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1. Introduction and Survey 

Soon after the discovery of supersymmetry [1], it was realized that a sym

metry between the bosonic and fermionic degrees of freedom of a field theory 

would have a beneficial effect on its ultraviolet behavior. For instance, it became 

clear that supersymmetry, combined with the "minus" sign rule for fermionic 

loops, would guarantee the absence of corrections to the vacuum energy for an 

unbroken supersymmetric theory [2]. Moreover, explicit calculations revealed 

an impressive set of cancellations in specific models. The simplest one of these, 

known as the Wess-Zumino .model [3], is a renormalizable interacting theory of a 

scalar, a pseudoscalar and a Majorana spinor, all with the same mass and 

interacting via a single coupling constant. Naivety one would expect that, 

because of supersymmetry, in this case divergences could be absorbed by means 

of three distinct parameters, one common wave function renormalization for the 

three fields, one mass renormalization and one coupling constant renormaliza

tion. Surprisingly, it was found by explicit calculation that only one wave func

tion renormalization appeared to be needed [ 4]. Somewhat later it was also 

shown, again by explicit calculation, that another model, the N=4 Yang-Mills 

theory [5], possesses no charge renormalization at one and two loops [6, 7], and 

even at three loops [8]. Though it was natural to conjecture that such behavior 

would persist to all orders, there followed a period of impasse, and for about 

three years no one succeeded in achieving a satisfactory understanding of the 

results of Refs. [ 4-8], and to draw general conclusions from them. 

It is undeniable that ultraviolet divergences are a rather bizarre 

phenomenon to get accustomed to. Nonetheless, the successes of Quantum Elec

trodynamics first and of Yang-Mills gauge theories later did manage to get physi

cists accustomed to them, with the result that the improved ultraviolet behavior 

of supersymmetric theories found in Refs. [ 4-8] appeared rather remarkable and 

interesting from a theoretical point of view, but did not add much to the rather 

limited interest that the majority of particle physicists had in these new ideas. A 

major wave of interest in these models was only aroused by the observation [9] 

that lying scalars to spinors by supersymmetry would improve the stability of 

the parameters of low-energy gauge theories upon renormalization. The stability 

problem for the parameters is often referred to as the gauge hierarchy problem 

[10]. 

The situation for gravitational theories, on the other hand, was quite 

different. In this case it is obvious on dimensional grounds that their 
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perturbation expansion is in danger of being nonrenormalizable, because 

Newton's constant k 2 has the dimension of a negative power of mass. The possi

ble cancellation of ultraviolet divergences does appear a rather crucial 

phenomenon here, and leads to hope that minor modifications of Einstein's grav

ity could lead to cure the problems of its perturbation expansion. Indeed, the 

early achievements of supergravity theories [11] appeared rather spectacular in 

this context. lt was known for some time, after the work of De Witt [12] and 't 

Hooft and Veltman [13], that pure Einstein quantum gravity has finite one-loop 

corrections to its S matrix, but that coupling it to a single scalar field results in 

nonrenormalizable ultraviolet divergences. The former result requires little cal

culation to understand. All one needs is to list the possible counterterms of the 

right dimensionality, which are 

.v:;; RJ>vpa RJ>vpa , v:;; RJ>V RJ>v and v:;; R 2 , (1.1) 

and notice that they all vanish on-shell, i.e. when the classical field equations 

are used, on account of the Gauss-Bonnet identity for four-dimensional space 

time. In fact, this guarantees that 

E J>Vpa E afl?6 R J>V o.fl R pa 7 6 = - 4 RJ>Vpa R J>Vpa + 16 RJ>V R J>V - 4 R2 (1.2) 

is a total derivative, and thus vanishes in perturbation theory. The divergence 

encountered in Ref. [13] for the case of a single scalar was shown to persist, again 

by explicit calculations, for a large. number of matter couplings [14], and for 

some time seemed unavoidable. Actually, this is not the case, as the pure super

gravity theories do share the one-loop finiteness of Einstein's gravity [15]. How

ever, if one adds extra matter, even of the supersymmetric type, divergences 

appear again [16]. The former result is a direct consequence of what was said 

above for Einstein's gravity. ln fact, irreducible supersymmetry can be used to 

relate S matrix elements to ones corresponding to external gravitons only. 

These are finite, as their possible divergences correspond to the harmless invari

ants in eq. (1). Remarkably, formal arguments are also a'vailable that exclude 

two-loop divergences for supergravity theories. Two-loop finiteness, however, is 

somewhat more subtle to establish [17], and stems from the impossibility of 

turning the only candidate two-loop counterterm for pure gravity into a super-. 

symmetric invariant. 

Beyond one loop in pure Einstein gravity the situation is pure mystery. and 

{almost) the same is true for supergravity beyond two loops. So, even assuming 
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that Einstein gravity does indeed diverge at two loops, we seem very far from 

having fixed its problems by turning to supergravity. Excluding an infinite 

number of counterterms of increasing dimensionality on the basis of formal 

arguments alone seems impossible, and this suggests that trouble is indeed 

going to show up kt the first available opportunity. To be honest, however, the 

blame is to be put, at pre.sent, more on the investigators than on the theories, as 

our understanding of them is very incomplete. Moreover, there is a subtle point 

which is easily overlooked. Does it really make sense to write a perturbation 

series where the expansion parameter is not dimensionless, and actually has the 

dimensions of a negative power of mass? Just on dimensional grounds, the 

effective strength of the interaction is bound to increase with momentum, and it 

is not clear what the small expansion parameter would be in the ultraviolet 

region. From the mathematical viewpoint, demanding an expansion in integer 

positive powers of the coupling constant, even of the asymptotic type, is tan

tamount to demanding analyticity near zero coupling constant of the quantum 

theory. However, it has been shown that this is actually not the case in toy 

models. I am referring here to some old work of Parisi [18], where the author 

infers that the ~ expansio~ for ~4 theory is renormalizable even above four 

dimensions, the only signature of the nonrenormalizability being the lack of 

analyticit},\ of the result in the self-coupling of ~- It goes without saying that an 

expansion parameter is needed, as there is no hope of solving the quantum 

theory exactly for complicated four-dimensional models. Unfortunately, it is 

rather difficult to envisage what a dimensionless expansion parameter could be 
' for supergravity theories, as they are so tightly constrained in their spectra by 

supersymmetry. 

While keeping this in mind, one must admit that the possibility of a theory 

with a finite perturbation expansion is so attractive that it deserves attention. 

Moreover, just as renormalizability served as a very useful guiding principle in 

the search for theories of strong and electroweak interact.ions, it is conceivable 

that finiteness can serve as a guiding principle in the search for a truly unified 

theory of all interactions. Thus, one can proceed and ask the well defined ques

tion of what the perturbation expansion in k looks like for {super)gravitational 

theories. There are two different kinds of approaches to this problem. The first 

one, obvious in principle but exceedingly difficult in practice, is to proceed to 

actual calculations, starting from the possibly more accessible case of pure Ein

stein quantum gravity al two loops. The other one consists in trying to gain some 

<l 
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insight into the problem by indirect means, and possibly attempting to build up 

formal arguments. 

Going back to renormalizable models with (extended) supersymmetry, I 

already remarked how until 1981 there was a rather impressive set of "experi

mental" results with apparently no explanation, most remarkable of which the 

vanishing of the {3 function for N=4 Yang-Mills up to three loops. The first half of 

1982, on the other hand, saw the occurrence of something new. Fairly rigorous 

formal arguments were proposed leading to an understanding of the results of 

Refs. [ 4-8] and to proofs of their persistence to all orders. These arguments all 

rest on making the supersymmetry more manifest than it isin the usual com

ponent formulations, where the balance between the on-shell ferrnionic and 

bosonic degrees of freedom is violated by the corresponding off-shell field 

representations. A crucial observation in this respect came in 1979, and is due 

to Grisaru, Rocek and Siegel [19]. Motivated by their own attempt to calculate 

the three-loop {3 function for N=4 Yang-Mills using N= 1 superfields, they managed 

to streamline the method of N= 1 superspace in dealing with chiral superfields, 

and it then became obvious why the Wess-Zumino model had only one renormali

zation constant. ·The second (and main) step, is a paper by Grisaru and Siegel 

[20], where it is shown that combining the familiar properties of N= 1 superfields 

with the background field method and with the working assumption that similar 

manipulations should go through with extended superfields (essentially unknown 

at the time) leads to a number of rather spectacular conclusions. The N=4 

Yang-Mills theory would necessarily be finite to all orders if it were possible to 

formulate it at least in terms of N=2 extended superfields, and actually all Yang

Mills and matter theories which admitted a formulation in terms of N=2 

superfields would be finite beyond one loop. Actually, at the time Ref. [20] 

appeared, there were some problems left before its conclusions could be made 
' 

effective for N2:2 gauge and matter multiplets. A major difficulty was the need 

for a suitable formulation of the N=2 Wess-Zumino multiplet (the so-called 

hypermulliplet), that would allow quantization along the fines of Ref. [20]. The 

long known off-shell formulation of this model [21] involved off-shell central 

charges, i.e. extra bosonic generators that vanish on-shell. The corresponding 

superspace description contained extra bosonic coordinates corresponding tt;~ 

these generators which were not integrated over, with the result that conven

tional quantization methods ran into difficulties. Howe, Stelle and Townsend [22] 

succeeded in arriving at a formulation of the hypermultiplet free from this 
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difficulty, and in fact complete N=2 superfield formulations for gauge and matter 

multiplets soon became available [23,24]. There followed, in particular, the 

existence of a whole class of completely finite renorma.liza.ble theories with N=2 

supersymmetry [25]. 

There were also several independent attempts along different lines, such as 

the work of Mandelstam et a.l. [26] that led to the construction of a supersym

metric extension of the light-cone formalism. This provided the first formal 

argument establishing the finiteness to all orders for N=4 Yang-Mills, without the 

need of any ad hoc assumption. An independent argument [27] strongly sugges

tive of the all-order finiteness of N=4 Yang-Mills had appeared some time before 

those mentioned above. The observation is quite elegant. It has to do with the 

long-known result [28] that, already in N= 1 supersymmetric theories, anomalies 

in internal symmetry currents sit in a supermultiplet together with the trace 

anomaly. As this is well-known to be proportional to the {3 function [29] for the 

gauge coupling, it follows that assuming preservation of the chiral SU4 in N=4 

Yang-Mills implies the vanishing of its (only) {3 function, and thus its finiteness. 

The (minor) weakness has to do with the assumption about the SU4 symmetry, 

which is not manifest in an N= 1 superfield formulation. This argument is actu

ally equivalent in its conclusions to assuming the preservation of SU4 and using 

the non-renormalization results of Ref. [19]. 

The arguments of Ref. [20], even if taken seriously and applied to the most 

interesting case of maximaliy extended supergravity, run into the ever present 

problem of the coupling constant with negative mass dimension, and manage at 

most to stretch the first possible onset of divergences to six loops. This, how

ever, is much better than the well-known result of two-loop finiteness, though 

obviously very far from the complete solution of the problem. The main difficulty 

with this approach is that its predictions are obtained at the expense of rather 

strong assumptions on the unknown off-shell structure of models with extended 

supersymmetry, and the auxiliary fields that serve to close off-shell the super

symmetry algebra are not known for most supersymmetric theories. ln many 

cases there are also no-go theorems [30] that, under certain hypotheses, exclude 

the possibility that any be found. These subjects will be discussed in more detail 

in Section 2, where superspace methods will be described, and the difficulties 

with off-shell formulations of supersymmetric theories will be reviewed. 

Given this rather confused state of affairs, it was found valuable to perform 

explicit calculations in some controversial case to see how matters would 
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actually turn out to be, the idea being that an explicit test of the power counting 

of Ref. [20] would bypass the difficulties connected with ad hoc hypotheses. This 

work was enterprised by Neil Marcus and myself [31-33] at Caltech and was car

ried out there over the last year and a half. The aim was to probe the power 

counting of Ref. [20] by using N=4 Yang-Mills in more than four dimensions. As 

this theory is nonrenormalizable, local invariants of higher order than those 

simply ruled out by the N=2 power counting can be probed by evaluating higher

loop corrections lo the S matrix. A novel feature of this two-loop calculation as 

compared with similar, and simpler, ones in renormalizable models, was the 

need to compute divergent parts of Green functions depending on several (in our 

case three) external momenta. An interesting byproduct of our work is a method 

[33] to simplify the evaluation of the pole parts of the integrals arising in such 

calculations. It makes them no more difficult than corresponding ones of two

point functions, and extends to higher orders of the perturbation expansion. The 

outcome of this work seemed at first very encouraging for supergravity [31], as 

we found an unexpected cancellation of divergences at two loops in six dimen

sions. This seemed to indicate that the power counting of Ref. [20] was correct 

beyond the well established case of N=2 superfields. Clearly, the argument was 

indirect and at most of suggesth•e value. However, somewhat later Howe and 

Stelle [34] succeeded in giving an altern'ative, and far more conservative, 

interpretation of the result of Ref. [31] in terms of the available formulation in 

terms of N=2 superfields [22-24], supplemented by the enforcement of the extra, 

nonlinearly realized, supersymmetries. This state of affairs undoubtly made the 

result of Ref. [31] rather empty. However, proceeding with the calculation, after 

developing the necessary more sophisticated computer techniques [35], we actu

ally obtained a negative, and thus conclusive, result. We found an explicit viola

tion of the form of the on-shell effective action assumed in Ref. [20]. The conclu

sion, unfortunately, is rather negative, and we are essentially back to not being 

able to use the power counting of extended superspace beyond N=2 superfields. 

As the N=2 power counting carries no useful information for the case of super

gravity, it appears likely that (extended) supergravity theories all diverge start

ing at three loops. This conclusion is also supported by the counterterm analysis 

of Ref. [36], which appears to exclude furth_er cancellation mechanisms, such as 

the one noted in Ref. [34]. As l have already remarked, it is not completely clear, 

at the moment, whether a divergent and nonrenormalizable perturbation expan

sion for gravitational theories should be regarded as a disease of the theories 
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themselves, or rather of our way of calculating them. At any rate, the miracles 

of supergravity at the first two loop orders [15,17] are so impressive that they 

suggest that a very economic solution to the problems of quantum gravity should 

involve supersymmetry in some way. In this respect, one should keep in mind 

that multi-local generalizations of supergravity theories, known as superstring 

theories, have been developed over the past few years by Green and Schwarz [37]. 

There are only three superstring theories in ten dimensions, usually called 

Type-], Type-lla and Type-lib. Type-II supesrtring theories contain in their mass

less sectors the two inequivalent forms of N=2 supergravity [36]. On the other 

hand, the massless sector of the Type-] theory consists of N= 1 Yang-Mills coupled 

to N= 1 supergravity [39]. Naively, this theory would sound less attractive than 

the ot~ers, because of Lhe arbitrariness in the choice of the gauge group. It has 

been known for some time that tree-level unitarily already restricts the gauge 

group to be U(n), SO(n) or USp(n) [ 40]. Remarkably, at the time of writing this 

article Green and Schwarz [41] have just shown that the cancellation of 

anomalies restricts the gauge group to be S0(32), thus making this also a unique 

theory. Whereas the features of the perturbation expansion of these models are 

very little understood at the moment, and even their formulation is not at a 

definitive stage, it has already been shown that al one loop and in d>4 they do 

behave better than their field theory limits [ 42]. What happens at the next 

orders is completely unknown at the present time, but this seems a very promis

ing way of departing from the usual description of gravity, perhaps more so than 

do conformal theories [ 43], even though these are obviously renormalizable and, 

in the supersymmetric case, even finite [ 44]. 

The conclusion is that, at the moment, we seem to have at our disposal a 

large class of finite renormalizable theories, with (extended) global supersym

metry. However, the motivation for regarding such models as fundamental 

theories is far from clear. Whereas demanding finiteness clearly restricts the 

freedom of the model builder, it would seem that, once a place is to be found for 

supersymmetry in particle physics, one should go all the way and consider 

locally supersymmetric theories, as these offer the perspective of unifying all 

interactions. ln this respect, one could conceive of finite renormalizable models 

as !ow-energy truncations of (possibly) finite locally supersymmetric theoriest. 

This could mean superstring theories, as supergravity theories seem candidate 

t I thank Neil Marcus for a discussion of tJlis point. 

< 
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to suffering to from nonrenormalizable ultraviolet divergences after the first two 

loop orders. 

All the foregoing discussion has been rather formal, as I have avoided on 

purpose to emphasize the possible effect of quantization on supersymmetry. In 

other words, I have not stressed the well-known fact that symmetries which hold 

at. the classical level may be incompatible with the ever pre.sent hidden parame-
._, 

ter of the quantum theory, the regulator that disposes of the ultraviolet diver-

gences. This leads to anomalies in classically conserved currents, such as the 

familiar chiral anomalies [ 45]. A sufficient (though not necessary) condition in 

order that a symmetry that holds good at the classical level be free of quantum 

anomalies is that there exist a regulator compatible with it. Trivially, however, 

at times a regulator can be lacking only because not discovered yet, as was the 

case for Yang-Mills gauge theories before the advent of dimensional regulariza

tion [46]. :Even though, to be precise, one should admit that really rigorous 

proofs of the renormalizability of Yang-Mills theories have followed the introduc

tion in Ref. [ 46] of a gauge invariant regulator, one should recall that highly 

credited work on the subject [ 47] has actually preceded it. The work of, e.g, Refs. 

[ 4 7), was aimed at proving something which, in essence, is equivalent to the 

existence of a symmetry respecting regulator. This is the possibility of using an 

existing. symmetry violating regulator (in that case the Pauli-Villars method 

[48)), while still achieving the preservation of the gauge symmetry ( i.e. the 

fulfillment of the corresponding Ward identities) by means of the addition of suit

able extra finite counterterms. 

The state of the art for supersymmetric theories can be summarized as fol

lows. There does exist a proposed symmetry preserving regulator. It was origi

nally designed by Siegel [ 49] in order to maintain the balance between fermionic 

and bosonic degrees of freedom unaltered upon continuation to a non integer 

number of dimensions. ·This regularization method can thus be regarded as an 

extension to a non integer number of dimensions of the technique of dimensional 

reduction, which had so much success in its application to the construction of 

supersymmetric models (see, most notably, Ref. [50]). The prescription is to 

continue in the number of momenta, while keeping the Lorentz indices on the 

external fields untouched, which ensures that subtraction of pole parts alone 

does preserve supersymmetry. Unfortunately, this scheme involves manipula

tions of different kinds of indices, and some ambiguities do arise. This became 

clear very early to the author himself [51]. Recently, some work of van Damme 

"'~ 

10 

and 't Hooft [52] raised the question again. The idea behind it is interesting. It 

sends us back to the situation for Yang-Mills theories at the beginning of the last 

decade, and to the work of, e.g., Refs. [47]: compute in dimensional regulariza

tion, and see whether the results of dimensional reduction can be reached by 

means of a suitable non minimal subtraction scheme. This work raised a large, 

interest in the community, especially since it appeared· that an incompatibility 
.·· --

was arising. Clearly, this would be disastrous for theories• like supergravity, for 

which the supersymmetry current is a gauge current. At the. time of this writing 

the situation has apparently been clarified by Jack and Osborn [53], and the work 

of Ref. [52,] has turned out to contain numerical errors which invalidate its ear

lier conclusions. Thus, there appear to be no difficulties, at the perturbative 

level, in quantizing supersymmetric theories, and dimensional reduction is 

equivalent to a non minimal form of dimensional regularization. Strictly speak

ing, this has been shown to be the case at the two-loop order for renormalizable 

models. However, it confirms the findings of several groups that have long used 

dimensional reduction successfully, even with non supersymmetric theories 

[54,31,32]. 

This concludes the historical survey of the problem. The remaining Sec

tions are meant to be more technical. They deal in somewhat more detail with 

some of the points mentioned above. Hopefully, they should make the discussion 

here more concrete, while at the same time conveying some basic information to 

the more unexperienced reader. The plan of the remaining Sections is as follows. 

In Section 2 superspace methods are reviewed, starting from the very beginning, 

at least insofar as is needed to discuss the power counting of Ref. [20]. This 

material is mostly well-known, and two textbooks are now available, with 

different levels of completeness (and complexity!) [55,56]. Thus, I will try to be 

concise. Section 2 also contains brief discussions of the finite models with global 

supersymmetry, and of the difficulties one encounters when attempting to find 

off-shell formulations for supersyrnmetric theories. Section 3 addresses in 

somewhat more detail the issue of the consistency of dimensional reduction and 

illustrates the results of the work of Refs. [31-33]. The discussion summarizes 

the main points arrived at here. Finally, the Appendix contains a brief discussion 

of two-component formalism, at least isofar as is needed in Section 2. Here I 

have made use of Ref. [58), where more details can be found. 

An excellent review of these subject matters was written last year by West 

[59]. Consequently, as J have tried to make this discussion self-consistent, some 
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overlapping has been unavoidable. 

2. Superspace, Superfields and The Supcrspace Power Counting 

Superspace [60] is a very useful tool that enables one to make supersym

rp.etry into a manifest symmetry. This is achieved by adjoining to the commut

ing space lime four-vector coordina'te xP. a set of anticommuting spinorial coor

dinates (one of them and its complex conjugate for each supersymmetry). These 

are actually merely labels, since their third power vanishes as a consequence of 

anticommutativity. ThusT 

zatt ~ zatt ' eai e;a (2.1) 

Supersymmetry transformations appear as particular coordinate transforma

tions in this extended manifold, such that 

ox"ti = i. (E"·Ii 0"' + t"' if.li) 2 \ \ (2.2a) 

oO"' = i e"' . (2.2b) 

Ordinary fields then generalize to superfields, which are functions of all the coor

dinates of the extended manifold. In practice, the 0-dependence is rather trivial 

as a consequence of anticommutativity, and superfields are just polynomials of 

finite degree in 0. They provide a convenient·way of grouping together the fields 

of a supersymmetry multiplet. For example: 

.P[x,O] = ¢(x) + 0"1 1ji41 (x) + (2.3) 

The field components can then be recovered by laking successive derivatives of 

the superfields at 0 = 0. The problem, of course, is to recognize a given super

multiplet inside a superfield and to write down actions in terms of superfields. 

For simplicity, I will now concentrate on the case of N= 1 superfields, for which all 

is known and writable in a rather accessible form for all models of interest. A 

superfield without any Lorentz indices, 'l>[x ,0 ], transforms as 

i!J[x,e]~ .P[x+ox,O+oO] (2.4) 

under a supersymmetry transformation. The coefficient of the highest power of 0 

T For two-component notation see the Appendix. 
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cannot, so to speak, bear any more O's. It follows that it must transform as a 

total divergence under supersymmetry. Inside .a space time integral, this pro

duces a (harmless) surface term. Thus, one can write invariant actions as 

integrals over all superspace of products of superfields 

J d 4 x d 4 0 L[.P[x,O],a i!J[x,O]] , (2.5) 

where the familiar Ber.ezin integration, which is tantamount to differentiation, 

picks out the highest component of L. 

The problem is to gain control over the formalism, and to write down the 

proper action for the models of interest. This requires choosing the right 

superfields, and often achieving a way to truncate their 0-expansion without 

imposing any condition on the x-dependence of a minimal number of component 

fields. This truncation is obtained by imposing constraints on the superfields, 

often in the form of differential equations in 0. The constraints are properly dis

tinguished into on-shell ones, which do imply the equations of motion for the 

component fields, and off-shell ones, which do not imply the equations of motion 

for the component fields, and can thus lead to the construction of off-shell 

Lagrangians. I will describe here the superspace formulations of Wess-Zumino 

multiplet [61] and of the Yang-Mills multiplet [62]. This material is well known. 

Therefore, the description that follows is rather sketchy. I hope, however, that it 

will suffice to make the discussion presented at the end of this Section more 

intelligible, at least insofar as the main ideas are concerned. 

First of all, in analogy with what done for usual Poincare invariant theories, 

one introduces representations of the symmetry generators in terms of 

differential operators on the manifold. Thus, from eqs. (2), and specializing to 

the case of N= 1 superspace, 

Q=ia+laaa a a 2 ~ ate (2.6a) 

-Q - ·a 1 0" a a -1- .,+ 2 aa (2.6b) 

The supercharges in eqs. (6) satisfy 

{ Qa, Q;.} = iilaa (2. ?a) 

{Qa,Qp}=O (2. ?b) 

<:: 
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For extended supersymmetry eqs. (7) would generalize into 

{ Q.,,, QJ;.} = i 6/a.,a. (2.Ba) 

{ Qai, Qflj} = i£a{IZ;; (2.Bb) 

The first of eqs. (B) is the obvious generalization of the first of eqs. (7), but the 

second of eqs. (B) contains new generators, Z;.;. which generate the so called cen

tral charge transformations [63). 

Going back to eqs. (6), it is clear that the 0 and 0 derivatives do not anticom

mute with the supersymmetry generators, and are therefore not very convenient 

in the construction of invariant actions. It is better to work with the covariant 

spinorial derivatives 

- i ;;"!; D.,- a.,+ 2 a a.,a. (2.9a) 

- i 
Da.=al>.+ 2 aaa.,a. (2.9b) 

which do anticommute with the supersymmetry charges. They satisfy the alge

bra 

{D.,,D.;} = i a.,(lo. (2.10a) 

{D.,,D~ = 0 . (2.10b) 

Then, one can impose differential constraints, for example by applying covariant 

spinorial derivatives to superfields. For the Wess-Zumino multiplet one needs a 

complex dimension 1 ( i.e propagating) scalar, a Weyl spinor and a complex 

dimension 2 (i.e. auxiliary) scalar. This set of fields is contained, for example, in 

a superfield shortened by the chirality condition 

Da.4> = o (2.11) 

will do. Indeed, expanding¢ in components gives 

4>(x) = A(x)+ 0" >...,(x) + 92 G(x) + (2.12) 

and the remaining components are all space time derivatives of these. The three 

fields above are just the propagating scalar, the spinor and the auxiliary scalar of 

the usual component formulation of the Wess-Zumino model [3]. It should be 

noted that the constraint in eq. (11) does not imply any x-equation for the 

independent fields inside 4>. J'he situation would be quite different if, together 

•.:. 
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with eq. (11), one had also imposed its complex conjugate. Then, on account of 

eq. (lOa), the superfield would contain only fields constant in x-space. The con

clusion is that a complex scalar superfield subject to a chirality constraint is 

wbc:\. one needs to describe the Wess-Zumino multiplet. The chirality constraint 

does not imply any component field equations (i.e. it is an off-shell constraint), 

and therefore one can write invariant actions by writing suitable 0-integrals con

taining 4> and ~- Renormalizable couplings are then selected by the restriction 

that the corresponding coupling constants be of nonnegative dimension. For 

example, the Wess-Zumino model with renormalizable couplings would look like 

I d.4x d.48 ~ q, + (m I d.4x d.28 q,2 + g I d.4x d.28 q,s + h.c) ' (2.13) 

and this expression can be "guessed" using just dimensional analysis. It should 

be noted that the last two integrals- above are only over a subspace of the super

space. They are called chiral integrals, and do produce supersymmetric invari

ants on account of the constraint {11) on 4>. Equivalently, chiral superfields 

could be regarded as derivatives of unconstrained superfields [64), i.e. 

4>=J52U, (2.14) 

where U has the gauge invariance 

6U=D""Aa. (2.15) 

As a second, and more complicated, example, consider N=1 Yang-Mills [62). 

This four-dimensional model describes the interactions of a multiplet of vectors 

with one of Weyl spinors, both in the adjoint representation of a gauge group. 

Thus, in components the action is simply 

S =I d. 4x (- tF;v + iX:1 >..) {2.16) 

The terms are written in four-component notation, and have the usual 

definitions: 

F!v = a"A~ - avA~ +/abe At A~ (2.17a) 

V">..a = a~'>..a + g !abe At >,.e (2.17b) 

To describe the theory in superspace, one introduces gauge covariant 

derivatives v.,, va and voa• which is tantamount to introducing superfield 
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potentials (much too many!) A,., A0 and A00 . Then one uses the covariantization 

of the first of eqs. (10) to express A,.il in terms of A,. and Ail, i.e one writes 

{V0 , Vii}= i V,..; . (2.18) 

This is actually a constraint, though a trivial one. It amounts to merely resolving 

the ambiguity in the definition of V,. 0 • In fact eq. (18) could at most look like 

{V,.,Va}=iV,.ii+Fail. (2.19) 

with F,..; a field strength. However, adding a covariant object to a covariant 

derivative produces an equally suitable covariant derivative. On the other hand, 

the second of eqs. (10) and its complex conjugate could generalize to 

{V,., V11} = F,.p , 

{Vii, V~};::: F.;~ 

(2.20a) 

(2.20b) 

The proper way to interpret these equations is, to look at "6 = 0". Then F,.p starts 

with a self-dual tensor (see the Appendix) of dimension one. This clearly cannot 

be identified with AI'-~ A,.0 , nor with the Weyl spinor A0 • Thus, one concludes that 

the field strengths F,.p and F0~ must both vanish •. which leads to the nontrivial 

constraint 

{V0 ,Vp}=O, (2.21) 

together with its complex conjugate. These constraints on the covariant deriva

tives are conditions on the potentials A0 , A0 and A00 , and allow one to express 

them in terms of a more basic object, the prepotential. 

Before heading for the prepotential, let us recall that there exist algebraic 

relations between the covariant derivatives known as Bianchi identities. These 

are trivial if no constraints are imposed, but are very useful when working with 

constrained objects. They allow one to find all the independent field strengths of 

a theory, both on-shell and off-shell. These are clearly very useful objects in con

structing supersymmetric invariants. One starts by listing all the Bianchi iden

tities in order of increasing dimensionality (Va and Va both have dimension t· 
whereas v,..; has dimension 1): 

[{V0 ,Vp}.V-y] + [{V~,\\}.V0 ] + r{v-y,Vo}.Vp] = 0 

[ { V,. ,Va}. V11 l + [ { Va. V~P'a] + [ { Vp. V0 }. V a] = 0 

' 

(2.22a) 

(2.22b) 

[{V,. 0 ,V,.},V~) + [{V0 ,Vp}.V00 ] + [{Vp.V00 },V0 ] = 0 

[{V00 , V0 }, V~] + [ {V0 , V~}. Vaa] + [{ V~, V0 "}, Va] = 0 

[{V00 ,V11~},V-y] + [{V11~,V7},Vaill + [{V7 ,V00 },V11~] = 0 

[{Vaii'VII~},Vn] + [{VII~'V77},Vaal + [{Vn,Vaill.Vp~] = 0 

16 

(2.22c) 

(2.22d) 

(2.22e) 

(2.22f) 

One then enforces in these otherwise trivial identities the constraints discussed 

before, and other similar ones involving higher order field strengths. In the list 

of eqs .. (22a)-(22f) I have skipped some which are trivially complex conjugates of 

those listed. Eq.(22a) is identically satisfied, and eq. (22b) implies that 

[{V0 ,Vii}.V11 )=£ 0 pWil. (2.23) 

In fact, the l.h.s, being antisymmetric in a. and {3, can only be proportional to the 

SU(2) metric Eall (recall that in this notation a. = 1,2 and a= 1,2). This allows one 

to solve for Wil, and thus for W0 , as 

W0 = t[{V0 ,Vii}.Vil) (2.24) 

At this point one can proceed in two ways. The first is simply to keep on inserting 

eqs. (23) and (24) in the remaining Bianchi identities (eqs. (22c)-(22f)). The 

other, more handy procedure, consists of taking successive derivatives of W0 . 

There would seem to be the problem of establishing when to stop. This, however, 

is clear if one recalls what said above about the constraints. Everything is always 

interpretable, provided one looks at the 9 = 0 part of the superfields. Thus, W0 

contains the spinor at 6 = 0, and differentiating it will say something about the 

vector field strength. Subsequent differentiations contain information about the 

field equations, i.e. give a foolproof procedure to establish whether the con

straints put the theory on-shell, the field equations being easily recognizable 

using the "6 = 0 trick" mentioned above. The auxiliary fields appear as a whole 

superfield that, when set to zero, puts the theory on-shell. They are in a multi

plet with the field equations, and the auxiliary field superfield contains all the 

field equations at successive orders in 9. To see how all this works let us 

differentiate eq. (24) with respect to 0~. This gives 

{\8 . W"} = t{v~,[{V0 ,V0 },Vil]} (2.25) 

which, using the lnwcr lb,r:·. ',i idr;nl:lies, lhe constraints and eq. (23) can be 

c • 
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written 

1 
{V~. w .. } = - 2{v~. w .. } (2.26) 

Thus, W0 is the gauge-covariant generalization of a chiral superfield. One can 

also differentiate with respect to Oil. The result can be trivially decomposed into 

irreducible pieces as 

{V11 ,W0 }=it.,IID+Galf, (2.27) 

where G.,11 is symmetric in its two indices. It is (see the Appendix) the self-dual 

part of the vector field strength, the only object that the component theory of eq. 

(16) contains at dimension 2. Thus, the superfield D is the auxiliary field 

superfield, and its 0 = 0-component is the familiar pseudoscalar auxiliary field for 

the Yang-Mills multiplet [62]. Setting D to zero puts the theory on-shell. Indeed, 

in this case contracting a. and {J eliminates the r.h.s., and then differentiating 

with Va and using the chirality of Wa and eq. {24) yields 

{Vaa• W"} = 0 , {2.28) 

This clearly contains the Dirac equation for the spinor at 0 = 0. One more 

differentiation would generate the vector field equation. 

We have thus seen how setting the auxiliary field superfield to zero puts the 

theory on-shell. The example I have discussed is rather elementary. The lesson, 

however, is that deriving on-shell constraints is always conceptually simple, and 

the component theory serves as a guide all the way through. All one needs to do 

is set to zero all the field strengths whose.O =0 parts are not present in the com

ponent theory formulated without auxiliary fields. This, however, is by no means 

a pointless exercise, and provides a very elegant approach for analyzing compli

cated theories and deriving their complete field equations and supersymmetry 

transformations (for the application of these techniques to supergravity see, 

.e.g., Refs. [64]). For our purposes, the interest in such formulations stems from 

their allowing one to simply classify on-shell invariants, and thus divergences of 

the S matrix as allowed by the theorem of Ref. [20]. 

The really difficult problem is to formulate the theories off-shell or, in the 

corresponding component approach, to find the auxiliary fields that close the 

supersymmetry algebra off-shell. The complete solution to this problem is unk

nown at present, and many failed efforts have even led to the no go theorems of 

Ref. [30], which exclude the possibility that auxiliary fields be found for {almost) 

(" 
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all multiplets of N>2 supersymmetry. Whereas such theorems always rest on 

working hypotheses, the lesson they convey is clear. If off-shell formulations 

exist in the cases excluded by the theorems, they must have a rather unfamiliar 

look. Thus, also their quantum properties may be very different from what one 

would expect. I will return to this point at the end of this Section. 

To complete the discussion of the superspace formulation of N=1 YangcMills, 

I will now show how one goes about finding a prepotential and the superspace 

form of the action. For this case the solution was originally" guessed" [62]. This 

was possible because the constraint (21) that one must solve is very simple. It is 

the statement that the covariant derivative Da is the one suited for the pure 

gauge t:ase, i.e. 

V
0

=e-nD
0

e 0 , {2.29) 

where 0 is a general {complex) scalar superfield. The solution for Va is then 

obtained by complex conjugation. Here 0 has the gauge invariance 

6en = e-IA en eiK , {2.30) 

with K a real superfield and 7i. an antichiral superfield. It should be noted that 

the 7i. transformation affects only the prepotential, but not the potential A 0 . It is 

usually called a pre-gauge transformation. Actually, there exists an elegant way 

of arriving at this result [24] that also works for more complicated cases. All one 

does is notice that the covariant derivatives are functions of the gauge coupling 

constant. Differentiating eq. (21) with respect to it gives 

dVIIl} = 0 
{V(a• ri"g (2.31) 

where the parentheses denote symmetrization. On account of eq. (21), eq. {31) is 

clearly solved by 

dVa = (V .. ,O] 
dg 

{2.32) 

with 0 an arbitrary scalar superfield. 0 is the prepotential. The problem is 

integrating the matrix differential equation. In this case the solution is very 

simple, and is eq. (29) (once the coupling constant is set back to one). In general, 

however, a closed-form solution is not possible, and one must content himself 

with a power series in g. The superspace action for N= 1 Yang-Mills is then 

obtained by noticing that, rurely on Jimensional grounds, the only gauge 
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invariant object of the right dimensionality one can write is 

Tr I d 4 x d20 ( W" w" + h.c) . (2.33) 

The reader more familiar with N= 1 supers pace formulations will recognize that 

this description has some redundancy built in with respect to the conventional 

one in terms of a real scalar superfield V, with gauge invariance 

oeY:e-iheYeiA (2.34) 

where A is a chiral superfield. The formulation of eq. (29), usually called vector 

representation (see Ref. [56] for more details), stands to the usual one as the 

vielbein formulation of gravity stands to the metric formulation. The conven

tional formulation can be recovered by means of a partial gauge-fixing, whereby 

the parameter Kin eq. (30) is used to gauge away the imaginary part of n. 
I have already remarked that superfields are very convenient objects for 

deriving power-counting restrictions on the occurrence of particular kinds of 

counterterms. In this approach there are two steps: 

(a). An off-shell superfield analysis, which examines the features of the pertur

bation expansion, and thus sorts out the kinds of structures allowed for the 

divergences; 

(b). An on-shell superfield analysis, which shows which of the structures of the 

type in (a) survive on-shell. This step is, in principle at least, straightfor

ward in all cases. 

The really difficult problem is to find a suitable set of off-shell constraints for the 

covariant derivatives. This is the starting point for quantum calculations. The 

idea behind the power counting of Grisaru and Siegel [20] is then simple, at least 

in principle. One gains experience from the rather handy case of N=1 superfields 

by performing calculations "cleverly", i.e. by generating the least number of 

unnecessary terms at intermediate stages (in gauge theories this requires the 

use of the background field method to enforce gauge covariance at all stages). 

The result is that some structures are not generated at all, and must thus be 

absent from the list of all possible divergences. This analysis rests on the work of 

Refs. [19,20]. The conclusion is the following: 

(1) All divergences are local complete 0-integrals, i.e. no integrals over sub

spaces of the superspace are allowed. 

,. 

20 

(2) The integrands are gauge-invariant functions of connections and field 

strengths only (i.e., in the example of N=l Yang-Mills discussed above, only 

Aa, A., and A"" are allowed, not V!). 

Since connections and field strengths, as well as 0 integration measures, all have 

positive dimensionality, this puts strong restrictions on the existence of possible 

counlerterms. 

In order to have some say about the really interesting case of N>1 super

symmetry, for which the off-shell superfield formulations are mostly unknown 

(and often believed not to exist [25]), one needs some working hypotheses. In 

Ref. [20] the implicit working hypothesis is that similar manipulations to those 

possible for N= 1 should go through for N>1 formulations, if these exist. This 

leads to rather surprising results. 

For N-exlended Yang-Mills at more than one loop in a background field gauge 

divergences would lake the form 

(g2)L-! I ddx d4No J(A, W) (2.35) 

where A and W denote generically the connections and field strengths of the 

theory. The lowest-dimensional suitable f is of the form 

A W +(higher order in A) , (2.36) 

which is gauge invariant modulo a total derivative on account of 

oA=DA+(more) (2.37) 

and of the typical on-shell Bianchi identity 

D W +(more) =0 (2.36) 

Given that f in eq.(35) has at least dimension 2, the condition that the effective 

action be dimensionless yields the restriction 

(4-d)L+2(N-l)>O (2.39) 

using the dimensionality of g 2, (4-d) in d dimensions. Similarly, the lowest

dimensional counterterrn for supergravily is the superspace analogue of the 

cosmological term, 

(k2)L-!I d<lxd 4"'0sdet(E) , (2.40) 

where E is the superfield generalization of the vielbein, usually called 

~ f] 
-, 
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supervielbein (see Refs. [55,56] for more details). Counting powers again and 

recalling that k 2 has dimensionality (2-d) in d dimensions then gives 

(2-d)L+2(N-l)>O. (2.41) 

Eqs. (39) and (41) are what I referred to as the power-counting of Grisaru and 

Siegel [20]. It should be stressed that, whereas the derivation above is rather 

trivial, it rests on a nontrivial analysis of the superspace perturbation theory, 

which is at the heart of Ref. [20] (see also Ref. [25]), where it is shown that condi

tions (1) and (2) above do.indeed hold for N=l superfields. Referring to the dis

cussion of N= 1 Yang-Mills presented above, these statements are proved by show

ing that one· can actually perform calculations in the background field method 

without ever expressing the background covariant derivatives in terms of the 

background prepotential. 

I. 

Several remarks are in order here: 

First of all, a technical one. In Ref. [20] it was noticed how a difficulty would 

arise at one-loop. In facl, manifest background covariance would lead in 

this case to an infinite tower of ghosts coupling only to the background 

fields, which thus contribute only at one-loop. Breaking background covari

ance would terminate the chain of ghosts, but would also alter the one-loop 

counterterms by making them noncovariant. Thus, barring more detailed 

analysis in special cases, the power counting only applies to diagrams with 

more than one-loop. For more details see Ref. [25]. 

II. The second remark is that the power-counting stems from a set of sufficient 

conditions, and can be improved by detailed case-by~case analysis, if the 

corresponding lowest dimensional counterterms happen to vanish. As they 

stand, however, eqs. (39) and {41) already produce a number of very 

interesting results: 

(a). N'2:2 Yang-Mills coupled to N=2 matter is finite beyond one loop in four 

dimensions, if an N=2 superfield formulation respecting the conditions 

{1) and {2) given above can be found for it. This is a rather impressive 

result indeed. Since N=2 superfield formulations have been con

structed [21), this provides a very simple finiteness proof for N=4 

Yang-Mills [20,25], alternative to the one previously given using light

cone superfields [26). Moreover, a closer analysis reveals that there is 

a whole class of globally supersymmelric renormalizable theories with 
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N=2 supersymmetry which are finite to all orders. These were found in 

the first of Refs. [25] by demanding the cancellation of the one-loop 

contribution to the ,8-function, which forces one to choose suitable 

gauge groups and suitable group representations for the matter multi

plets. This is sufficient, because finiteness beyond one loop is 

guaranteed by the power-counting of Ref. [20] and by the existence of 

the relevant superspace formulations [22-24]. The condition one finds 

for one-loop finiteness is 

L; '171.; T(.R;) = C2(G) {2.42) 

' 
where one considers '171.; N=2 hypermultiplets in the representations R; 

and J?., and where C2{G) denotes the Casimir for the adjoint representa

tion of the gauge group G. Clearly, there are many solutions to this 

condition. Actually, eq. {42) can also be generalized [66]. In fact, if 

some of the representations for the matter fields are pseudoreal, they 

do not need to be" doubled", and one obtains the condition 

1 
~m; T(R;)+ 2~m; T{l?p;)=C2{G) . 
\ J 

(2.43) 

For more details, see Ref. [66], where a list of solutions can be found. 

Interestingly, one can also add extra terms that violate N=2 supersym

metry, while still preserving the finiteness. This was noticed by Parkes 

and West [57]. The interest in this option is, of course, the greater free

dom this allows in the process of model building with finite theories. 

The solution is not as inelegant as one may think, because supergravity 

couplings. after spontaneous breaking of local supersymmetry, induce 

terms which, at low energies, look like explicit breakings [67]. For 

more details, see Ref. [59]. 

{b) For supergravity, the success of a power-counting approach is doomed 

to be rather limited, because these theories are power-counting non

renormalizable. Still, eq. {41) tells us that, if N=B supergravity could be 

formulated in terms of N=B superfields, the first possible onset of ultra

violet divergences would be ipso facto postponed to seven loops, an 

encouraging improvement with respect to the obvious three-loop bar

rier. The state of the art, however, is not so encouraging. The 

theorems of Ref. (30] do not allow any conver1tional formulation of N=B 
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supergravity in terms of N=8 superfields, leaving at most the possibility 

of a straightforward formulation in terms of N=4 superfields. This 

could in principle be done using the known off-shell formulation of N= 1 

supergravity in ten dimensions and allowing for the existence of a set of 

four off-shell gravitino multiplets [25], a possibility not excluded by the 

counting arguments of Ref. [30]. At any rate, this would bring the first 

possible onset of divergences down to three loops again, just as would 

be the case for a component formulation. The possibility of unconven

tional formulations is, of course, left open. The very applicability of the 

power counting beyond N=2 superfields can be examined by direct cal

culation. I will come back to this point in the next Section. 

Ill. The third remark is meant to emphasize what the heart of the problem is. 

have already stressed that the power counting rests on a working assump

tion, namely that the manipulations carried out in the handy (and well 

known) case of N= 1 superfields do have some bearing on the really interest

ing case of N>1 superfields. This is a very strong hypothesis, in fact stronger 

than the hypothesis that the corresponding off-shell superfield formulations 

exist. It amounts to assuming that N>1 superfield formulations bear a close 

resemblance to N= 1 ones, which appears dubious, in view of the no go 

theorems of Refs. [30]. The main hypothesis these theorems rest upon is 

that the spectra of the theories can be read from their quadratic terms, i.e. 

that no cubic or higher order Lagrange multiplier terms are needed to 

determine them. Within this assumption, it can be shown that there are no 

auxiliary fields closing the off-shell algebra for N=4 Yang-Mills and for a 

number of other models [30]. This is done by showing that two equivalent 

ways of counting the fermionic auxiliary fields needed for the off-shell clo

sure of the supersymmetry algebra give different, and thus inconsistent, 

results. One of these uses the known dimension of off-shell representations 

or superfields, and the other follows from the observation that fermionic 

. auxiliary fields must come in pairs, say 

x"l/1. (2.44) 

simply because one needs two different fields of half-odd-integer dimension 

to construct an invariant of dimension four. As a word of caution, one 

should note that the apparently insignificant restriction on the Lagrange 

multipliers actually fails for as familiar a case as that of nonlinear a models, 
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and relaxing it allows off-shell Lorentz covariance [68] for one of the two ine

quivalent forms of N=2 supergravily in len dimensions [69], a problem 

known to be otherwise insoluble [70]. 

3. The Breakdown of The Power Counting 

The discussion presented in Section 2 was meant to emphasize one point. 

Superspace is a very powerful tool for analyzing divergences in supersymmetric 

theories, with great effectiveness in the case of renormalizable, and thus globally 

supersymmetric models, where the hypotheses underlying the power-counting of 

Ref.[20] have been substantiated by the explicit construction of the correspond

ing N=2 superfield formulations [22-24]. The reason for this success is twofold. 

First of all, the models are renormalizable, and thus power counting arguments 

have a good chance of being effective. Moreover, one only needs N=2 superfield 

formulations in order to exploit the power counting o~ Ref. [20] in all its strength. 

On the other hand, for supergravity theories the nonrenormalizability requires 

that stronger hypotheses be made on their superspace formulations to arrive at 

nontrivial, though only partial, results. The same is true for higher-dimensional 

Yang-Mills theories, again by virtue of their nonrenormalizability. Since N=4 

Yang-Mills [5] is one of the models for which no conventional superfield formula

tion is possible, the study of its ultraviolet behavior in d>4 can in principle lead 

to useful indications for the more interesting, and far more difficult, case of 

supergravity. This analysis was carried out in Refs. [31-33] by Neil Marcus and 

the author. There we computed the divergences of the four-spinor S matrix 

amplitude at two loops for N=4 Yang-Mills in four, five, six, seven and nine dimen

sions. We used the Wick rotated action in components written in ten-dimensional 

notation, 

S= dlOz --F2 --"AJ"A 1 ( 1 i- ) 
4 IW 2 ' (3.1) 

where A. is a Majorana-Weyl spinor and the definitions of the terms above are the 

same as in eqs. (2.17). The corresponding one-loop analysis had already been 

carried out by Green, Schwarz and Brink [ 42], by taking the zero slope limit of 

the corresponding superstring amplitude. Their result, however, has no direct 

bearing on the validity of the superspace power-counting which, as I have 

emphasized in the previous Section, does not apply to one loop. 

·-
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The theory was regularized using the dimensional reduction scheme [ 49], 

whereby external field indices are kept of fixed dimensionality upon regulariza

tion, which only affects the momenta. These are continued from d dimensions to 

(d--£) dimensions, just as in conventional dimensional regularization. Dimen

sional reduction preserves the equality of Bose and Fermi degrees of freedom 

upon regularization. Thus, it allows for calculations done in the convenient 

minimal subtraction schem.e, whereby only pole parts are subtracted, which at 

the same time preserve the Ward identities ·of supersymmetry. 

Dimensional reduction is somewhat tricky to use, as it involves an algebra of 

formal manipulations of objects of two distinct kinds, d-dimensional indices and 

(d-£)-dimensional indices. That there are some ambiguities hidden in the 

corresponding large set of rules has long been noticed by Siegel himself [51], 

shortly after introducing the new regularization scheme. In fact, the ambigui

ties all have to do with manipulations of£ symbols, objects which are actually not 

susceptible of a consistent definition in the conventional dimensional regulariza

tion scheme [ 45]. The point is that dimensional reduction can give one the illu

sion that £ 's can be manipulated naively, with potentially disastrous conse

quences. For example, in d dimensions, the product of two £ symbols can be 

turned into a product of o's . Considering for simplicity the case of two

dimensional Euclidean space, one has 

Ea/1 £ 76::: Oft 0!- 0~ Of . (3.2) 

This, however, yields zero if one specializes cr. and P to lie in a (ct-£)-dimensional 

subspace and -y and o to lie in the orthogonal £-dimensional one, and leads to 

different results for the two manifestly identical expressions 

f!a/1 £76 Ea/1 t76 ' (3.3) 

and 

Ea/1 Ea/1 £76£76 (3.4) 

On the other hand, dimensional regularization works with (ct-£)-dimeiisional 

indices, and does riot allow for a consistent definition of£ altogether. In particu

lar, it does not let one write eq. (2). Thus, it calls for caution whenever such 

quantities are present. We know that this should be the case, because£ symbols 

call for axial anomalies. These, in turn, imply an incompatibility between the 
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conservation of two quantities, that as such can be resolved only as a result of a 

deliberate choice. Whenever anomalies happen to cancel, the ambiguities also 

resolve because the choice then becomes unique. The conclusion is that E's have 

to be dealt with carefully anyway, and the remarks of Ref. [51] appear not very 

significant. This subject matter can actually be investigated in detail, by com

paring results obtained by dimensional reduction with corresponding ones 

obtained by the conventional dimensional regularization scheme, where one 

allows for nonminimal subtractions. This approach was suggested by van Damme 

and 't Hooft [52], and also pursued by others [53]. Whereas Ref. [52] contained 

several numerical errors and correspondingly wrong conclusions, the work of 

Ja.ck and Osborn [53J is apparently free of errors. Their result is that, at the 

two-loop level. minimal dimensional reduction is equivalent to a nonminimal 

form of dimensional n~gularization. This is tantamount to saying that, to this 

order, there are no inconsistencies between supersymmetry and quantization, 

and implies that supersymmetry currents do not suffer from anomalies. This is 

very relieving, because for supergravity the supersymmetry current is a gauge 

current, and anomalies in it would destroy such theories completely, in a far 

more unquestionable way than ultraviolet divergences. 

Then, going back lo the discussion of Refs. [31-33), one recognizes that, 

when calculating in components, supersymmetry is only broken by the gauge

fixing procedure. The S-matrix, being gauge independent, is guaranteed to be 

supersymmetric. Calculating a four-spinor S matrix element thus tells the whole 

story about _all the four-particle amplitudes. The .results we found are summar

ized in the table below. 

N=4 Yang-Mills at One and Two Loops 

Dimensions 

Loops 4 5 6 7 8 9 10 

1 F T F T I a T !Io 

2 F F F [? - lg -

Here T stands for trivially finite, which is the case of all dimensionally regular

ized amplitudes in odd dimensions at odd numbers of loops, F stands for finite, 

and I stands for infinite. The subscripts label the form of the divergences 

encountered. The cases of ct =8, 10 at two loops were not considered, because the 
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theory was already known to be one-loop divergent there. A very useful device in 

analyzing the results was provided by Ref. [ 42]. There it ·was shown that all one

loop infinities in the four-particle S matrix of this theory could be recast as pro

ducts of a common kinematic factor, which can be written 

1 -
F!J.V Fvp Fpo FO!J.- 4 F!J.V F!J.V Fpa Fpo + 2i A 'Ia a{J A Fa1 F/11 

.- 1-
-t A 1a!l1 'A Fa6 a1 Fp6- 3" 1a ap X F01 Fp1 (3.5) 

and of totally symmetric "group theory" factors, containing at times the 

Mandelstam-type differential operators s = 2p 1p2. t = 2p 1p 3 and u = 2p 1p 4. Thus, 

apart from the common kinematic factor of eq. (5). 

fe=(4~;4.( D +t[ H +X]), (3.6) 

and 

' q~ ( ( >---< flo=---•- s + 
350 (-~;r) 5 c X J 

+t r X X] +u [-)--(-X]] (3.7) 

Here the group theory factors are described graphically using a notation first 

introduced by Cvitanovit5 [71), whereby the structure conslants Jabc are 

represented by a trilinear vertex: 

Jabc -. I (3.8) 

On account of total antisymmetry, the vertex changes sign upon interchange of 

any two of its three legs. The features of this notation as applied to this case are 

described in detail in Ref. [32]. At two loops the divergences take similar forms 

with, however, more complicated group theory factors, as allowed by the larger 

number of structure constants present in lwo-loop graphs. Thus 

QG;T 
17 = (4a)~ [ 

/, \--.) 
s(-~ 1:1 

:J ~:: ; 
'• 

~ 

1 [ )---! + ',~ ) + - \ /-...... :;o 
) 

and 

+ t ( i·)~f 
9 y + 90 [X- '-><:]) 

+u (f~/ + 90 [->--<-X J ) J 

/g= Gq;~cl3o524stu ( D + i (>-<+X J) 

13 't:r' 
-

53
( 4536 \{ 

+ __ 5_ 
133056 

t3( 13 •11-r + . 5 l 
-1536 <?! 133006 

[ J- x l ) 

>-< .+ ':><' )) 

-u ---- • + --3( 13 -~· 5 X ) J 
'1536 • 133055 [- >--< - ) 
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(3.9) 

(3.10) 

Actually, in Ref. [32) we have only computed the four-spinor piece of these terms, 

and we have let supersyrnrnetry determine the other pieces. lt should be noted 

how the two-loop divergences continue the structure of the one-loop ones first 

found in Ref. [ 42), where this was actually conjectured to occur. Assuming that 

this pattern continues to all orders (probably a consequence of supersymmetry, 

but this has not been proved in general), there follow the power counting rules 

[ 42] 

2 
d<4 + y; 

for N=1 supersymmetric Yang-}.lills, and 

2 
d<2 + y; 

(3.11) 

(3.12) 

for N=8 supergravity. lt should be noted how eq. (11) fails to predict the finiti

ness at two loops in six dimensions. The result (12) suggests that N=8 supergrav

ity should diverge at three loops in four dimensions. 

-:· 
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The two-loop finiteness in six dimensions would seem to be the most 

interesting result in the table altogether, because only the far more sophisti

cated power counting of eq. (2.37) appears to be able to explain it, and only for 

N=4, i.e. if a formulation in terms of N=4 superfields is available. This initially 

led us to an optimistic interpretation as suggesting that the power counting of 

Ref. [20] was correct for all N [31). This, however, turns out not to be the case. A 

different, and more conservative, explanation, was provided by Howe and Stelle 

[34), who managed to explain the result of Ref. [31] using the available formula

tion of six-dimensional N= 1 Yang-Mills in terms of six-dimensional N= 1 

superfields, properly supplemented by the enforcement of the extra, nonlinearly 

realized, supersymmetries. On the other hand, finiteness in d=7 is not 

guaranteed by the power counting of Ref. [20], even with N=4. and therefore 

naively the corresponding result in the table above sounds rather uninformative. 

However, matters turn out to be quite different. To understand all this, one 

should recall the discussion in the previous Section, where the main points of the 

analysis of Ref. [20] have been summarized (see remarks (1) and (2)). The point 

is that, not only do we have a power counting at our disposal. but we also have a 

very precise statement about the form of the on-shell effective action, namely 

that its divergent part is a local gauge invariant functional of connections and 

field strengths only (no prepotentials explicitly!) and containing a full 6-integral. 

For the case of d=7, on dimensional grounds, only one term is allowed: 

J d 1 xd 16 6{AAwA +higherorder} , (3.13) 

where (see Ref. [32] for more details) A is a ten-dimensional spinor index, and 

wA = (-ra)AB (-ya)CD (De DD AB -DB De AD) (3.14) 

denotes the linearized form of the dimension-t field strength WA of ten

dimensional Yang-Mills (see the discussion of the four-dimensional case in Sec

tion 2 for comparison). In eq. (13) "higher order" stands for. 

(J'a)AB (-ya)eD (- t An[De AD ,AA) +tAn [De AA, AD)-{ An. Ac} ·{AA ,AD}). (3.15) 

derived by requiring invariance under the full nonlinear transformation 

6AA =(VA .A) . (3.16) 

This is possible in view of the on-shell Bianchi identity satisfied by W, 

£ ~ 
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{VA, WA} = 0 . (3.17) 

The use of the ten-dimensional notation is no real restriction, because the 

smallest seven-dimensional superspace has the same dimensionality as the 

smallest ten-dimensional one. The result in eq. (9) admits a ten dimensional 

notation, in the sense that all restrictions to seven dimensions on the indices 

come from derivatives, which are necessarily seven dimensional objects. The 

same, of course, can be said for all the other divergences found. Thus, the con

tradiction with our result comes up because the term in eqs. (13) and (15) has a 

group theory structure completely fixed by the gauge invariance to be a "tree", 

in the graphical notation mentioned above. On the other hand, the two-loop 

divergence in seven dimensions contains a far more complicated group theory 

factor (see eq. (9)), and such a factor can be shown to be independent of the 

"tree". The conclusion is that the very essence of the power counting of Grisaru 

and Siegel [20), the form of the on-shell effective action, is explicitly violated 

beyond N=2 superfields. Whereas this is certainly not a proof that supergravity 

theories diverge at three loops, it is clearly a strong indication in that sense, 

because the only available reason for some optimism is removed. What is con

clusive in this analysis is the statement that the naive extension of the manipu

lations made with N= 1 superfields to N>2 fails. Whether this is due to the n~nex

istence of the corresponding off-shell superfield formalisms or to their having a 

different structure from the N= 1 case is, of course, not possible to decide upon 

at this stage. At any rate, the majority of physicists are not so interested in the 

details of superspace as in its implications for finiteness, and the results l have 

discussed do tell us that the power counting cannot be trusted beyond N=2. As to 

the result in eq. (9), it appears very plausible for two reasons. First of all, it is of 

the form suggested by the superstring analysis of Ref. [ 42]. Moreover, one can 

show that, once it is dimensionally reduced, it can be written in terms of N= 1 

six-dimensional superfields. This is suggestive of an extension of the available 

six-dimensional superspace formalism above d =6, along similar lines to what is 

known to be possible for N=1 four-dimensional superfields [72). 

The work of Refs. [31,32] that l have summarized here involved calculations 

far more difficult than those appeared earlier in the literature. Success in this 

enterprise rested heavily on lhe development of a technique for computing 

divergent parts of Feynman integrals [33] that I would now like to mention, 

though in a rather sketchy fashion. J actually believe that this technique is pos

siply more important than the results themselves, as it may open the way to far 
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more complicated direct tests of gravity and supergravity. In the following I will 

illustrate it, together with some minor, but still useful, points, in a series of 

remarks. This is meant to convey the general ideas behind the methods. For a 

more detailed discussion the reader is referred to the original literature [32,33]. 

I. Rather than calculating divergences of S matrix elements, one can calculate 

the on-shell divergences of the effective action. This implies calculating the 

parts of the effective action relevant to the given process and enforcing in 

them the classical field equation. Working with the external fields in the 

coordinate representation, no symmetrization is required. Each individual 

graph has then to be assigned a combinatoric factor equal to the reciprocal 

of the dimension of the corresponding discrete symmetry group, obtained 

allowing interchanges of both internal and external legs. 

II. Rather than using counterterms determined by lower order calculations 

directly, one can more conveniently account for their effect by subtracting 

subdivergences from Feynman integrals. The minimal subtraction prescrip

tion results in a rule for dealing with a pair of mutually contracted Lorentz 

indices coming from a subtraction. Minkowski metrics generated by any two 

such indices must be "barred", in the sense that their trace must be taken 

to bed, rather than (d~). The contraction with other indices proceeds as 

though E were a positive number, i.e. with metrics over the "lower" dimen

sional space dominant, just as projection operators would be. In this 

approach finiteness is recognized, at a given loop order, by the vanishing of 

the corresponding divergent contribution of order .!.._to the .effective action, 
E 

once the classical field equations are enforced. Terms determined by 

lower-order subtractions, however, can provide useful checks of the calcula

tions. 

III. Once one has settled to work with subtracted Feynman integrals, one can 

notice that, on general grounds [73J, their divergences are local in.coordi

nate space. There follows a very simple algorithm for· extracting pole parts 

from general loop integrals [33], which can be efficiently implemented on 

computers, thus allowing for large scale divergence calculations at higher 

loops. Basically, there are two steps in this procedure. First of all, since the 

divergences are guaranteed to be polynomials in momentum space, say of 

(integer!) degree a, one can use f.uler's theorem to lo.:Ver the degree of 

divergence of subtracted Feynman integrals by differentiating with respect 

.;.· 
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to the external momentap,, i.e. 

1 _il_ j{m) 
J{a.) = aP; a P; (3.16) 

Then, once the integrals are reduced to logarithmically divergent ones, the 

divergent parts of these are guaranteed to be constant. They are thus 

independent of the external momenta, which can be arranged at will, with 

the only care of not running into fake infrared divergences in the evaluation 

of the resulting integrals. The conclusion is that computing the pole part of 

a general n-loop integral is tantamount to computing that of a propagator 

integral at (n -1) loops. For example, consider the (rather simple) integral 

drl k dct l 1 
I (211')rl (2rr)ct . -. . (3. 19) 

for the case of six-dimensional space time, where it is quadratically diver

gent. Upon differentiation, this can be reduced to 

, dctk drll ( 4k·pl·p B(k·p)2 2p2 ) 
I (21r)rl (21r)rl k 6 La (k-L)2 + kB l 4 (k-L)2- ka L4 (k-l)2 

(3.20) 

where the prirrie is meant to emphasize that each of the terms above has to 

be calculated together with the corresponding subtraction. These terms are 

all logarithmically divergent, and the momentum dependence has 

effectively "factored out". I would like to stress that this is possible only 

because one is looking at subtracted integrals, which are guaranteed to be 

local. The remaining part of the calculation is very simple, and yields 

p2 p2 
3E2 - g;- (3.21) 

Clearly, a far greater simplification is obtained in more complicated cases, 

where the integrals depend on several external momenta. More details can 

be found in Ref. [33]. 

4. Discussion 

I have attempted to outline the present understanding of the ultraviolet 

behavior of supersymmetric theories. Two things emerge clearly from this dis

cussion. We have at our disposal a class of completely finite renormalizable 

models with extended global supersymmetry, and we have a number of formal 

·~ 
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ways of proving their finiteness. However, at present the motivation for looking 

at such theories is not clear. More precisely, it is not clear why a finite model 

should be preferred to other infinite, but still renormalizable and predictive, 

ones. On the other hand, supergravity theories are a priori far more interesting, 

as they offer a perspective for unifying all interactions including gravity. How

ever, their couplings are parametrized by Newton's constant, which is of negative 

mass dimension. Thus, these theories are all potentially nonrenormalizable. At 

present it does not seem possible to prove that they are finite along the lines of 

what has been achieved for supersymmetric Yang-Mills theories. All the avail

able arguments fail. in one way or another, due to the presence of a dimensional 

coupling. Moreover, the indications of the indirect analysis of Ref. [32] are 

rather discouraging, and suggest that divergences should really set in at the 

"obvious" number of loops. three. Of course, explicit calculations in 

(super)gravity theories would be most illuminating. Hopefully, the integration 

technique mentioned in Sect. III, together with the development of a suitable 

computer software and, at least, the completion of the work of Ref. [74], should 

make this nontrivial task accessible in the near future. 

l~ "' 
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Appendix 

The two-component notation for four-dimensional ~pace time can be simply 

arrived at from the more familiar four-component notation. The basic idea 

behind the two-component formalism is to build up all representations of the 

Lorentz group starling from its irreducible Weyl spinors. Thus, in some sense it 

is the most natural formulation. This reflects in the fact that it bypasses the 

need for explidt ")'-matrices altogether. Moreover, it deals with indices running 

over two values, which can thus be easily symmetrized or antisymmetrized. 

Consider an off-diagonal (Weyl) representation of the Dirac algebra (with 

space time signature ( +---)), say 

- (0 1) 70- 1 0 -yi = (o -a;) 
a' 0 · (A.1) 

These define the matrices aiJ. and a" as the internal blocks of the four

dimensional 7 matrices: 

7P. = ( 0 ( a~')"a) 
(a")aa 0 

and the helicity matrix is simply 

")'5 =i7o7'?'2?'3= (1 D) 0 -1 . 

One writes a four-component spin or as 

'f = (~:) . 

The Majorana condition, in the representation of eq. (1), then implies 

"" ="fit = ('f")t 

Xa = ia = -(w.,)t 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

where the indices are raised and lowered with the metric tensors E411 and Eail and 

their inverses, all proportional to the a 2 Pauli matrix: 

Ea/1: E0p: -E 41l: -EaiJ: (~ -;1) (A. B) 

The conversion between four-component notation and two-component notation 

can then be simply achieved using the definitions in eqs. (1), (2) and (3). Thus, 

"<" 
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for example, for two anticommuting Majorana spinors X and 'if;, 

X"¥! = ((X"")' (X,;}")(~ 6) (*:)=X""¥!., + X:0 ia · (A.7) 

Conventionally, one contracts indices from upper left to lower right. Changing 

convention for a pair of indices introduces a minus sign. The basic identity of 

the two-component formalism is that any quantity antisymmetric in two 

(un)dotted indices is proportional to the appropriate E tensor. Thus, for exam

ple, 

A.,11 -A11., = -E.,11 A7 7 (A. B) 

where the coefficient has been fixed using 

Eall Eal! = 2 (A.9) 

All other identities can be derived using the representation in eqs. (1) and (2). 

For example, from the 7 matrices, one can construct the Lorentz matrices 

1 aP.v = 27[!./'v] (A.10) 

Their irreducible blocks are 

(a~>v)a fJ = t (aliJ.)ao (Cf"l)afJ 

(a~>v)j = t (#)afJ (avl)flil . (A.11) 

These matrices have definite duality properties. Thus 

.!._ EiJ.VpU (a )" - .; (aiJ.V)a 2 puJ!-• fJ· (A.12) 

Then, writing an antisymmetric tensor FJJ.v in terms of these projections as 

FJJ.v = (al'v)"" 11 F.,fJ + (aJJ.v)j Fit il (A.13) 

one recognizes the term with undotted indices as corresponding to the self-dual 

part of FJJ.v• and the term with dotted indices as corresponding to the antiself

dual part. Finally, hermitian conjugation of superfields is obtained most simply 

by referring to the same operation on strings of O's and "irs. Thus, for example 

(A.,11tr ~ (o.,e11 0'i'r =07o 11 e. =o 11 e11 o 7 ~ A 1111
7 (A.14) 

~ 
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More details and an extensive list of formulas can be found in Ref. [58]. 
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