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PHASE EQUILIBRIA FOR STRONGLY NONIDEAL MIXTURES FROM AN EQUATION OF STATE 

WITH DENSITY-DEPENDENT MIXING RULES 
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Abstract 

An equation of state of the van der Waals form represents vapor-liquid 
and liquid-liquid equilibria in binary, particularly aqueous, mixtures. 
The Mansoori-Carnahan-Starling expression is used for the repulsive part 
of the equation of state while the attractive part uses a simple van der 
Waals form. For a mixture, the usual (density-independent) quadratic mixing 
rule is used for the leading attractive term but a density-dependent correction 
is added to allow for noncentral intermolecular forces of dissimilar components 
at high densities. This procedure gives the necessary quadratic dependence of the 
second virial coefficient at low densities but includes also cubic terms for 
representation of phase equilibria at liquid-like densities. Good results are 
obtained for vapor-liquid and liquid-liquid equilibria in binary systems 
containing water, hydrocarbons, phenol, pyridine and methanol. However, 
extension to liquid-liquid equilibria in ternary systems is not successful 
because the equation of state is not able properly to represent phase 
equilibria of binary systems at conditions only slightly removed from 
binary liquid-phase instability; at these conditions, the equation of 
state erroneously predicts a two-liquid region. For further progress toward 
application of .equations of state to ternary liquid-liquid equilibria, it will 
be necessary to introduce some fundamental modifications .toward better represen
tation of phase behavior in the critical region • 
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Energy DE-AC03-76SF00098. 
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Recent research has shown that equations of state for dense fluid 

mixtures often give poor results for phase-equilibrium calculations because 

the one-fluid approximation, coupled with quadratic mixing rules, provides a 

good model only for simple mixtures where the molecules do not differ 

appreciably in size; however, in the dilute region, it appears that the 

one-fluid theory is never reliable, not even for simple mixtures, unless 

all molecules are of the same size (Shing and Gubbins, 1983). 

Several authors (Mollerup, 1981; Whiting and Prausnitz, 1982; 

Mathias and Copeman, 1983) have suggested that better results could be 

obtained if, in a chosen equation of state, we allow the constants to 

depend not only on composition (which is the essence of one-fluid theory) 

and, perhaps, on temperature (which is consistent with one-fluid theory), 

but also on density, subject to the restriction that for a pure component, 

no change is introduced into the chosen equation of state. This suggestion 

leads to the concept "density-dependent mixing rules" which 'provides a 

promising new procedure for phase-equilibrium thermodynamics. This procedure 

appears to be particularly attractive for applying equations of state 

toward calculation of phase equilibria for strongly nonideal fluid mixtures, 

including those with liquid-liquid miscibility gaps. 

In this work we present a procedure for semi-empirical development of 

density-dependent mixing rules toward phase-equilibrium calculations, 

including three-phase (vapor-liquid-liquid) calculations. After a general 

discussion, we present some results for several strongly nonideal aqueous 

mixtures. While our results indicate significant improvemertt over those 

that can be obtained using conventional equation-of-state methods, it is 

clear that better density-dependent mixing rules remain to be established for 



- 3 -

satisfactory representation of phase equilibria in complex mixtures. 

Further, it appears that some fundamental modifications in the equation of state 

are required when calculations are made for those ternary liquid-liquid equilibria 

where the binodal curve has a plait pointo 

Helmholtz Energy for an Equation of State of the van der Waals Form 

Consider a van der Waals-type mixture containing n1 moles of component 1, 

n2 moles of component 2, etc. at temperature T and total volume V. The number 

of components is m. The Helmholtz energy A is given by 

m m 
A = E ni~~ + E niRT ln(niRT/V) + ~rep - (n~ aH/V) 0(~) 

i=1 i=1 
(1) 

where ai is the Helmholtz energy of pure i in the ideal-gas state at T and 

unit pressure (here taken as 1 bar), nT is the total number of moles and aH 

is the van der Waals "constant" which, in general, depends on temperature, 

composition and (using density-dependent mixing rules) on density. 

Superscript H is to remind us that this "constant" is for the Helmholtz 

energy; to find the corresponding aEOS for the equation of state, we use the 

standard relation 

P = - (aA/aV)T,all n 
i 

(2) 

In Equation (1), G is a simple algebraic function of reduced density ~ as 

indicated in Table 1; in the simplest case (original van der Waals 

equation), 0 = 1. 
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In Equation (1), 6Arep is the contribution of repulsive forces, 

usually obtained from a "hard-sphere" equation of state which depends on 

molecular diameters ol, oz, 03 etco, in addition to temperature, 

density and composition. Table 2 gives two expressions for 6Arep; one of 

these is based on the original van der Waals equation and the other on the 

extension to mixtures (Mansoori et al., 1971) of the expression proposed by 

Carnahan and Starling (1969). Other expressions, for convex hard bodies, 

have been proposed by several authors ( Naumann et al., 1981; Boublik, 1981) 

but we shall not consider these here. 

Shing and Gubbins (1983) have shown convincingly that for dilute solutions, 

the common one-fluid (or two-fluid) van der Waals approximations do not give 

good results for those mixtures where there is a significant difference in 

molecular size. Therefore, we use the expression of Mansoori-Carnahan-Starling 

rather than van der Waals n-fluid theory. 

For simple mixtures, van der Waals constant aH, independent of density, 

is a quadratic function of mole fraction x as suggested empirically many 

years ago and as derived from perturbation theory (Henderson, 1979). This 

quadratic dependence is necessary at low densities because the second virial 

coefficient B must be quadratic in mole fraction ( Prausnitz, 1969 ): 

m m 

B = E E x1xj Bij 
i j 

where 

(3) 

(4) 



.. 

- 5 -

Here bij = (n/6) NAv [(ai+aj)/2] 3 where NAvis Avogadro's number. 

For "soft" spheres, bij may be slightly temperature dependent but, 

in any event, experimental data clearly show that a.~os is temperature 
l.J 

EOS dependent such that aij approaches a constant at high temperature but 

rises with reciprocal temperature, usually with increasing slope. 

If the mixing rule for aH is independent of density, then Equations (3) 

and (4) force us to the conclusion that, regardless of density, 

H a (5) 

Theory and experiment suggest that Equation (5) is satisfactory for low 

and high fluid densities provided that molecules i and j are nonpolar and 
~ 

spherical, in other words, provided that the intermolecular forces are 

central (no orientations). To apply Equation (1) to mixtures whose 

molecules exhibit noncentral (as well as central) forces, we suggest 

an extension of Equation (5): 

(6) 

where the last term represents the contribution to aH of noncentral forces 

for all unlike i-j pairs; superscript nc refers to noncentral forces. 

We can rewrite Equation (6) in a more explicit form but for simplicity 

we now drop superscript H, it being understood that we are considering the 

van der Waals "constant" in Equation (1). Instead of Equation (6), we write 
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[contribution from 
central forces to 
nonideal mixing] 

+ (7) 

[contribution from 
noncentral forces to 
nonideal mixing] 

We know little about anc but we can specify two boundary conditions. 

First, remembering that anc refers only to noncentral contributions from 

unlike pairs, 

(8) 

Second, we expect that as temperature rises'or as density falls, the 

importance of noncentral forces must decline; therefore, 

as p/RT + 0 (9) 

where density p = nr/V. 

Finally, experimental data for numerous mixtures indicate that at high 

densities, quadratic dependence on mole fraction is insufficiente We 

therefore suggest for anc the simplest approximation consistent with our 

boundary conditions: 

(10) 
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where ci(j) is a binary parameter that reflects noncentrai forces when 

molecule j is infinitely dilute, surrounded by molecules i; cj(i) has a 

similar significance with i and j interchanged. 

In Equation (7), we follow customary practice by writing 

(11) 

where kii = kjj = 0 and where the magnitude of binary parameter kij (iFj) is 

usually small compared to unity. We then obtain for van der Waals "constant" a 

in Equation (7): 

a = 

Equations (1) and (12) are similar to relations proposed by Mathias and 

Copeman (1983) who used the Peng-Robinson equation of state for ~rep and 

for ~(~). However, in detail Mathias and Copeman's result is different from 

ours and their derivation follows from different assumptions. In the 

following discussion we apply Equations (1) and (12) to binary data. Consistent 

with our intention to maintain simplicity, we set 0(0 = 1. 

*).For a binary mixture, 

*) 
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. Correlation of LLE of Hydrocarbon-Water Systems 

Equations (1) and (12) have been applied to pure water, to pure hydrocarbons, 

to phenol, pyridine, methanol and to some of their mixtures. Pure-component 

parameters are obtained by fitting liquid saturation pressures and liquid 

densities for temperature ranges shown in Table 3b. (Timmermans, 1950; 

Connolly and Kandalic, 1962; API Research Project 44, 1973; Kratzke et al.J 

1984; Bain, 1964; Zubarev et al., 1973; Wilhoit and Zwolinski, 1973); 

Supercritical PVT data were also used for methane and propane (IUPAC, 1976; 

Goodwin, 1977). Pure-component parameters aii and bt were adjusted separately 

for each temperature; for the range of intetest here, the temperature depen

dences of a11 and b1 can be represented by the linear relations 

aii(T) = ai -~iT 

bi(T) = Yi -ciT 

(13a) 

( 13b) 

where T is in K. Table 3a gives constants ai, Si, Yi and oi and Table 3b 

gives details concerning the goodness of fit. 

Pure-component parameters were used to correlate binary vapor-liquid (VLE) 

and liquid-liquid equilibria (LLE) with three temperature-independent 

binary parameters k12• c1(2) and cz(l) according to Equation (12). 

Figures 1 to 6 compare experimental and calculated mutual solubilities; 

Table 4 shows the binary parameters. Agreement between calculated and 

experimental LLE is remarkably good considering the simplicity of the 

correlating equation and the experimental scatter; Figures 1 to 6 show 

smoothed experimental results. 
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While temperature-independent binary parameters are satisfactory for 

LLE remote from the critical region, these parameters overestimate the 

two-liquid region as shown in Figure 6. Agreement with experiment in the 

critical region can be achieved by assigning a temperature dependence to 

the binary parameters but such agreement is necessarily no more than a forced 

fit devoid of physical significance. 

While temperature-independent binary parameters appear to be satisfactory 

for LLE for aqueous systems remote from critical conditions and for LLE and 

VLE for water-propane (Figure 7), it was not possible to use such parameters 

for VLE in the system water-methane. For this highly asymmetric system where 

the volatilities of the two components differ widely, it appears that the 

mixing rules proposed here [Equation (12)] are not adequate. If we allow 

the binary parameters to vary systematically with temperature, we can obtain 

a good fit; as shown in Figure 8. However, such a forced fit has little if any 

physical significance. We nevertheless include Figure 8 here to call attention 

to the limitations of Equation (12) which, as stressed earlier, gives 

_only a first correction to the simple quadratic mixing rule for van der 

Waals "constant" a. 

Although Equation (12) appears to be suitable for the high-density 

region, it is consistent with the low-density limit of a quadratic 

second virial coefficient. Therefore, binary parameter kt2• obtained 

from fitting LLE data, should provide a reasonable second virial cross 

coefficient· according to Equation (4). Table 5 shows experimental and· 
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calculated second virial cross coefficients for three binary aqueous systems 

where reliable experimental results are available; in every case, calculations 

are based on results obtained from high-density binary data. Predicted B1z's 

are in reasonable agreement with experiment but it is evident.that kij obtained 

from high-density binary data is not identical to an optimum kij for fitting 

low-density binary data. 

An alternate way to fit the binary LLE data is first to determine k12 

from second-virial-coefflcient (B12) data and then to fit c1(2) and C2(1) 

from the LLE data. When this is done, the results are not satisfactory 

unless C1(2) and C2(1) are allowed to vary with temperature. 

It is likely that since Equation (12) uses the simplest correction to 

the quadratic mixing rule, it is not satisfactory for both low and high 

densities. It may be that the density dependence in Equation (12) is too weak 

to separate high-density and low-density effects on a. It may be better 

to use a continuous switching function of density as suggested by Dimitrelis 

(1982); this switching function would give a quadratic mixing rule at low 

density and a cubic mixing rule at high density but the·transition from one 

to the other would be given by an S-shaped function of density rather than 

by the truncated polynomial in density in Equation (12). 

It appears that, while a density-dependent mixing rule is promising 

for better representation of fluid-phase equilibria of asymmetric mixtures, 

Equation (12) gives only a first approximation toward that ende 
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However, Equation (12) presents another, more fundamental, difficulty 

which becomes evident when we consider ternary mixtures. While Equation (12) 

gives good results for binary VLE and LLE, utility for engineering work 

requires that it also be useful for ternary (and higher) systems. While 

.there are no serious problems for ternary VLE, we find that we cannot, 

in general, use Equation (12) for ternary LLE. To illustrate this limitation, 

we considered two ternary systems near room temperature: 

I Methanol - Benzene Water 

II Pyridine - Benzene - Water 

In systems I and II, there are two completely miscible binaries (methanol

benz~ne, methanol-water; pyridine-benzene, pyridine-water) and one partially 

miscible binary (benzene-water). Therefore the connodal line for both ternaries 

is continuous with a plait point. As shown earlier, there is no problem in 

fitting LLE data for the benzene~water binary with Equation (12). There is 

also no problem in fitting VLE data for the miscible binaries. But Equation (12) 

cannot fit LLE data for the two ternaries. 

Optimum binary parameters for the totally miscible binaries are shown 

in Table 6. These binary parameters are physically reasonable for the last 

three binary systems but k12 is not reasonable for the first one; for that 

binary, when a reasonable k12 is used, it was not possible to obtain a good 

fit for the binary VLE data. 

When we tried to fit ternary LLE data using binary parameters only, 

we were not successful. How~ver, when we include also a few adjustable 

ternary parameters (Cha and Prausni tz, 1984), we were also unsuccessful. 
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The reason for our failure to fit ternary LLE data becomes clear when we 

notice that the VLE data for two of the completely miscible binaries (methanol

benzene and pyridine-water) indicate conditions close to liquid-phase instability. 

Although it was possible to fit the binary VLE data for these two systems, 

we found that the optimu~ binary parameters erroneously predict that the binary 

liquid phase is not stable; these binary parameters erroneously yield an 

immiscible binary liquid-liquid region with solubility limits shown in Table 7. 

It is therefore, in principle, not possible to fit the ternary LLE data (even 

when ternary parameters are used) because the calculations produce a partially 

miscible region for each of the two binaries shown in Table 7, contrary to 

observation. 

It is well known that typical equation-of-state calculations for binary 

systems yield upper critical solut~n temperatures which are too large (as 

indicated in Figure 6); in other words. the calculations produce a two-phase 

(liquid-liquid) region at temperatures ~here~ in fact, there is only one liquid 

phase. Many authors have shown that equations of the van der Waals form are not 

reliable in the critical region; therefore, when an equation of that form is 

used to calculate a ternary LLE diagram where one of the constituent binaries is 

only slightly above its upper critical solution temperature, the calculations 

are qualitatively incorrect. We conclude that further progress in calculating 

ternary LLE requires attention to the problem of properly representing equilibria 

in the critical region. This is a difficult fundamental problem which has been 

discussed by physicists for some time but which, as yet, has received little 

attention from chemical engineers. 
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Table 1 

EXPRESSIONS FOR 0(~) in Equation (1); ~ = nr b/V 

Equation of State 

original van der Waals 

Redlich-Kwong 

Peng-Robinson 

0(~) 

1 

[ln(l + 40]/4~ 

f ln 1 + (l+V'2)4t, 
~1-+~(~1---:-, 2~)-:-4-""t;-
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Table 2 

EXPRESSIONS FOR ~Arep IN EQUATION (1) 

m 
; = l: ~i , 

i=l 
m 

~ = ~b/V, b = i x1b1 , bi = (n/6) NAv of 
i=l 

Equation of State 

original van der Waals 

Mansoori et al. 

~Arep/(n RT) 
T 

- ln(l - 4 0 

- 1.5 [l-nc 1>+ncz)+nc 3>l 

+ [3nc 2 >+2nc3 )JI(I-~) 
? 

+ 1.5 [1-n(l)-n( 2)-n( 3)/3]/(1-;)-

+ (n( 3)-l) ln(l-;) 

mm 
n ( 1 ) = E E ~ · · (a . +a . ) ;./0:0.' 

1] 1 J 1 J 
jd 
m m m 

n(z)= E E ~ij i: [ioioj'/ol] (r,:l/t;) 
j;d i=1 

m 
n = t E (t; /~)2/3 xl/3 }3 
(3) i=l i i 

~ij= [(a1-oj) 2 /o1crj] ix1xj ~~i~j/t; 
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Table 3a 

PURE COMPONENT PARAMETERS* a = a - 6T and b = y - oT 

Fluid 

n-C8H18 

cyclo-C6H12 

C6H6 

c6H50H 

c5H5N 

H20 

a 

3.13 

14.13 

43.42 

54.47 

63.46 

37.90 

31.15 

48.59 

33.37 

8.23 

16.86 

y 

10-3 bar 12 mo1~2 K-1 10-3 1. 1-1 · mo 

2.9 17.77 

10.1 36.67 

36.5 71.46 

42.6 79.73. 

44.4 82.97 

28.9 60.86 

21.6 49.35 

34.4 50.46 

21.6 45.43 

5.1 10.49 

17.1 23.88 

15.8 

18.0 

37.1 

19.2 

31.6 

22.7 

14.6 

15.7 

4.2 

15.1 

* These parameters were obtained primarily from high-density data. As a result, 
predicted second virial coefficients tend to be too positive, especially at 
low temperatures. 
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Table 3b 

GOODNESS OF FIT FOR PURE COMPONENTS IN TABLE 3a 

Root-mean-square Deviation I Percent 

Fluid T-range I K saturation pressure liquid volume 

CH4 92 - 600 2.2 3.6 

250 - * 5.4* C3H8 500 6.1 

n-C6H 14 273 - 507 1 .o l. 0 

n-C7Hl6 273 - 537 1.3 1. 9 

n-CsH18 .473- 553 0.3 0.8 

cyclo-C6H 12 283 - 353 0.03 0.2 

C6H6 295 - 460 0.6 0.2 

c6H50H 323 - 673 4.3 4.1 

c5HsN 273 - 389 0.6 0.4 

H..,o 293 - 603 0.7 2.0 

CH30H 293 - 493 0.2 0.3 

* These deviations are somewhat higher than expected because strong weight 
was given to data in the supercritical region. If fitting had been restricted 
to temperatures below the critical, deviations .would be much smaller. 
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Table 4 

BINARY PARAMETERS k 12 , c 12 

Here c 12 =c 1( 2)/a1t<Tc ) and 
. 1 

AND c21 FOR AQUEOUS 

c21=c2(1)/a2~(Tc ) 
. 2 

(Tc = critical temperature of component i) 
i 

(a) Organic Fluid I k12 c12 

C3H8 0.279 -0.033 

n-C6H14 0.235 -0.017 

n-C7H16 I 0.174 -0.012 

n-C8Hl8 I 0.134 -0.020 

cyclo-C6H 12 I 0.289 -0.013 

C6H6 I 0.161 -0.006 

c6HsOH I -0.021 0.008 

c5H5N I 0.062 0.013 

(b) Methane-Water 

T I K I kl2 c12 

I 311 0.328 -0.048 
I 

378 I 0.339 -0.038 

423 I 0.314 -0.032 
I 

473 I 0.239 -0.149 
I 

523 I 0.187 -0.220 

LLE USING EQ.(12). 

where (2) refers to water. 

c21 

0.075 

0 • .121 

0.121 

0.112 

o. 113 

0.067 

0.024 

0.052 

c21 

0.041 

0.039 

0.034 

0.024 

0.014 
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Table 5 

SECOND VIRIAL CROSS COEFFICIENT s12 

3 -1 -Bl2 I em mol 

T I K experimental calculated:l 

n-hexane - water 360 189t 250 

400 150t 204 

440 121 t 16 7 

n-heptane - water 373 206* 299 

398 185* 266 

423 170* 235 

methane - water 311 sst 56 

378 3lt 34 

423 24 t 27 

t Wormald (1982) 

* Richards et al. (1981) 

' Equation (4) using k 12 from LLE data 
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Table 6 

BINARY PARAMETERS FROM VLE CORRELATION* 

Binary System 

methanol(1r-benzene(2) -0.502 ..;.0.133 -o.066 

methanol(1)-water(2) 0.000 0.006 0.008 

pyridine(1)-water(2) 0.062 0.013 0.052 

benzene(1)-pyridine(2) 0.123 0.022 0.019 

* ~i 2 and ~ 21 as defined in Table 4 

Table 7 

LIQUID~LIQUID MISCIBILITY LIMITS PREDICTED BY THE EOS FOR 1.013 bar and 25° C 

pyridine(1)-water(2) 

· methanol(! )-benzene(2) 

Miscibility Gap 
from to 

x1 = 0.036 

x1 = 0.188 

X1 = 0.100 

x1= 0.314 
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FIGURE CAPTIONS 
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Fig. 7a 
7b 
7c 

Fig. 8a 

8b 

Liquid-liquid equilibria for benzene(1)-water(2) at three-phase (LLV) 
saturation pressure (experimental: Tsonopoulos and Wilson, 1983) 

Liquid-liquid equilibria for cyclohexane(1)-water(2) at three-phase 
(LLV) saturation pressure (experimental: Tsonopoulos and Wilson, 1983) 

Liquid-liquid equilibria for n-hexane(1)-water(2) at three-phase (LLV) 
saturation pressure (experimental: Tsonopoulos and Wilson, 1983) 

Liquid-liquid equilibria for n-heptane(1)-water(2) at 1 bar 
(experimental: quoted in Sorensen and Arlt, 1979) 

Liquid-liquid equilibria for n-octane(1)-water(2) at three-phase (LLV) 
saturation pressure (experimental: GPA, 1982) 

Liquid-liquid equilibria for phenol(1)-water(2) at 1 bar 
(experimental: quoted in Sorensen and Arlt, 1979) 

Phase diagram for propane(1)-water(2) at 344.26 K 
Liquid-liquid equilibria for propane(1)-water(2) at 103.4 bar 
Vapor-liquid equilibria for propane(1)-water(2) at 6.89 bar 
(experimental: Kobayashi and Katz, 1953) 

Saturated-liquid compositions in methane(1)-water(2) 
(experimental: 311-378 K: Culberson and McKetta, 1951; 423-523 K: 
Sultanov et al., 1972) 

Saturated-vapor compositions in methane(1)-water(2) 
(experimental: 311-378 K: Olds et al., 1942; 423-523 K: Sultanov 
et al., 1971) 
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SYMBOLS 

A 
a 
a 
B 
b 
c, k 
m 
nr 
~Av 
R 
T 
v 
X 

<.l, p 
y, 6 
0 

i) 

(:) 

r, 

Helmholtz energy 
van der Waals attractive parameter 
molar Helmholtz energy 
second virial coefficient 
van der Waals size parameter 
binary parameters 
number of components 
total number of moles 
Avogadro's number 
gas constant 
temperature 
total volume 
mole fraction 
coefficients for temperature dependence of a 
coefficients for temperature dependence of b 
molecular size parameter 
molar density 
algebraic function of reduced density for attractive part of Helmholtz energy 
reduced density 

Superscripts 

0 

EOS 
H 
c 

standard state (temperature T, pure ideal gas at 1 bar) 
equation of state 
Helmholtz energy 
central 

nc noncentral 
rep repulsive 

Subscripts 

i component 
c critical 
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