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Abstract 

In a porous medium the flow conduits are small and 
a large number or conduits are connected to the well. For 
this reason the medium appears to behave like a contin
uum on the scale of the well test, and volumetric averag
ing and continuum approximations are justified. On the 
contrary, in a fractured medium, only a small number of 
fractures may intersect the pumping well. These particu
lar fractures will be stressed by a 1arge gradient under 
well test conditions. Consequently, the early time 
behavior will be dominated by these fractures. The 
volumetrically averaged permeability does not control flow 
in the vicinity of an active well. The individual fractures 
close to the well must be characterized in order to under
stand the well test behavior especially ir the hydraulic 
parameters or these fractures are significantly different 
from the average values for the entire system. 

In the present study, a new analytical model is pro
posed for well test problems in fracture networks where 
the matrix is impermeable. The model accounts for the 
difference in the flow regime around the active well from 
that of the system as a whole. The analytical solutions are 
presented in a series or type curves for ranges or dimen
sionless parameters. The flow propreties of the fracture 
system can be determined by curve matching. 

Introduction 

In the region near the pumping well, a single contin
uum approximation is not appropriate for modelling well 
tests1. This is because the inner boundary condition of a 
well test causes flow to converge on the few fractures 
which intersect the well. These fractures are macroscopic 
features compared to the well bore radius. However large 
the scale or observation may be, the characteristic length 
or the system still has to be the wellbore radius or the 
pumping well. In a porous medium the size of each flow 
conduit is microscopic and there are a large number or 
conduits connected to the well. In this case volumetric 
averaging and continuum approximations are justifted. 
On the contrary, in a purely fractured medium. the small 
number or fractures that intersect the pumping well will 
be stressed by a large gradient. The volumetrically aver
aged permeability does not control now In the vicinity of 
an active well. The individual fractures close to the well 
must be characterized in order to understand the well test 
behavior especially ir the hydraulic parameters or these 
fractures are signiftcantly different from the average 
values for the entire system. 

In this study a new analytical solution is proposed 
for well test problems in purely fractured media based on 
a composite model with two concentric regions. The inner 
region contains a finite number of descrete fractures. The 
outer region is a classical porous medium. Similar compo
site models have been examined in the petroleum litera
ture2·3,-t but none Include the effects or intra--fracture ftow. 
The analysis of a well intersecting a single vertical frac
ture in a porous matrix has also been developed. However, 
In this case flow enters the fracture from the races. In our 
model the fluid enters and exits the fractures only from 
their Intersections with other fractures. A solution is 
obtained for a finite radius well. · The solution is 
presented in a series or type curves, so that the flow 
propreties of the fracture system can be determined by 
curve matching. 

Model Description 

An iso-thermal well test problem in a homogeneously 
fractured formation or unirorm thickness H is considered. 
The fractures are assumed to be vertical and extend from 
the top to the bottom of the formation. It is further 
assumed that the rock matrix is Impermeable and all the 
hydraulic parameters are independent or pressure. No 
wellbore storage or damage is considered. The conceptual 
model of the well test In this system consists of two zones. 
In the outer region the usual equivalent porous medium 
approximation is assumed to hold, I.e., the flow properties 
or the fractures are volumetrically averaged and a single 
contiuum replaces the fractures. The hydraulic conduc
tivity and the storage coefficient for the region are k2 and 
S,

1 
, respectively. The well is located in the ceo ter of the 

Inner region and communicates with the outer region 
through a finite number (n) of fractures in the inner 
region. The radius or the well is r. and the radius of the 
boundary between the inner and outer regions is r1 . All 
the fractures in the inner region have the same hydraulic 
aperture 6 and the hydraulic parameters k 1 and S,,. It is 

assumed that there is an infinitesimally thin ring or 
Infinite conductivity between the two regions so that the 
otherwise incompatible boundaries can be matched. 
Flgure-1 illustrates the model. The details or the solution 
are given below and the final result can be round in Equa
tion (28). We then examine the assymptotk behavior in 
small and large time in order to provide simpler solutions 
and check the results. 

The governing equation ror the inner region is that 
for one dimensional unsteady-How. 



(1a) 

where the hydraulic diffusivity. a = k Is.. For the outer 
region the usual radial Dow equation describes the Dow. 

&2h. 1 ah. 1 ah. --+-·-=-·-. (1b) ar• r ar a. at 

The initial conditions and the boundary conditions for 
constant rate injection test are 

h 1 (r,O)=O ( r. ::::; r ::::; r1 ) (2) 

h 2 ( r , 0) = 0 ( r, ::::; r ::::; oo) (3) 

ah, 
( r = r. ) . (4) -nk 16H-=Q 

ar 

For the continuity at the boundary or the inner and outer 
region, we have 

h 1 = h 2 ( r = r1 ) (5) 

ah, ah, 
nk 16Tr = 21rrk 2Tr ( r = r1 ) . (6) 

The following dimensionless parameters are defined: 

21rk~ a 2 1 r.' a 2 1 r 
ho=--Q-. lo=-·-=- ro=-. 

r.' r,' r," ' r1 

r. a 1 n6k 1 
r, = - , a, fJ = -- "{7) 

r1 a 2 21rr1 k 2 • 

Substituting into Eqs.(1a) and (1b) we obtain 

&2ho, 1 aho, 
aro• = ~ ato 

a•ho. 1 aho. aho. 
--+---=--aro• ro aro ato . 

(8) 

In terms of the dimensionless parameters the initial and 
boundary conditions become 

ho 
1 

( ro . o ) = o 

h02 ( r0 • o) = o 

aho, 1 

aro =- 7i 

( r, ::::; ro ::::; 1 ) 

( 1 ::::; r0 ::::; oo ) 

( ro = r, 

(10) 

(11) 

(12) . 

ho, = ho
2 

( ro = 1 ) (13) 

aho, 1 aho. 
-- = - · -- .( ro = 1 ) (14) 
aro fJ aro 

Solution Scheme 

Laplace transforms can be used successfully to solve 
the equations simultaneously. The subsidiary equations 
are: 

~t•ii o, p -
--=-ho 

dr0
2 a, 1 

(15) 

li"ii02 1 
dii02 _ 

--+ -· --=pho 
dr0

2 ro dro • 
(16) 

The transformed boundary conditions are 

( r0 = r, ( 17) 

(18) 

2 

( r0 = 1). 

The general solutions for Eqs.(15) and (16) are of the 
form: 

iio, =A cosh(y'p /a, · ro) + B slob(~· ro) 

iio
2 

= C / 0(Vp · ro) + D KJ.JP · ro) 

(20) 

(21) 

where I 0 and K 0 are modiOed bessel functions of zeroth 
order of the Orst and second kind, respectively. The 
coefficient C in Eq.(21) is round to be nil since we expect 
the solution to be bounded for r0 --= . Eqs.(20) and (21) 
are substituted into Eqs.(17), (18) and (19), and the fol
lowing set of equations are obtained. 

Ay'p /a, sinh( .jp ja, · r,) + 

+ B~cosb(~ · r,) = -~ 
/Jp 

A cosh.jp /a, + B slnh.jp /a, = DK 0(Vp) (22) 

A,)p /a, sinh~+ 

+ B~cosh~ =- ~ .J;K 1(Vp) 

Eqs.(22) are solved for A,B and D. 

..;;:; 
A = /Jp J'i .0. X 

X [ Ja.'K,(Vp )slnh.jp /a, +/JK0(Vp )cosh~] 
..;;:; 

B = - IJf' J'i .0. X (23) 

X [ Ja.K 1(Vp )~osh~ +IJK 0{Vp )sinh~] 
..;;:; 

D-~ 
p vp A 

where 

A = Ja.K 1(Vp )cosh [ ~ · (1-r,)] + 

+ {JK 0(Vp )sinh [ ~ · (1-r,)] 

Substituting A,B and D back into Eqs.(20) and (21), the 
solutions in the Laplace domain are obtained: 

iio, = {Jpv;;. A { Ja.K 1(Vp )sinh [ ~ · (1-ro)] + 

+ {JK J.JP )cosh [,;;;;:; · (l-r0 )] } (24) 

- ..;;:; r-ho = ~KJ.vp · ro) (25) 
• p vp A 

Inversion. Of rD I 
The inversion theorem is applied to pii0 ,5 . 

'T'+iCO 

L -l - 1 J - pi {pho} = -. ph0 e 0 dp 
I 2'/rl I 

.,...ioo 

"t+iOO 

= 2~; J 1Ji ~ { Ja.K ,(yp )sinh [ ;pr;;; · (Ho)] + 
'l-100 

(26) 

'...; 

;; 
\ 

;~ . 
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The integrand has a branch point at p =0. We consider 
the contour r in Figure-2. Since there are no singularities 
within r. 

B c 

so that 

B c 

Therefore . 

B 

L _,{pii0 } = lim ~I 
1 R -co 211't 

t-o A 

=- -
1
-IIm 

211'i R -co 
t-o 

0 E F A 

0 E F A 

where R is the radius of the outer circle and t the radius 
of the inner. It can be shown that 

C A 

llmJ = llmJ =0. 
R-oo B R-ooF 

Also, by letting p =te;' and taking the limit as t -o, 
E 

llmJ=o. 
t-o 

0 

On CD, let p =JJ"e i• and on EF let p =JJ"e .... and using 
the identity: 

1 . 1 • 
±-n 1 ±-..n [ ] 

K..(ze • ) = ±'211'ie 2 -J,j.z)±iY ,j.z) , 

we obtain 

, where 

D co 

1 II J .;a;J --2
•0 A+iO d 2ri' R~ = P1ri e 'ir+ia JJ 

( -o c 0 

F oo 

1 I .;a; J __ ,D -A+ i 0 
--lim = -- e ---dJJ 
211'i R -co /J11'i -Y+i a 

« -o E o 

a = .;a; Y 1 (JJ )cos { J;;:-IJ ) -P Y o(JJ )sin I J;;;= JJ J 

Therefore 

L _, {pii0 } = - - 1-. lim 
1 211'1 R-ex> 

t-o 

(27a) 

(27b) 

(27c) 

(27d) 

3 

Simplifying and using the recurrence formula: 

J j.z) Y,: (z) - Y .J.z )J v' (z) = ..!.. , 
11'Z 

Finally, by the convolution theorem we obtain 

to oo cos I ro-r, IJ] 
4a, J I e __ ,. .;a; 

llo , = -::i"" - .. - · ---::---::--d JJ d r 
..-- ,.. •• + e• 

0 0 

00 

= ~J _1_-_e-::--"'t_o_ 

r o JJ" 

( r, ~ ro ~ 1 ) (28) 

Eq.(28) can be used to evaluate 1&0 1 
at r0 as a function of 

t0 for given a,, tJ and r,. Figure-3 is a log-log plot of 110 , 

vs. t0 at r0 =r, =0.01 for ranges ·Of a, and /3. All the 
curves have characteristic initial half-slope straight line 
portion, which is the evidence of linear flow. A curve 
matching technique can be used to analyze well test data 
with such characteristics. If a unique match of the data 
to one of the curves generated by Eq.(28) can be found. 
a,, tJ and r, can be determined. The pressure and time 
match yield two more equations which give k 2 and the 
product S,

2
r,". If k, can be expressed in terms of b using 

the parallel plate analogy, i.e., k = b2pg /12JJ where p. g 

and JJ are fluid density, gravity constant and fluid viscos
ity, respectively, and if n. the number of fracture inter
secting the well, is known, then the unknowns k,. S,,. k 0 , 

s,., and r1 can all be calculated from Eqs.(7). 

In Figure--1, 1&01 is evaluated using Eq.(28) for various 

values or r, with a, =2.0 and /3=0.7. Note that when 
r, = 1.0, i.e., zero inner zone thickness. the curve is ident
ical to that of van Everdingen and Hurst6 . As can be 
seen In Figure--t, 1&0 1 

is not very sensitive to r, for 

r, < 0.1. Therefore, it may be ver.y difficult to determine 
r, directly from the match for r, = r. /r1 < 0.1. This 
would leave only four equations to work with. In such a 
case, either one or 5,

1
, k 1 , 5,

2
, or ri must be estimated a 

priori In order to determine the rest. An observation well 
is needed to determine 5,

2 
a priori; k 1 and r1 will pro

bablly never be known a priori. One might assume 5,
1 

to 

be equal to fluid compressibility as a possible first trial. 

Large Time Solution for Region 1 

For small values or z. 

Ez z• E· 
K 0(z) :::::: -In- - - · ( ln....!. - 1 )+ 

2 4 2 

1 z Ez 1 
K 1(z) :::::: - + - · ( In- - - )+ · · · 

z 2 2 2 

(29a) 



z2 
cosbz =::: I + - + · · · 

2 

i3 
slnbz =::: z + - + · · · 

6 

(20c) 

(20d) 

where In£ = "T = 0.577215665 ( Euler's constant ). Substi
tuing Eq.(20) into (24) and rearranging, 

- 1 { 1-ro EJ;' 
ho =::: - -- - In-- + 

1 p /3 2 

+ [ 1-r0 _ 1.. _ (1 - ro )
2 

. .!!... . In E JP + ... } X 
/3 2 a< 2 2 

X {I + p . [ ~ - /3( Ia~ r, ) ] . In E ~ + ... r• 
=::: 1.. . { I - ro - In E JP + 

p /3 2· 

+ p . [1.. _ /3(1- r, ) ] . (In E JP )2+ ... } 
2 a, 2 

so that 

h
01 

= L -•{h
01

} 

1- ro 1 
=::: ---+-. 

/3 2 { 
1 1 /3(1 - r, ) } I+-.[-- I X 

to 2 a • 

. X ( - "T + ln-tt0 ) + · · · 
I- ro 1 

=::: ---+ - · ( - "T + ln-tt0 ) 
/3 2 

(30) 

Eq.(30) shows that for large t0 , h0 1 
can be approximated 

by a logarithmic function or t0 . The lower limit of to ror 
which this approximation is valid is a function or /3, a, 
and r, as can be seen in the derivation or Eq.(30). On a 
semi-log graph, Eq.(30) is would be a straight line identi
cal to the solution for a. homogeneous ,porous medium 
except for the constant (1-ro )//3. This, in 'eiJect, can be 
thought as apparent "skin". Therefore, k2 can be obtained 
In the usual manner but the calculation or the storage 
coeiJicient In the conventional manner may result In 
incorrect value or that parameter by a factor given by 

5, 2 • = r/ exp [ 2(1-rp /r/ ) ] . 
5,2 r.2 

(31) 

Small Time Solution Cor Region 1 

Remembering for small z, 

K .(z) = I ;z (' · e -• · { 4V- I 0 1 } I+---+ (-) 
sz z2 

' Then a.t the pumping well, r0 

ho = L -
1

{ho} 
1 1 

2..jQ; ~ 
=::: ~ · vto · 

v rr/3 [ 
I - 2 . £- /3 . e -H- •, 'I' to, •o] + 

..;;;-; + /3 

4 

4 F.- /3 1 - r< 
+ ·(1-r,)·erfc---+ ··· (32) 

/3 ..;;;-; + /3 . ,;c;;r; 
From Eq.(32), it is assured that for small 10 • h01 exhibits 

half slope straight line. Using the identities in Eqs.(7), 

2Q 
Ia,_,_ = n6 Jrri-

1
5,

1 

(33) 

where h, _.,.. is the value of h at t = Isec obtained by 
extrapolating the straight line on log-log graph. Eq.(33) 
can be used to find 6k, when n and 5,

1 
are known. If 5,

2 

is also known, Eq.(31) can then be used to find r1 
without tedious curve matching. 

Inversion or ho, 

It now remains to invert h02 to real space: 

00 

So that 

(ro ~ I) . (34) 

where "' and e are given by Eq.(27c) and (27d), respec
tively. 

Large Time Solution Cor Region 2 
Substituting Eqs.(20) into Eq.(25), 

- 1 { EJP'ro h0 =:::- -In + 
2 p 2 

+ p [ 1.. _ /3(1 - r, ) ] 
2 a, 

Then, 

lnEJ; + 
2 

ho =::: 1.. { 1 + [ 1.. _ /3(1 - r. ) ] ro' } ( _ "T + In 41~ ) + ... 
• 2 2 a, to r0 

(35) 

Small Time Solution Cor Region 2 

For large p. noting that r. < I, Eq.(32) becomes 

2..jQ; e-.j,/a,(J-f'r} 

ho =::: J:: a, p J'i + 
• a, + /3 

and DOW inverting ho
2

• We have: 

2..jQ; 
ho =::: X 

2 ..;;;-; + {J 

[ 

1/2 

I to ) -(I- • )•to to I - r< I - r. 
X 2 - e ' ' - --erfc + 

rr .J'O: 2 ,;c;;t; 

(36) 

This completes the large and small time solutions. 



Example Application and Conclusion 

Figure-S illustrates an example of the procedure 
applied to ftnd lr 1, /r 2 , S,

2
, and r1 from a numerical well 

test simulation· in the fracture network also shown in the 
ftgure. The numerical procedure employed here is dis
cussed in Long7 and Kanehiro8 . A ftt was round assuming 
s,, was known. The flow parameters for both regions cal

culated from the match point a.nd from the equations for 
o, a.nd /3 were found to be very close to the Input values. 
The calculated r1 was 4.Qm in this case. In the actual 
network. the distance to the nearest intersection was 
7.3m in one direction and 3.8m in the other. averaging 
5.5m. 

If a ftt can be found this analytical model can suc
cessfully be used to accurately determine the average 
storage coefficient or a. fracture system from one-well test 
as well as the distance to the nearest fracture intersection, 
which in turn give us a clue to fracture spacing. Because 
there are an infinite number of curves for various combi
nations of o,, /3 and r,, an automatic curve fitting pro
cedure by a computer is being investigated. 
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