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Abstract

Several remarkable theoretical and computational properties of reacting
shock waves are both documented and analyzed. In particular, for sufficiently
small heat release or large reaction rate, we demonstrate that the reacting
compressible Navier Stokes equations have dynamically stab]e.weak-detonationﬁ
which occur in bifurcating wave patterns from strong detonation initial data.
In the reported calculations, an increase in reaction rate by a factor of 5 is
sufficient to create the bifurcation from a spiked nearly Z-N-D detonation to
the wave pattern with a precursor weak detonation. The numerical schemes uéed
in the calculations are fractional step methods based on the use of a second
order Godunov method in the inviscid hydrodynamic sweep; on sufficiently coarse
meshes in inviscid calculations, these‘fractiona1-step schemes exhibit quali-
tatively similar but purely numerica].bifurcatingIWave~patternS'with numerical
weak detonations. We explain this computational phenomenon theoretically
through a new class of nonphysical discrete travelling waves for the difference
scheme which are numerical weak detonations. The use of simplified model
eqUations both to predict and analyze the theoretical and numerical phenomena

is emphasized.



Introduction

| Through numerical experiments, several peculiar theoretical and
practical computational properties regarding the structure and stability of
reacting shock waves are both documented and analyzed. The waves which we
study are defined by solutions of the compressible Navier Stokes or
compressible Euler equations for a mixture composed of chemically reacting
species in a single space dimension.

The compressible Navier Stokes equations fbr a reacting gas are
extremely complex, and it is hot surprising that simpler duaiitative-
quantitative model equations for the high Mach number regime ha?e been
developed ([51, [7], [11]). These simpler model equations are a coupled
2 X 2 system given by a Burgers equation coupled to a chemical kinetics
equation (see section 2 for a detailed description of the model equations).
This model system has transparent analogues of the Chapman-Jouget (C-J)
theory, the Z-N-D theory, and a]sb the structure of reacting shock profiles
with finite diffusion and reaction rates, and these are developed in detail
in [71. One of the objectives of this paper is to use the predictions of
this simplified model system both for theoretical purposes and as a diagnostic
for numerica] modelling of the more complex equations of reacting gas flow
in the shock wave fegime. The authors advocate the use of this simpler
model equation for numérica]_code development for shock phenomena in
reacting gases in much the same fashion as the Burgers equation has provided
both a wide class of simple test problems and the analysis of difference
schemes for Burgers equatidn has influenced code development for nonreactive
compressible gas flow.

In section 2, Qe begin by listing the equations of compressible

reacting gas flow and describing in detail the simplified model equations



‘mentioned above; then, we describe the numerical methods used in this
paper. We use very natural fractional step schemes with three ingredients
per time step: 1) the inviscid hydrodynamics is solved by the Godunov,
second order Godunov ({3]), or random choice ([1]) methods; 2) the chemistry
equation is advanced by explicit solution of the 0. D. E. for mass fraction
given the temperature; 3) the diffusion equation is solved via the Crank-
Nicholson or backward Euler methods. Such a class of numerical schemes is
one of the obvious candidates for'use in modelling reacting gases given the
current deve]bpment of methods for solving the compressible Eu]ér equations.
Also, with the simplified ohe-step kinetics schemes Which we study, the
chemistry equation for the mass fraction is linear giyen the temperature at
each mesh point so that even when the reaction rate is high, this equation
can be solved exactly -- thus, no additional errors frdm solving stiff
0. D. E. are introduced. - |

| For the caicu1ations in section 3, the shock layer is fully reso1véd,

6 or 10'5

typical length scales are on the order of 10' meters, and the
diffusion coefficients on suéh a length sca1e are roughly order one in
magnitude. Qur objectives are to document the structure and dynamic stability
of reacting shock layers on such length scales where diffusfve mechanisms

are important. The waQe structure is reharkably complex with varyingrheat '
release and_reactfon rate, and to our knowledge no time4dependent computations
analyzing this structure have appeared previously. Fifst, we report on
detailed numerical experiments with the model equations which corraborate

the rathér complex behavior (see [7]) of the reacting shock prdfi1es,as

the heat ré1ease varies. We use numerical experiments ﬁo predict a‘bifurcating

wave pattern instead of the expected strong detonation for sufficiently small

heat release. This bifurcating wave pattern has a precursor stable weak



detonation moving at a faster speed fol]oQéd by a's]dwer moving pureTy
fluid dynamic shock. The above experiments in the model suggestvanaIOgous

behavior for the reacting cbmpressib]e Nayier Stokes equations. Through
numerical experiments for a detonation with fairly small heat release

(modelled on an Ozone decqmposition detonation), we document the existence
of dynamically stable weak detonations and the existence of bifurcating
~wave patterns as described above for the model equations. In fact, with all
other parameters_he1d fixed for this detonation wave, an increase in the.
reaction rate by a factor of 5 changes the Qave profile from a spiked Z-N-D
~detonation structure to such a bifurcating wave patterh with a stable precursor
weak detonation. We mention here that weak detonation waves are observed
experimentally when initiated through external means ([4]) and that a Qariety
of theoretical scenarios for the existence of weak détonations are given in
Chapter 3 of [4]. |

Resolving detonation waves on viscous 1ength.sca1és is not'a practical

option for a large sca]evreacting_gas computation with many wave interactions
such as the problem of transition to detonation. In section 4, we set all
diffusion coefficients to be zero and investigate the problem of computing

the spiked Z-N-D detonations of the inviscid reacfing Euler equations on
coarser meshes. This problem has practical interest because the spike in a
Z-N-D profile has significantly higher values for the bressure. Any algorithm
which is based on using the Chapman-Jouget theory alone (such as [2]) auto-
matic$11y will ignore this local pressure spike in the travelling wave structure
no matter how fine a mesh is used;' The numeri¢a1 experiments with the‘jnviscid '
fractional stép schemes with either the'Godunov or second order Godunov methods

- exhibit the following surprising behavior:
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For very fine meshes, the Z-N-D wave is:completély resolved
by these numerical methods.

For moderately fine meshes (i.e. meshes yielding very high
resolution for the second order Godunov method in the nonreative
case) and either of the fractional step methods, a numerical
bifurcating wave pattern emerges with a structure qualitatively
similar to those documented theoretically in section 3. This -
numerical wave structure has a discrete weak detonation profile
moving at the mesh speed -- one grid point per time step --

with all chemica] energy released in this numerical precursor
wave followed by a slower moving numerical shock wave.

The property in (1.1)B) is an unexpected and seriOusvdefect in the use of

fractional step schemes based on (higher order) Godunov methods for inviscid

reaéting gas calculations in the shock-wave regime. On the other hand, for

the simplified model equation the inviscid fractional step scheme for the

random choice method yields a correct presSure spike in the Z-N-D profile

with as few as three mesh points resolving the reaction zone while the split

Godunov scheme has the nonphysical monotone numerica]-bifuréating wave pattern

with as many as twenty mesh points resolving the reaction zone in the same

problem (see section 4). However, in this paper, we have not pursued the

use of the inviscid fractional step random choice. scheme for the reacting

compressible Euler equations and plan to do this in the future.

Finally, in section 5, we give a theoretical'explanation for the

computational phenomena on coarse meshes reported in the previous section

for the Godunov methods. We work within the context of the simplified

model and derive a new class of nonphysical discrete travelling waves for

the difference equation for a simplified variant of the basic fractional

step methods which uses the upwind schemé rather than Godunov's method. As

predicted by the numerical experiments from section 4, these exact discrete



tfave]1ing waves are numerical weak detonations which move at the speed

s = Ax/At, i.e. one grid point/time step and the numerical experiments
from section 4 verify the stabi]ity of these pure1y numerical discrete -
weak detonations on sufficiently coarse meshes. The structure of these
nonphysical discrete travelling waves is quite different from that of the
well-known discfete entropy violating travelling Waves‘([s], [8]) which can
occur for difference schemes in the nonreactive case. Furthermore, in the
context of the simplified model, such discrete travelling waves always

exist on a given mesh if either

A) KAx 1is large enough with- K the reaction rate

(1.2) or
B) The heat release 99 is large enough for a fixed mesh.

The explicit conditiuns for the existence of numerical weak detonations
provides a quantitative guideline for the validity of the basic fractional

step schemes in coarser mesh calculations.
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Section 2 — PRELIMINARIES

Thé Compressible NaVier Stokes Equations for a Reacting Mixture

We assume a standard simplified form for the reacting mixture
throughout this paper. Thus, there are only two species present, unburnt
gas and burnt gas, and we postulate that the unburnt gas ié converted to
burnt gas by a one-step irreversible chemical reaction. Under the above
hypothesis the compressible Navier Stokes equations for the reacting |
mixture ([12]) are the éystem of four equations,

by + (ou), = 0

(pu), + (ouz +p), =y

_ 2 -
(pE)y + (ouE + up), =-(u(%—0x)x + CD(ATX)X

(p2)y + (puZ), = -pK(T)Z + (DZ,)

where o 1is the density, u 1is the fluid veiocity, E 1is the total
specific énergy,_and Z is the mass fraction of unburnt gas. The total
| specific energy, E has the form, |

- , u
(2.2) E =e+ qoz + >

with e the specific internal energy and 99 the amount of heat released

. by the given chemical reaction. For the assumed ideal gas mixture (with

the same +vy-gas laws), the preésure and tempefature are defined respectiVe1y
by the formulae p = (y - l)be and T = p/pR X M with R, Boltzmann's gas
constant, M .the molecular weight, cp the specific heat, and vy defined
by Co(y -1) = R', The factor K(T) in (2.1)-15 strongly dependent on
tempe}ature and has the form

(2.3) K(T) = Kgo(T) | |

with Ky the reaction rate. The function ¢(T) typically has the



Arrhenius form,

o(T) = 1% AT

or for computational purposes, the approximation for large A given by

ignition temperature kinetics,

1, T3?0
o(T) =
0, T« 'T”O,

with ?6 the ignition temperature.

The coefficients u, X, and D in (4.1) are coefficients of viscosity,
heat conduction, and specfes diffusion respectively. The compressible Euler

equations for the reacting mixture are the special case of (2.1) with u=x=D=0.

The Simplified Model Equations

Obyﬁously; even in a single space‘variab]e, the above system is extremely
éomp]ex so it is not surprising that simpler qualitative-quantitative models
for the equations in (4.1) have been developed (({5], [7], [111). The.éimp]ified
model equations for the shock wave regime derived through asymptotic limits from
the system in (4,1) (see [11]) have the form

a5 o - dgZ), = Bu,
(2.4) | .
7, = Ke(u)z

. where u is an asymptotic lumped variable with some features of pressure or
temperature, Z is the mass fraction of burnt gas,' g > 0 1is the heat release,
B>0 is a 1uhped diffusion coefficient, K is the reaction rate, and ¢(u)
has a typicé] form as described be}ow-(2.3). The reader should not be confused
by the appearance of Zx on the left hand side of (2.4) rather than Zt' The

coordinate x in (2.4) is not the space coordinate but is determined through
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the asymptotfcs as a scaled space-time coordinate fepresenting distance to
the reaction zone; the x-differentiation occurs because Z in (2.4) is
convected at the muéh slower fluid velocity rather than the much faster
reacting shock speed (see [11] for the details). With these interpretations‘
the equations in (2.4) become a well-posed problem by prescribing initial data
uo(x) for"u(x, t) at time t =0 and prescribing the value of Z(x, t)

as x = (corresponding to finite va]ues»ahead of the reaction zone with the
rescaling in [11]), i.e. Zo(t) should be specified wifh the boundary
condition, | |

(2.5)  Zy(t) = Tim Z(x, t)
X=> o0

In this paper, we always set Zo(t) =1 for é}mplicity. The analogues of

the Chapman-Jouget theory, the Z-N-D theory, and the structure of'trave]iing
waves with nonzero diffusion and finite reaction rates for the equations in

- (2.4) have all been discussed in detail in [7] and we refer the reader to that
paper when we discuss properties of solutions in the model.

The Numerical Methods

First, we describe the basic fractional step numerical method used in

solving the model equation from (2.4). We set w = (u, Z). Given mesh
values. W? = ( ?, Z?),. in the first fractional step we determine ,”?+%

from u? ,by‘using a finite difference'approximation to the inviscid Burgers
equation | |

ug + (5u?), = 0.
In the computations reported below, we use Godunov's method, a second order
Godunov method ([3]), or the random choice method ([1]) as the finite difference

approximation. In the next fractional step, we determine Z§+1

és the solution
of the 0, D. E.

Zx = Ko(u)Z
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with u given approximately by u?+%. We march from'positive values of

X to negative values of x and use the boundafy conditions from (2.5) with
'Zo(t) =1 on the right hand side of the .large interval where the calculations
afe carried out. Given the values of u?+%,' the above 0. D. E. is linear
in Z and we solve it by the trapezoidal approximations of the.integra1 in

the exact solution formula to derive

N+1 _ N+l v(-KAx N+3s, . + N+15 )
with' Z?+1 =1 for J 1arge enough} Finally, in the third sweep of the

fractional step method we solve the diffusion equation

(2.7) up = Bux

= qgZ, = qgke(u)z.
X _ _

The Tlinear diffusion equation on the left-hand side of (2.7) is discretized by

using either the backward Euler or Crank-Nicholson methods with initial data

u?+%. The value of u?+l is then determined by solving this inhomogeneous
difference equation where the values for '(u?+%, ZN+1) are used in the

approximation of the fdrcing<function on the extreme right hand side of (2.7)
at time level (N + l)At.. This completes the description of the basic fractional
step méthod‘fdr the simplified model equation. Obvious]y, the only stability
condition needed in the method is the C-F-L condition,
. %%lu?l <1

 required in the first sQeep. .

Next we describe the basic fractional step algorithms which we use for
the reacting Compressible Navier Stokes equationé in (2.1). We use three
fractional stéps analogous to those in the model system. In the first sweep,
At

the inviscid nonreactive compressible Euler equations are solved, i.e. LE

denotes a finite difference approximation to the equations,
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oy * (pu), =0

(ou), + (ou” + ), = 0
(0E)y + (ouE + up), = 0
(pZ)y + (puZ), =0

For this difference approximation, we use either the Godunov or a second
order Godunov method ([3]) for an ideal y-gas law with the mass fraction
Z advected as a passive scalar. In the second fractional step all diffusion

At

mechanisms are solved, i.e. LD is a finite difference approximation to

Py = 0

u

"
i
~—~~
=
c
et

t XX

2 2
() = 23,

In this difference approximation, we use the Crahk Nicholson scheme 1mp1emented
fn such a way that ou, c%—3 pT, and pZ are conserved (this is why we need
to discretize the trivial equation, Py = 0). The total energy at the end of
this fractional step is recovered from the formula in (2.2) with (%—J- obtained

from the kinetic energy diffusion equation. In the final sweep, we solve the

At

chemistry equation, i.e. LC denotes the discrete solution operator for

oy = 0

Zt = -KO¢(T)Z

At each grid point, we exactTy integrate the linear 0. D. E. for Z using

N+ %

the fixed value of temperature, Tj at the grid point determined from the
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previous sweeps; thus,

N+1 _ N+ %3 N+
Zj exp(-K0¢(Tj )At).Zj

This completes the description of the method used to advance the solution from
time level nAt to time level (n + l)at. Actually we implemented the
approximation from time level naAt to (n + 2)At in the form,

At At

ut
=Llg Ly

At (At (At At
total L L L

L Lo be bo ke

so that we have second order accuracy in time for the a]gorithm. The only
stability restriction on the above numerical method is the basic C-F-L

condition for the inviscid hydrodynamic sweep, Lét.
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Section 3 — THE STRUCTURE AND STABILITY OF DETONATION WAVES
WITH FINITE VISCOSITY AND REACTION RATE

Wave Structure for the Simplified Model System

Since we begin by studying the structure and dynamic stability of

~ detonation waves for the model system, we begin with a brief summary of
the surprisingly cbmp]ex structure of the trave]]ing waves for the model
system in (2.4) (the quantitative details can be found in [7]). Given a
- preshock constant state Wp = (uR, 1) in chemical equilibrium so that

_ ¢(uR)-= 0, we étudy travelling wavé solutions of (2.4) with the given |
preshock state Wp and a fixed speed s. We seek special solutions of

(2.4) with the form,

so that with £ = E‘—é—s—t
Tim w(g) = (ug, 1)

"+
(3.1)
Tim w(g) = (u , 0)

g-)--oo
where u, needs to be determined. With ,2 = g4l and KO = BK, substituting

the above form of w into (2.4) leads to the autonomous system of 2 nonlinear

0. D. E.'s,
by 2 5
u'=ku"-su-272+7¢
' = KO¢(u)Z

The integration constant € 1is determined by the formula,

e 2 e w
€ =-% UR + SUR + qO ’

and in general, there are two states U s uf with U, < u: and satisfying
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(3.2) -%u§+suR4’-q’O = -ls(uL*)z *osup, = -%(uf)z + suf

- The two states, (u 4, 0) and (ut, 0), are the only conceivable 1imit1ng;
values for the second equation in (3.2) and define the end_states for the
corresponding weak and strong detonation waves propagating with speed s
and determined by the Chapman-JoUget theory (see [7]). When do_such'trave11ing
waves exist with a finite reaction rate and nonzero diffusion for fixed s?
According to the results in [7], for a fixed positive value of K0 = BK and

*

fixed va]ues"uL*, u, as the heat release varies there is a critical heat

release, G.r» SO that

A) For 9 > 9eR? a strong detonation travelling wave profile with
speed s exists comnecting (up, 1) to (ut, 0)

(3.3)B) For qg = ch" a weak detonation travelling wave with speed s

exists connecting (uR, 1) to (uL*, 0)
C) For g < AeRe no_combustion wave movinngith_spéed' s 1is possible

A similar behavior occurs if the heat release is fixed and KO is varied
(see [7]1); we make this remark because the reaction rate is the qﬁantity
actually varied in the calculations reported below. In fact, an even finer
structure for the traveling waves in case A) of (3.3) occurs provided that

the parameter KO = RK -satisfies either
*
(3.4) uf - s > Ky

or

*

In the case when the inequalities in (3.4) are satisfied, all of the strong
detonation profiles are non-monotone and exhibit a combustion spike. However,

when the case in (3.5) occurs, there is a second critical value of Gg>
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qsp, with qsp > 9er SO that
A) For 4 > qsp’ the strong detonation profile always has
a ngn-monotone combustion spike.
(3.6)

B) For qy with q_p <qj s qsp,'the strong detonation profile
is monotone without a combustion spike. '

See Figure 1 of [7] for graphs.of the typical wave profiles déscribed in
- (3.3) and-(3,6) as thé heat release is varied. Given the complex structdre
of the travelling wave profiles, it is not apparent when these profiles are
dynamically stable and.also-what happéns when 9 satisfies Aqo <Qq.p SO
that no travelling wave profile.mbving at speed s occurs. Next we report
on a detailed numerical study using the fractional step scheme degcribed
in section 2 which addresses the above.issues.

In these experiments, the viscous length séale is completely resolved
and we set B =1,  In all of our reported computations, we take as initial
data fhe values defining an inviscid strong detonation wave moving with

speed s, i.e.

Ugs X > 0
(3.7) uo(x) = |
*
s x <0

| whefe given qg and s; the eﬁﬁation in (3.2) is satisfied with

ut > UL*‘ We use a fixgd finite interval with Dirichlet boundary conditions
for u at the ends determinéd by the respective 1imits,' Up and ut. Also,
given a wave speed s, we perform a pre]iminary Galilean transformqtion

x' = x - st and solve the’transformed equ&tions for zero spéed waves. Besides
thé obvious advantage of keeping the waves from leaving thé fixed computétiona1
region as time evolves, with this transformation we can aiso exploit the

higher resolution of the Godunov scheme for nearly zero wave speeds.
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In the initial experiments described below, we fixed ut =1,
U« = ;4; s = .7 and varied the heat release 9p- We took K =1,
8 = 1 and used ignition temperature kinetics with the ignition ﬁemperature
at the va]ué, u=0. With these paramefers, the value. of 9eR from (3.3)‘
is ch = .568 and that correébonds to up = -.407. Also, the inedua]ity |

in (3.5) is satisfied for these parameter values and qu' from (3.6) is

given by Asp = .949,

Case 1l: Spiked Strong Detonation Profile: We set 4 = 2.375 > > Q.ps

this 99 corresponds to up = -1.5. In figure 1lA) we present the.exact.
spiked‘solutidn profile obtained by direct_quadrature of the 0. D. E.
below (3.1). In figure 1B) We pfesent'the profile that emerged from
dynamic stability ca]cu]ation§ with the fractionavatepvmetHod described
in section 2 with the initial data from (3.7). MWe used 560 zones on the
in;erya] [-5, 2] and this dynamically computed steady profi1e differs from
the exact solution by less than 1% in the maximum norm. This calculation
both validates the method from section 2 and also demonstrates the expected

stability of the spiked combustion profile.
(Printen: Place Figure 1 near here.)

CaSe II: Monotone Strong,Detonation Profiles, Q9 = 9g,° We used dg =

Sp

'qsp = .949 and with the shock tube initial data from (3.7) and only 140
zones on [-5, 2], the time dependent solution converged very rapidly (after
only 50 time steps with C.F.L. number of one-half) to the profile in

| Figure ZB)'-- this profi1e.ié practiéa]]y identical to the exact steadj

solution in Fugure 2A)

(Printen: Place Figure 2 near here.)
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Case III: Strong Detonation Profiles for 9o Dnear q.p: In the reported-

experiment, we set ) ='.571, a value slightly 1arger than ch" The exact
steady solution calculated by quadrature of the nonlinear 0. D. E. is given

in Figure 3A). The profile is compietely monotone with a very long character-
_1siic flat segment with a value of u correéponding to u=.4-= Up w3 we

a];o observe that most of the chemical energy is released in this flat

sejment. Thus, this wave structure is almost that of the weak detonation
observed fof 9y = ch. One might suspect that such a waQe is dynamically
unstable. As a numerical test, we took spiked perturbed initial data for this
wave with the form depicted in Figure 3B) and with 560 mesh points on [-5, 2].°
The numerical solution after 600 time steps is given in Figure 3C; this solution
: i§ identical to the profile in Figure 3A) and demonstrates the dynamic stability

of this wave.
~ (Printen: Place Figwre 3 near here.).

The profiles with a step shape like those in Figure'3A) are a difficult
case for the numerical methods from section 2 on a finite interval due to the
extremely long tail of the analytical steady wave in its adjustment in the step
from Uy to u:. In fact, with 560 mesh points and shock tube initial data,
a qualitatively different steady humerica] profile emerged from the calculation
differing by about 15% - 20% fn the maximum norm. Howevér, we emphasize hereb
that this second profile ié a numerical artifact -- a second steady state
solution of the difference equations on a finite interval with a ffxed mesh.
Under further mesh refinement the shape of this steady solution changed
substantially and finally diéappeared -- about 880 mesh pdints on [-5, 2]
were needed for a similar test problem with q, near g, to have a unique

numerical steady state emerge from the dynamic calculations with a wave profile



-18-

differing from the analytical profile by 2.5%. -

Case IV: Bifurcating Wave Structure for dp < 9¢R As 99 \: q.Re the flat

step in the profile corresponding to Upe = .4 in Figure 3A) becomes even
longer and as in Figure 3A) most of the reactant is consumed at the front of
this flat segment. Once Z 1is nearly zero as in the back of this wave, u

becomes essentially a solution of the Burgers equation and the secgnd hump
+ u
L*

u
in Figure 3A) is an ordinary fluid dynamic shock with speed s = —L—ﬁ———— = .7.
What happens for G < ch? No steady detonation profiles moving with speed
s exist for values qf 99 “with 99 < 9cpe For‘a fixed Ups Gcp becomes a
smoothly varying function of the wave speed, s; we denote this function by
ch(s). By continuing the abqve wave profile for qq > qCR(s) to qq < qCR(s),
it is natural to expect that given Up there is a wave speed s' satisfying
s' >s and

= 1

(3.8) dg = 9cgpls’) |
If we let uL*(s‘) with uL*(s') < uL*(s) denote the value of the weak
detonation satisfying (3.2) and (3.8) for therfixed Ugs then the behavior
for 95 > 9ep suggests by continuity that the basic strong detonation'shock
tube initial data evolves into the following bifurcating wave pattern: An
approximately self-similar wave pattern given by the faster moving weak
detonation moving with speed s* from'(3.8) and connecting (uR,.l) to
(uL*(s'), 0) with all chemical energy released in this wave followed by a
slower moving fluid dynamic shock moving with the speed s <s with

s = (u «(s') + uf)/2.

Next, we describe the results of numerical experiments which confirm the

behavior conjectured above. For this experiment, we used Up = -.02 and

9 .214 (so that dg < ch) and retained the values of Upx = .4 and

u*
L

1.0 wused in the previous calculation; we also increased the
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~

value of K to K=10. With shock tube initial data.and 400 mesh points oh
[-5,2] the bifurcating weak detonation pattern emerged from the dynamic
calculations depictedvin.Figure 4 at 160, 320, and 400 time steps and persisted
under mesh refinément. This precursor weak detonation has a wave speed s'
exceeding s since thislspeed exceeds zero in Figure 4, while the trailing |

fluid dynamic shock has a slightly negative wave speed.

(Printen: Figure 4 goes as close to here as possible.)

As a sécond test of the stabi1ity-of the weak detonation wave and also

. as a test of the explanation given above, we kept Up and the heat release 99
as in the earlier calculation, but we altered the.initial data by using the
initial Qalue, u =.8 for ,x<:0.' This value of u, satisfies uL*(s') <y < u:.
Tﬁe calculation with'this.initial data will confirm the exp]anatioh advanced
abdve prpvided that the same weak detonation as depicted in ngure 4 emerges

as a precursor wave fo]]dwed by a fluid dynamic shock moving at the slower
speed s =f(“L+'uL*(S'))/2’ The time hjstory'of this c$1cu1ation in Figure 5,
displayed at the corresponding number of time steps as in Figure 4, completely
‘confirms our earlier exp1anationAand also the stability of the weak detonation.
Thus, within the context of the simplified model, we have demonstrated the
existence of stable weak detonations. Similar results for these calculations
with 8=1 occurred with any of the three fnvisid schemes for Burger's
equation in the fractional step method. We aléo performed similar nhmerica]
experiments with a truncated Arrhenius kinetics form, as described below (2.3).

Qualitative]y similar phenomena, as documented above, a1ways.occur'bht for

somewhat different parameter ranges.

(Printen: Figure 5 goes as close o here as possible.)
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\ave Structure for the Reacting Compressible Navier-Stokes Equations

The theory of combustion wave profiles for the reacting gas flow equations
From (2.1) is considerably less complete than that for the model equations
([12]).. Nevertheless, Gardener ([13]) Has recently proved the existence of
viscous strong (and weak) detonations for varying (and exceptional) values of
the heat release and wave speed. One consequence of the results in [13] is a
- scenario for the wave structure with varying heat release qualitatively similar
to that mentioned in (3.3) for the model equations;vin fact, his method of
proof involves deformation to the tréve]ing waves of the qualitative model
from [7]. This fact both providés a partial rigorous justification for the
mode] and also suggests that similar dynamically stable wave structures, as
documented earlier in this sectidn for the model, would also occur for thé
© reacting compressible Navier-Stpkes equations. In the reméinder of this section
we describe a series of numerical experiments confirming this conjectured
behavior.

We used the fractional step method described in section 2 with the second
order Godunov method in the numerical experﬁments described below. We introduced
the rescaled variable Z = qOZ rather than Z and the initial data was always
taken as the piecewise constant initial data defining a C-J (Chapman-Jouget)

detonation; i.e. the initial data for (p,p,u,Z) had the form

(pO’ po, O;QO) ’ x>0
(P],p~[,u-l,0) s XSO

where given the preshock state for x>0, the post-shock state defined for x <O
satisfied the Rankine-Hugoniot relations defining a C-J detonation. Tﬁe
numerical calculations were performed on a finite interval with Dirichlet

boundary conditions, and to avoid the computational expense of a very long
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interval, @he solution Qas allowed to run until the wavé came with a fixed
number of'zoneé from the right édge of thé grid; then the solution was shifted
from the right to the left to keep it fixed on the interval with new values
for the zones on thé-right defined by (po, Y 0; qo) -- our graphical displays
retain this computational artifact and focus on the fastest moving wéve pattern.
In this section, diffusive length scales are completely resolved computa-
tioné]]y, but for emphasis we will work in dimensional units which are typiéa]
ones for a viscous reacting shock layer. The detonation waves which we study
have fairly small heat release and are modeled on initial data for thé preshock
state corresponding to 25% ozone and 75% oxygen at roughly room temperature in
‘the dzone decomposition C-J detonation; thus, we use the documented sizes 6f
all constants reported in the deflagration calculations from [9]. We use CGS

units and the following parameter values:

R = 8.3143x 107
y = 1.4
A=u =0
M= 36
u o= 2><1O'4 cm2/sec.
‘ Paen = 1-0138x10° en/sec
open, = 1.29%107% g/en?

For'the ambient initial data, we used

po = .93] pAtm.
Pg = -821 Ppyn,
P _Mpg .
€ = -1 0 ’ To = Reg
Zy = 99 = 3¢ - |
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With the speed of sound <y given by
- Y
cg = (ypg/eg)

the scalings of time, tO’ and of space, Ro, were defined by

, ' _ u _ | -
(3.9) to = > , RO toco
P

This choice of time and space scales corresponds to scaling compatible with
the size of the reacting shock layer. Finally, in modeling the chemistry,

we sometimes used the Arrhenius factor

(3.10) | K(T) = BT 72 e MKT

with k=MR, A=1.00x10'2, and B = 6.76x10%; this is the value of the
dominant forward rate in the ozone decomposition reaction (see [9]). In other

calculations we used ignition temperature kinetics with the form

K -
= if T>T
ty 0

(3.11) K(T) =
0 if T<T

0

For the ignition temprature with the above detonation, we used T0==SCO°K.

We always used 300 mesh points iﬁ all computations-on the fixed interval but
increased (decreased) the resolution by sefting Ax = aRy with a a scaling
factor. To avoid repetition, we only report the results of computatidns with
the-kinetics scheme in  (3.11) because the kfnetics structure function jh (3.10)

gave qualitatively similar behavior.
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Case I: A C-J Detonation with a Nearly Z-N-D Spike: We set K0:=1 and report

on the time dependent development of the wave that emerged from the C-J initial
dafa described above with  Ax = .025 RO’ The Z-N-D detonation (see section 4)
has a pressure peak of 12 atm. The preséure and chemical energy wave profiles
of the éo]utibn'that emerged from the dynamic calculation is given'in ngure 6.
This solution is numerically steady in a reférence frame moving with wave speed
and is hearly a Z-N-D detonation since fhe pressure rises to a value of nearly
12 atm, then drops to the C-J‘value é]ight]y below 8 atm. The width of this
C-J detonation wave is roughly 10'4 cm. This is compatibie with older estimates
using explicit integration in the phase plane for the laminar ozone detonation
wave thickness ([10]). This calculation is a'refinement of bne with Ax = .05 RO

where a profi1e of identical size and structure emerged.

(pLace Figure 6 nean hene)

Case II: Bifurcating Wave Patterns and Dynamically Stable Weak Detonations:

By 1ncreasing the value of the reaction prefactor KO but keeping the heat
release and the initial C-J data fixed, by'analogy with the structure documented
earlier for the model system, one might anticipate a bifufcating wave pattern
with a dynamically stable precursor weak defgnation wave once q, satisfies
qo'< qCR(KO). In the calculations reported in the time sequence from Figure 7,
we have kept all parameters in the calculation from Case 1 fixed except KO.

We have ihcreased Kg from K0 =1 to K0==5. Only the pressure and chemical
energy plots are displayed in Figure 7. The graphs display successive time
plots of the profile but focus increasingly on the precursor hump given by thé
stable weak detonation wave. vThe reader can see that all chemical e;ergy is
released in this precursor weak detonation wave as anticipated in the model

system; furthermore, this wave is supersonic from both the front and back.
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The slower moving trai]ihg wave profile is an ordinary fluid dynamic shock.
We remark that the same wave profile emerged under the mesh refinement with
Ax = .015 RO' It is somewhat surprising that a change in the reaction prefactor

of 5 in the given detonation wave accounts for a transition from a dynamically
stable strong detonation to a bifurcating wave pattern with a stable precursdr

weak detonation.

(PRace Figure 7 nean here.)
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Section 4 — THE BEHAVIOR OF FRACTIONAL STEP METHODS
FOR COMPUTING Z-N-D DETONATIONS

The computational meshes used in the calculations from sectibn_S are
several orders of magnitude finer‘than'those thaf could be used in a typical
large sca]e_computing problem. On much larger spatial scales the effects of
diffusion are ignored so in this section we report on calculations with the
inviscid reacting compfessib]e Euler equations. Since it is an interesting
-‘prob1em to develop numerical methods which can capture the significantly higher
pressure peaks.which occur in the structure of Z-N-D waves, we assess the
perforhance of the inviscid fractional step methods of section-2 in such a

calculation.

Coarse Mesh Calculations fof'the'Reacting Euler Equations

For comparison, we used as initial data the same C-J detonation wave which
we used previously in section 3. In the reported calculations we always used
300 mesh points}with Ax =aR0. We recall that R0>_is a characteristic length
écale which measured the internal st}ucture of the reaction Zone. In fact, by
using Figure 6,‘we see that 30 R0 = 1.5 X10'4 CM = "approximate Qidth of the

nearly Z-N-D detonation" computed in section 3. We used either the Godunov

or second order Godunov scheme in the inviscid calculations below with Lgt =1,
(Place Figure § as close to here as possible)

The graphs in Figure 8 display the va]ues>of the pressure and chemical
energy for the traveling waves that emerged from these calculations with the
C-dJ initial &ata. The dashed line describes the results of computat{ons using
the sécond order Godunov method while the black 1line déscribes the results for

the Godunov method. We increased the value of a in the calculations reported
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in successive plots and thus, we used increasingly coarse meshes.

For Ax = .1 RO’ the reaction zone was completely resolved and the
expectede-N-D profile was computed by either method. For Ax =R0 so that
there are roughly 30 points in the reaction zone, both methods gave a C-J
detonation moving at the correct speed but the Z-N-D pressure peak predicted by
the Godunov method was only 10 atm., rather than the expected 12 atm. Already
at Ax = 10 RO’ neither numericql method has any-pressure peak higher than 8 atm.
On this mesh the Godunov scheme already clearly exhibits a numerical bffurcating
weak detonation pattern qualitatively similar to the one described in section 3
with all chemical energy released too soon in the precursor numerical weak
detonation wave. The second order Godunov methdd also exhibits an incorrect
wave pattern on this mesh and this va]uevof a is at the critical value for
numerical wave bifurcation for this ndmerica] method. On a mesh with Ax = 102 Rg»
both methods clearly exhibited totally nonphysical bifurcating wave patterns
with precursor numerical weak detonations. On even coarser meshes, the_sahe
approximately self-similar non-physical discrete wave pattern emerged as

indicated by.a comparisdn of the graphs in Figure 8E) with Ax = 105 R0 and

Figure 8C) with Ax = 10° Ry. We recall that the mesh with ax = 10° R

300 mesh points in a kegion only 1.5 meters long. Although we do not report

has

the detailed time history here for these calculations, the numerical weak
detonation wave that emerges is always moving atvthe speed of one mesh point
per time step. Qualitatively similar results occurred in our computations with
an Arrhenius kinetics structure functjon. “The theory for numerical weak detona-
tioné developed in section 5 indicates that this numerical bifufcatfng wave
phenomena shou]d.occur on even finer_meshes for detonations with Targe; heat

release (our test problem has rather small heat release).
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Coarse Mesh Calculations for the Model Equations

A similar computational phenomena occurred for the fractional step
. schemes for the model system with the Godunov or second order Godunov methods.
"On the other hand, the inviscfd fractional step scheme using the random choice
me thod pefformed extremely well and a numerical bifurcating wave pattern was
~ never observed on even the coarsest meshes tested. For example, in Figure 9
we compare the exact Z-N-D profile and the numerical wave profile for a calcula-
tion with only 25 mesh bojnts on the interval [-5,2] for the random choice
fraCtiona].step-method. The agreemeﬁt'is astonishing given the coarse mesh

and almost the complete pressure peak has been captured.v}in contrast, for the
same initial data the fractional step scheme wiﬁh Godunov's method produced
the nonphysical numerical bifurtating wave pattern with 100 mesh points. These
experiments suggest that at least in a single space dimension, the fractional
step schéme using the random choice method might be capable of coarse mesh
resolution of pressure peéks in wave structure for solutions of the reacting

éompressib1e‘Eu1er equations involving complex chemistry.

(Printen: please place Figure 9 close to here in text.)

:
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Section 5 — DISCRETE WEAK DETONATIONS: NONPHYSICAL BUT STABLE
DISCRETE TRAVELING WAVES

The calculations from section 4 on coarser meshes with the Godunov
fractional step schemes yield a bifurcating numerical wave pattern with a
discrete weak detohation wave as a precursor. These wave patterns qua]itativé]y
resemble the ana]ytie’bifurcating wave structures documented as stable exact .
so]utions of the reacting Navier Stokes equations in section 3. However, the
wave patterns from section 4 are purely a numerical artifact since the numerical
solution conVerged to the expected Z-N-D detonation under further mesh refinement.

Here we provide a theoretical explanation for_the numerica} results.
presented jn section 4. We work within the context of the simplified model
and derive a new class of nonphysical discrete traveling waves for the basic
| inviscid fractional step scheme introduced in section 2. These exact solutions
of the difference equetions will be numerical weak detonations moving at the
speed, _§ = %% » 1.e. one grid spacing per time step, as observed in the
calculations from section 4. Of course, we have already demonstrated the
stability of such nonphysical discrete weak_detonations in the calculations
reported in section 4 for sufficiently coarse meshes.

Within the context of the simplified model, in the last section we

considered the problem of computing the Z-N-D detonation dynamically as a

solution of

. 2 _
ut+-.(!5u - qOZ)x = 0

-(5.1)
Zx = K¢(u)Z.

from initial data given by a C-J or strong detonation wave, i.e., w = t(u,Z)

has initial data with the form in (3.7) for the fixed wave speed s. We introduce
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the Hugoniot function defined by
(5.2) | H(u,ugss) = s(u-up) - (lgu=up)

For simplicity we élways'assume that the initial data from (3.7) satisifes Up >0

. so that for this strong or C-J detonation, we have
(5.3) o
This initial data also satisfies the reacting Hugoniot equation

s * - .
(Sié) v H(uLs uR’ S) = qo
For the inviscid fractional step schemes of the Tast section, we required the
C-F-L stability condition

AT *»

Xy = oacld

(5.5)

Given the mesh, we introduce the discrete wave speed s = %% . From (5.5) and

(5.3) it follows that s satisfies s>s and one easily verifies the following

fact:
For any s>s, there are always exactly two solutions G:, GL satisfying
e =y - :
H(uL"uR’ S) QO ’
H(UL*, UR, S) = qo ?
5.6 '
(5.6) ar > s > u
L - L* ?
0¥ > u¥ > 0. > u
LR e 7 R -

The wave defined by (GL*,UR) is an inviscid weak detonation wave with speed s
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while the wave (G:,uR) is an inviscid strong detonation wave traveling with

the same speed. We observe that

- At o« At - At
Ue 3x S U A YU Ex !

and the weak detonation always satisfies the C-F-L stability condition from
(5.5) on the computational mesh but the ‘strong detonation will always violate
this C-F-L condition in (5.5). The numerical éomputations from section 4
indicate that on sufficient1y coarse meshes, the difference equations for the
inviscid fractional step schemes based on Godunov'; method should have discrete

traveling wave solutions, wg = (u?, Zg), satisfying the equations

(5.7A) W, = W for all N>0 and j

Wi o= luga 1), g
(5.78)
lim w2 = (3 ,,0)
. j L*®
J-)’-&
Such solutions of the numerical scheme define the nonphysical discrete weak

detonations moving at mesh speed which were observed computationally in the '

Tast section. Here we will verify the following result:

PROPOSITION (Existence of Numerical Weak Detonations): For a simplified

inviscid fractional step écheme (see (5.10) and (5.11) below) based on the upwind
scheme rather than Godunov's scheme, explicit nonphysical traveiing waves
satisfying the structure in (5.7A) and (5.7B) exist under the foi]owing condi-
tions on heat re]ease,l dg» reaction rate, K, and mesh spacing, Ax:

A) For ignition temperatutre kinetics with ignition temperature u
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satisfying u>u nonphysical discrete traveling waves with a

R’
monotone profile exist provided the two explicit 1ﬁequa1ities
~ - ~ 2
. (5.8) . U< U, and H(u,uR, s) < q0(1 -e )

are satisfied.

B) For a general kinetics structure function ¢(u) satisfying
¢>(uR)=0' and ¢('u)‘>0 for: uR<Q, a numérica] weak detonation
profile exists with the structure in (5.7) provided that there
is a solution uj with Up < Uy < Ujx to the nonlinear algebraic
equation

KAX

-5 ¢(u0)

(5.9) . | H(ug, up, §) + gq e =9

0

Remark 1. It is easy to see that either of the quantitétive algebraic conditions
in (5.8) or (5.9) is satisfied provided that either KAx is sufficiently large

or the heat release 95 increases. In fact, the quantity- K = KAx for these
inviscid fractional step methods for reacting gases has an analogous role as

the mesh Reynolds number in_viscous incompressible flow. The behavior of the
numerical methods for K large for the reacting compressible Euler equations
mimics the behavior for high reaction rate KO documented in section 3 for the

" reacting compressibie Navier Stokes equétions.

Remark 2. The same construction which we give below in the proof of the
proposition will establish the existence of a spiked Z-N-D strong detonation
disérete wave profile moving with mesh speed, i.e., a discrete trave]ing wave
satisfying (5.7A) with | |

0 _ .
wj = (UR,]) 3 . J 2]
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aﬁd ujy > G: for j<0. Because we have the C-F-L restriction below (5.6),
this wave is never realized on the given computational meshg however, it might
occur in similar fractional stép schemes based on implicit methodsf

First, we des;ribe the variant of the fnviscid fractional step schemes
from section'é based on the upwind scheme. Given wN = (uN, ZN)

J b RN
fraction step, we compute Z§+] via numerical integration of the 0.D.E. to

, in the first

obtain the formula

N
o(ull) + $(us_y)

K 3

ZN+'l ZN+'l

(5.10) 1= L e

. with initial condition Z§+1 = I for j large enough and K defined by K = KAx.
For waves moving with positive wave speed as guaranteed by (5.3), Godunov's
scheme reduces to the upwind scheme. In the second step of the simplified
algorithm, we compute u§+] from {u?}, {Z?+1} by applying the upwind difference

approximation to the first equation in (5.1). This results in the formula for

N+T . :
“j given by
: N+1 _ N At N,2 N 2 At ;o N+] N+1

The formulae in (5.10),(5.11) describe how to compute {w§+]}

from {wg} in this
fractional step method. Next we prove the proposition for this scheme.
| The equations in (5.7A) will be satisfied provided that we find an initial

0

wave profile Wy = (uj, Zj) satisfying

(5.12) W, =W for all j

By explicitly computing w}- from the fractional step method in (5.10),(5.11),

we see that (5.12) will be satisfied provided that



(5.13A) Z, = e

(5.133) H(ujf]’ uJ, s) = qo(ZJ._] - Zj-é)

for j with =o < j < ». First, we concentrate on the case of ignition}
temperature kinetics. With wj =(uR, 1) for j>1, the equations fn (5.13) are
trivially satisfied for j22. From (5.13A) we see that Zy=1 and if a

solution uj >u is found, uy is the solution of the equation
(5.14) H(uo, Ups s) = qo(l'- e'K/z)
The Hugoniot function, H(u, Ugs s) has the three properties

‘ H(UR, UR9~§) = 0 "
(5-]5) H(GL*, uR’ g) = qo ’

H(u,uR, s) is monotone increasing in u for Up < U < GL*

Given the conditions in (5.8) and the above three properties, we see that there

is a solution ug to the equation in (5.14) satisfying

(5.16) u < ug < GL*

Next, we generate the u. for j<O0 recursively from u by a similar procedure.

J j+1
We'anticipate,the fact to be verified aposteori that uj for j<0 also satisfies
~ | K/2

u<uy < U . We define a to be the factor o = e /% if u; for j<0

inductively satisfies uj> u, then from (5.13A), we compute that Zj is given

by the formula

(5.17) 7. = o721 5= 1,22,-3,-4,...
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With the formula in (5.17), the equations in (5.13B) will be satisfied induc-

tively provided that

3) = - = BN L L R
(5.18) | }H(uj, ups s) = qy(] ZJ-_-I) 41 -a ) = 951
for j=-1,-2,-3,... . Since we have the monotone sequence
) qO > qJ‘] > qJ ’ J= ']’729'33”- ’

it follows from (5.15) that there are always solutions uj to the equations

in (5.18) with the monotone structure

U<u0<u.<u.]<u

J J- L*

for j=-1,-2,-3,... . From the above monotone structure and the equations in
(5.18), it is easy to see that the unique limit u of this sequence as j + -«
satisfies |

ue (u, Up %] S

H(ﬁ,'uR, s) = aq
The only solution of these equations is ﬁ;= GL* and clearly from (5.17), Zj +0
rapidly as j + -«. This completes. the construction of the exp]icft trave]ing'
wave for ignition temperature kinetics. Obviously a similar recursive construc-
tion can be applied for the mofe general kinetics schemes. The only difference
is that the right-hand side of (5.14) or (5.18) also depends on uj - However,
the assumptibn in_(5.9) guarantees that ug can be found and the other

équations aré eaéi]y solved inductively -- we omit the details.
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FIGURE CAPTIONS

Figure 1: Spiked strong detonation profile for 99 > 9cR-

Figure 2: The exact steady profile (2A) and the dynamically emerging monotone
detonation profile for 99 = 9sp- ‘ -

Figure 3: The dynamic stability of detonation profiles for 99 = 9cp the
exact steady profile (Figure 3A); the perturbed initial data (Figure 3B);

the dynamically emerging profile (Figure 3C).

Figure 4: The dynamically developing bifurcating wave pattern for 4y < 9¢R
~at 160 (Figure 4A), 320 (Figure 4B), and 400 (Figure 4C) time steps.

Figure 5: Another test of the time-dependent stabi]ity of the weak detonation
from Figure 4 for Ay < 9¢p at 160, 320, and 400 time steps.

Figure 6§ Dynémica]]y emerging C-J detonation wave with nearby Z-N-D spike

for K0=1.

‘Figure 7: Dynamically emerging précuréor weak detonation with K0€55 but
all other parameters and initial data fixed as in Figure 6.

+

Figure 8: Dynamically emerging numerical wave patterns with the Godunov

schemes and meshes Ax= .1;R0, 'Ax==RO, Ax =10 RO’ AX = 102

Ax = 105 RO' - Only the pressure and chemical energy are'disp1ayed.
The black line represents the Godunov method while the dashed line

represents the high order Godunov method.

RO’

Figure 9: A coarse mesh calculation for the model system using the'rapdom
choice fractional step method (Figure 9B) compared with the exact steady
profile (Figure 9A).

Note to printern: The §igures in any sequence, §or example Figure 3A,B,C,
shoutd be placed together in sequence, but can be reduced.
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