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Abstract 

A covariant action principle is fonmulated for the Vlasov-Haxwell system. 

Upon subjecting the particle phase space and invariant Hamiltonian to a Lie 

transfonm for interaction with an eikonal wave, we obtain a new action 

principle for the invariant oscillation-center distribution and the self

consistent wave propagation, with a common kernel for the invariant 

ponderomotive Hamiltonian and the line.ar susceptibility. 
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Some years ago, Dewar [1] showed how the concepts of oscillation center 

and ponderomotive force followed naturally from a canonical transformation 

eliminating the linear nonresonant interaction of a particle with a given 

wave. Since then, there has been an evident need to introauce self

consistency, so that the wave propagation is described at the same conceptual 

level. Previous Hamiltonian treatments, such as those of Dewar [1], of 

Johnston [2], of Cary [3], and of Dubin, Krommes, Oberman, ·and Lee (4], have 

been constructive, requiring deep insight, and sometimes leading to 

ambiguity. Recently we have discovered a deductive approach [5,6], by means 

of applying the standard Lie transform to the phase space and Hamiltonian of 

the Vlasov action principle of Lewis and Symon [7]. Our first results dealt 

with the problem of Coulomb interaction, either at the gyrokinetic level [5] 

(as posed by Dubin et al (4]), or for eikonal waves [6]. This work explicated 

the intimate relation [8,9,3] between the linear susceptibility and the 

ponderomotive Hamiltonian. We have also developed an action principle for 

investigating the ponderomotive stabilization of a mirror-confined plasma 

[10,11]. 

Motivated by the upsurge of interest in relativistic plasmas, we have 

formulated a covariant treatment, which we present here, for the self

consistent nonresonant interaction of an electromagnetic wave (in eikonal 

form) and an unmagnetized distribution of oscillation centers. In subsequent 

papers, we plan to discuss resonance [12], magnetized plasma [13], and 

wave-wave interactions. 

Our first step is to self-consistently derive (a) the Ignatiev equation 

(14]: 

{f(z), H(z)} = 0 (1} 
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for the invariant Vlasov distribution f(z) in terms of the invariant particle 

Hamiltonian H(z), and (b) the Maxwell equation F11v,v = 4•j 11 • Here z is a 
+ + 

point in eight-dimensional phase space (r,p), with rJ..l = (r,t), p = (p,-h); 
]..1 

H = (p - eA(r)) 2/2m yields the correct covariant Hamiltonian equation: 

dr11/dT = aH/ap , dp /dT = - aH/ar11 , implying du /dT = (e/m)F · uv; 
l1 ll p pv 

the Poisson Bracket is the canonical covariant expression {a,b} = 

(aa/ar11)(ab/ap ) - (aa/ap )(ab/ar11); and the four-current density is ll p 

jll(x;f) = jd8z f(z)j 11(x;z), while j 11(x;z) = eu116
4(x- r) is the 

contribution of a particle at z. (We omit the obvious species labels and 

sums.) 

Consider the family of particle world lines in phase space, each 

parameterized by its proper time T. With a smooth but arbitrary assignment of 

T=O on each line, we denote the seven-dimensional hypersurface T=O as the 

"initial-condition surface." Introducing seven arbitrary coordinates , on 
. 7 

that surface, we let g(n)d , represent the particle density at T=O. The 

particle orbits z(T,n) are thus an eight-component field on the eight

dimensional space (T,n). 

We now introduce the action functional: 

the sum of the particle action (in phase-space form) and the Maxwell action. 

Requiring that S be stationary with respect to Z(T,n) yields the Hamiltonian 

equations stated above. The invariant Vlasov distribution is defined as 

f(z) = jd7n g{n) }dT 68(z- Z(T,n)). 
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To obtain (1), we introduce the intermediate distribution g(z;1) =fd1~ g(~) 

&8(z - z(1,~)), and take its T-derivative, using the Hamiltonian equations. 

We find ag/a1 =- {g,H}. Integration over 1 then yields (1), since g vanishes 

for finite z and infinite 1. 

Variation of S with respect to A (x) yields the Maxwell equation, with 
ll 

jll(x) = jd1~ g(~) Jd1 (-)&H(z(~,T))/aA (x). Use of (3) and H then 
ll 

produces jll(x) = /d8z f(z) eull&4(x- r), as desired. Thus the action 

principle yields the self-consistent Maxwell and Ignatiev equations. 

We now restrict the Maxwell potential to represent an eikonal wave: 

A (x) =A (x) exp ie(x)/c + c.c., where A and e are the slowly varying 
\1 ll 

amplitude and phase, while the eikonal infinitesimal c will be omitted from 

subsequent formulas. The Maxwell field is thus F (x) = i F (x) exp ie(x) 
lJV lJV 

- - - ll -+--+ c.c., with F = k A - k A , and k (x) = &e(x)/ax = (k,-w). 
\IV \1 V V \1 ll 

The Maxwell action in (2) is thus- jd4x F* Fpv/8•. 
\IV 

The Lie generator w(z) is determined [15] by {w, H(O)} = - H(l), where 

H(O) = p2/2m is the zero-order Hamiltonian, and H(l) = H exp ie(r) + c.c., with 

H = -(e/m)p~A(r). We find the solution w(z) = -ie(p•A(r)/p•k(r))exp ie(r) 

+ c.c., and proceed to the new Hamiltonian K = [exp i{w,• }lH = p2/2m + ~(z) 

to second order, with ~ =~ {w,H(l)} + H( 2), where H( 2) = (e2/m) IA(r) 12 

and oscillatory terms are omitted (being eliminated by a second Lie 

transform). Evaluation of the relativistically invariant ponderomotive 

Hamiltonian ~(z;A) yields 

2 I - 2 2 ~ (z) = (e /m) p•F I /(p•k) , (4) 

wh.ere lp•FI 2 = p j:llv(r) paf *(r), and the denominator is the 
\1 CJV 

-+-+ familiar resonance p·k = my(k•v- w). To this order,~ has the interesting 
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gauge-invariant expression'¥= mldu/d-rl 2/de(r)/d•) 2, and reduces, in the 

unperturbed rest frame, to the familiar e21fl 2tmw2. We express the 

dependence of 'i'(z) on A (x) explicitly: 
ll 

'i'(z;A) = jd4x A*(x) 'i'll (x;z)Av(x); 
ll v 

by (4), the kernel is (remember that k = k(x)) 

We now use the property of the phase-space lagrangian action, of 

invariance under canonical transformations [16]: 

(5) 

(6) 

(7) 

where the overbar (omitted subsequently) denotes oscillation-center variables. 

Thus the action now reads 

Variation with respect to the oscillation-center orbit z(-r,~) yields drll/d-r 

= aK/ap , dp /d-r = - aK/arll, for the covariant ponderomotive effects. 
ll ll 

(8) 

Introducing the 'invariant oscillation-center distribution (not to be confused 

with F ): F(z) = }d7~ g(~)fd• &8(z-z(-r,~)), we obtain, in analogy to 
\IV . 

the steps leading to (1), the corresponding Ignatiev equation: 

{F(z), p2/2m + 'i'{z;A)} = 0. (9) 

-

r 

In order to vary s with respect to A (x) and e(x), we first substitute (5) ~ 
ll 

into (B), obtaining (for the terms bilinear in A) f 

s< 2>= /d4x A:(x)Dllv(x;F)Av(x), (10) 

where the dielectric matrix oll is the sum of the vacuum part 
v 
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( 11) 

and the susceptibility matrix 

(12) 

This relation (12) is the 8 K-x theorema [8,9,3], which thus is the essential 

ingredient of the action functional, coupling F(z) to A (x). 
' p 

It is convenient to express the dielectric matrix in terms of its local 

eigenvalues and eigenvectors. Since s< 2> is a scalar and AvA* is 
p 

hermitian, oP (x) is hermitian, with real eigenvalues D (x) (labeled by ~> 
v ~ 

A ~ p ~ and with orthonormal (complex) eigenvectors e~(x): eP* e6 = 46. 

Thus we express 

(13) 

so that 

(14) 

where A (x) = e~ *(x)Av(x) is the projection of A on the ~ eigenvector 
~ v 

of 011 (x). 
v 

Noting that D (x) = D (x,k(x)) [see (11) and (6)], we proceed to vary s< 2>, 
~ ~ 

first with respect to A (x), obtaining the eikonal equation for the phase: 
~ 

D (x,k = as/ax) = 0, 
~ 

associated with polarization e . This yields the covariant ray equations: 
~ 

dk /da = aD /axP • 
p ~ 

- 7 -

(15) 

(16) 



Variation with respect to e(x) (the phase for a given polarization) yields the 

wave-action conservation law [17]: aJP(x)/axP = 0, where the action 

density four-vector is 

(evaluated at k(x)). Since the local eigenvalues D (x) are funct1onals of 
ell 

the oscillation-center distribution F(z), by (12), we have now obtained a 

closed self-consistent set of coupled equations for F(z) and the wave 

amplitude and phase. 

In a future paper, we shall investigate the conservation laws [18] 

associated with these action principles. 

We have benefitted greatly from discussions with B. M. Boghosian, R. G. 

Littlejohn, S. M. Omohundro, P. L. Similon, and J. s. Wurtele. 
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