + (616KG)LQ(6 6rG)LQ 

= ma 22[ 6rK (6r6.K•G)LQ][ 6K•J (6K•6rG)LQ] 
1 (616KG)LQ 61K" (6K6JG)LQ 6K r 

The scalar mass matrix Is 

[ 

6r1 (6r6rG)LQ] 
(mo)LQ = ma/2 

(6161G)LQ 611* 

For the spin 1/2 particles 

j(m,12)LQ = -maf2[(616JG)LQI· j 

Warning: (6161G)LQ = 6161(GLQ+G,;,). The IDggs seetor has not been improved by our ansatz. . ' 

Indeed, 

{[ 
6r1 6r6rGH]

2
} [(6rDA6JD.A_) ,C6rDA. 61•DA)] 

(mo'PH = ma122 + 
6161GH 6u• (61D,.;61D;.t) (61D~t6rDA) 

(mi/2)H = 
[

-,.mat26161GH · i~61DA ] 

i~61DB mat2h;.t"'hB'dfRoft 
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While the masses In the Higgs seetor are In general quite complicated the masses in the leptoquark 

seetor are now easily diagonalized. 

Since (6161G) is a complex symmetric matrix It may be decomposed as follows 

(6161G) = (UpUT)u. 

Here U Is a unitary matrix, UT Is Its transpose , and p may be chosen to be a real, positive 

semidell.nite and diagonal matrix. 

Now observe that 

[ 
I 66G] [ I UiiU'"j [ I 

66G I = UpUT I J= UpUT . ' 

[
u o]fi "'[uT o ] 

= o u L, 1J o u-1 · 

So diagonallzing (m1f2)LQ leads to 

(mlf2)LQ = -ma/2/J, 

. v JJ] 
(mo)LQ = ma12[p 

1 
. 

The elgemalues of the scalar mass matrix are seen to be 

l 

>.:i:1 
- ma/2{1 ± P'). 

In terms of tree le'ft!l masses we now see -

Upu-1
] 

·I 

J (mo:i:')LQ - lma/2 ± (m,f21)LQI· J 

This sum rule now connects the_ masses ohhe-Jeptons~and quarks-.wit.h those .. oUhe sleptons and 

squarks. This sum rule has previously been discnssed by Cremmer et 111.(6), but emerges in this 

context In a more general framework. In particular the analysis presented here does not require 

canonical kinetic energy terms for leptons and quarks. This sum rule is rather robust, the technical 

assumptions we have made to enable derivation of this sum rule may be summarized as: 
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1) GTolol = GA + GHin• + Glepl•v•orA + Gmi•· 

2) (a) GA is chosen so that A= 0. 

(b) 6;GH;11, = 0 has a solution at ¢iH;,, ~ 0. 

(c) 6;Gieploq•orA = 0 at ¢'1eploqaorA = 0. 

An approximate sum rule may be obtained for the Higgs sector. The derivation we used 

in the leptoquark sector is spoiled in the Higgs sector by terms proportional to 61DA. Thus we may 

write 

I (,;~:l:i~ = lm~/2±~)~1 + o(mgoage). ] 

This approximate sum rule relates the masses of the scalar Higgs particles to those of their associated 

Higgsinos. Unl'ortunately, in realistic models m10,.1, is likely to be of order m3; 2 or of order mcuT, 

so that this sum rule is likely to be very badly broken. 

This completes our analysis of the matter sector. 

~ ~ 
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Masses in the Cosmological Sector 

In this section we shall only be discussing the cosmological sector, so we may without 

ambiguity drop the subscript A. The cosmological sector by hypothesis has no gauge interactions, 

while its vacuum occurs at V = 0, 6; V = 0. These constraints imply that 

(a) GrG'=3, 

(b)· GuG1 =-Gr. 

These constraints have not yet been utilized to their fullest extent. Explicitly evaluating our general 

formulae for the scalar (massf matrix leads to 

[

(mofrJ 

(mo)
2 

= (mofu 

(mofrr] 

(mofrr 

(mofrl = ma/2 2 (6rJ + Gr•K•GK 1 +RrJKLGK GL) 

(mo)2TJ = ma122 [2Gu + Gr1KGKJ 

. [6rK .GrK·][6K•J GK•r] 
(mof = ma/22 

The fermion masses are 

GrK 6rK• GKJ 6Kr 

+
m 2[Rr•JKLGKG 

8/2 , L 

GrJKGK 

GrrK•GK•] 

RrrKLGKGL 

[fflli2TJ = ma12l6r6JG + tG;ax.-uj 

These matrices may be partially diagonalized. Let the index I run from 0 to n - 1. Then the 

vielbein er1 may be chosen in such a manner that G1 lies along the 0 direction and is real. That is: 

G1 = ./3 6or = G1 = G1~.· 
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This implies 

Goo =-1 

Gor =0, IE [1,2, ... ,(n-1)] 

Gu arbitrary, I,J e [1,2, ... ,(n-1)]. 

Now di•nalize Gu, using Gu = (UpUT)u, where pis real and diago~al and we may choose 

Pll = pr6u (no summation), 

Poo = Po = -1; all other Pr positive semlde!lnite. 

There are n - 1 physical fermions after elimlnation of the "would be Goldstino•, and their masses 

are: 

(mt/2)1 == ma/21Prl· I e [1,2, .•• ,(n- 1)]. 

There are 2n scalars whose mass matriX reads 

· 2{[ P]2 

[3Rrroo• ./3Grro•]} (mof = ma/2 + · 
1 ./""3Guo 3RJroo• 

It we assume that the contributions from the Riemann tensor and from G IJK are small, then the 

scalar masses are 

(mo)%1 = ma12l1 ± IP111 + o(R, GuK ). 

In particular 

(mo)-0 = o(R,GuK), 

(mo)+0 = 2maf2 + o(R,GuK)· 

While for I running from 1 to n - 1: 

I (mo)±1 = lma/2 ± mt/211 + o(R,GuK)· I 

,, 
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Note that if both Rr roo• and G r Jo are zero at the minimum, then this predicts the existence of 

an ezactly massless scalar In the cosmological sector. Indeed, particles in the cosmological sector 

are not necessarily heavy; it is in general misleading to refer to the cosmological sector as a hidden 

sector. 

The Class m e:~:ample previously considered may be used to 111ustrate this phenomena. 

Consider the 1-dimensional model dellned by 

The scalar potential is 

Then 

K=="'i~; In w = irf + i./3~; 

G ="if+ irf + a../3~ +iT- i../3~. 

V=e0(~+"'if. 

V = {e:a:p(2(R~]2 _ ./3Jm~)}[2R~]2. 

m(Re~) = 2maf2, 

m(Jm,)=O. 

Returning to our general aalysis, It must be emphasized that the corrections to our approximate 

mass spectrum [ o(R, G r JK) ) are typically large, often being so large that the approximate spectrum 

is not useful. 

To complete the aDalysis there is one special ease, that· is·amenable to ,further processing. 

Let us assume thai the cosmological sector Is minimal, In the sense·that it is of complex dimension 

1. In this ease no splD 1/2 particles remain after elimination of the "would be Goldstino•. The 

Riemann tensor has only one nonzero component. 

Roo•oo• = Roo• = R. 



The scalar (mass )2 matrix is now 

So 

[ 

2+3R 

(mof = ma/
22 

_
2 
+ ./3Gooo 

-2 + ./3(Gooo)"]. 

2+3R 

[ tr(mofl = (4 + 6R)ma122
, I 

w bile the masses themselves are 

r-mo* = ma12V<2 + aR) ± 12- v'3Goool--~ 

This now completes our analysis or masses in the cosmological sector. 

""' 
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Conclusion 

We have investigated the vacuum structure or N=l supergravity coupled to gauged chiral 

matter with general noncanonical kinetic energies for both matter fields and gauge fields. We have 

explicitly calculated the tree level (mass )2 matrices , and have seen how the supertrace of the (mass f 

matrix is affected by noncanonical kinetic energies. The sum rule relating Lepton and Quark masses 

to those or their scalar partners (m~ = lm3t 2 ± m1121) was derived in this more general context 

and so holds even for noncanonical kinetic energies. Some general theorems on the occurrence or 

supergravity breaking were established. In particular, attention was drawn to the crucial role played 

by the analyticity or the superpotential at zero field. 

'•'.. 
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