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BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

Robert Tycko

ABSTRACT

~heoretical methods for designing sequences of radio frequency (rf)

radiation pulses for broadband excitation of spin systems in nuclear

magnetic resonance (NMR) are described. The sequences excite spins

uniformly over_large ranges of resonant frequencies arising from static

magnetic field inhomogeneity, chemical shift differences, or spin

couplings, or over large ranges of rf field amplitudes. Specific

sequences for creating a population inversion or transverse

magnetization are derived and demonstrated experimentally in liquid and

solid state NMR.

One approach to broadband excitation is based on principles of

coherent averaging theory. A general formalism for deriving pulse

sequences is given, along with computational methods for specific cases.

This approach leads to sequences that produce strictly constant

transformations of a spin system. The importance of this feature in NMR

applications is discussed.

A second approach to broadband excitation makes use of iterative

schemes, i.e. sets of operations that are applied repetitively to a

given initial pulse sequences, generating a series of increasingly

complex sequences with increasingly desirable propertie~. A general

mathematical framework for analyzing iterative schemes is developed. An



2

iterative scheme is treated as a function that acts on a space of

operators corresponding to the transformations produced by all possible

pulse sequences. The fixed points of the function and the stability of

the fixed points are shown to determine the essential behavior of the

scheme. Iterative schemes for broadband population inversion are

treated in detail. Algebraic and numerical methods for performing the

mathematical analysis are presented.

Two additional topics are treated. The first is the construction

of sequences for uniform excitation of double-quantum coherence and for

uniform polarization transfer over a range of spin couplings. Doub1e

quantum excitation sequences are demonstrated in a liquid crystal

system. The second additional topic is the construction of iterative

schemes for narrowband population inversion. The use of sequences that

invert spin populations only over a narrow range of rf field amplitudes

to spatially localize NMR signals in an rf field gradient is discussed.
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Chapter I: Introduction

This dissertation describes theoretical approaches to the problem

of broadband excitation in nuclear magnetic resonance (NMR), and gives

experimental results that verify the theoretical work.

In most pulsed NMR experiments, a sequence of radio frequency (rf)

radiation pulses is applied to a sample containing magnetic nuclei

initially at equilibrium in a large, static magnetic field. The typical

experimental arrangement is shown in Figure 1.1. The rf pulses excite

the nuclei to a non-equilibrium spin state, from which much weaker rf

signals are emitted and recorded. That state may be specified in detail

by a density operator. However, there is often one property of the spin

state that is of particular interest. That property may then be

considered to be the response of the spin system to the applied rf

pulses. Figure 1.2 gives a schematic representation of the excitation

process.

The response is determined not only by the specific sequence of rf

pulses, i.e. the individual pulse lengths and rf phases, but also by a

set of experimental parameters. Thus, for a given pulse sequence, the

response of the spin system can be plotted as a function of one of the

experimental parameters, with the other parameters fixed at some nominal

values. An example of the form of such a plot is given in Figure 1.3.

When the parameter Atakes on its nominal value AO' the response R(A)

has the desired value RO• In some small range of values of A around AO'

R(A) is approximately RO• The range of Afor which R(A) =ROdefines

the bandwidth of excitation with respect to A.
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pulsesj lsig.nols

to receiver

from transmitter

Figure 1.1: Experimental set up for pulsed NMR. A sample is placed in
the coil of a tuned circuit 1n a large static magnetic field BO' Rf
pulses create an oscillating field B1 perpendicular to the static field.
Oscillating rf signals emitted by the sample are detected.



Excitation

Response

3

Figure 1.2: An NMR experiment can be viewed as a measurement of the
response of a sample to a given excitation. The excitation is typically
a sequence of rf pulses with well defined lengths and phases. possibly
separated by delays.
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Figure 1.3: The measured response is a function of experimental
parameters that are properties of the sample or imperfections in the
excitation sequence. Sequences are designed so that the desired
response RO is obtained when the parameter ~ has its nominal value ~O.

A broadband excitation sequence produces the response ROover a large
range of A around AO•

4
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Specifically, there are two responses that are the focus of much uf

this dissertation. The first is the inversion of spin populations,

which corresponds to rotating nuclear magnetization from its equilibrium

direction parallel to the static field to the direction antiparallel to

the field. The second is the creation of a coherence between spin

states that corresponds to rotating the magnetization so that it lies in

a plane transverse to the static field. The experimental parameters

considered are the difference between the rf frequency and the spins'

resonant frequency, called the resonance offset, the rf amplitude, and

the strengths of spin couplings.

Certain standard excitation sequences for which R(AO) = RO are used

in NMR experiments. These are usually the simplest possible sequences,

consisting of a single pulse or a small number of pulses. There are

many applications in which the bandwidths of the standard excitation

sequences are inadequate, however. Thus, there is a need for pulse

sequences that produce the desired response over larger ranges of the

experimental parameters. The derivation of such sequences is the

problem of broadband excitation in NMR.

The work described in this dissertation was motivated mainly by the

intrinsic interest of the problem. The emphasis has been on the

development and demonstration of general theoretical methods, rather

than on the specific pulse sequences. No particular chemical or

physical system has been investigated in detail. However, many uses for

broadband excitation exist. These typically take the form of

improvements on existing NMR techniques or extensions of the range of

applications of those techniques. For example, broadband excitation

makes relaxation studies possible in strongly coupled spin systems such
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as occur in solids. Various applications for broadband excitation are

discussed at the appropriate points in the text.

In addition to the NMR applications, many of the results are

directly transferrable to other forms of coherent spectroscopy, i.e.

spectroscopy that employs pulses of radiation with a well-defined phase,

including pulsed electron spin resonance and coherent optics.

The chapters that follow are intended to be written at a level that

is comprehensible to anyone with experience in quantum mechanics. An

effort has been made to avoid unnecessary NMR jargon and to provide at

least a brief explanation of the jargon when it is necessary. This is

meant to be in keeping with the overall presentation of broadband

excitation as a problem with intrinsic interest. However, there are

sections in which lapses into jargon are unavoidable, particularly in

discussions of applications. On the other hand, certain elementary

facts may seem to be treated in excessive detail. This has been done

where it is felt that a detailed treatment is lacking in textbooks and

other dissertations.

The chapters fall into three groups. Chapters II and III are

introductory. Chapter II gives the necessary quantum mechanical

formalism, including the requisite, but brief list of Hamiltonian terms.

The specific broadband excitation problems that are treated in detail

are defined, along with the experimental parameters that are considered.

Chapter III reviews earlier work in the area of broadband excitation,

emphasizing the theoretical approaches used and the need for new

approaches.

Chapters IV and V present one approach to broadband excitation,

based on a formalism that is widely used in coherent averaging theory in
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NMR. The application of the formalism to broadband excitation,

including computational methods, is described in Chapter IV; the

results, including experimental verifications, are described in Chapter

V. Chapter VI shows how certain results from Chapter V can be extended

to apparently unrelated broadband excitation problems by means of a

formal analogy. The examples of broadband excitation of double-quantum

coherence and broadband polarization transfer are treated in detail.

Experimental results for broadband double-quantum excitation are given.

The third group of chapters describes a different approach to

generating pulse sequences, namely the use of iterative schemes. In

Chapter VII, iterative schemes for broadband population inversion are

developed and demonstrated. They serve as an example that illustrates a

theoretical framework for analyzing iterative schemes in general. That

framework depends on treating an iterative scheme as a function on a

space of operators. The performance of an iterative scheme is shown to

be dictated largely by fixed points of the function. Algebraic and

numerical methods for carrying out the fixed point analysis are

described. Chapter VIII extends the iterative schemes to the

construction of pulse sequences for narrowband population inversion.

Finally, Chapter IX contains fixed point analyses of iterative schemes

derived by other authors.

Much of the work presented in this dissertation has been published

elsewhere, although sometimes in less detail. The publications are

listed as references 1 through 9.
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CHAPTER II: Quantum Mechanical Background

A. The rotating frame

1. Laboratory frame Hamiltonian

The interactions of nuclear spin systems that occur in many NMR

experiments can be described by a laboratory frame Hamiltonian of the

following general form [10,11]:

(II.1)

;J('L has the units of radians per second, or energy divided by h •

-wOlz is the Zeeman interaction of a spin system, with total spin

angular momentum vector operator 1, with a static magnetic field along

z. wo' the Larmor frequency, is equal to yBO' where BO is the magnitude

of the static field and y is the gyromagnetic ratio. y is a

characteristic property of each nuclear isotope. Eq. (11.1) assumes

that all nuclei are the same isotopes, for example all 1H nuclei, so

that they share a conmon y. In conmon NMR 1anguage, j(' Lis sai d to be the

iHamiltonian for a homonuclear system.

2w1(t)Ixcos(wt + ,) is the term that describes the interaction with

a linearly oscillating rf field perpendicular to the static field.

w1(t) equals -yB1(t)/2, where B1(t) is the rf magnetic field amplitude.

wand, are the frequency and phase of the rf. Typically, the rf field

is applied in pulses that are ideally square, so that w1(t) is
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piecewise-constant, taking on the values 0 and w~ only. w~ will be

referred to as the nominal rf amplitude. Also typically, 00 is constant

and. is piecewise-constant.

~int stands for all other interactions. These include internal

couplings between pairs of spins and between spins and internal fields.

The dominant term in Eq.(II.l) is the interaction with the static

field. wO/2w generally ranges from about 10 MHz to about 500 MHz,

depending on the isotope and the static field strength. w~/2w and all

the contributions toxint are usually at least 100 times smaller. Thus,

to a good approximation the eigenstates of XL when the rf is turned off

are eigenstates of Iz• They occur in Zeeman manifolds characterized by

the eigenvalue m of Iz and separated in energy by increments of roughly

00
0

• When the rf is turned on, it induces a coherent mixing of the

eigenstates if 00 is about equal to 000•

2. Rotating frame transformation

The well-characterized, and therefore uninformative, interaction

with the static field can be largely removed, the oscillatory time

dependence of the rf can be made to vanish, and the important parts of

xintcan be made apparent by a transformation to a new frame of reference

called the rotating frame [10-12]. Rather than dealing with the

rotating frame transformation specifically, it is useful for the

development in later chapters to describe the general quantum mechanical

procedure for a change of reference frames [13].

A change of reference frames is defined by a unitary transformation

A(t), which may be time-dependent. If I,(t» is the state of a system
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at time t in the original frame, the state at time t in the new frame

is ,,(t»:

/,(t» = A(t) ,.(t» (II.2) r

Given that K is the Hamiltonian in the original frame, the Hamiltonian

x' in the new frame may be found by the following argument. In their

respect i ve frames, 11jI(t» and ,,(t» evol ve accordi ng to the Schrodi nger

equation:

id~11jI(t» = ~11jI(t»

i d~ ,,( t )> = K' I ,( t )>

Substituting Eq.(II.2) into Eq.(11.4):

Using Eq.(II.3):

Eq.(11.6) implies that:

dA -1 -1
:Ie' = i (dt )A + PJfA

(II.3)

(11.4)

(II.S)

(II.6)

(11.7)

This expression forK' holds even if~ is time-dependent.

The specific example of the rotating frame transformation employs
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a unitary transformation given by:

A(t) =exp(-iwlzt)

Applying Eq.(II.7) to Eq.(II.l):

(II.8)

(II.9)

where ~w =w - wo is the resonance offset. The rf interaction in~1

contains terms that oscillate at 2w and terms that do not oscillate.

Similarly,AJeintA- 1 is generallYa sum of constant terms and terms that

oscillate at multiples of w. Since w ~ wO' and wo is much larger than

w~ and much larger than the magnitude of Kint , it is a good approximation

to retain only the non-oscillatory terms in KL• KLthen becomes Je, given

by:

(I1.10)

where Ki~~ is the constant part of AJ(intA-~ Specifically, K\~~

is the part of Jeint that commutes with Iz• K in Eq.(II.I0) is usually

taken to be the Hamiltonian in the rotating frame.

The step from KLtoK can also be accomplished by averaging

in time over a single period T =2w/w. At multiples of T. the

laboratory frame and the rotating frame coincide, since A(nT) = 1. This

derivation of an approximate effective Hamiltonian by averaging a

time-dependent one is an example of a procedure that will be employed
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extensively in Chapters IV and V.

Finally, the replacement of Kint by ~i~~ may also be justified by

perturbation theory, which states that the lowest order effect of the

perturbation Kint on the unperturbed energies established by -wOI z

comes from the part of Kint that commutes with -wOIz.

3. Observations in the rotating frame

The rotating frame is more than a mathematical trick. Due to the

usual design of an NMR spectrometer, experimental observations are

actually made in the rotating frame. To show this, it is first

necessary to present the quantum statistical mechanical description of

spin ~ystems and observables.

A spin system is described by a density operator, p(t). If the

system is in a pure state I~(t», the corresponding density operator is:

p(t) = 1~(t»<~(t)1 (11.11)

The system may also be, and generally is, in a mixed state, or an

incoherent superposition of states. In that case, it can not be

described by a single ket, but can be described by the density

operator:

(II.12)

where {In>}is a complete basis of orthonormal states, possibly

*eigenstates of the Hamiltonian. p(t) is hermitian, so that cnm =cmn •
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Any other cemp1ete set of operators can be used in place of{In>(ml} as 'a
basis in which to express the density operator.

The evolution of p(t) is governed by the Liouville equation:

~i(t) = i[p(t)~]

The formal solution to Eq.(11.13) is:

p(t) =U(t)p(O)U(t)-1

(11.13)

(I I.14)

where the time evolution operator U(t) may generally be written:

U(t) = TexP(-iJ~JC(t')dt') (I1.15)

using the Dyson time-ordering operator T. U(t) is commonly called the

propagator in the NMR literature. The same propagator governs the

evolution of pure states:

I~(t» = U(t) I~(O»

Given the density operator, the expectation value b of an

observable, hermitian operator B can be expressed as a trace:

b = Tr(Bp)

(11.16)

(I1.17)

The laboratory frame observable in an NMR experiment is typically the

x component of the bulk nuclear magnetization. The corresponding

observable operator is proportional to Ix. Thus, the observed signal
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S(t) is:

(11.18)

Here UL(t) is the propagator in the laboratory frame. Eqs.(11.2) and

(11.8) imply that the propagator U(t) in the rotating frame is related

to that in the laboratory frame by:

Substituting Eq.(11.19) into Eq.(II.18), it can be shown that:

-1
S(t) = Tr[lxU(t)p(O)U(t) ]coswt

-1+ Tr[lyU(t)p(O)U(t) ]sinwt

(11.19)

(11.20)

The coefficient of cOSwt in S(t) is the expectation value of the x

component of spin angular momentum in the rotating frame; the

coefficient of sinwt is the expectation value of the y component.

Experimentally, the signal S(t) is divided in two and mixed

separately with two rf reference signals, one proportional to coswt and

the other proportional to sinwt. The two results after mixing are then

passed through separate, low-pass audio filters. This process of mixing

and filtering has the effect of extracting signals that are proportional

to the coefficients of cOSwt and sinwt. The two extracted signals are

stored as the real and imaginary parts of a complex signal S+(t):

(11.21)
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with I = I ± iI. The experimental arrangement is illustrated in± x y

Figure II.l.

Thus, experiments are actually performed in the rotating frame,

with the two measured signal channels corresponding to the rotating

frame x and y components of spin angular momentum. In subsequent

discussions, the rotating frame will be assumed unless otherwise stated.

B. Nuclear spin interactions

1. Zeeman interaction

The Zeeman interaction with the static field has already been

introduced and has been shown to give rise to the AwI z term in

Eq.(II.10). The offset Aw can be the result of a missetting of the rf

frequency, or it can be the result of spatial inhomogeneity of the

static field. In the latter case, Aw is a function of spatial position.

2. Rf interaction

The interaction with rf fields has been shown to give rise to the

wl(t)(Ixcost + IySint ) term in Eq.(II.IO). As mentioned earlier, wl(t)

has the nominal value w~ during a pulse. However, wl(t) is always

inhomogeneous in space, so that the rf interaction can be written:

~rf = w~(IxCOSt + lySint)

+ 6w1(IxCOSt + lySint ) (II.22)
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Figure 11.1: Typical design of an NMR receiver that allows observations
to be made in the rotating frame. Signals near the rf carrier frequency
are mixed independently with rf references with a goo phase difference.
The complex audio signal after filtering corresponds to the the x and y
-agnetizat1on coaponents in the rotating frame.



where 6w1 is a function of position. The significance of rf

inhomogeneity depends on the design of the coil that produces the rf

fields and on the relative sizes of the coil and the sample.

3. Chemical shifts

The chemical shifts are one contribution to Xint • with the form:

17

= -1:6.1 .
1 Zl

(11.23)

The sum in Eq.(II.21) is over individual nuclei. The chemical shift is

a shift in the apparent Larmor frequency of a nucleus due to its

chemical environment, specifically due to local fields set up by

electron currents. The shift is proportional to the static field, so

that chemical shifts are measured as fractions of the Larmor frequency,

in parts per million (ppm). For hydrogen nuclei (protons) in organic

liquids, the chemical shift range is about 10 ppm; for 13c nuclei, it

is about 200 ppm.

The resonance offset term and the chemical shift terms are clearly

similar in form. In subsequent discussions, particularly in problems

involving isolated spins or systems of spins with identical chemical

Shifts, the offset and chemical shift terms are combined and referred

to collectively as the resonance offset.
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4. Dipole couplings

Another contribution to Kint is the dipole coupling:

Kd = t d.. [1 .1 . - (1/3)1 .• 1.]
i>j lJ 21 ZJ 1 J

Kd is the interaction of the magnetic moment of one nucleus with

the magnetic field created by the dipole moment of another

nucleus. The sum in Eq.(II.24) is over all pairs of nuclei. The

coupling constants dij are given by:

(l
d .. = 3y2

lJ

2
- 3cos 6ij )

32r ..
lJ

(11.25)

r ij is the distance between nuclei i and j; 6ij is the angle between

the internuclear vector and the static field direction, i.e. the z

axis. Dipole couplings on the order of 50 kHz are common in proton NMR

of organic solids. If there are rapid molecular motions, the right-hand

side of Eq.(1I.25) is replaced by its time average. "Rapid"means that

the motions occur on a time scale that is small compared to l/d ij • Such

motions reduce the effective coupling constants if the motions are

anisotropic, as in the rotation of methyl groups in organic solids or

the restricted movements of liquid crystals. If the motion is

isotropic, as in the tumbling of small molecules in liquids, the

coupling constants average to zero.

5. Quadrupole couplings

Quadrupole couplings also contribute to Kint • The quadrupole

J
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coupling is an interaction between the quadrupole moment of the nuclear

charge distribution and electric field gradients at the nucleus, set up

by the electronic charge distribution. It can be put in the form of a

nuclear spin interaction through the Wigner-Eckart theorem [10,11,14].

If the field gradients have axial symmetry, the result is:

2 2

K = I wQ.[I . - (1/3)I i ]Q i ' Zl

3eQiVzzi 2
- 1)wQi = 81(21 _ 1){3cos 6i

(II.26)

{II.27}

where eQi and Vzzi are respectively the quadrupole moment and the

electric field gradient along the unique direction for the i th

spin. 6i is the angle between the static field direction and the

unique field gradient direction. Quadrupole couplings of several hundred

kilohertz are common in solid state deuterium NMR.

For a nucleus to have a quadrupole coupling, it must have a

total spin q~antum number greater than 1/2. For spin-1/2 nuclei,

[Iz~ - (1/3}I~] is zero. Eq.(II.26) also applies to non-axially

symmetric field gradients, but the orientational dependence of wQi is

more complicated.

The remarks about the averaging of the dipole coupling constants by

molecular motions apply identically to wQi. In particular, quadrupole

couplings are averaged away in liquids.

XQ and Kd have an obvious similarity of form. As discussed later,

they are both irreducible tensor operators of the type T20•
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6. SCalar couplings

The final contribution to Xint that plays a role in subsequent

discussions is the isotropic J coupling, or scalar coupling:

XJ = t J .. I .• I.
i>j lJ 1 J

(II .28)

The scalar coupling is an indirect coupling between two nuclear spins,

mediated by electron orbitals that cover both nuclei. The J ij are
ogenerally much smaller than the dij , the ~Qi' and ~1. Scalar couplings

between protons in liquid state NMR are usually less than 15 Hz.

Couplings between protons and 13C nuclei are less than 200 Hz. The

scalar coupling is thus negligible except over rather long time periods.

It has important effects only where mentioned explicitly.

The form in Eq.(II.28) applies when the chemical shift differences

of coupled nuclei are smaller than or comparable to J ij • When/o i - 0jl

» /J i jl , the fo11 owi ng form may be used:

x = t J .. I .1 .
J i>j lJ Zl ZJ

(11.29)

Eq.(II.29) retains only the part of X J that commutes with X cs • The

elimination of non-commuting parts can be justified by

perturbation theory, or by an averaging argument such as the one

that led to the replacement of ~int by X\~~ in Eq.(II.I0). Systems

in whi ch Eq. (11.29) app1ies are often called "fi rst-order" or

"weakly coup1ed" systems.
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c. Pulse sequence propagators

1. General remarks

The effect of an rf pulse sequence on a spi n system is given by the

propagator, defined most generally in Eq.(11.13). Eq.(II.13) can be viewed

in several ways. The exponential operator can be expanded in a series:

t t
U(t) = T[l- if:K(tl)dtl - (l/2)(f:K(t l )dt l )2 + ••• ]

a a

The time-ordering operator performs the following function:

which converts Eq.(II.30) to:

(II .30)

(I1.31)

(11.32)

Eq.(11.32) is the Dyson series expression for a propagator [15].

If the Hamiltonian is piecewise-constant, equal to K p :K'2' :K'3' etc.

during successive intervals of length t 1, t 2, t 3, etc., the propagator

can be written:

(11.33 )



(11.34 )t = It.
i 1

If the Hamiltonian varies continuously in time. imagine dividi~g the
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total time interval t into many small subintervals during which the

Hamiltonian is essentially constant. Then an expression like Eq.(II.33)

holds to an increasingly good approximation as the number of

subintervals increases. Thus. for a general time-dependent Hamiltonian:

U(t) =lim exp[-i~(t)t/N] •••exp[-i~(2t/N)t/N]exp[-i~(t/N)t/N]
N .... co

(II .35)

The expression in Eq.(II.15) can be thought of as shorthand for

Eq. (11.35) •

The rotating frame Hamiltonian during an ideal pulse sequence is

piecewise-constant. A pulse sequence composed of n contiguous pulses

may be represented by the notation (81). (82)•••• (8n)•• where 8i =
o 1 2 nth

wlTi' with Ti and 'i being the length and phase of the i pulse. 8 i is

frequently called the flip angle of the pulse.

Propagators for Hamiltonians that are not piecewise-constant are

considered in detail in Chapter IV.

2. Isolated spins and two-level systems

.In liquid state tttR. it is generally a good approximation to

consider the individual nuclei to be isolated spins during a pulse.

since the scalar couplings are very small compared to typical

values of w~. In treating the effect of a pulse sequence on a

system of uncoupled. isolated spins. it is sufficient to consider



a single spin, with angular momentum operator 1. The Hamiltonian

during a pulse of length Tis:
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x = ~wIZ + w1I,

I~ = I cos, + I sin,
? x Y

The propagator is:

The propagator is therefore specified by four quantities: a

phase " a flip angle W~T, a relative offset ~w/w~' and a

relative rf amplitude wl/w~.

Any unitary operator of the form:

R =exp(-ia.I)--

(11.36)

(11.37)

(11.38)

(11.39)

is a rotation operator in the operator space spanned by{I x' Iy'

Iz}. The length of a is the net rotation angle and the direction

of ~ is the rotation axis. The sense of the rotation is

established by the relation:

(11.40)

Eq.(II.40) holds if {X,y,Z} is cyclically permuted, as well.

U(T) clearly has the form of a rotation operator. The overall

propagator for a sequence of contiguous pulses is the product of the

propagators for the individual pulses. Since any product of rotations
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is equivalent to some single net rotation,the propagator for any pulse

sequence is a rotation operator.

The pulse sequence propagator acts on the initial density operator,

transforming it to a final density operator. If the initial density

operator describes a spin system at equilibrium, it 1s given by:

p{O} =exp{- XL/kT}/Tr[exp{- XL/kT}] {11.41}

where XL is the laboratory frame Hamiltonian with no rf fields present.

Since the dominant term in XL is the Zeeman term, and since Wo « kT at

temperatures above a few degrees Keven for proton NMR in the highest

fields currently available, it is a good approximation to write:

{II.42}

Here N is the total number of spin states, or the dimension of the

system. This is the high temperature approximation [10,11,16]. The

unit operator part of p{O} commutes with all propagators and does not

contribute to observed signals. Therefore, it is usually dropped along

with the constant of proportionality multiplying Iz' which only

determines the absolute signal amplitude, leaving an initial density

operator of Iz• Rf pulses then rotate the density operator to some

linear combination of lx, Iy' and Iz• The density operator is therefore

always in the form:

pet} • M{t}.1- - {II.43}



25

where ~ is a unit magnetization vector, or Bloch vector [17]. It is

sometimes useful to picture the effect of a pulse sequence on an

isolated spin as the trajectory of ~(t) on a unit sphere, as will be

seen in Chapter III.

That a pulse sequence propagator is a rotation and that the state

of the spin system may be described by a Bloch vector are both

consequences of the linear fonm of the Hamiltonian and of the

commutation rules for angular momentum operators. The above discussion

therefore applies to isolated spins with any total spin quantum number,

not just to spin-1/2 nuclei. However, the state of any quantum

mechanical two-level system, of which a spin-1/2 nucleus is an example,

can be described by a Bloch vector [18]. Its time development can be

described as a series of rotations. This is because the 2X2 matrices

corresponding to {1, Ix, Iy' Iz} fonm a complete basis for all 2X2

matrices. Both the Hamiltonian and the density operator may always be

written as linear combinations of Ix, Iy' and Iz plus constants,

regardless of the physical origin of the system and the Hamiltonian.

3. Coupled spins

If dipole or quadrupole couplings exist, the Hamiltonian has tenms

that are bilinear in the angular momentum operators. The pulse sequence

propagator is no longer a rotation, but is a more general unitary
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transformation. For a pulse of length t, the propagator is:

(II .44)

The propagator is therefore specified by a phase, a flip angle, a

relative offset, a relative rf amplitude, and sets of relative chemical

shifts, relative quadrupole couplings, and relative dipole couplings.

The initial density operator is still Iz• There are certain

important cases in which the evolution of the density operator can be

calculated analytically after reasonable simplifying assumptions. There

are other cases in which symmetry in the pulse sequence places

restrictions on the evolution. These will be encountered later. In

general, however, the evolution can only be calculated numerically. The

results depend on the specific network of couplings.

If the density operator is expressed according to Eq.(II.12), with

{In>} being eigenstates of Iz and of the Hamiltonian, certain names can

be assigned to the coefficients cnm that make up the density matrix.

The diagonal element cnn is the population of the state In>. An '

off-diagonal element cnnl is a coherence between states In> and In l >. If:

I In> = m In>z n
I z fnI > =mnI ,n I >

(II.45)

(II.46)

the coherence 1s called an (mn - mnl)-quantum coherence, e.g. a
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zero-quantum, single-quantum, double-quantum, or in general a

multiple-quantum coherence.

Only single-quantum coherence contributes to observable signal,

in particular only single-quantum coherence cnn l that satisfies:

Tr(I+,n><n '/ ) =0

or:

D. Broadband excitation problems

1. Population inversion

(II .47)

(11.48)

The pulse sequence propagator in general depends on dimensionless

expe'rimental parameters such as the relative offset, the relative rf

amplitude, and the relative couplings. The object of broadband

excitation is the development of pulse sequences whose propagators are

nearly independent of one or several of those parameters over some large

range of values. Two specific types of pulse sequences are of

particular interest because of their many applications in NMR. The

first is a sequence that inverts spin populations. Spin population

inversion is defined by the following property:

(11.49)

or:

(11.50)
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where the curly brackets indicate an anti commutator. A pulse sequence

that inverts populations takes an initial density operator of Iz to a

final density operator of -Iz• For a more general initial condition,

population inversion corresponds to an exchange of the total populations

of the mth and (-m)th Zeeman manifolds, for all m. To see this, write

the initial density operator as:

p(O) = I: I: I: I: cmm'ss,(O) Im,s><m l ,s'l
mm's sI

(II.51)

The states 1m,s> are eigenstates of Iz, with eigenvalue m, and of ~ without

the rf interaction, with eigenvalue ws• The total population Pm(t) of

the mth Zeeman manifold is defined by:

/

(II. 52)

Using the fact that:

(II.53)

the total population of the (_m)th Zeeman manifold at the end of the

inverting sequence may be written:

P-m(t) = I: I: I: t I: Cm'mllSISIl(O)Tr[I-m,s><-m,SIU(t)/ml,s'><mll,sll/UCr)°l]
m'm"s's"m

(II. 54)

Because of Eq.(II.50):



Then Eq.(II.54) becomes:

*P-m( t) = E E E E E E E Cmlml' s ISll (O)am,s Itamllsllt I
m'mlls S'sllt t'

X Tr(I-m,s><-m,sl-m',t><-mll,t l,)

Using the unitarity of U(t) and the fact that:

P-m(t) reduces to:

which is Pm(O).

Any U(t) that satisfies Eq.(II.49) can be rewritten as:

(II .55)

(II. 56)

(II.57)

(11.58)

(II.59)

29

where A is a unitary operator that commutes with Iz• This is so

because:

(II .60)

and:



exp(ilx.)U(t)l z = exp(ilx·)U(t)lzU(tt1exp(-ilx·)

Xexp(ilx.)U(t)

= Izexp(ilx·)U(t)

(11.61)

(11.62)
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For an isolated spin, the only possibility for the form of a propagator

that inverts populations is:

(11.63)

or equivalently:

(11.64)

It is sometimes useful to picture the inversion of an isolated spin as a

Bloch vector trajectory from +z to -z on a unit sphere.

The extent of inversion is measured by the quantity W, defined by:

(11.65)

Thus, Wis the negative of the expectation value of the final z

component of spin angular momentum, normalized to a maximum value of 1.

W= 1 corresponds to complete population inversion, while W= -1

corresponds to equilibrium populations. For an isolated spin, -W is the

final z component of the Bloch vector.

The standard method for inverting populations in pulsed NMR

experiments is to use a single. pulse, i.e. a pulse with a flip angle

of w. To illustrate the need for broadband inversion sequences, and to
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give a benchmark against which the later sequences can be compared,

Figure 11.2 shows theoretical plots and experimental data for the extent

of inversion by a single pulse as a function of the relative offset and

the relative rf amplitude. These results apply to a system of isolated

spins. It is clear that the inversion bandwidth is quite limited with

respect to both the offset and the rf amplitude. The exact expression

for the inversion 1n this case is:

w= _(cos2xcos~ + sin2x)
-1x =tan (~w/wl)

2 2 1/2 0
~ =w(wl + ~w) /wl

(11.66)

(11.67)

(11.68)

Two criteria for defining a broadband inversion sequence may be

used. The more liberal one is that the pulse sequence propagator be in

the form of Eq.(11.59) over a large range of some experimental

parameter, such as the relative offset or rf amplitude, but with A

allowed to be a function of that parameter. For such a pulse sequence,

populations will be inverted over a large range of the parameter. An

initial density operator of Iz will be transformed to -Iz. However,

other initial density operators will in general be transformed to a

final form that is still a function of the parameter.

Amore stringent requirement is that the propagator be strictly

constant over a range of the parameter. Then an arbitrary initial

condition will be transformed in a constant way. There are certain

important applications of broadband inversion sequences in which th~

more stringent requirement is necessary. These are discussed in Chapter

v. It is particularly useful to generate a pulse sequence with a
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Figure 11.2: The extent of population inversion produced by a single w

pulse as a function of the resonance offset ~(a) and the true rf
amplitude wI (b). Simulations (solid lines) and experimental proton NMR
measurements (dots) are shown. The experimental measurements were
perfonmed on H20(1) with a nominal rf amplitude w~/2w =21.6 kHz.
Broadband inversion sequences (composite w pulses) are designed to have
larger inversion bandwidths than those shown here.
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constant propagator of the form of Eq.(II.64). even in a coupled spin

system.

2. Creation of transverse magnetization

The second type of pulse sequence that is of special importance is

one that takes Iz to a linear combination of Ix and Iy• i.e.:

(11.69)

This corresponds to the creation of transverse magnetization from

longitudinal magnetization. For an isolated spin. the sequence yields a

Bloch vector trajectory from +z to a point on the equator of a unit

sphere. In a coupled spin system. the density operator may evolve into

a general linear combination of operators at intermediate times between

o and t.

A general form for U(t) satisfying Eq.(II.69) is:

(11.70)

where B is a unitary operator that commutes with Iz• That B commutes

with I z if U(t) satisfies Eq.(II.69) may be shown as follows:

B =exp(iIxw/2)exp(iI z+)U(t)

BIz =[exP(ilxw/2)exP(iIz+)U(t)IzU(trlexP(-iIz+)

Xexp(-iIxw/2)]exp(iIxw/2)exp(iI z+)U(t)

= I Bz

(11.71)

(11.72)

(11.73)
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For an isolated spin, the only possible form for U(~) is:

(11.74)
r

The extent of the creation of transverse magnetization can be measured

by the quantity Mxy ' defined by:

(11.75)

(11.76)

Mxy is proportional to the signal amplitude observed immediately

following the pulse sequence. The signal phase t is defined by:

(11.77)

If the pulse sequence propagator is in the form of Eq.(11.70) over a

large range of some experimental parameter, Mxy will be constant and

equal to 1. t may still vary, reflecting variations in , in Eq.(11.70).

The standard way to create transverse magnetization in NMR is with

a single w/2 pulse, i.e. a pulse with a flip angle of w/2. Figure 11.3

shows plots of the signal amplitude and phase following a w/2 pulse,

with an rf phase of zero, as a function of the relative offset. Figure

11.4 shows the signal amplitude as a function of the relative rf

amplitude. the phase is constant. Again, these results apply to

isolated spins. The exact expressions are:
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Figure 11.3: Simulations of the NMR signal amplitude and phase
following excitation by a single ./2 pulse as a function of the relative
resonance offset. The signal amplitude bandwidth is large, but the
signal phase is a strong, approximately linear, function of the offset.
Composite ./2 pulses may be designed to give a constant signal phase
over a larger bandwidth.
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Figure 11.4: Simulation of the NMR signal amplitude following
excitation by a single _/2 pulse as a function of the relative rf
amplitude. Composite _/2 pulses may be designed to produce uniform
excitation over a larger range of rf amplitudes.
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Mxy c cosx[sin2x(1-Cost}2 + sin2t]1/2

tant c sint/[sinx(cost - I}]

(II.78)

{Il.79}
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where x and t are defined in Eqs.{11.67} and (11.68). Figure 11.3 indicates

that Mxy is fairly constant over a large range of offsets. but t varies

approximately linearly with offset. Figure 11.4 indicates that Mxy is not

constant as a function of the rf amplitude.

Again. two criteria may be used to define broadband creation of

transverse magnetization. If the propagator ;s only required to be in

the form of Eq.(11.70}. Mxy will be constant but t may vary. A general

initial density operator will not be transformed in a constant way. In

certain applications. it is important that U(t} be strictly constant.

In particular. it is useful for U<t} to bea constant rotation. in the

form of Eq.{11.74).

Finally. rotations of the form of Eq.(11.74) perform many other

functions in addition to the creation of transverse magnetization. Some

of these are discussed in later chapters.
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Chapter III: Previous Work in Broadband Excitation

A. Adiabatic inversion

An early method for broadband population inversion is the adiabatic

rapid passage [10,17]. In this technique, a long, continuous rf pulse

is given and either the rf frequency or the static field strength is

swept so that the resonance offset goes from a large positive value to a

large negative value, or vice versa, for all spins. If the sweep is

accomplished in a time that is short compared to spin relaxation times,

and long compared to l/w~, then populations are inverted to a high

degree of accuracy in isolated spin systems.

The performance of an adiabatic sweep can be explained generally in

terms of the Adiabatic Theorem of quantum mechanics [13]. In this

specific case, however, a simple argument leads to a more detailed

understanding. Consider the rotating frame Hamiltonian during a linear

field sweep:

K =Aw(t)l z + w11x

Aw(t) =-kt, -to't,to

(111.1)

(111.2)

6w(t) and WI are the z and x components of an effective field weff' with

a time-dependent magnitude and direction. k is the sweep rate. In a

new reference frame related to the rotating frame by the transformation

T(t):



T(t) =exp[iI e(t)]
y

e(t) =w/2 - tan-l[~w(t)/wl]

the Hamiltonian is:
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. .
(111.3) .

(111.4)

(111.5)

If weff » ~~ at all times during the sweep, in the new frame it appears

as if the field is always nearly aligned with the z axis. This is the

condition that the sweep be slow, placing an upper limit on k. If

6(-tO) = 0, the initial density operator in the new frame is

approximately Iz• This is the condition that the sweep start far above

resonance. If KT is always nearly proportional to Iz' the density matrix

remains approximately equal to Iz in the new frame throughout the sweep.

At the end of the sweep, the rotating frame is related to the new frame

by T(tO)-l. If e(tO) =w, then the final density operator in the

rotating frame is approximately -Iz• This is the condition that the

sweep end far below resonance. The degree of accuracy of the inversion

is determined by the extent to which the various conditions are

satisfied. It is generally sufficient to have weff > 5(~~),e(-to)( 0.1,

and e(tO) > w - 0.1. Such a sweep requires a total time 2tO> 2w X

lOa/wI·

Broadband inversion with respect to the resonant frequency is

possible since, for a linear sweep, the condition weff » ~~ is

satisfied for all resonant frequencies once it is satisfied for any

particular frequency. To invert spins over a large range of resonant

frequencies, it is only necessary to begin the sweep far above the
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highest resonant frequency and end it far below the lowest resonant

frequency. Calculated plots of inversion as a function of the resonance

·offset", i.e. the displacement from the central frequency of the

sweep, are shown in Figure 111.1 for sweeps of various lengths.

Broadband inversion with respect to the rf amplitude is possible

since the condition weff » ~~ is satisfied for all values of w1 greater

than w~ once it is satisfied for w~. Eventually, w1 may become so large

that e is no longer nearly 0 and. at -to and to' respectively. This

places the upper limit on the inversion bandwidth in w1' but that upper

limit can be made as large as desired by using a large to. Simulations

of inversion as a function of the rf amplitude for sweeps of various

lengths are shown in Figure 111.2.

Thus, the inversion bandwidths with respect to the resonant frequency

and the rf amplitude are ultimately limited only by the total time allowed

for the sweep. The time is in turn limited by spin relaxation and by spin

couplings, in other words by the time scale on which it is a good

approximation to consider spins as being isolated.

B. Composite pulses

The use of a sequence of single-frequency, phase-shifted pulses to

perform the functions of a single. or ./2 pulse, but over a larger

bandwidth, was first suggested and demonstrated by Levitt and Freeman.
[19-28]. Those authors introduced the name "composite pulse" to

describe such a sequence. A composite pulse offers several advantages

over an adiabatic sweep. First, an adiabatic sweep does not apply to

the creation of transverse magnetization over a range of resonant
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Figure 111.1: Simulations of inversion as a function of the relative
offset for linear frequency sweeps with a sweep rate k/(w~)2 =0.2.

oThe overall lengths of the sweeps are 2w1t O = 15.82 (a). 31.46 (b).
62.86 (c). 200.0 (d). The offset is the difference between the resonant
frequency and the central frequency of the sweep.
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Figure 111.2: Simulations of inversion as a function of the relative rf
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k/(w~)2 • 0.2. The overall lengths of the sweeps are
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frequencies. while composite pulses that invert populations and that

create transverse magnetization may be derived. Second. fairly large

bandwidths are accessible with composite pulses that are more than ten

times shorter in time than an adiabatic sweep. Third. composite pulses

that have large bandwidths with respect to spin couplings may be

derived. while an adiabatic sweep is generally not effective in a

coupled spin system. Fourth. composite pulses that have constant net

propagators may be derived. with important consequences that will be

discussed later. Finally. composite pulses are easily given

experimentally on modern pulsed NMR spectrometers. while the capability

to perform field or frequency sweeps usually does not exist.

The original derivation of composite pulses by Levitt and Freeman
/

[19J and by Freeman. Kempsell. and Levitt [20J relied on Bloch vector

pictures and computer simulations. Bloch vector trajectories were

examined as a function of 6W/W~ or W1/W~. The phases and flip angles of

pulses were chosen so that the deviation from the ideal trajectory. i.e.

the trajectory with 6w =0 and w1 =w~. in one pulse was compensated by

the deviations in other pulses. Important examples are the composite n

pulses of the form 900690900• Regardless of 6. a 900690900 sequence

inverts spins when 6w = 0 and w1 = w~. When 6 = O. the sequence reduces

to a single w pulse. By choosing e ; O. it is possible to extend the

inversion bandwidths in wl and 6w. Intuitively. this can be understood

by an argument based on a Bloch vector. Consider the case where wl <

w~. The first 900 pulse takes the Bloch vector from +z to a point in

the yz plane short of the y axis. If a perfect 1800 rotation could be

given about the y axis. the Bloch vector would move to a point in the yz

plane related to the previous point by a reflection in the xy plane.
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Then the final 900 pulse would take the Bloch vector to -z, completing

the inversion. Of course, if a range of ~1 values is present, it is

impossible to give a perfect 1800 rotation for the entire sample.

However, it is at least conceivable that 90018090900 may have a larger

bandwidth than 1800• For variations in A~, the argument is not as

simple, since variations in A~ affect the direction of the rotation axis

for a pulse as well as the rotation angle. However, simulations of the

trajectories and of the resulting inversion as a function of A~ show

that 90024090900 has a large inversion bandwidth, covering offsets of A~

< 0.5~~. Simulations of the inversion as a function of A~ and ~1 for

various 900690900 sequences are shown in Figure 111.3.

Later derivations of composite pulses by Levitt and Freeman [21J

employed a more mathematical analysis, treating pulse sequences as

products of rotation operators. The propagator U for 90018090900 as a

function of the rf amplitude is as follows:

U=exp[-il x(w/2 + £)Jexp[-ily(w + 2£)Jexp[-ilx(w/2 + £)J

(III.6)

o 0£ = w(~l - ~1)/2~1 (111.7)

To first order in £:

r

U=eXp(-ilxw/2)exp(-ilyw)exp(-ilxw/2)exp(2ilz£)

=exp(-ilx.)exp[ilz(w + 2£)J

(III.8)

(III.9)

Eq.(111.9) has the form of Eq.(II.63)

Similarly, the propagator for 90027090900 as a function of A~
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can be written:

u=exp(ilyx)exp(-ilx~/2)exp(-ilyx)exp(-ilxX)

XeXP(-3ily~/2)exp(ilxx)exp(ilyx)exp(-ilx~/2)exp(-ilyX)

(111.10)

with X and ~ defined in Eqs.(11.67) and (11.68), with w1 =w~.

To first order in ~w/w~:

U = exp(-ilxw/2)exp(-3ilyw/2)exp(-ilxw/2)

=exp(-il xw)exp(3il zw/2)

(111.11)

(111.12)

Eq.(111.12) has the form of Eq.(11.63). In addition, the propagator for

90027090900 is independent of ~w to first order in ~w/w~, i.e. it is a

constant net rotation.

Further work by Levitt [22,23] involved evaluating the final

density matrix as a function of w1 or ~w in a Taylor series expansion

about the value at w1 =w~ and ~w = O. Simple geometric conditions were

derived under which the first-order correction term in the expansion

could be made to vanish. For example, for the case of variations in w1'

it can be shown that the first-order term vanishes for a two-pulse

sequence if the ideal Bloch vector trajectories during the two pulses

have the same arc length and are antitangential. One sequence that

satisfies those conditions is 900180120 , assuming an initial Bloch

vector aligned with the z axis. 900180120 takes Bloch vectors from +z

to points in the ~ plane to a good approximation over the range 0.8w~ <
ow1 < 1.2w1• From there, the sequence 180120900 takes the vectors from
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the xy plane to -z, along trajectories that are approximately related to

the trajectories during 900180120 by reflection in the xy plane. For wI

=w~, the reflection symmetry is exact. Thus, 900360120900 ;s suggested

as a composite w pulse that covers a range of rf amplitudes.

On the whole, the composite pulse work of levitt, Freeman, et ale

is of great practical importance. They have suggested simple sequences

that significantly improve upon the bandwidths of single pulses.

Additionally, they have demonstrated the usefulness of composite pulses

in spin-lattice relaxation time measurements [19,20J, Carr-Purcell

multiple spin echo experiments [21J, two-dimensional NMR experiments

[28J, and heteronuclear decoupling experiments [24,25,29-32J.

Certain limitations of the theoretical approaches described above

provided the motivation for developing new approaches to the derivation

of composite pulses, as described in this dissertation. First, the

reliance on Bloch vector pictures and computer simulations and the

treatment of pulse sequence propagators as products of rotations limits

the development of composite pulses to isolated spin problems. In

coupled spin systems, the vector pictures do not apply. It is not

possible to perform definitive computer simulations that apply to all

coupled systems. The pulse sequence propagators are more complicated,

without corresponding simple geometric pictures. Second, while it

appears reasonable to expect that the bandwidths of composite pulses may

improve as the number of individual pulses increases, the original

methods of levitt and Freeman do not provide a systematic method for

deriving successively longer sequences with increasing bandwidths. An

attempt to go beyond first-order arguments is cumbersome and not

particularly successful [23J, leading ultimately to a reliance on
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computer simulations and optimizations. Third, composite pulses are

derived from the standpoint of a particular initial spin density

operator, namely Iz• The result is pulse sequences that are not

strictly constant over any bandwidth, except in the fortuitous example

of the 90027090900 sequence. Finally, no methods are proposed for

generating sequences for broadband excitation with respect to more than

one experimental parameter at a time.

In the following chapters, theoretical methods for deriving

composite pulses that overcome the above limitations are presented•. In

addition, further developments by other authors that have been made

concurrently with the work described in the following chapters are

discussed where appropriate.

c. Broadband population inversion by phase-modulated pulses

Before moving on to the main body of the dissertation, an approach

to broadband population inversion in systems of isolated spins that

bridges between composite pulses and adiabatic inversion will be

discussed briefly. The central idea is that, as the number of

phase-shifted pulses in a composite pulse increases, the composite pulse

may begin to resemble a single rf pulse with a continuously modulated

phase. Conversely, if a continuously modulated pulse with broadband

inversion properties is known, it may be possible to generate composite

pulses by approximating the continuously varying phase function by a

piecewise-constant function.

Pines has suggested using a particular pulse first proposed by

Allen and Eberly [33], which can be written in the form:
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where ~(t) is the time derivative of the rf phase.

(III.13)

(I II .14)

Work by Baum, Tycko,

and Pines [7,8] shows that this pulse inverts spins on resonance for any

value of y, and that the inversion bandwidths in both w1 and ~w become

as large as desired as y approaches o. The same behavior holds for an

equivalent pulse with a constant amplitude, defined by:

w1(t) =w~, -w/(2w~Siny) , t , w/(2w~Siny)

~(t) = -W~cosytan(w~Siny)t

(111.15)

(III.16)

The pulse of Eqs.(111.15) and (111.16) is equivalent to that of

Eqs.(ll1.13) and (111.14) in the sense that the inverting trajectory for

a Bloch vector with ~w = 0 is the same for the two pulses. Inversion

plots as a function of the resonance offset for pulses of the form of

Eqs.(111.15) and (111.16) are shown in Figure 111.4.

Composite pulses may be derived from the continuously modulated

pulse by co~sidering the on-resonance inverting trajectory. If N points

are chosen along the trajectory, with the first point at +z and the last

point at -z, a sequence of N-1 pulses can be found such that it causes

an on-resonance Bloch vector to move between successive points. As N

becomes larger, the pulse sequence derived by this "connect the dots"

method approximates the continuously modulated pulse. This approach to

generating composite pulses is particularly well suited for generating

long sequences with very large bandwidths, although short sequences
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resembling those of Figure 111.2 can also be derived. Inversion results

for some derived composite pulse sequences are shown in Figure 111.5.

Acontinuously modulated pulse such as that of Eqs.(III.15) and

(111.16) becomes an adiabatic frequency sweep for small y. This is

because phase modulation and frequency modulation are equivalent: the

time derivative of the phase is indistinguishable from a frequency

shift. Eq.(III.16) may therefore be interpreted as a frequency sweep

from far above resonance to far below resonance. As y becomes smaller,

the maximum sweep rate becomes smaller and the sweep becomes adiabatic.

Note, however, that the sweep is not linear, i.e. the sweep rate is not

constant. Far from resonance, the sweep is very rapid. This is

permitted as long as the condition weff » ~~ is satisfied, as discussed

in section A. In fact, the varying sweep rate allows the adiabatic

inversion to be accomplished in less time than the standard, linear

sweep. Thus, the phase-modulated pulse considered here is an example of

an efficient adiabatic sweep when y is small, and inverts spins on

resonance regardless of y. Further details of this work are given in

references 7 and 8.
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Chapter IV: Coherent Averaging Approach to Broadband Excitation:

Formalism and Computational Methods

A. Motivation

As explained in Chapter II, the problem of broadband excitation in

NMR is the problem of finding a pulse sequence for which the net

propagator has a desired form, independent of the relative strength of a

particular term in the Hamiltonian. Similar problems occur in other

areas of NMR, although for different reasons. An important example is

the area of high resolution NMR in solids [34,35]. The spectra of

abundant nuclei in solids, for example protons (lH) in crystalline

organic compounds, are typically broad and largely structureless. They

are dominated by homonuclear dipole couplings, with values ranging from

o to about 50 kHz. The large number of non-degenerate transitions

between the coupled spin states makes it impossible to resolve

individual transitions. However, if a pulse sequence for which the net

propagator is independent of the couplings is given repetitively while

the NMR signals are observed, a spectrum can be obtained which

corresponds to an effective Hamiltonian in which there are no couplings.

That spectrum has resolved lines whose positions are determined by

chemical shifts. Pulse sequences of this sort are called line-narrowing

sequences [34-44].

Other examples that may be related to the broadband excitation

problem include experiments where the desired propagator is not

necessarily independent of the values of coupling constants, but has

-

c
L
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particular symmetry properties regardless of the specific couplings.

Time-reversal experiments are one such example [45-47]. Pulse sequences

may be constructed such that an overall rf phase shift of ./2 converts

the propagator to its inverse. The inverse propagator reverses the net

evolution in time brought about by the original propagator.

The formalism for describing line-narrowing, time-reversal, and

other such experiments in which a pulse sequence is designed to produce

a propagator of some desired form is provided by coherent averaging

theory, originally formulated by Haeber1en and Waugh [37]. The

essential idea of coherent averaging theory is that a pulse sequence

acts on the spin Hamiltonian, rather than on the spin state, averaging

it in such a way that it may be replaced by some other effective

Hamiltonian. If the pulse sequence has a total length t, the propagator

for the true, time-dependent Hamiltonian is the same as the propagator

for the constant, effective Hamiltonian acting for a time t.

Acoherent averaging theory analysis of a proposed pulse sequence

begins with the separation of the Hamiltonian into two parts:

(IV.1)

where Krf(t) is the piecewise-constant interaction with ideal rf fields

and Vcontains all other interactions, possibly including terms that

represent imperfections in the rf pulses. The propagator for Krf(t)

alone, a product of rotation operators, is Urf(t), with Urf(O) =1. In

a frame of reference related tp the rotating frame by the transformation

Urf(t)-l, the Hamiltonian is V(t), defined by:
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(IV.2) .

The new frame of reference is an interaction representation in the

tenminology of time-dependent perturbation theory. Most applications of

coherent averaging theory are to pulse sequences consisting of a train

of pulses separated by delays in which the rf is switched off. It is

often assumed, at least as a first approximation, that the pulses are of

very large amplitude and are very short compared to the total length of

the sequence. Then the rotations induced by the pulses can be

considered to be instantaneous; this is the "delta function" pulse

limit. In that limit V(t} is piecewise-constant if V is constant. The

interaction representation is called the "toggling frame" in the delta

function pulse limit.

Frequently, it is more realistic to take the finite pulse lengths

and amplitudes into account. Line-narrowing sequences designed

explicitly for finite pulse lengths have been demonstrated by Burum,

Linder, and Ernst [44]. During a pulse, V(t) varies continuously in

time. This is necessarily the situation in broadband excitation

problems, in which parameters such as 6W/W~ and dij/W~ are deliberately

not negl igi b1e.

The propagator for V(t} is Uv(t}. The overall propagator for

the pulse sequence, U(t}, is then:

Eq.(IV.3} can be interpreted to mean that the overall evolution in the

rotating frame can be calculated by first transfonming to the
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interaction representation at t • 0, calculating the evolution in the·

interaction representation up to t = t, and finally transforming back to

the rotating frame at t c t. Note that the rotating frame and the

interaction representation coincide at t =0, since Urt(O)-1 • 1.

Eq.(IV.3) is reminiscent of the forms for desired propagators

introduced in Eqs.(11.57) and (11.68). Those forms involve the product

of a pure rotation operator and another unitary operator of a more

general type, just as in Eq.(IV.3). The resemblance suggests that a

coherent averaging theory approach may be appropriate in broadband

excitation problems.

It is necessary to evaluate Uv(t), the propagator for a

time-dependent Hamiltonian. Coherent averaging theory uses the Magnus

expansion [48-51] to express Uv(t) as the exponential of an effective

Hami 1toni an:

+ •••

(IV.4)

(IV.5)

The Magnus expansion is a power series expansion in IV/t. The

derivation of the Magnus expansion, the form of the terms V(i), and

other properties are discussed in the next section. In most

applications of coherent averaging theory, a pulse sequence is found for

which v(O) has the desired form and V(l) vanishes. Provided thatlVlt

is small, higher terms are considered negligible. Then Yeff = V(O). In

line-narrowing applications, sequences for which y(O) has only terms

that are linear in the angular momentum operators are used. In

time-reversal appUcations, sequences for which y(O) becomes _y(O) under
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an overall rf phase shift of ./2 are used.

The two major requirements for the applicability of coherent

averaging theory are that Urf(T) • 1 and that the state of the spin

system only be observed at times that are multiples of T. A pulse

sequence for which Urf(T) =1 is cOlllnonly called a cycle. The

requirement that the pulse sequence be cyclic makes U(T) equal to Uv(t),

as follows from Eq.(IV.3). If the pulse cycle is repeated, and if

signals are only observed at multiples of T, the spin system appears to

be evolving under the Hamiltonian Veff = v(O). The pulse sequence does

not affect the evolution explicitly, i.e. two different pulse sequences

with the same Veff give the same evolution. It is in this way that the

pulse sequence acts on the Hamiltonian to create a new, effective

Hamil toni an.

Only certain parts of coherent averaging theory are applicable to

broadband excitation problems. These are the separations of the

Hamiltonian and the propagator according to Eqs.(IV.l) and (IV.3) and

the use of the Magnus expansion to evaluate Uv(t). The requirement that

Urf(t) = 1 certainly does not apply. Urf is instead required to be a

rotation that inverts spin populations or creates transverse

magnetization. Another difference is that broadband excitation

sequences are typically given as individual units. They are not meant

to be applied repetitively and contiguously, as line-narrowing and

time-reversal sequences are. Therefore, the idea of observing signals

stroboscopically at multiples of t plays no role. The related idea of

evolution under a constant effective Hamiltonian is only of importance

insofar as the Magnus expansion is used to evaluate Uy(t). Because the

broadband excitation work only uses the Magnus expansion and the
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interaction representation, which is standard in time-dependent

perturbation theory, and does not use the additional ideas of coherent

averaging theory, the phrase "coherent averaging theory· has not been

used to describe that work in publications. It should be appreciated,

however, that the prevalence of coherent averaging theory in NMR

provides the background and inspiration for the approach to broadband

excitation described below.

B. The Magnus expansion

1. Derivations

As originally formulated by Magnus [48], the Magnus expansion is

the solution to the problem of finding a linear operator n(t} such that:

U(t} =exp[n(t}] (IV.6)

-
~

if U(t} satisfies:

~~(t) =A(t}U(t} (IV.7)

U(O} =1 (IV.8)

where A(t} is another linear operator. The Schrodinger equation for the

propagator is a special case of Eqs.(IV.7} and (IV.8) in which iA(t} is

hermitian and U(t} is unitary.

Magnus showed that o(t} satisfies:
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~ = t Bn[ ••• [[[A.Q].O].O] ••• ] (IY.9)
n=O

where the Bn are related to Bernoulli numbers. Bn is the coefficient

of an n-fold commutator. Eq.(IY.9) can be solved for o(t) by iterative

integration.

Other derivations of the Magnus expansion that lead to a solution

for oCt) by iterative integration have been given by Pechukas and Light

[49] and by Wilcox [50]. For the case where A(t) = -iV(t) and OCt) =
-iYefft. as in Eq.(IY.4). the result is an expansion of Yeff as in

Eq. (IV•5). wi th :

(IV.10)

(IV.Il)

(IV.12)

yen) is always a sum of terms that involve (n+1)-fold integrals of

n-fold commutators of Vet) with itself at different times. yen) is

hermitian for all n. so that the approximation to Uv(t) arrived at by

truncating the expansion for Yeff at any point is always unitary. An

explicit. non-recursive formula for yen) has been derived by

Bialynicki-Birula et a1. [51]. If Vet) commutes with itself at all

times. the only non-zero term is v(O). which is simply the average of

Vet). Even if Vet) does not commute with itself at all times. yen)

vanishes for all odd n if Vet) =VeT - t) [52]. A pulse sequence for
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which V(t) =V('[ - t) is said to besymetrized.

A particularly simple derivation of the Magnus expansion goes as

follows. Assume that the Hamiltonian is >.V(t). Eq.(II.30) then

impl ies:

Further assume that:

Uv('[) =exp[-i(>.V(O) + >.2v(1) + >.3V(2) + ••• )'[]

=1 - i(AV(O) + >.2v(1) + ••• )'[

_(>.v(O) + >.2V(1) + ••• )2'[2/2 + •••

(IV.14)

(IV.15)

Equating the operator coefficients of An in the expressions for Uv('[) in

Eqs.(IV.13) and (IV.15) gives Eqs.(IV.10) through (IV.12). While this

derivation allows the Magnus expansion terms to be calculated, it does

not demonstrate ~ priori the commutator structure of those terms.

2. A parameter differentiation theorem

Suppose that the Hamiltonian for some system is proportional to a

parameter A:

:K(t) = >.V(t) (IV.16)

In the previous section, such a form was used to derived the Magnus

expansion, with powers of Aserving merely as labels for various orders.
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Here. Ais intended to have physical significance. for example as a para

meter that determines the 0 erall size of coupling constants in an

interaction representation. The propagator for a time T is a function of

A. UV(T.A). with derivatives Jvn) at A=0 defined by:

(IY.ll)

A theorem that relates the derivatives of the propagator to the Magnus

expansion can be stated as follows: u~n) va~!~hes for 1 ( n ( N if and

only if y(m) vanishes for 0 ( m( N-l. ~.

The theorem follows most directly by using Eq.(IY.l5). which

implies:

(IY.l8)

The only terms inside the square brackets that contribute to u~n} are

those that are proportional to An. The highest-order Magnus expansion

term that contributes is therefore y(n-l). so u~n) vanishes for 1 ( n (

Nif v(m) vanishes for 0 ( m( N-l.

The converse may be proved inductively:

(IY.19)

so that y(O) vanishes if U~l) vanishes. If it is assumed that

u~n) vanishes for 1 ( n ( N and that y(m) vanishes for 0 ( m( N-2,

Eq.(IV.l8) yields:



U(N) = -in V(N-l)~
v
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(IV.20)

Therefore, V(N-l) vanishes as well, so V(m) vanishes for 0' m' N-l if

u~n) vanishes for 1 , n , N.

If the overall propagator is given by Eq.(IV.3), the derivatives of

the overall propagator are:

r

(IV.21)

The theorem is then a mathematical statement of the idea that the

propagator for a pulse sequence for which V(n) vanishes up to some order

Nshould be independent of the values of the parameters in V(t) over

some range of values•. That range of values should increase as N

increases. This is the essential idea of the coherent averaging

approach to broadband excitation. Conversely, if it is known that the

overall propagator is independent of some parameter, then it must be

that V(n) vanishes up to some order. This fact is of importance in

theories of heteronuclear decoupling, particularly in liquid state NMR

[32,53,54].

Finally, the theorem suggests that the Magnus expansion terms can

be calculated by numerically evaluating the derivatives of a pulse

sequence propagator. The practicality and utility of such a calculation

have not yet been demonstrated, but it may be useful as a means for

verifying more direct calculations or as a replacement for direct

calculations when they are excessively complicated.
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c. Application to the construction of composite pulses

1. Formal approach

~ The coherent averaging approach to constructing composite pulses

employs the strategy summarized by Eqs.(IV.l) through (IV.5) and (IV.I0)

through (IV.12). Two types of composite pulses are considered,

composite w pulses and composite w/2 pulses, although other types may

be constructed similarly. A composite w pulse is defined by the

condition:

(IV.21)

A composite w/2 pulse is defined by the condition:

(IV.22)

Broadband excitation with respect to four interactions is considered. For

resonance offsets or chemical shifts, V is taken to be:

(IV.23)

For rf amplitude inhomogeneity:

(IV.24)
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For dipole couplings:

(IV.25)

For quadrupole couplings:

(IV.26)

Simultaneous broadband excitation with respect to several interactions

can be treated by taking Vto be the sum of the interactions. The order

of a composite pulse is defined by the number of Magnus expansion terms

that vanish. An Mth order composite pulse has:

V{j) = 0, 0 ( j ( M (IV.27)

Eq.{IV.27) ensures that UV{T) =1 for some range of 600, 6001' dij , or ooQ

around zero. Then the overall propagator is U{T) = Urf{T), i.e. a

constant pure rotation. This is a unique and important feature of

composite pulses derived with a coherent averaging approach. Zeroth

order and first order composite pulses are demonstrated in Chapter V,

with an emphasis on features that result from the constancy of U{T).

The problem now is to find a pulse sequence that satisfies

Eqs.(IV.21} or (IV.22) and (IV.27). In other applications of coherent

averaging theory, specific pulse cycles are found by some combination of

experience, intuition, inspection, and inspiration. Typically, a cycle

is chosen to have the desired yeO) in the delta function pulse limit.

Higher-order terms and effects of finite pulse lengths and pulse
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imperfections are made to vanish by sYmmetrization and by combining

variants of the basic cycle to form longer supercycles [41.46]. or by

readjusting the lengths of delays and the flip angles of pulses [42,43].

Theorems that indicate when variants of a cycle can be combined to form

a superior supercycle have been developed [41.46].

The approach to finding composite pulses is conceptually different.

It is essentially a "brute force" technique. Consider a general N-pulse

sequence. With the phase of the first pulse arbitrarily set to zero,

the sequence has 2N-1 variable parameters, namely Nflip angles and N-l

phases. Eqs.(IV.21) or (IV.22) and (IV.27) are a set of simultaneous

equations in those variables. If N is chosen to be large enough, it may

be expected that there is a solution to that set of equations. Such a

solution is the desired composite pulse. The procedure therefore

consists of constructing expressions for the appropriate equations in

terms of the flip angles and phases and then finding the simultaneous

solution.

The choice of N is not obvious. Each of the equations. is an

operator equation, and is therefore composed of several component

equations. The equations are non-linear. Still, experience shows that

solutions can usually be found when the number of variables

approximately equals the number of equations, although this is not

guaranteed.

In simple cases, of which an example is given below, the equations

can be written out by hand and solved analytically. In most cases, this

is tedious and essentially impossible. Therefore, computer programs are

usually used, as described later.
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2. A simple example

In this section. zeroth order composite w pulses for broadband

excitation with respect to resonance offsets are derived. with the

general form a06.aa. There are clearly three variables. the two flip

angles a and 6 and the phase.. The pure rf propagator for such a

sequence is:

r

f
eXP(_ilxw~t). 0 , t , a/w~ .

Urf(t) = eXP(-ilz.)exP(-ilxw~t')exP(ilz.)exP(-ilxa). 0 , t' , 6/w~

, exp( -i Ixw~t II )exp( -i Iz+ )exp( -i Ix6 )exp( i Iz+ )exp( -i Ixa).

o , til , a/w~ (IV.28)

with:

t l t / 0= - a wI

til = t - (a + 6)/w~

(IV.29)

(IV.30)

Using Eq.(IV.28). and with T = (2a + 6)/w~:

Urf(T)IzUrf(t)-l =al x + bly + cl z (IV.31)
.2.2.2 22" 2 aC = -Sln aS1n + - Sln aCOS6COS + - SlnacoSaS1n6cos+ + cos aCOS~

(IV.32)

The condition that the pulse sequence be a composite w pulse is

Eq.(IV.2I). which becomes c =-1. This condition is satisfied when:

(IV.33)cosasinS
cos. = sina(l - COSS)
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Any a06,aO sequence for which Eq.(IV.33) holds inverts populations when

Aw = O. The next step is to evaluate V(t). Using Eq.(IV.28) and the

definition of V(t) in Eq.(IV.2):

with:

V(t) =Aw[a(t)Ix + b(t)Iy + c(t)Iz] (IV .34)

aCt) =

o ( til ( a/w~

(IV.35)

.00/0S1 nW l t, ( t ( a w1

b(t) = cos,cosasinw~tl + Sinacosw~t', 0 ( t' ( e/w~

( 2 . 2 . . ). 0t"cos ,cosecOSa + S1n ,COSa - cos,S1neS1na s1nw1

+ (cos,sinecOSa + coseSina)cosw~tll, 0 ( til ( a/w~

(IV.36)
o 0cosw1t, 0 ( t ( a/w1

c(t) = cosacosw~t' - cos,SinaSinw~~" 0 ( t ( e/w~

( . 2.. 2 . ). 0t"- COS,s1neCOSa + cos ,coseS1na + S1n ,S1na s1nw1

+(cOSBCOSa -cos,SinBSina)cosw~tll, 0 ( til ( a/w~

(IV.3?)

V(O) can now be calculated by integrating Eqs.(IV.35),(IV.36), and

(IV.37). For the special case, = ./2, the result is:

V(O) • Aw[(cOSB - 1 - s1nas1nS)Ix + (1 + sinBsina - cos2a +cOSBsin2a)Iy
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+ (sinecosa + cosesinacosa + sinacosa)Iz]/(2a + e)

(IY.38)

The requirement y(O) = 0 is satisfied, along with Eq.(IV.33), whenever a

is an odd multiple of w/2 and e = 2nn - a for an integer n. Thus, the

sequence 90027090900 derived with other methods by Levitt and Freeman

[21] and by Levitt [23] belongs to a class of zeroth order composite n

pulses in the coherent averaging approach.

For an arbitrary f, the expression for y(O) is considerably longer.

However, it can be shown that y(O) = 0 whenever Eq.(IY.33) and the

equation B= 2nn - a are satisfied.

3. Numerical methods: resonance offsets and rf inhomogeneity

The example in the previous section illustrates the complexity of

the equations that must be solved to derive composite pulses. Even for

a sequence with only three variables, V(t) does not have a simple form.

If longer sequences are used in an effort to find higher-order composite

pulses, the expression for V(t) soon becomes unwie1d1y. The same holds

for the expression for Urf(T)IzUrf(T)l. The number of terms in y(l) is

roughly the square of the number of terms in y(O), and each term

involves roughly twice as many trigonometric functions of the flip

angles and phases. Additionally, while in the resonance offset and rf

inhomogeneity cases the only operators that appear in V(t) and V(n) are

Ix, Iy ' and Iz' due to the closed commutation relations of the angular

momentum operators, in the dipole and quadrupole coupling cases there

are more operator components to each equation. For all of these
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reasons, it is generally not feasible to generate the equations

explicitly by hand and solve them analytically. Instead, computer

programs that evaluate the required expressions and search for solutions

to the equations are written.

As an example of the way such a program works, consider the

construction of a first order composite. pulse with compensation for

resonance offsets of the form (81)O(82)'2(83)'3••• (8 N)'N. For a given

choice of the Nvariable flip angles and N-1 variable phases, the

program first checks to see if the sequence inverts populations when 6W

=O. If N is small, a general expression for the coefficient of Iz in

Urf(8i"i)IzUrf(8i"iy1 can be derived by hand. The program evaluates

that expression for the specific choice of flip angles and phases.

Otherwise, the coefficient of Iz can be extracted after applying the N

rotations that make up Urf to an initial operator Iz in a loop in the

program. If the result differs from -1 by more than a specified

tolerance, that choice of flip angles and phases is discarded and a new

choice is made. If the result equals -1 to within the specified

tolerance, the equation V(O) =0 is tested.

For the resonance offset case:

(IV.39)

with:

(IV.40)

During the nth pulse, lz(t) has the form:
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where:

(IV.42)

The coefficients cin are calculated according to the expression:

l~(tn) =exp(ilxe1)exp(-ilz+2)···exp(ilxen_1)exp[-ilz(+n - +n-1)]

X (lzCosw~tn + lySinw~tn)exP[ilz(+n - +n_1)]exp(-il xen_1)···

Xexp(il z+2)exp(-ilxe1) (IV.43)

by applying the indicated rotations about z and x in a loop in the program.

y(O) is then proportional to:

= I Iz[c1n (1 - cosen) + c2nsinen] + ly[c3n (1 - cose n)
n

+ c4nsinen] + Ix[C Sn (l - cosen) + c6nsinen]

(IY.44)

The total coefficients of Ixt Iyt and Iz in Eq.(IY.44) are calculated

individually and checked to see if they are within a specified tolerance of

zero. If not t a new choice of flip angles and phases is made and the

program begins again. If SOt the equation y(l) = 0 is checked.

There are two contributions to y(l). The first is from commutators

of iz(t) during one pulse with 1z(t) during another pulse. These are

proportional to:

e fwO e fwO
I (w~)2[J m 1dt~(t)tJ n 1 dtl~(t)] = I [ilxg(mtnt3t4t1t2)

m>n 0 0 m>n
+ ilyg(mtntlt2tSt6) + i Izg(mtntSt6t3t4)]

(IV.4Sa)
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g{m,n,i,j,k,l) = [cim{l - cosam) + CjmSinam][ckn{l - cosa n) + clnsinen]

- [ckm(l - cosam) + clmsinam][cin(l - cosen) + cjnsinen]

(IV .45b)

The contribution from commutators of iz{t) at one time during a pulse

with iz{t) at a different time during the same pulse is proportional to:

The sums of the coefficients of Ix' Iy' and Iz in Eqs.{IV.45) and (IV.46)

are calculated and checked to see if they are within a specified tolerance

of zero. If so, the values of the flip angles and phases are saved.

All possible combinations of flip angles and phases within

specified ranges and in specified increments are tested. The tolerances

within which Eqs.{IV.2l) or (IV.22) and (IV.27) must be satisfied are

made sufficiently small that only a small number of flip angle and phase

combinations are saved. Simulations of the performance of the composite

pulses are used to select the best composite pulse from those that

satisfy the required equations within the specified tolerances.

Differences in the performance of various composite pulses may be

attributed to differences in the higher-order Magnus expansion terms

that are not calculated. The flip angles and phases ~ be further

refined, when the required equations have not been solved exactly, by

reducing the tolerances and searching through flip angles and phases in

smaller increments in the neighborhood of the flip angles and phases
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that have previously been saved.
A similar procedure is used to derive composite pulses that are

broadband with respect to the rf amplitude. In that case. Eq.(IY.39) is

rep1aced by:

(IY.47)

with:

(IY.48)

D . th - ( ) . -ur1ng the n pulse. I. t 1S the constant operator I.
n
:

T'n =exp(ilxel)exp(-ilz'2)···exp(ilxen_l)exp(ilz'n_l)(IxCos'n + Iysin'n)

Xexp(-ilz'n_l)exp(-ilx6n_l) ••• exp(ilz'2)exp(-ilxel) (IY.49)

The fact that l,(t) is piecewise-constant simplifies the expressions for

yeO) and yO).

(IY.50)

(IY.5l)

Computer programs, written in FORTRAN, that are used to find first

order composite TI pulses are given in Appendix B. The programs follow

the procedure described above.



4. Numerical methods: dipole and quadrupole couplings

As pointed out in Chapter II.B, the dipole and quadrupole

interactions have similar forms. This is made particularly clear by

rewriting Eq.(IV.25) as:
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with:

dij 2 1 2 2 1 2 2 1 2V=t ~[(I .. - ~I .. ) - (I i - ~I.) - (I . - ~I.)]i>j Co ZlJ ., 1J Z., 1 ZJ., J

1..=1.+1.
-lJ -1 -J

(IV.52)

(IV. 53)

The right-hand sides of both Eq.(IV.52) and Eq.(IV.26) consist of terms

of the form:

(IV.54)

The notation T20 indicates that this is the m= 0 component of a second

rank irreducible tensor operator{T2ml. An irreducible tensor operator

with respect to rotations of the form exp(-ia.I)is defined by the- ....
relations [14,55]:

[I±,T1m] = 1(1 + 1) - m(m ± 1) T1m±1

[Iz,T1m] = mT1m

(IV.55)

(IV.56)

with m=-1, -1 + 1, ••• ,1 - 1,1. As results of EqS.(IV.55) and

(IV.56), irreducible tensor operators have the properties that:



exp{-iIz,)T1mexp{iI Z') =exp{-im,)T1m

exp{-iIye)T1mexp{ilye) =t d~'m{e)T1m'

(IV.57)

(IV.58)
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where d~'m{e) are elements of a reduced Wigner rotation matrix. An

important conclusion to draw from Eqs.(IV.57) and (IV.58) is that the

components of a given irreducible tensor operator transform only among

themselves under any rotation.

The other components of the second rank tensor are:

(IV.59)

(IV.60)

The normalization in Eqs.(IV.54), (IV.59), and (IV.60) follows reference

55.

The above remarks indicate that Vet) for a dipole or quadrupole

coupling is always a sum of terms that are second rank irreducible

tensor components. yeo) is therefore also a sum of second rank

irreducible tensor components. Even if V is the sum of several T20
terms, they all transform in the same way and independently under

rotations. There are no cross terms in Vet) or V(O). Therefore it is

sufficient to consider only a single T20 term, and take:

(IV.61)

The equation yeO) = 0 has five independent operator components,

regardless of the number of coupled nuclei and regardless of their total

spin quantum numbers.
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v(O) for a pulse sequence may be calculated by summing the

contributions from individual pulses. The contribution from the nth

pul se is V~O):

v~O) = eXP(ilx81)exp(-ilz'2) •••exp(ilx8n_1)exp[-ilz('n - 'n_1)]T20 (8 n)

Xexp[Iz('n - 'n_1)]exp(-ilx8n_1) •••exp(ilz'2)exp(ilxel)

o (IV.62)
8/w1 0 0

120(8) =! dtexp(ilxw1t)T20exp(-ilxw1t) (IV.63)
o

= ~(8 - sin8coS8)(T22 + T2-2) + :isin2e(T21 + T2_l )

+ i(8 + 3sinecose)T20 (IV.64)

V~O) can be evaluated in a loop in a computer program using Eq.(IV.57)

and the reduced Wigner matrix dl(e), or the matrix representation for

exp(ilxe) in the operator basis {T22,T21,T20,T2_1,T2_2} derived

from Table 3 of reference 55:

~Sine(l+cose) t(1+cose)(2cose-l) i~sinecose -~(1-cose)(2cose+l) -isine(l-cose

i(1+cose) 2 ~in8(1+coS8) -isi ne (1-cose) 1 2
l( l-cose)

-isine(1-coS8) -~(1-cose)(2cose+1) i~Sinecose ~(1+cose)(2cose-l) !sine(l+coSe)

-lsi ne (I-cose) !sine(l+cose)

(IV.65)
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Line (IY.65) is actually the matrix representation of the superoperator,

i.e. the linear transfonmation on operators, corresponding to

exp(iIxe). As before, a search through possible flip angle and phase

combinations is conducted. Those combinations for which the inversion

equation is satisfied and for which the coefficients of the T2m

components in yeO) are zero to within a specified tolerance are saved.

The number of operator components in the higher-order Magnus

expansion tenms depends on the size of the spin system. Consider first

the case of a single quadrupolar nucleus with total spin I. yen)

involves n-fold commutators of Tam components. yen) may then contain

irreducible tensors with ranks from 0 to n + 2 in general. This fact

may be seen as follows.

The product TlmTllml of two tensor components may be decomposed

into a linear combination of tensor components Tlllmll with mil =m+ ml :

(IY.66)

where <11 Illlmllilmllml) is a Clebsch-Gordon coefficient. The maximum

value of 111 in [Tlm,Tllml] is 1 + 11 - 1, however. The only commutator

that could have a component of T11I11I with 111 = 1 + 11 is [Tll,T1111],

but this must be zero because:

1Tll a (1+) (IY.67)

Therefore:

(IY.68)
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for all mand mi. For any component T(1+1 1)m ll ' a finite number of

rotations Ri and constants ci can be found such that:

-1 . -1
T(l+l I)m ll = cIRIT(l+ll)(l+ll)Rl + c2R2T(1+11)(1+11)R2 + •••

(IV.69)

Eqs.(IV.68) and (IV.69) imply:

( * -1 -1 ])Tr T(1+11)mIlET1m,T1Im']) = c1Tr(T(1+11)(1+1 ,)ER1 T1mR1,R1 T11m,Rl
* -1-1+ c2Tr(T(1+1 1)(1+1 1)ER2 T1mR2,R2 T1I m,R2]) + •••

(IV.70)

(IV.7l)

where Eq.(IV.71) follows from Eq.(IV.68). Therefore, [T1m ,T1Im,] has no

tensor component of rank 1 + 11• The maximum rank tensor in an n-fo1d

commutator of T2m components can not be greater than n + 2.

For the case of a quadrupo1ar nucleus, an upper limit on the tensor

rank in all Magnus expansion terms is set by the total spin quantum

number I to be 21. Any tensor T1 with 1 > 21 becomes the zero matrix.m
when written in a basis of spin states for a spin-I nucleus.

The other important case to consider is that of a system of N

dipole-coupled spin-l/2 nuclei. In this case, only the terms involving

Iij operators are not zero in Eq.(IV.52). A non-zero n-fo1d commutator

can involve angular momentum operators from at most n + 2 different

nuclei, implying a maximum irreducible tensor rank of n + 2, as before.

It is sufficient to consider a system of n + 2 spins when treating v(n),

since all possible independent terms in yen) will then be present.
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Unlike the case of a single quadrupolar nucleus, there is generally mote

than one independent irreducible tensor of a given rank.

One modification of the procedure that proves useful 1n the case of

composite pulses for coupled systems is to replace the yen) • 0

requirement with the requirement [yen) ,Iz] =O. Sequences that satisfy

the latter requirement have overall propagators that are still

approximately in the form of Eq.(11.59) or (11.70). The propagators are

not pure rotations and are not strictly constant over a range of

couplings, however. Such sequences are discussed further in Chapter Y.

5. Limitations of the methods

The practical limitations on the coherent averaging approach to

broadband excitation are of two types. First, the expression for yen)

for a general pulse sequence with many variables can not be written out

by hand. Once the contributions to yen) have been sorted out and a

general form for each contribution has been determined, as in

Eqs.(IY.41) and (IY.44) through (IY.46), yen) can be evaluated fOr each

combination of flip angles and phases using some arrangement of loops in

a computer program. Even this will become tedious and prone to error as

n becomes large, however.

One way around this limitation may be to use symbolic manipulation

programs (e.g. MAXIMA or SMP). It may be possible to give such a

program the definition of y(n), as in Eqs.(IY.IO) through (IY.12), and a

specific form for Y, as in Eqs.(IY.23) through (IY.26), and have the

program produce an expression for yen) as a function of the variables in

the pulse sequence, using the angular momentum commutation rules and
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rotation relationships.

The second limitation on the approach is the amount of computer

time required to search for solutions to the required equations in the

space of variables (ei"i). For the examples treated in Chapter V, the

programs typically tested about 106 flip angle and phase combinations in

several hours of CPU time on VAX 11/780 computers at the Lawrence

Berkeley Laboratory computer center. For a four-pulse sequence with

four variable flip angles and three variable phases, the required CPU

time might limit the initial search to flip angles and phases between 00

and 3600 in 45 0 increments. With existing methods, sequences with more

variables can not be tested with sufficiently small flip angle and phase

increments in practical amounts of time.

If explicit expressions for V(n) and UrfIzUrf-l could be derived

with symbolic manipulation programs, it is likely that the required

equations could be checked in considerably less time, extending the length

of the pulse sequences that may be treated practically. Additionally, more

intelligent search procedures may help. Rather than testing all

combinations of the variables in specified increments, a directed search

may be employed. A single quantity Qthat indicates the deviation from a

simultaneous solution of the required equations can be defined. Q is a

function with a value at each point in (ei"i) space. The gradient of Q

at some initial point can be approximately calculated by evaluating Q at

nearby points. A new point can then be chosen in the direction in

(ei"i) space along which Qdecreases. Repeating this process may lead to

a minimum of Qthat represents an approximate solution to the equations.

With such a method, a composite pulse may be found without searching

through all flip angle and phase combinations.
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Chapter V: Coherent Averaging Approach to Broadband Excitation:

Results

A. Motivation

In this chapter. composite pulses constructed with the methods of

Chapter IV are presented and demonstrated both experimentally and in

simulations. The composite pulses may be divided into two categories:

those that have large bandwidths with respect to resonance offsets or rf

amplitudes and are therefore primarily. but not exclusively. intended

for applications in liquid state NMR. and those that have large

bandwidths with respect to dipole and quadrupole couplings and are

therefore intended for applications in solid state NMR. This division

is appropriate partly because dipole and quadrupole couplings are the

dominant interaction in solids. Rf inhomogeneity is a factor in solid

state NMR experiments. but its most dramatic effects are in NMR

experiments that use surface coils [56]. as explained later. Surface

coils are most commonly used in liquid state, in vivo studies.

Resonance offsets and chemical shifts are also present in solids. but

they are usually negligible compared to the rf amplitudes typically used

in solid state NMR. since large rf amplitudes are required due to the

large couplings. In solids. it is common to have w~/2w = 100 kHz.

Smaller rf amplitudes are common in liquid state NMR. with w~/2w = 10

kHz. In a 100 kG static magnetic field. not unusual in liquid state

NMR. proton chemical shifts in organic compounds span a range of about 5

kHz. In NMR imaging techniques [57-59]. the static field may be as
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small as 1 kG, but a 10 kHz range of resonance offsets may be produced .

by static field gradients. In medical NMR imaging, it is particularly

difficult to produce a large w~, due to the large sample volume that

must be irradiated, so that resonance offsets are particularly

significant if rf pulses are applied at the same time that static field

gradients are present.

In addition to differences in their applications, one reason for

dividing the composite pulses into two categories is that a large body

of work that deals with composite pulses that compensate for resonance

offsets and rf inhomogeneity exists, some previous to the work described

in this dissertation and some concurrent. The distinguishing feature of

the composite pulses constructed with the methods of Chapter IV is the

fact that they produce constant net rotations, as explained in Chapter

IV.C. This feature is emphasized in the demonstrations of composite

pulses for resonance offsets and rf inhomogeneity in sections Band C

below. The importance of constant rotations is discussed further in

section D. Bloch vector pictures illustrating the general case of

composite w/2 and w pulses are given in Figure V.1.

Considerably less work has been devoted to composite pulses for

broadband excitation with respect to dipole and quadrupole couplings.

Apart from the composite pulses presented in section E below, there is

currently one other publication on the subject, which is also discussed in

section E.

B. Rf inhomogeneity

1. Composite. pulses
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Figure V.l: The general case of phase variations in composite pulses.
a) As the resonance offset or the rf amplitude varies. the net rotation
angle and the net rotation axis of a composite w/2 pulse change. This
is indicated by Bloch vector trajectories on a unit sphere.
corresponding to the net rotation produced by a hypothetical composite
w/2 pulse for various values of the resonance offset or rf amplitude.
b) For a composite w pulse. it is the net rotation axis that changes.
even though magnetization may be inverted over a range of resonance
offsets or rf amplitudes.
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Figure V.2 shows the inversion performance of two composite w

pulses designed to cover a large range of rf amplitudes. The sequence

18001801201800 is a zeroth order composite pulse. with V(O) =0 exactly.

180018010518021036059 is a first order composite pulse. with V(O) =
6wl(-0.0016 Ix + 0.0007 Iy) and v(l) = (6wl)2(0.0004 Iz)/w~. Note that

the required equations V(O) = 0 and V(I) =0 are nearly. but not

exactly. satisfied. The inversion bandwidth increases with order. as

predicted theoretically.

The general form of the propagator for a composite w pulse is

given in Eq.(II.61). The angle, in that equation characterizes the net

rotation axis. For 18001801201800' , = 2400 when 6w1 =O. It is

generally true of composite w pulses that the rotation axis is a

function of WI' as in Figure V.1b. This can be seen experimentally if

the composite w pulse is used as a refocussing pulse in a w/2-t-w-t

spin echo sequence [60.61J. t represents a delay in which spins evolve

under resonance offsets. chemical shifts and scalar couplings. Assuming

a perfect w/2 pulse and a perfect composite v pulse. the density

operator for an isolated spin with resonance offset Aw is. after the

second delay:

p(2t) =exp(-i IzAwT)exp(-i Ixw)exp(2i Iz,)exp(-i IzAwt)exp(-i Ix·/2)I z
Xexp(i Ix./2)exp(i IzAwT)exp(-2iI z,}exp(i Ix.)exp(i IzAwt}

(V.1)

=-Ixsin2, + IycoS2, (V.2)

The echo sequence results in a spin state at 2t that is independent of
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Figure V.2: Inversion as a function of the relative miscalibration of
the rf amplitude for a single. pulse (simulations in the dotted line),

the zeroth order composite. pulse 18001801201800 (experimental data in
triangles, simulations in the dashed line), and the first order
composite w pulse 180018010518021036059 (experimental data in heavy dots,
simulations in the solid line). The inversion bandwidth increases with
the order to which rf amplitude miscalibration effects are cancelled in
the theory.
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the evolution during the T periods. In other words, the resonance

offset is "refocussed." In a one-dimensional spin echo experiment, the

NMR free induction decay (FlO) signal, i.e. the signal resulting from

the free evolution of a spin system after preparation in a

non-equilibrium state by rf pulses, is observed beginning at time 2T,

which is the peak of the echo. According to Eq.(II.75), the phase of

the echo signal is 2, + ./2. Thus, if • is a function of 6wl' then so

is the phase of the echo signal.

A striking example of the difference between composite pulses

derived by the coherent averaging approach and those derived by other

means is provided by a comparison of the results of spin echo

experiments using 18001801201800 and 900360120900 as refocussing pulses.

900360120900 was derived by Levitt [22], as discussed in Chapter III.B.

For 900360120900' V{O) = -6wIIzll3. Surprisingly, the two composite w

pulses give the same inversion performance. The inversion Wis:

W= -cos3e + 3sin2e{1 - cose)/4
o 0

e = (WI + 6wl)/wl

(V.3)

(V.4)

The phase of the echo as a function of 6wl for the two refocussing

pulses is shown in Figure V.3. For variations of 6wl between -0.4w~ and
o0.4w1, the echo phase varies over a range of 224 0 with 900360120900' but

only 31 0 with 18001801201800.

For 180018010518021036059" = 1050 when 6w1 =O. When

180018010518021036059 is used as a composite refocussing pulse, the echo

phase varies over a range of 160 for -0.4w~ ( 6w1 ( 0.4w~.
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Figure V.3: The phase of the echo signal in a spin echo experiment using
a composite 'I refocussing pulse, as a function of the relative
miscalibration of the rf amplitude. Results are shown for two composite

'I pulses: 18001801201800' with experimental data in dots and simulations
in the solid line, and 900360120900' with experimental data in triangles
and simulations in the dashed line. Although the two composite pulses
invert longitudinal magnetization equally well, their performance in
refocussing transverse magnetization is markedly different. The
fact that the phase variations with 18001801201800 are less severe is
a consequence of the theoretical method used in the derivation.
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2. Composite w/2 pulses

Figures Y.4a and V.5a are plots of the signal magnitude. as defined

in Eq.(II.73). following excitation by composite w/2 pulses as a

function of 6w1. Results for two composite ./2 pulses are shown. The

first. 900180105180315. has y(O) = -6w1(0.0071 Ix). The second.

270036016918033180178. has y(O) =6w1{0.n001 Ix - 0.0002 Iz) and y(l) =
-(6w1)2(0.0003 Iy)/w~. Again. the excitation bandwidth increases in

going from a single w/2 pulse to a zeroth order composite w/2 pulse to a

first order composite w/2 pulse.

If the propagator for a composite w/2 pulse is written in the form

of Eq.(II.72). the signal phase after applying the pulse to a system of

isolated spins at equilibrium is ~1 + 3w/2. This follows from

Eqs.(II.74) and (II.75). Plots of the signal phase as a function of 6w 1
for the two sequences are given in Figures Y.4b and V.5b. The sequence

270036016918033180178 is particularly free of phase variations.

reflecting the constancy of ~1. with the signal phase remaining within a

range of 150 for -w~ ( 6w1 ( w~.

In the notation of Eq.{II.72). ~1 = 600 and ~2 =0 for

900180105180315 when 6w1 =0; ~1 = 1100 and ~2 = 1800 for

270036016918033180178. While '2 does not affect the signal phase after

excitation by a single composite w/2 pulse. there are other experiments

in which '2 does affect the phase. A simple example is a w/2-T 1-w/2-T2
spin echo sequence [60J. using two identical composite ./2 pulses. The

density operator at the end of the sequence for a spin with resonance

offset Aw is:
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P(~I+~2) = exp(-iIz6w~2)R('I"2)exp(-iIz6w~I)R('I"2)I R('I"2)~1

XeXP(iIzAW~I)R('I"2)-lexp(iIz6w~2) (V.S)

= Ix sin[Aw(~1 + ~2) + '2 + 2'1] + sin[Aw(~1 - T2) + '2] /2

+ Iy COS[AW(~1 - ~2) + '2] - COS[Aw(~1 + ~2) + '2 + 2'1] /2

- IzcOS(Aw~1 + '2 + 'I) (V.6)

with:

90

(V.l)

The echo signal arises from the part of P(~I+~2) that depends on AW(T 1 

~2)' and therefore becomes independent of Aw at ~1 =~2· At ~1 =~2'

that part is pi:

(V.8)

The echo phase is w/2 - '2.
,

If the signal phase varies with the rf amplitude, and if rf

amplitude inhomogeneity exists across the sample, then signals arising

from different points in the sample may interfere destructively, thus

attenuating or eliminating the advantages of broadband excitation with

respect to the rf amplitude. This applies particularly to NMR studies

using surface coils [56]. Surface coils are loops of wire placed near

the surface of a sample. They are used to excite and detect signals

when a small region beneath the surface of a large sample, most commonly

tissue or organs within living animals, is of interest. The rf field

along the axis perpendicular to the plane of the coil decreases with

distance from the coil, i.e. it decreases with increasing depth into

the sample. Sometimes it is desirable to use pulse sequences that
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excite spins only over a narrow range of rf amplitudes in order to

obtain the spectrum of a localized region in the sample, e.g. a

particular organ. Such narrowband excitation sequences are developed in

Chapter YIII. In other applications, it may be desirable to excite

spins in as large a region as possible to maximize the signal-to-noise

ratio, perhaps for examining metabolism in muscles close to the skin or

organs that have been surgically exposed. Due to the intrinsic rf

inhomogeneity, composite w/2 and w pulses for broadband excitation with

respect to the rf amplitude may be useful provided that signal phase

variations do not lead to destructive interference.

C. Resonance offsets

1. Composite w pulses

Zeroth order composite. pulses for resonance offsets have been

treated in Chapter IY.C.2. Figure Y.6 shows the inversion performance

of the zeroth order sequence 90027090900, with y(O) = 0, and the first

order sequence 336024618010907427010902461803360' with y(O) =6w(0.0005

Ix + 0.0010 Iy) and y(l)= (Aw)2(0.0002 Ix - 0.0001 Iy + 0.0001 Iz)/w~.

In a W/2-T-W-T echo experiment, the first order sequence contributes

less than 10 to the variation in the echo signal phase for resonance
o 0offsets between -0.6w1 and 0.6w1• As defined in Eq.(11.61), , = 1350

for 90027090900 when Aw = 0; • = _27 0 for

336024618010907427010902461803360 when Aw = O.

2. Composite ./2 pulses
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Figure 11.3 shows that a single ./2 pulse already compensates for

resonance offset effects to a large extent, at least for the purpose of

creating transverse magnetization. The amplitude of the FID signal

following a single ./2 pulse remains within 0.99 times its maximum for
o 0resonance offsets between 0.9wl and -0.9wl. The signal phase varies by

800 over that range, but the phase is nearly a linear function of 6w.

If the spectrum of a sample is obtained by Fourier transformation of the

FID signal after a single w/2 pulse, the lines arising from nuclei with

various chemical shifts can be made to have the same phase by applying a

linear phase correction to the spectrum, provided that the individual

lines are resolved. If the lines are not resolved, however, it is not

possible to correct the phases in the spectrum. Consider an FlO signal

of the following form:

S(t) =f:dwA(w)exP(-iwt)exp(-t/T2) (V.9)

where A(w) is the complex amplitude of the contribution to the total

signal with frequency w. T2 is the transverse, or spin-spin, relaxation

time, assumed to be constant over the spectrum. The spectrum F(w) is:

where:

F(w) = f;dtexP(iwt)S(t) (V.ID)

(V.ll)

(V.12)

(V.13)
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A(w) • A(w) exp[i+(w)]

f1(w) is a Lorentzian absorption lineshape. f2(w) is a dispersion

lineshape. The spectrum is a superposition of absorption/dispersion

pairs centered at each frequency WI with an amplitude A(w ' ) and a

phase +(w l
). In a properly phased spectrum, +(w l

) =0 for all WI. Then

all the absorption components are in the real part of F(w) and all the

dispersion components are in the imaginary part. If the lines in the

spectrum are resolved, A(w ' ) is a sum of delta functions centered at

widely separated frequencies. Then:

•

(V.14)

where the sum is over the resolved lines centered at frequencies wn• an

is the real amplitude of the line at wn• If F(w) is multiplied by

exp[-in(w)] with n(wn) = +(wn), the spectrum becomes properly phased at

all frequencies wn' although the phase may still be distorted at

intermediate frequencies where the spectral intensity is small. If

individual lines are not resolvea, however, the spectrum can not be

properly phased by multiplying by a phase correction. Significant

contributions to the spectral intensity at w arises not only from a line

centered at w, but also from the wings of lines centered elsewhere.

NMR imaging [57-59] is an important case where resolved lines are

not to be expected. Static field gradients produce a continuum of

transition frequencies. A common trick to eliminate linear phase

variations resulting from excitation in a field gradient is to reverse

the gradient direction for a short time after the rf pulse [62].
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Composite ./2 pulses that produce constant net rotations and thus

prepare transverse magnetization with a unifonm phase may make such

gradient switching unnecessary. In addition, gradient switching does

not correct for phase variations that are not a linear function of Aw.

Other possible applications of composite ./2 pulses in which a

constant net rotation is essential include multiple pulse line-narrowing

[34-45] and time-reversal [45-47] sequences. Such sequences are usually

employed in solid state NMR. The discussion in section A indicated that

resonance offsets are usually negligible in solid state NMR. However,

line-narrowing and time-reversal sequences are used in conjunction with

static field gradients in solid state NMR imaging [63,64]. The field

gradients may be large enough that the resonance offsets do become

considerable, making composite ./2 pulses that compensate for resonance
.

offsets applicable. As discussed in Chapter IV.A, line-narrowing and

time-reversal sequences work by averaging the internal spin Hamiltonian

over a deliberately chosen series of rotations in the toggling frame

[34,35,37]. If the net rotation of a composite ./2 pulse varies with

offset in a general way, it can not be incorporated into multiple pulse

techniques.

A simple demonstration of a composite w/2 pulse in a multiple pulse

experiment is shown in Figure V.7. The composite ./2 pulse is

3850320180250' for which V(O} = Aw(0.0026 Iz + 0.0026 Iy} and V(l} =
-(Aw}2(0.0026 Ix}/w~. The experiment consists of applying a train of

./2 pulses separated by delays, with the signal being sampled once in

the center of each delay. This is a commonly used technique for

calibrating and adjusting rf amplitudes [65]. When the pulses are

applied on resonance, a characteristic signal pattern of three lines
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Figure V.7: Signal traces generated by applying a train of closely space

w/2 (a,b) and composite ./2 (c,d) pulses to a small bulb of H20(1)' with
the signal sampled once after each ./2 pulse. The composite ./2 pulse
is 385032°180250' designed to be free of resonance offset effects to first
order in the theory. In a and c, the pulses are applied on resonance
with an rf amplitude of 3 kHz. In band d, the pulses are off resonance
by 450 Hz. The signal trace in b exhibits an obvious offset dependence;
the trace in d 1s largely unaffected by the offset, due to the absence
of appreciable phase distortion in the composite ./2 pulse.
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results. In Figures V.7a and V.7b, it is apparent that the signal

pattern deteriorates considerably at resonance offsets of 0.15w~ when

single ./2 pulses are used. This is primarily due to variations in the

net rotation of the ./2 pulses rather than free evolution during the

delays, since long ./2 pulses (84 pS) and short delays (20 pS) were

used. When composite ./2 pulses are substituted for the single ./2

pulses, the signal pattern becomes much less sensitive to the resonance

offset, as shown in Figures V.7c and V.7d. Again, 20 pS delays were

used, but the length of each composite ./2 pulse was 688 pS,so that the

signal patterns in Figures V.7c and V.7d represent a longer time than

those in V.7a and V.7b.

D. The importance of constant net rotations

The arguments in sections Band C demonstrate the need for

composite pulses that produce constant net rotations when the simplest

one- and two-pulse experiments are performed in the presence of static

or rf field gradients. For the sake of completeness, however, it is

appropriate to point out that there are situations in which a constant

net rotation is not essential.

In some cases, the phase of detected signals is unaffected by the
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specific values of , in Eq.(11.61} or '1 and '2 in Eq.(11.72}. These

cases include the use of composite. pulses for inversion-recovery

measurements of spin-lattice relaxation times [19,20] and for

heteronuclear decoupling [24,25,29-32]. In other cases, composite

pulses are used to overcome a miscalibration of the rf amplitude [28],

rather than true rf inhomogeneity. Then the rotation produced by any

composite pulse is constant throughout the sample, not because of an

intrinsic property of the composite pulse, but simply because the rf

amplitude does not vary.

Sometimes the signal phase can be made constant by using multiple

composite pulses. This has been demonstrated in multiple spin echo

(Carr-Purcell) trains [21], i.e••/2-~-.-2~-.-2~-••• In such a

sequence, only the phase of odd numbered echoes depends on the net

rotation axis of the composite. pulse. If only even numbered echoes

are observed, there are no signal phase variations induced by the

composite. pulses. Similarly, if the single echo sequence ./2-~-.-~

is changed to ./2-~-.-~-., the phase of the echo signal becomes

independent of ,. This is easily seen by examining the density operator

p'(2T} created by the modified echo sequence. p'(2T} is related to

p(2~} in Eq.(V.1} by:

p'(2T} =exp(-ilx.}exp(2il z,}p(2T}exp(-2il z,}exp(il x.}

= -Iy

(V.1S)

(V.16)

Experimentally, it is preferable to use the simpler ./2-~ ..-~ sequence.

however, since the additional composite. pulse in the ./2-~-.-T-.

sequence may aggravate the effects of pulse imperfections. The
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./2-t-w-t sequence also has the advantage of avoiding distortions in the

spectrum due to pulse ringdown.

Levitt and Ernst have suggested general principles for

incorporating composite pulses into various multiple-quantum,

polarization transfer, and two-dimensional NMR techniques in such a way

that most effects of variable net rotations cancel between pairs of

composite pulses [66]. The composite pulses must be carefully matched.

In particular, it is necessary to form composite pulse pairs whose

propagators are inverses of one another. If resonance offsets are·

negligible and the composite pulses compensate for rf inhomogeneity, the

inverse of a given pulse sequence is formed by·reversing the order of

the pulses and phase-shifting them by w. If resonance offsets are

significant, an exact inverse can not be constructed by any general

method, although an approximate method is demonstrated.

The methods of Levitt and Ernst primarily prevent the effects of

variable rotations from accumulating over several composite pulses and

allow composite w/2 pulses that do not produce rotations by w/2 about an

axis in the xy plane to be used. Often the signal phase remains

sensitive to variations in the net rotation of the final composite

pulse, however. Thus, the problems of destructive interference and of

improper spectral phasing remain. In addition, the effects of variable

rotations can not be cancelled in single pulse, ./2-t-w-t echo, and

multiple pulse experiments.

Finally, composite pulses that produce constant rotations prove to

be important as models for the design of composite' excitation sequences

in Chapter VI.
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E. Dipole and quadrupole couplings

1. Composite. pulses

Figure Y.8 shows simulations of the inversion performance as a

function of the relative dipole coupling constant in a system of a pair

of equivalent spin-1/2 nuclei for two composite w pulses and for a

single. pulse. The composite pulses are 450180909018018090450' for

which y(O) = 0, and 18001801201800' for which y(O) = 0.25 Y, with Y

given by Eq.(IY.25). 18001801201800 satisfies the requirement [y(O) ,I z]

= 0, rather than y(O) = 0, as discussed in Chapter IY.C.4. Recall that

18001801201800 also compensates for rf inhomogeneity to zeroth order, as

seen in section B.1. Both 450180909018018090450 and 18001801201800

provide substantial improvements in inversion performance over a single

w pulse. Good inversion is accomplished with couplings that are as

large as 2w1• The results in Figure Y.8 apply identically to the

inversion of a quadrupolar spin-1 nucleus, substituting 2wQ!w1 for d/wl

on the abscissa. The equivalence of a spin-l nucleus and a pair of

coupled spin-1/2 nuclei is apparent from a comparison of Eq.(IY.26) with

Eq.(IY.52) and from the discussion in Chapter IY.C.4.

An interesting feature of Figure Y.8 is that 18001801201800 gives

slightly better inversion for small couplings than 45018090901868ij0450.

It is possible that the presence of a non-zero y(O) term truncates the

higher-order terms in the Magnus expansion. For example, if y(O) is

much larger than y(1) , then only those components of y(l) that commute

with y(O) will significantly affect the inversion. Such an effect is

reminiscent of the "second averaging" technique commonly employed in
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Figure V.8: Simulations of population inversion for a system of two
dipole coupled spin-1/2 nuclei as a function of the ratio of the
coupling constant dto the applied rf amplitude wI. Results are shown

for a single w pulse (dotted line), a 450180909018018090450 composite
w pulse (solid line), and a 180018012018°0 composite w pulse (dashed
1i ne).
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multiple pulse line-narrowing experiments in solid state NMR [35,67].

In second averaging, a deliberately large resonance offset term in V(O)

is introduced to truncate higher-order correction terms.

Figure V.9 illustrates pulse sequences used to experimentally

contrast the inversion performance of composite w pulses against that

of a single w pulse. Spins initially at equilibrium are inverted by a

w (V.9a) or composite w (V.9b) pulse. Coherences dephase during a

delay T, leaving the spin system in a state describable by a density

operator that commutes with lz. The FlO signal is then collected

following a w/2 pulse and Fourier transformed to give the spectrum.

Spectral distortions at low rf power reflect imperfect inversion. The

sequence of Figure V.9a is commonly used to study spin-lattice

relaxation. Figure V.9b represents the analogous experiment employing a

composite w pulse.

Figure V.10 shows simulations of powder pattern spectra resulting

from the sequence of Figure V.9a applied to an isotropic orientationa1

distribution of pairs of spin-1/2 nuclei. The usual Pake pattern [68]

results from the 3cos2e-1 dependence of the dipolar coupling constant on

the angle between the static magnetic field and the internuclear

displacement vector. Here the maximum coupling is taken to be d/2w =

80 kHz. Clearly, the characteristic spectral features are lost as the

rf amplitude is reduced.

Figure V.10 also shows simulated spectra resulting from the

sequence of Figure V.9b. The spectral distortion at low rf amplitudes

is dramatically reduced by the substitution of a composite. pulse for

a single. pulse. The composite. pulse 18001801201800 gives

essentially the same results.
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Figure V.9: Schematic representation of the pulse sequences used in the
simulations of Figure V.10 and the experiments of Figures V.11 and V.13.

\

a) Spins are inverted by a w pulse. Coherences, which ~re created at
low rf amplitudes, dephase during a delay T. The FlO signal after the
final ./2 pulse is digitized and Fourier transformed to give a spectrum
that reflects the inversion efficiency of the initial w pulse. b) Same

as (a), but with a 450180909018018090450 composite. pulse in place of
the single. pulse.
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Figure V.10: Simulated NMR spectra of an isotropic orientational
distribution of pairs of dipole coupled spin-1/2 nuclei. The maximum
coupling is d 12w = 80 kHz. 1 kHz line-broadening is added. a)max
Spectrum after a single ./2 pulse. with w1/2w =vI = 10.000 kHz. Since
wI »d • the spectrum is undistorted. b) Spectrum after a single w/2max
pulse. with vI • 32 kHz. illustrating the distortion resulting from a
_/2 pulse alone at low rf anplitudes. IC) Spectrum resulting from
sequence a of Figure V.9 with vI = 32 kHz. d) Spectrum resulting from
sequence b with vI • 32 kHz. e) Spectrum from sequence a with vI = 20
kHz. f) Spectrum from sequence b with vI • 20 kHz. The characteristic
features of the spectrum. which are lost by a single. pulse at low rf
amplitudes. are preserved by a composite. pulse.
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The slight asymmetry in the spectrum in Figure V.lOf resulting from

the composite w pulse requires some explanation. Suppose the coupled

spin system is initially described by a density operator Iz• When a

weak pulse sequence is applied to the spin system, the presence of the

couplings interferes with the action of the applied rf in such a way

that the magnitude of the expectation value of the spin angular momentum

changes. In other words, the magnetization shrinks~ The density

operator evolves into not only a linear combination of Ix' Iy ' and Iz,

but also into non-observable coherences and non-equilibrium populations.

One part of the non-equilibrium populations is dipolar order [69].

Dipolar order is defined to be a component of the density operator

proportional to the dipole coupling term in the Hamiltonian. The

spectrum of a dipolar ordered, two-spin state is anti symmetric about the

center.

The asymmetry is absent in the spectra resulting from a single w

pulse. It can be proved that there can be no dipolar order produced by

a single w pulse, regardless of the rf amplitude. The amount of

dipolar order is proportional to D, where:

(V.17)

V is given by Eq.(IV.25). U(T) is the propagator for a weak 1800 pulse.

Since the trace is invariant to a unitary transformation, all of the

operators on the right side of Eq.(V.17) can be rotated by an angle w

about the x axis without changing the validity of the equation. Since

that rotation changes Iz to -Iz and leaves all the other operators

unchanged, the result D= -D is obtained, implying that D= O. The
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proof may be extended to show that no dipolar order is created by any

pulse sequence in which the rf phase only takes on the values. and

• + w.

Figure V.ll shows proton NMR spectra of Ba(C103)2-H20 powder obtained

with the sequences of Figure V.9 applied at two different rf amplitudes.

The delay t in Figure V.9 is here taken to be 5 ms. As predicted by the

simulations, the spectral distortion with weak rf is quite obviously

reduced by the use of a composite w pulse.

The spectrum of Ba(C103)2-H20 reflects the fact that individual H20

molecules are essentially isolated from one another, giving a Pake

pattern characteristic of pairs of protons. The experimental pattern is

somewhat distorted from the ideal pattern assumed in the simulations by

two factors. The first of these is the presence of couplings between

H20 molecules. Such intermolecular couplings have the effect of

broadening each individual transition, as reviewed in reference 70.

The second factor is the presence of chemical shift anisotropy. The

proton chemical shift anisotropy for H~in ice has been measured to be

about 34 ppm [71]. The sharp peak in the center of the Ba(C103)2- H20

spectra arises from residual protons and from H20 molecules that are

free to reorient rapidly and isotropical1y.

The delay t of 5 ms was chosen to be long compared to the dephasing

time (T
2
) but short compared to the spin-lattice relaxation time (T1).

TI in Ba(C103)iH20 at room temperature is approximately 10 s.

Measurements of TId' the relaxation time for dipolar order, using the

Jeener-Broekaert technique [69], indicate that TId is about equal to T1•

Hence, a slight asymmetry in the composite w pulse spectra in Figure

V.Il is observed, due to the presence of dipolar order. Similar
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Figure V.II: Experimental proton NMR spectra of Ba(C103)2eH20 powder.
All spectra are the averages of 60 scans, with a recycle delay of 30 s.
a) Spectrum after a single ./2 pulse with vI = 63 kHz. b) Spectrum
after a single ./2 pulse with vI = 33 kHz. c) Spectrum from sequence a
of Figure V.9 with vI C 33 kHz. d) Spectrum from sequence b with vI =
33kHz. e) Spectrum from sequence a with vI =20 kHz. f) Spectrum from
sequence b with vI =20 kHz. The principal features of the simulations
in Figure V.IO are reproduced.



108

experimental results to those in Figure V.11 were obtained using the

18°01801201800 sequence.

The results in Figures V.8. V.10. and V.11 indicate that zeroth

order composite w pulses invert spin populations over a much larger

range of couplings than a single. pulse in two-spin systems. This is

important because. even in a many-spin system. the strongest couplings

may be arranged in pairs. for example as methylene groups in an organic

solid. The fact that the two-spin results apply identically to

quadrupolar spin-1 nuclei makes the composite. pulses useful in

deuterium and 14N NMR as well.

Coupled spins occur in other configurations. however. For

composite. pulses to be of general use in solid state NMR. they should

provide an advantage over a single w pulse in an arbitrary coupled

system. Therefore. the inversion performance of composite. pulses in

systems of more than two coupled spin-1/2 nuclei is investigated.

Figure V.12 presents the results of computer simulations of the

inversion performance of the 450180909018018090450 and 180018012018°0

composite. pulses. as well as that of a single. pulse. in three

different spin systems. The spin system of Figure V.12a consists of

three spin-1/2 nuclei arranged in an equilateral triangle perpendicular

to the applied static field. so that all dipole coupling constants are

equal. F~gure V.12b represents a system of four spin-1/2 nuclei in a

square. again perpendicular to the applied field. The coupling
-3constants are taken to be proportional to r ij • where r ij is the

distance between nucleus i and nucleus j. The spin system of figure

V.12c is a straight row of six. equally spaced spin-1/2 nuclei. Again.
-3the coupling constants are proportional to r ij •
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Figure V.12: Simulations of inversion as a function of the ratio of the
nearest-neighbor dipole coupling constant d to the rf amplitude wI for
three possible systems of coupled spin-1/2 nuclei. Results are shown
for a single _ pulse (dotted lines), a 450180909018018090450 composite
- pulse (solid Hnes), and a 18001801201800 composite _ pulse (dashed
lines). a) Three spins in an equilateral triangle. b) Four spins in a
square. c) Six spins in a row. Coupling constants are taken to be
proportional to r ij -3, where r ij is the distance between nuclei i and j.
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In all cases considered, both composite w pulses give better

inversion than a single. pulse over some range of couplings.

Generally speaking, the 450180909018018090450 sequence is the more

effective of the two. Note that the range of nearest-neighbor couplings

over which good inversion is achieved is substantially smaller than in

the two-spin case, for the single. as well as the composite. pulseso

Experimental spectra resulting from the sequences of Figure V.9

applied to a single crystal squaric acid (C404HZ) sample are shown in

Figure V.13. In the crystal, squaric acid molecules are arranged in

planes in such a way that the hydrogen nuclei, or protons, for chains

perpendicular to the molecular planes. The spacing between adjacent

protons in a chain is known to be 2.636 ~ [72]. Squaric acid has been

the subject of NMR [73,74] and other [75,76] studies, in particular due

to the observation of a structural phase transition at 370 Kwhich

exhibits critical behavior suggestive of a two-dimensional system

[75,76]. Squaric acid was chosen for demonstration purposes because it

is a true many-spin sold, yet there is resolved structure in its proton

NMR spectrum. The spectra in Figure Vo13 resulting from the sequence of

Figure V.9b have greater overall intensity at low rf amplitudes than

those resulting from the sequence of Figure V.9a.

It is worth emphasizing that the spectra in Figure Vo13 are from a

single crystal, although they superficially resemble a powder pattern.

In a powder pattern, as in Figure Voll, the features of the spectrum

furthest from the center result from spin pairs with the largest

couplings. Therefore, those features are lost first due to poor

inversion at low rf amplitudes. The squaric acid spectrum, on the other

hand, is the product of an essentially infinite network of coupled
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Figure V.13: Experimental proton NMR spectra of a squaric acid crystal.
All spectra are the averages of 20 scans, with a recycle delay of 30 s.
The narrow peak to the right of center of each spectrum results from
residual protons. a} Spectrum after a single w/2 pulse with v1 = 63
kHz. b} Spectrum after a single w/2 pulse with v1 = 20 kHz. Low rf
amplitude results in a loss of intensity from the center of the
spectrum. c} Spectrum from sequence a of Figure V.9 with V1 a 20 kHz.
d) Spectrum from sequence b with v1 = 20 kHz. e} Spectrum from sequence
a with v1 • 15 kHz. f} Spectrum from sequence b with v1 • 15 kHz. Use
of the composite w pulse results in greater overall intensity,
reflecting a IIOre complete inversion.
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spins, with the strongest couplings occurring along chains. Each of the

individual, unresolved transitions that make up the spectrum is a

transition of the spin system as a whole, so that it should not be

expected that the outer spectral features would be attenuated at low rf

amplitudes.

For the squaric acid experiments, a delay t of 5 ms was used. The

crystal was doped with chromium to reduce the proton T1 to approximately

10 s. The crystal was oriented with the b axis parallel to the static

magnetic field. In this orientation, the proton chains are parallel to

the field, giving the strongest possible couplings.

2. Composite w/2 pulses

Two composite ./2 pulses for broadband excitation in coupled spin

systems have been derived with the coherent averaging approach. With V

=dT20 , the sequence 4501351801359045270 has V(O) = d[-0.0056 T20 

0.0069 (T22 + T2_2)]. The sequence 18090180270148086180280 has v(O) =
d[0.13063 T20 + 0.00014i (T21 + T2_1) - 0.00049 (T22 + T2_2)]. The

irreducible tensor components T1m are defined in Eqs.(IV.54), (IV.59),

and (IV.60). Theoretical signal amplitudes from a system of two coupled

spin-1/2 nuclei following excitation by the two composite ./2 pulses are

plotted as a function of the relative coupling constant in Figure V.14.
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For comparison, the signal amplitude following excitation by a single

./2 pulse is plotted as well. 4501351801359045270 offers an advantage

over a single ./2 pulse only over a small range of couplings, while

18090180270148086180280 performs considerably better. As suggested in

the preceding section, it is possible that the presence of a non-zero

y(O) with [y(O) ,Iz] =0 helps the performance by truncating higher-order

Magnus expansion terms. The higher-order terms may be particularly

unfavorable for 4501351801359045270.

Plots such as those in Figure Y.14 do not give a complete

characterization of the usefulness of composite ./2 pulses for obtaining

spectra in spin systems with large couplings. The signal amplitude

immediately after the composite ./2 pulse is proportional to the area of

the spectrum if the spectrum is obtained by Fourier transformation of

the FlO. The signal amplitude arises only from the Ix and Iy components

of the density operator, i.e. the observable single-quantum coherences.

In a coupled system, a composite ./2 pulse generally produces a density

operator with other, non-observable single-quantum coherences.

Initially, these components do not contribute to the signal. However,

they may subsequently evolve into observable coherence under the

internal Hamiltonian. Thus, they contribute distortions to the

spectrum, although they do not contribute to the area of the spectrum.

To classify the types of spectral distortion that appear due to

excitation at low rf amplitudes, it is useful to treat the density

operator p(T) after the single or composite ./2 pulse as a linear

combination of irreducible tensor operators T1m• Because p(T) is

hermitian, and because the tensor components satisfy:
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the tensor components must appear in P{T) as independent hermitian

combinations Alm and Blm :

(V.19)

(V.20)

The tensor operators transform under a rotation about x by w according

to:

1= (-I) Tl _m (V.2l)

Observable signal arises only from All and Bll components. These

satisfy:

exp{-ilxw)Allexp{ilxw)

exp{-ilxw)B1lexp{ilxw)

(V.22)

(V.23)

The coefficients of All and B11 in the density operator after the

composite w/2 pulse are real numbers al and bl :

(V.24)

(V.25)

where U{T) is the pulse sequence propagator. The FlO signal and the

corresponding spectrum is a superposition of the signals and spectra
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arising from each tensor component separately. A signal component Sl(t)

can therefore be defined by:

(V.26)

V is the dipole or quadrupole coupling Hamiltonian. V is invariant to a

rotation about x by w. Then, if the operators in the trace in Eq.(V.26)

are all rotated about x by w, leaving the trace unchanged, Sl(t)

becomes:

Sl(t) =Tr{I_exp(-iVt)[(-l) l+lalAll + (-1)lb1B11]exP(iVt)}

(V.27)

In addition, if the adjoint of the product of the operators in the trace

in Eq.(V.26) is taken, Sl(t) is replaced by its complex conjugate:

(V.28)

Comparison of Eqs.(V.27) and (V.28) reveals the following facts: All

components contribute to the real part of the signal when 1 is odd and

to the imaginary part of the signal when 1 is even; B1l components

contribute to the real part of the signal when 1 is even and to the

imaginary part when 1 is odd.

The undistorted spectrum, which would result from the FlO following

a single or composite w/2 pulse with a very large rf amplitude, has

absorption lineshapes in the real part and dispersion/lineshapes in the

imaginary part, as discussed in section C.2 of this chapter. For a
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coupled spin system on resonance with no chemical shifts, the real part

of the spectrum is symmetric about the center and the imaginary part is

anti symmetric, that is:

*F(w) = F( -w) (V.29)

where F(w) is given by Eq.(V.10). Eq.(V.29) holds if the signal is

purely real. The imaginary part of the signal results in a contribution

to the spectrum with the opposite symmetry. Specifically, imaginary

signal makes an anti symmetric contribution to the real part of the

spect rum. The resuIt tng asymmet ri c "absorpt ion" spect rum, even if it

has a larger total area than the spectrum obtained with a single ./2

pulse, is an undesirable result of composite ./2 pulse excitation.

Two possible remedies for asymmetry in the spectrum exist. One is

to artificially set the imaginary part of the FlO signal to zero before

the Fourier transformation. This is justifiable only if the spectrum is

known to be symmetric! priori. In addition, it is difficult to

determine experimentally that the two recorded signal channels actually

correspond to the real and imaginary parts, and not to linear

combinations of the real and imaginary parts that require a constant

phase correction. It may also not be known with certainty that the

spins are being irradiated exactly on resonance.

A second possibility is to collect two FlO signals, one from the

original composite ./2 pulse and one from a new version of that pulse in

which all the rf phases are replaced by their negatives. This negation

of phases may be called "phase reversal." If U(t) is the propagator for

the original composite pulse, then U'(t) is the propagator for the
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phase-reversed pulse, with:

U1{-r) = Texp{ -iJO[w1(Ixcos, - lysin,) + V]dt}

=exp(ilxw)U(t)exp(ilxw)

(V.3D)

(V.3l)

If the operators in the traces in Eqs.(V.24) and (V.25) are rotated

about x by w, the following equations result:

al = (-1)1+1Tr[A1IU'(t)IzU'(t)-1]/Tr(Al~)

= (-1) 1+1ai
1 -1 2

bl = (-1) Tr[B11U'(t)IzU'(t) ]/Tr(B11 )

= (-1) lbi

(V.32)

(V.33)

(V.34)

(V.35)

Thus, phase reversal changes the sign of the coefficients of the tensor

components that contribute to the imaginary part of the signal. If the

FlO signals from the original and the phase-reversed composite w/2

pulses are added either before or after Fourier transformation, and if

the undistorted spectrum is truly symmetric, the anti symmetric spectral

components are eliminated. This method avoids the ~ priori assumption

of a symmetric spectrum and avoids experimental uncertainties about the

adjustment of the signal channels and the rf frequency.

Note that U1(t) equals U(t) if the rf phase in the original

composite w/2 pulse only takes on the values D and w. Such a composite

pulse therefore can not introduce asymmetry into the spectrum regardless

of the rf amplitude. A single w/2 pulse is a special case of such a

composite pulse.

Figure V.15 shows simulated powder pattern spectra resulting from
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excitation by a single ./2 pulse and by the composite ./2 pulse

18090180270148086180280 at various rf amplitudes. The spin system is an

isotropic orientational distribution of either coupled pairs of spin-l/2

nuclei or quadrupolar spin-I nuclei with an axially symmetric quadrupole

interaction. The imaginary signals have been set to zero in the

composite pulse case in order to symmetrize the spectra. The same

spectra would result from the phase-reversal procedure. At low rf

amplitudes, the composite ./2 pulse spectra in Figure V.15 clearly have

greater areas and less obvious distortion than the single ./2 pulse

spectra.

The distortions in the spectra of spin-I nuclei or pairs of

spin-l/2 nuclei resulting from single pulse excitation at low rf

amplitudes have been well characterized, first by Barnaal and Lowe [77]

and later by Bloom et ale [78]. The distortion is a combination of a

loss of signal amplitude and a shift in the signal phase. The phase

shift is proportional to the coupling constant. As in the discussion in

section C.2 above, the phase distortion in a powder pattern can not be

corrected after the spectrum is obtained.

An important application of composite ./2 pulses is in a solid echo

sequence [79], i.e. (w/2)0-TI-(w/2)90-T2. In the case of a spin-I

nucleus or a pair of spin-I/2 nuclei, and in the limit of very large rf

amplitude, the signal collected after a solid echo sequence with T2 =Tl

is exactly the same as the signal after a single ./2 pulse. For a

general coupled spin system, the signal from a solid echo sequence is

approximately the same as that from a single ./2 pulse if TI and T2 are

equal and small. At lower rf amplitudes, the echo signal is attenuated

and peaks when T2 is slightly different from TI [78]. The solid echo is



a

• I
200 kH2

SinQle ,,/2 pul,e. ",. I MHz

120

b

d

", • 100 kHz

", • 50 kHz

Single "../2 pulse

c

e

", • 100 kHz

'" • 50 kHz

Composite "../2 pulse

FigureV.15: Simulated powder pattern spectra for an isotropic
orientational distribution of pairs of dipole coupled spin-1/2 nuclei.
resulting from excitation by a single ./2 pulse (a.b.d) and the
composite ./2 pulse 18090180270148086180280 (c.e) at various rf
amplitudes. The spectrum in a is essentially undistorted. A comparison
of band d with c and e shows that the distortions at low rf amplitudes
are less severe when the composite ./2 pulse is used.
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widely used in place of a single ./2 pulse to obtain solid state NMR

spectra because the delay T2 allows signal artifacts from the rf pulses

to die out before the signal observation begins. If a single ./2 pulse

is used, such pulse artifacts generally obscure the beginning of the

FlO, making an accurate spectrum impossible to achieve.

The composite ./2 pulse 18090180270148086180280 can be used in a

solid echo sequence with limited success. A difficulty with using the

composite solid echo sequence to obtain a powder pattern spectrum is

that the optimum difference between T2 and Tl depends on the coupling

constant, i.e. different frequency components in the powder pattern

echo at different times. This problem does not arise with the solid

echo sequence using single w/2 pulses, at least not in the spin-l and

pair of spin-1/2 cases [78].

Levitt, Suter, and Ernst [27] have introduced composite w/2 pulses

specifically for solid echo sequences applied to quadrupolar spin-l

nuclei or pairs of coupled spin-1/2 nuclei. The most effective of these

is 90180180090180135045180. The spectrum resulting from the FlO after

one of these composite w/2 pulses has severe phase and amplitude

distortions, even at an rf amplitude comparable to the spectral width.

However, when the composite ./2 pulses are used in a solid echo

sequence, a virtually undistorted spectrum can be obtained when w1/2w

is only one quarter of the spectral width. This is an important example

of how distortions can be made to cancel between pairs of composite

pulses.

The composite .12 pulses of Levitt, Suter, and Ernst are derived by

applying a fictitious spin-1/2 formalism [80-82] to the three-level,

spin-l system. It 1s shown that certain composite. pulses that
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compensate for resonance offsets in systems of isolated spins can be

adapted to form composite ./2 pulses for anharmonic three-level systems.

The particular composite w pulse used to generate

90180180090180135045180 was developed by Shaka et al. [25].

Finally, other possible applications of composite w/2 pulses

compensated for couplings include their incorporation into

line-narrowing, spin-locking, time-reversal, and multiple-quantum

excitation sequences. In some of those applications, it is common

practice to use single w/2 pulses arranged so that the average of the

coupling Hamiltonian during the pulses vanishes in the interaction

representation when calculated over the sequence as a whole. The

relative merits of making the average vanish for each composite w/2

pulse individually is a matter for further investigation.
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Chapter VI: Broadband Excitation in Other NMR Techniques

A. Motivation

This chapter deals with broadband excitation problems other than

population inversion and the creation of transverse magnetization.

There are a number of techniques in NMR in which simple sequences of

strong rf pulses separated by delays are used to produce a desired

transformation of a spin system. As an example, a sequence that is

commonly used in multiple-quantum spectroscopy [83,84] is shown in

Figure VI.I. Assuming that the rf pulse amplitudes are very large

compared to internal spin couplings, resonance offsets, and chemical

shifts, the propagators for the pulse sequences considered in this

chapter depend on the products of the coupling constants with the delay

lengths. For given delay lengths, the desired transformation is

achieved only for specific values of the coupling constants if the

standard, simple sequences are used. In many experimental situations,

however, a range of coupling constants exists. This range may result

from the random orientations of crystallites in a powdered or

po1ycrysta11ine solid, from differences in bond connectivities between

coupled nuclei, from differences in electronic environments of

quadrupo1ar nuclei, or from differences in the motional averaging of

couplings.

In certain cases, the pulse sequence propagator can be analyzed as

a rotation operator in a fictitious two-level system. The coupling

constants determine the rotation rate; the products of coupling
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Figure VI.I: A simple sequence for multiple-quantum spectroscopy.
composed of ./2 and. pulses with the indicated phases. The signal is
acquired as a f~nction of t 1• t is fixed at a value that optimizes the
preparation of desired multiple-quantum coherences by the first three
pulses. The best value of t depends on the particular arrangement and
strengths of couplings in a particular spin system.
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constants with delay lengths are rotation angles. The problem of

constructing a pulse sequence that is effective over a broad range of

coupling constants reduces to the problem of finding a sequence of

rotations for which the final net rotation is insensitive to the

rotation rate. This is precisely the problem solved by composite pulses

that compensate for variations in the rf amplitude, as in Chapter V.B.

Thus, it is possible to construct composite excitation sequences by

direct analogy to composite pulses.

The first work in which a composite excitation sequence was

explicitly based on a composite pulse was the development of homonuclear

decoupling sequences for liquid state NMR by Garbow, Weitekamp, and

Pines [85]. Their technique, bilinear rotation decoupling (BIRD),

depends on the selective population inversion of protons that are bound

to 13C nuclei in an organic molecule. If there is a scalar coupling

between a proton and a 13C nucleus, with coupling constant J, then the

simple sequence 900-T-90180 applied to the proton on resonance inverts

the proton populations if T = 2w/J. In that case, 900-T-90180 is a

bilinear w pulse, called Ilbilinear" because of the bilinear form of the

scalar coupling. To cover a range of J values, Garbow, Weitekamp, and

Pines suggested replacing the simple bilinear w pulse with the

composite bilinear w pulse 900-T/2-9090-T-90270-T/2-90180' which is a

bilinear analog of the 90018090900 composite w pulse of Levitt and

Freeman [19].

An earlier technique for cross-polarization in liquids employed a

composite excitation sequence as well, but the analogy to composite

pulses was not made explicit [86].

Sections B, C, and 0 of this chapter are devoted to another example
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of composite excitation. namely composite double-quantum excitation.

section E describes composite polarization transfer sequences. At this

point. it is worthwhile to emphasize the Idifference between composite

excitation sequences and composite pulses. Both may be concerned with

uniform excitation over a range of couplings. However. the parameter of

interest in a composite excitation sequence is the product of the

coupling constant with a delay length. while the parameter of interest

in a composite pulse is the ratio of the coupling constant to the rf

amplitude. Composite excitation sequences are useful even when the rf

amplitude is much greater than all coupling constants. A second

difference is that composite excitation sequences are designed to

produce a uniform transformation over a range of coupling constants

centered around a non-zero value. while composite pulses produce a

uniform transformation over a range of coupling constants centered

around zero.

B. Theory of broadband double-quantum excitation

1. Fictitious two-level systems

In this section. a method for constructing pulse sequences for

broadband double-quantum (DQ) excitation is developed. The spin systems

considered are all effectively three-level systems. The problem of

broadband DQ excitation in a three-level system is pictured

schematically in Figure VI.2.

Consider first the internal Hamiltonian for a pair of equivalent

dipole-coupled spin-1/2 nuclei:
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Figure VI.2: The problem of broadband double-quantum excitation. A
three-level system with a coupling that depends on a parameter x is
shown. The efficiency of the excitation of coherence between /1> and
13> generally depends on the energy mismatch between 12> and the inter
mediate, or virtual, state of the double-quantum transition. In solid
state NMR, x may specify the orientation of a molecule or crystallite,
as for quadrupolar spin-l nuclei or pairs of dipole-coupled spin-1/2
nuclei. In liquid state NMR, x may label different bond connectivities
between scalar coupled spin-1/2 nuclei.
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(VI.I)

Assuming that the rf amplitude is much larger than d and 6w, the

propagator for the pulse sequence 9090-t/2-I80270-t/2-9090 is:

U(t) =exp(-iIy./2)exp(-i t/2)exP(iIy.)exp(-i t/2)expI-iIy./2)

(VI.2)

Using the fact that:

-. 1-exp(±iIyw/2) exp(+lIyw/2) =d(I xI Ix2 - JlI·12) + Aw(I xI + Ix2 )

(VI.3)

Eq.(VI.2) can be rewritten:

(VI.4)

The fact that the two terms on the right side of Eq.(VI.3) commute with

one another is used to derive Eq.(VI.4).

At this point, it is useful to introduce the fictitious spin-1/2

formalism of Vega [82] and Wokaun and Ernst [81]. In an n-level system,

it is possible to define fictitious spin-I/2 operators for each pair of

levels p and q, as follows:

I~-q = (\p><ql + /q><p/ )/2

I~-q = (-1 /p><ql + i Iq><pJ )/2

I~-q = (/p><pl - Iq><ql )/2

(VI. Sa)

(VI.5b)

(VI.5c)
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The fictitious spin-1/2 operators for a given pair of levels satisfy the

same commutation relations as standard angular momentum operators:

(VI.6)

where {a.13.y} is any cyclic permutation of {x.y.Z} •

For the Hamiltonian of Eq.(VI.l). the basis of eigenstates is

{II> = laa>.12> = (laB> + IBa»/12.13> = IB13>} where fa> and 113>

represent spins in their m= 1/2 and m= -1/2 states. respectively.

These eigenstates make up the triplet. i.e. total spin 1. manifold.

Additionally. there is a singlet state (laB> -113a»/J1f. but the singlet

state never mixes with triplet manifold under any combination of rf

pulses and delays. It is therefore ignored.

Eq.(VI.4) can now be rewritten in terms of fictitious spin-1/2

operators. using:

1 1 1-3 1 1-2 2-3)
Ix1 Ix2 - 'J11 ·12 = 2"Ix -"6"' Iz - Iz

The result is:
1-3 1-2 2-3U(t) = exp(-idIx t/2)exp[id(I z - Iz )t/6]

(VI.l)

(VI.8)

Similarly. the propagator for the sequence (9090-t/2-I80270-t/2-9090)y'

where y denotes an overall rf phase shift. is:

U(13.y) =eXP[-i13(I;-3COS2y + I;-3sin2y)]exP[i13(Ii-2 - I~-3)/3]

(VI.9)

with 13 =dt/2. The phase shift introduces an angle 2y in Eq.(VI.9)
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instead of y because Iz =2I}-3. The sequence for which the propagator

is U{B,y) will be denoted by P{B,y).

The initial, equilibrium state of the system is described by a

d . . 1-3enslty operator proportional to Iz • The second exponential operator

on the right-hand side of Eq.(VI.9) commutes with all 1~-3 operators;

the first exponential operator produces a rotation in the 1-3 subspace.

As long as the total excitation sequence consists only of P{B,y)

sUbcyc1es, it is possible to disregard the second exponential operator

and treat U{B,y) as the operator for a rotation in the xy plane of the

1-3 subspace. U{B,y) is therefore formally analogous to the usual

angular momentum rotation operator resulting from a single rf pulse with

phase 2y and flip angle B.

2. Composite double-quantum excitation sequences

DQ coherence is an off-diagonal density matrix element connecting

states 11> and 13>, which differ in their Zeeman quantum numbers by 2.

DQ coherence is therefore described by a density operator that is a

linear combination of 1;-3 and 1;-3. The problem of finding a sequence

of P{B,y) subcyc1es that excites DQ coherence over a range of coupling

constants is the same as the problem of finding a sequence of rotations

about axes in the xy plane that brings a vector from the z axis into the

xy plane over a range of variations in the rotation angles. This

problem is solved by composite w/2 pulses that compensate for rf

inhomogeneity. Thus, as anticipated in section A, it is possible to

construct composite preparation sequences directly by analogy to

composite ./2 pulses. If (81)+1{82)+2••• {8N)+N is a composite w/2
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pulse, with ei and .i being the flip angle and phase of the i th pulse,

then the corresponding composite DQ excitation sequence is

p(e1'.1/2)p(e2'.2/2) ••• p(eN'.N/2), with the overall propagator:

(VI.10)

The particular composite ./2 pulse used as the model for the DQ

experiments that follow is 270036016918033180178' the first order

composite pulse presented in Chapter V.B. This choice is explained

later.

3. Reduced composite sequences

The construction of a composite sequence from P(e,y) subcycles

entails juxtaposing the first w/2 pulse of one subcycle with the last

w/2 pulse of the previous subcycle. The juxtaposition of rf pulses of

different phases is a common and important feature of composite wand

w/2 pulses, as in Chapter V. In the case of composite DQ excitation

sequences, however, it is merely an artifact of the construction method

and is a source of experimental imperfections. Normally, a gap between

pulses on the order of microseconds is needed in practice to ensure that

their transients do not interfere and to allow for the switching time of

an rf phase shifter. Spin evolution due to resonance offsets or

chemical shift differences during the gaps can degrade the performance

of a composite excitation sequence. The gaps can be eliminated and the

total flip angle shortened, without changing the overall propagator in

the limit of perfect pulses, by replacing adjoining pairs of ./2 pulses
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by an equivalent single pulse. The reduction in the number of pulses

and the total flip angle should alleviate the effects of rf

inhomogeneity. phase transients. and finite pulse amplitudes somewhat.

The derivation of the reduced form of a composite excitation sequence

depends on the following identity:

exp[-i(Ixcos~l + Iysin~1)w/2]exp[-i(Ixcos~2 + Iysin~2)w/2]

=exp[-iIz(~1 - w/2)]exp-iI x(w + ~2 - '1)]exp[iI z('2 + w/2)]

(VI.11)

The left-hand side of Eq.(VI.ll) is the product of the two rotations of

a 90~290'1 pair. The right-hand side is a product of three rotations.

The first and third factors are rotations about Z that commute with the

internal Hamiltonian and merely affect the phases of pulses in a reduced

sequence. The second factor is a rotation about x. corresponding to a

pulse with a flip angle of w + '2 - '1. If '2 - '1 > O. the flip angle

may be changed to w - ~2 + '1 and the sense of the rotation reversed.

Using Eq.(VI.11) and this rule. the reduced form of the composite DQ

excitation sequence based on 270036016918033180178 is:

900-3T/2-180180-3T/2-95.590-2T-1800-2T-11290-T-180180-T-I07.590-T-1800-T-90180

(VI.14)

A general composite excitation sequence (900-tl-180180-tl-900)0

(900-t2-180180-t2-900)Y2••• (900-tn-180180-tn-900)Yn corresponds to the

reduced sequence:
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900-tl-180180-tl-(180-Y2)90-t2-1800-t2-(180+Y2-Y3)_90-t3-

180180-t3-(180+Y3-Y4) - ••• -tn-90180 (VI.lS)

An interesting bonus of the reduced sequence is that the pulse phases

are multiples of 90°. This will be true regardless of which composite

w/2 pulse is used as the model. It simplifies the experimental

requirements since standard phase tune-up procedures are applicable and

a small angle phase shifter is not required.

4. The double-quantum experiment

Figure VI.3 depicts the class of pulse sequences which will be

demonstrated in the following section. The general form of the multiple

quantum (MQ) experiment, the notation, and much of the earlier work are

reviewed in references 83 and 84. In general terms, an MQ experiment

consists of a preparation sequence that creates MQ coherence from the

initial, equilibrium state, an evolution time t 1 in which the system

evolves under a Hamil~onian that commutes with Iz ' a mixing sequence

that converts part of the MQ coherence to observable single quantum

coherence, and a detection period. Signals are recorded as a function

of t 1• Composite DQ excitation can be used in the preparation or the

mixing period, or preferably in both. Here the case where the

preparation and mixing propagators, U and V respectively, are of the

form of Eq.(VI.lO) is considered. The actual mixing sequence differs
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Figure VI.3: a) General form of time domain double-quantum
spectroscopy, showing preparation, evolution, mixing, and detection
periods. An optional w pulse in the evolution removes chemical shifts
and static field inhomogeneity. The detected signal S(t1,t2) may be
Fourier transformed with respect to t 1 at t 2 =0 to give a one
dimensional, double-quantum spectrum; a double Fourier transform with
respect to t 1 and t 2 yields a two-dimensional spectrum. b) A
composite preparation sequence, based on 9090-t/2-180270-t/2-9090
subcycles. These subcycles, with various values of t i and overall phase
shifts +i' are combined to form a sequence for preparing double-quantum
coherence over a large range of couplings. The ti and +i are easily
derived from existing composite ./2 pulses. c) The matching mixing
sequence. The final ./2 pulse in V is omitted to allow the detection of
transverse magnetization. If there is no. pulse in the evolution, -'i
1s replaced by +i. Preparation and mixing sequences should be matched
to give the maximum signal amplitude and a uniform signal phase.
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from Vonly by the deletion of the final w/2 pulse to create transverse

magnetization. The signal at the end of the mixing period in the

channel orthogonal to this w/2 pulse has the form:

(VI.16)

Since U and Vare DQ selective. it can be shown that the other channel

carries no signal at this time. in the absence of pulse errors. The

propagator in the evolution period. exp(-iKt 1). is a rotation about z in

the 1-3 subspace by an angle 2Awt1•
1-3Eq.(VI.16) can be analyzed by using the facts that Iz = 2I z and

that U and Vare also rotations in the 1-3 subspace:

The detected DQ signal becomes:

+ B 11-3
P z

+ B 11-3
mz

(VI.17)

(VI.18)

(VI.19)

Two important features of the DQ experiment are apparent in Eq.(VI.19).

First. the amplitude of the detected DQ signal depends on both the

efficiency with which DQ coherence is prepared (ap) and the efficiency

with which it is mixed back to SQ coherence (am). Calculated plots of

the DQ signal amplitude as a function of the coupling constant are shown

in Figure VI.4 for the non-composite DQ experiment. the experiment with

composite preparation only. and the experiment with both composite
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Figure VI.4: Theoretical double-quantum signal amplitudes as a function
of the ratio of the actual coupling constant d to the nominal coupling
constant dO in a non-composite experiment (dotted line). a composite
preparation or composite mixing experiment (dashed line). and a

composite preparation and composite mixing experiment (solid line). A
composite double-quantum excitation'sequence 'based on the composite pulse
27003601691803318°178 ;s assumed.
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preparation and mixing. Second, the phase of a DQ line is Yp - Ym•

When the signal in Eq.(VI.19) is averaged over a distribution of systems

with different couplings, the possibility of overlap in the DQ spectrum

must be considered. It is therefore important that the phases be

independent of the internal Hamiltonian to avoid destructive

interference.

A feature of most composite w/2 pulses is that they produce

transverse magnetization with a phase that depends on the rf amplitude,

as discussed in Chapter V. If such a composite pulse is used as the

basis for the composite preparation sequence, the DQ signal phase will

generally be a function of the coupling constant. Signal cancellation

may result. This could occur if a composite sequence is only used in

the preparation period. For such an experiment, the composite sequence

should be based on a composite '1/2 pulse with minimal phase variations.

The composite '1/2 pulse 270036016918033180178 used here has this

property, as shown in Chapter V.B.

Phase variations can be eliminated in more general ways, and the DQ

signal amplitude increased, by using composite sequences in both the

preparation and the mixing periods. This matching of preparation and

mixing periods to maximize signal is a general principle of MQ

spectroscopy [84]. if the mixing sequence is the same as the

preparation sequence, but with the pulses and delays given in reverse

order, then the following equations hold:

(VI.20)

(VI.2l)

(VI.22)
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Here the DQ selectivity of Uwas used.

If. as in the experiments that follow. a w pulse is added to the

evolution period (for example at t l /2 to remove resonance offsets and

chemical shifts) the phases. i in the mixing period must be changed to

-.; to preserve unifonm phase. In this form. the experiment is a

special case of a general procedure for obtaining spin inversion

transitions in phase and does not depend on selectivity [84].

C. Broadband double-quantum excitation results

1. Experiments and spectra

Experiments were performed on a sample of CH2C1 2 dissolved in

Eastman 15320 liquid crystal. Excess CH2C1 2 was evaporated until the

isotropic solution became nematic. at which point it was sealed. For

this sample. at 29° C the single quantum spectrum of CH2C1 2 is a doublet

with a splitting of 2.18 kHz. implying d/2n = 1.09 kHz. The

spectrometer operated at 180 MHz. The rf amplitude was wl/2n = 50 kHz.

As explained above, the composite excitation sequence

P(3dT.0)P(4dT.169/2)P(2dT,33/2)P(2dT.178/2) was used. The performance

of composite sequences over a range of internal couplings was mimicked

by varying T around the theoretically optimum value of 230 ~s. A n

pulse in the middle of the evolution period removed static field

inhomogeneity. Zero-. one-. and two-quantum spectral lines were

separated using time-proportional phase incrementation (TPPI) [87]. All

experiments were performed twice. with an overall phase shift of the
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preparation sequence by w/2 the second time. and the results added

together to cancel artifacts due to imperfections in the TPPI phase

cycling. Phase shifts in increments of 360°/256 were available from a

digitally controlled phase shifter. Adelay of 2.5 pS was required for

the switching time of the phase shifter.

Figure VI.5 shows DQ lines of CH2C1 2 obtained by varying T from 46

PS to 460 pS in 46 pS increments. Figure VI.5a results from

experiments with single P(dT.O) preparation and mixing sequences;

Figure VI.5b results from experiments with composite preparation

sequences; Figure VI.5c results from experiments with composite

preparation and composite mixing sequences. The theoretical signal

amplitude as a function of T is superimposed on the experimental

results. As predicted. the range of values of dT over which the DQ

signal amplitude is nearly its maximum is greatly extended by the use of

composite excitation sequences. The DQ signal phase remains nearly

constant as T varies. In Figure VI.5b. where the preparation and mixing

sequences are not matched. this is a result of the use of a model

composite w/2 pulse derived with the approach of Chapter IV.

2. Effects of pulse imperfections

The theoretical analysis in the preceding section assumed perfect.

delta function rf pulses. The existence of pulse imperfections affects

the experimental results in several noticeable ways. First. the optimum

value of T is less than the theoretical prediction. This effect is most

pronounced in the experiments employing composite preparation and

composite mixing. and results from the finite pulse lengths. The
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Figure VI.S: Double-quantum IH NMR lines of oriented C~C)2 in a
liquid crystal solvent. The lines are shown as a function of the
preparation and mixing time for non-composite (a). composite preparation
(b). and composite preparation and composite mixing experiments (c).
In d. reduced composite preparation and mixing sequences are used,
replacing adjoining fi/2 pulses by a single equivalent pulse and thereby
decreasing pulse imperfection effects. Theoretical line amplitudes,
nonmal~zed to those in a. are shown in dotted lines. The fact that the
composite sequences give unifonn line.pl1tudes· and phases over a range
of T for a fixed proton-proton coupling implies that they give uniform
line amplitudes and phases over a range of couplings for a fixed T.
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simulations in Figure VI.S have been shifted to coincide with the

experimental maxima.

Second. the maximum DQ signal in the composite experiments is about

lOS less than that in the experiments with single preparation and

mixing. A number of pulse imperfections may be responsible for a loss

of signal amplitude. These include pulse length miscalibrations. rf

inhomogeneity. rf phase transients. and rf phase misadjustments. Rf

inhomogeneity proved to be a particularly significant factor in the

experiments. as experiments with a larger sample resulted in larger.

relative differences in the maximum DQ signals between experiments with

different numbers of pulses.

A third. and related. effect is the observation of SQ lines. which

appear as artifacts to the left of individual DQ lines in Figure VI.S.

Ideally. a sequence of P(B.y) subcycles would prepare no SQ coherence.

However. any of the above pulse imperfections may interfere with the DQ

selectivity of P(B.y). The preparation of SQ coherence contributes to

the loss of DQ signal amplitude. In addition. the lack of perfect DQ

selectivity causes signal to be detected in both receiver channels.

rather than the single channel assumed in the theory section.

The presence of signal in both channels as a result of pulse

imperfections may produce small signal phase variations as a function of

dT even if the preparation and mixing sequences are matched as in Figure

VI.Sc. These could be removed by actually giving the final ./2 pulse in

the mixing sequence of Figure VI.3c. allowing coherences to dephase

during a delay. and then sampling longitudinal magnetization with a w/2

II readll pulse. This procedure for performing a true single-channel

experiment has been followed in reference 47.
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Figure VI.5d shows results from the reduced composite preparation

and mixing sequence of line (VI.14). In comparison to Figure VI.5c, the

overall amplitude in Figure VI.5d is greater and the SQ artifacts are

smaller. The improved performance of the reduced composite sequences

may be attributed to a reduction in pulse imperfection effects.

The effects of pulse imperfections may be further attenuated by

incorporating composite pulses into composite DQ excitation sequences.

In particular, composite pulses that compensate for rf inhomogeneity and

for dipole and quadrupole couplings may be beneficial.

D. Extensions and applications

1. Liquid state NMR

The internal Hamiltonian for a pair of weakly coupled spin-l/2

nuclei in a liquid is:

(VI.23)

The propagator for the sequence 9090-t/2-180270-t/2-9090 is then:

U(t) = exp(-iJI x1 Ix2t)
. 1~3 2-3 1-2= exp(-lJIx t/2)exp[-iJ(Iz - Iz )t/6]

(VI.24)

(VI.2S)

A factor of exp(-iJt/12) has been dropped from Eq.(VI.25). making it

formally the same as Eq.{VI.8). The same derivation of composite

sequences follows. Note that the triplet basis of spin states is
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assumed in Eq.(VI.25), although those states are not the eigenstates of

the Hamiltonian in Eq.(VI.23). This basis is appropriate because the w

pulse in the center of a P(~,y) subcycle removes the chemical shifts.

DQ excitation in liquids is used in DQ filtering [88], a technique

that allows the spectral lines of pairs of coupled nuclei to be

separated from those of isolated nuclei. Two-dimensional DQ

spectroscopy in liquids [89,90] is used to establish bond connectivities

of carbon atoms in organic molecules. In this technique, 13C SQ lines

are correlated through the DQ spectrum. A range of 13C_13C couplings

arises due to the variety of C-C bonds.

132. C spectroscopy in solids

The generalization of Eq.(VI.1) to pairs of inequivalent nuclei is:

(VI.26)

In this case, the 9090-t/2-180270-t/2-9090 subcycle does not apply when

ldl and /61 - 6 21are comparable, since the dipole coupling term and the

chemical shift terms do not commute. This is likely to be the situation

in 13C NMR i· sol ids. An alternative subcycle for the case in

Eq.(VI.26) is simply a strong rf pulse of length t. If the rf phase is

zero, and if t is a multiple of 2w/wl' then the propagator for the

effective Hamiltonian in the lowest order of coherent averaging theory

is:

(VI.27)
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Eq.(VI.27) 1s again formally the same as Eq.(VI.4). Both DQ filtering

and the two-dimensional DQ experiment can be applied in solids as well

as in liquids [91]. In solids, the need for broadband DQ excitation

arises from the distribution of dipole coupling constants due to

differences in bond lengths and orientations.

3. Quadrupolar spin-l nuclei

The quadrupole coupling constant wQ for deuterium and 14Nnuclei in

solids is typically much larger than wI. If wI «Iwq' then irradiation

at a resonance offset ~W leads to an effective Hamiltonian [80]:

(VI.28)

If l~wl « IW~/WQI, Eq.(VI.28) is analogous to Eqs.(VI.4) and (VI.7)

so that the same composite excitation sequences can be constructed. If

~w can not be ignored, Eq.(VI.28) implies that composite w/2 pulses with

simultaneous compensation for rf inhomogeneity and resonance offsets

should be used as models for composite excitation sequences, since the

first and third terms in Eq.(VI.28) look like the rf and offset

interactions of an isolated spin. Again, the second term commutes with

the others and can be ignored.

DQ spectroscopy is used to obtain chemical shift spectra of

deuterium and 14N nuclei in solids [92-94]. The DQ spectrum displays

the chemical shifts, and possibly the dipole couplings, that are

otherwise masked by the much larger quadrupole couplings. In powdered,
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polycrystalline, or amorphous solids, the randomness of orientations

combines with differences in electronic environments to give a range of

quadrupole couplings. Magic angle spinning may be used 1n conjunction

with DQ spectroscopy to acquire chemical shift spectra [94]. Otherwise,

chemical shift powder patterns are obtained.

Regardless of the sequence used for DQ excitation, no DQ coherence

can be excited at molecular orientations where the quadrupole couplings

are zero. Thus, if for example a deuterium chemical shift powder

pattern is recorded, there will necessarily be an intensity deficit at

chemical shift values corresponding to those orientations. However, if

the maximum coupling in an axially symmetric quadrupole powder pattern

is w~ax, the bandwidth of uniform excitation for the composite sequences

described above is sufficient that the signal amplitude arising from all
max maxorientations with couplings between the singularities at wQ and wQ /2

will be within 0.99 of the maximum, provided that the composite sequence

is optimized for a coupling of 3w~ax/4. The shape, but not the area, of

the observed chemical shift powder pattern will depend on the relative

orientation of the principle axes of the quadrupole coupling tensor and

tne chemical shift anisotropy tensor.

E. Broadband polarization transfer

1. Background

In a given static magnetic field, the equilibrium polarization of a
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particular nuclear isotope is proportional to its gyromagnetic ratio.

This is apparent in Eq.(II.40). The initial polarization limits the

maximum signal amplitude in any experiment. Therefore, to increase the

sensitivity of experiments performed on nuclei with small gyromagnetic

ratios, techniques have been developed for transferring polarization

from nuclei with higher gyromagnetic ratios to those with lower

gyromagnetic ratios. Polarization transfer (PT) relies on couplings

between the different isotopes, i.e. heteronuc1ear couplings. In the

most common case, the transfer is from protons to I3C nuclei in organic

compounds. In this case, there are the additional advantages that the

proton spin-lattice relaxation times are typically shorter than those of

I3C nuclei and that several protons may contribute polarization to a

single I3C nucleus.

A commonly used PT method in I3C NMR in solids is

cross-polarization, developed by Pines, Gibby, and Waugh [95J based on

earlier work of Hartmann and Hahn [96J. Cross-polarization is usually

accomplished by giving a w/2 pulse to protons, followed by long (several

milliseconds) rf pulses applied simultaneously to protons and I3C nuclei

satisfying the Hartmann-Hahn condition wII =wIS ' where I and S label

protons and carbons respectively. Cross-polarization in solids is

analyzed as an incoherent process, using kinetic and thermodynamic

formalisms, due to the large number of protons coupled to one another.

Cross-polarization in liquids has been demonstrated as well [86].

In liquids, the proton-proton couplings are insignificant, allowing

cross-polarization to be analyzed coherently, i.e. using exact quantum

mechanical calculations of the spin evolution. Composite

cross-polarization sequences have been developed for liquids in order to
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extend the range of heteronuclear couplings for which PT is effective

[86J.

Other PT techniques for liquids have appeared, in particular INEPT

[97J and DEPT [98J. In place of long pulses satisfying the

Hartmann-Hahn condition, these make use of simple sequences of ./2 and w

pulses and delays similar to those used in MQ spectroscopy as discussed

above. The INEPT sequence is shown in Figure VI.6. The delays are

adjusted for optimal transfer for a single value of the heteronuclear

coupling. In what follows, composite versions of INEPT are suggested to

increase the range of couplings over which the transfer is nearly

optimal. The composite sequences are again based on a fonmal analogy to

composite pulses. The analogy in this case is the one introduced by

Garbow, Weitekamp, and Pines for composite BIRD sequences [85J.

2. Polarization transfer in an I-S spin system

To describe experiments in which rf pulses are applied near the

Larmor frequencies of two different isotopes I and S, it is useful to

use a doubly rotating frame of reference, related to the laboratory

frame by the transfonmation exp[-i(wOIIz + wOSSz)tJ. With I and S

labelling a single proton and a carbon, respectively, the doubly

rotating frame internal Hamiltonian for a C-H fragment in a liquid is

given by:

(VI.29)

A version of the INEPT sequence may be written:
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Figure VI.6: A simple sequence of the INEPT type for transferring
polarization from a nucleus I to a nucleus S (e.g. a proton to a 13c
nucleus), composed of _/2 and _ pulses with indicated phases. For
optimal transfer, the delay t is set to _/(2J), where J is the scalar
coupling constant between I and S.
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I: 900-t-180180-t-900 -9090- t-1800 -t (VI.30a)
-

L

~

1 2 3
e

--

S: -t-1800 -t- -90270- 900-t-180180-t-900 (VI.30b)

Line (VI.30a) is the sequence applied to the proton; line (VI.30b) is

the sequence applied to the carbon. The sequence in Figure VI.6 is a

reduced form of (VI.30). The form in (VI.30) is chosen to emphasize the

symmetry of the proton and carbon sequences and to facilitate the

following discussion by dividing PT into three steps.

Assume an initial density operator Iz• The aim of PT is to create

a final density operator with a large component of Sz. The propagator

for part 1 of line (VI.30) is:

U1 = exp(-iIxw/2)exp(-tKt)exp(iIxw)exp(-iSxw)exp(-;~t)exp(-;I x./2)

(VI.3l)

=exp(i2JIySzt)exp(-iSx.) (VI.32)

2Since S refers to a spin-1/2 nucleus, Sz = 1/4. Then the density

operator after part 1 is:

PI =exp(i2JIySzt)Izexp(-i2JIySzt)

= IzcoS(2JSzt) - Ixsin(2JSzt)

= IzcoS(Jt) - 2SzIxsin(Jt)

(VI.33)

(VI.34)

(VI.35)



150

The step from Eq.(VI.34) to (VI.35) can be seen by expanding the cosine

and sine in their Taylor series [99]. Assuming JT = w/2. the density

operator after part 2 is:

P2 = -2exp(-iIyw/2)exp(iIyw/2)SzIxexP(iSyw/2)exp(iIyw/2)

(V 1. 36)

= ~2IzSx (VI.3?)

The propagator for part 3 is:

(VI.38)

. -1U3 1S related to U1 by an exchange of the labels I and S. Therefore.

since U1 converts Iz to -2SzIx when JT =w/2. U3 converts -2I zSx to Sz

when JT =w/2. The polarization transfer is complete. For other values

of J. the final coefficient of Sz in the density operator is sin2(JT).

The key element in the PT process is the conversion of Iz to an

operator of the form 2Sz(Ixcosy + Iysiny). This conversion can be

treated as a rotation in the operator space spanned by the set

{2SzIx.2S
Z

Iy.Ii. which satisfies the same commutation rules as

{Ix.Iy.Ii. The desired rotation is analogous to the creation of

transverse magnetization. As in the theory of broadband DQ excitation,

composite sequences can be constructed from basic units of the form of

part 1 of line (VI.3D). with various values of Ti and with overall phase

shifts ti of the proton rf. The basic unit is denoted by Q(e.t). where

e = JT and t is the phase shift. The propagator for the sequence
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The alternation of the signs in the exponents is due to the factor

exp{-iSxw) in Eq.{VI.32). n is assumed to be even in Eq.{VI.39).

Eq.{VI.39) shows that composite sequences can be modelled after

composite w/2 pulses that compensate for rf inhomogeneity. The

composite pulse (e1)~1{e2)~2 ••• {en)~n becomes the composite sequence

Q{e1'~1)Q{e2'~2+w)... Q{~n'~n+w).

A composite sequence may convert Iz to 2Sz{IxcOSY + IySiny) over a

large range of values of J. If y is constant, ,the second step of PT,

namely the conversion to 2Iz{SxCOSY + Sysiny),can be accomplished with a

pair of single w/2 pulses, one on the proton and one on the carbon. If

y varies with J, the second step can not be accomplished efficiently.

Therefore, it is important to use a composite w/2 pulse that produces a

constant net rotation as the model. Again, a good choice is

270036°16918°3318°178.

The final step, the conversion of 2Iz{Sxcosy + Sysin y) to Sz' is

achieved by a pulse sequence whose propagator is the inverse of that in

Eq.{VI.39), but with the I and S labels reversed. Such a pulse sequence

is easily constructed by reversing the order of pulses in the composite

sequence in the first step and applying the I pulses to the S spins and

the S pulses to the I spins. A general composite PT sequence is shown

in Figure VI.7.

The plots of DQ signal amplitude as a function of the coupling

constant for composite DQ excitation sequences in Figure VI.4 apply to
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Figure VI.7: General form for a composite polarization transfer
sequence. a generalization of Figure VI.6. The overall sequence is
composed of three parts (a). The sequence of part 1 (b) converts an
initial density operator Iz to I.Sz• The second part is a pair of w/2
pulses that convert the density operator to IzS.. The sequence of part
3 (c) converts IzS. to Sz. completing the transfer.
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composite PT sequences as well if the ordinate is considered to be the

final coefficient of Sz.

The composite PT sequences may be converted to reduced fonms by

combining adjoining w/2 pulses as discussed in section 8.3 above. The

effects of rf inhomogeneity and of resonance offsets acting during the

rf pulses can be further weakened by incorporating composite pulses into

the composite PT sequences.

3. Polarization transfer in In-S systems.

In organic molecules, coupled protons and 13C nuclei exist as CH2
and CH3 groups in addition to CH groups. Spin evolution in PT sequences

differs for the different groups. This fact is used to selectively

polarize 13C nuclei of one type, e.g. CH2 groups, and obtain the l3C

spectrum of that type alone [98,100]. The impact of multiple I spins on

the construction of composite PT sequences is that the evolution during

the third step of the process is no longer a rotation. For example,

consider a CH2 group. Eq.(VI.29) still applies, but with Iz = IZI +

Iz2 • Eq.(VI.38) applies as well, but the final density operator

becomes:

P3 =exp(iIx·)exp(-2iJIz1SyT)exp(-2iJlz2SyT)(-2IzSx)exp(2iJIz2SyT)

XeXP(2iJIzlSyT)exp(-iIxw) (VI.40)

=2IzSxcoS(2JT) + 4IzlIz2Szsin(2JT) + Szsin(2JT) (VI.41)

It is not gauranteed that composite sequences based on composite

pulses in the third PT step will increase the effective bandwidth.

l
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However, the evolution in the first step is formally the same for all ~n-S

systems, so that composite sequences always apply. In addition, the S

signal is sometimes acquired immediately after step 2, omitting step 3

entirely. This leads to a spectrum with zero area.
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Chapter VII: Iterative Schemes: Fixed Point Theory and Application to

Broadband Population Inversion

A. Background

1. Definition of iterative schemes

The approach to broadband excitation in Chapters IV and V is based

on the well established methods of coherent averaging theory. The work

described in Chapter III is also in the spirit of a great deal of

previous work in NMR, relying as it does on Bloch vector trajectories.

In very general terms, all of these approaches are similar in that they

proceed by evaluating specific proposed pulse sequences in detail.

Recently, a qualitatively different approach to pulse sequence

design has appeared in several areas of NMR. Rather than examining

specific pulse sequences, the approach is to propose a set of operations

that may be applied iteratively to any initial pulse sequence SO' or any

of a class of pulse sequences, to generate a series of iterate sequences

.SI' S2' S3 ' etc. , usually with increasing lengths. If apu1se sequence

with a propagator of the form Uo is desired, the goal is to find

operations such that the propagators UO' Ul ' U2' U3' etc. corresponding

to the iterate sequences converge to Uo regardless of the choice of SO.

Thus, the theoretical emphasis is on evaluating the proposed operations,

rather than the specific sequences. A set of operations that may be

performed repetitively on a large class of initial sequences is called

an iterative scheme. A schematic illustration of the action of an
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iterative scheme is given in Figure VII.I. Iterative schemes are

ideally suited for generating very long pulse sequences, which can not

be derived by traditional methods due to the complexity of the

calculations or due to practical computer time limitations, 1n cases

where shorter sequences do not have the desired propagator. Iterative

schemes have been used previously to construct pulse sequences for

order-selective multiple-quantum excitation [46] and for heteronuclear

decoup11ng [32,54], and to construct composite w/2 pulses [101]. The

purpose of this chapter is to present a unified theoretical framework

for iterative schemes and to show how that framework can be used to

analyze iterative schemes for broadband population inversion in systems

of isolated spins. Chapter VIII extends those iterative schemes to the

problem of narrowband population inversion. Chapter IX contains

analyses of iterative schemes proposed by other authors, in order to

demonstrate the wide applicability of the theory presented here.

2. Iterative schemes as functions on the propagator space

In any n-dimensional space of spin states, for example

corresponding to a system of 10gn/log2 coupled spin-I/2 nuclei, there

are n2_1 independent operators, excluding the identity operator. The

operator space spanned by the operators is called Liouville space

[35,102]. The density operator that describes the spin system exists in

a subspace of Liouville space corresponding to Hermitian operators.

Similarly, the propagator Uthat describes the transfonmat10n resulting

from a pulse sequence exists 1n a subspace corresponding to some subset

of all ,possible unitary operators. The space in which U lies may be

•



157

• In OutSo S.
~

S. Operations S2

S2
S'I

So = ITJJ
s. = [=rrJI]

Figure VII.l: Schematic illustration of an iterative scheme for
generating pulse sequences. Starting with an initial sequence SO' a set
of operations are perfonmed iteratively to generate sequences 51' 52'
etc. that typically become increasingly complex, but produce the
desired transfonmation of a spin system with increasing accuracy.
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called the propagator space. It is sometimes convenient to write:

U =exp(-iA) (VII.l)

where A is a Hermitian operator. Thus. for a spin system with given

internal interactions. the effect of a pulse sequence is described

either by a point in the propagator space or by a point in a

topologically equivalent subspace of the space of Hermitian operators.

When an iterative scheme acts on a pulse sequence. it generates a

new pulse sequence. To the new sequence. there corresponds a new

propagator U'. This suggests that an iterative scheme may be viewed as

a function F on the propagator space. with U' = F(U). Equivalently. F

may be considered to act on the space of Hermitian operators. with A' =

F(A). For certain iterative schemes. this is actually the case; for

others. F is not single-valued. Nevertheless. an interpretation of

iterative schemes in terms of functions on an operator space proves to

be useful and forms the basis of the theoretical approach. Chapter IX

gives examples of iterative schemes that are not described by a single

function. The necessary modifications to the theory are discussed

there.

3. An example of a function

a. Iterates. fixed points. and attractors

As a means of introducing the principles and terminology of the

theory that follows. consider a simple class of functions f of a single
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variable:

3f(x) = AX - X (VII.2)

Ais a parameter that characterizes members of this class of functions.

A plot of f with A= 3/2 is given in Figure VII.2.

Beginning with any initial point xo' f can be used to generate a

series of iterates xl' x2' x3' etc. with xl =f(xO)' x2 =f(x1), x3 =
f(x 2), etc. The iterates satisfy xn =fn(xo). Certain initial points

have the property Xo =f(xO); this implies xn =xo' for all n. Such

points are called fixed points of f. In the example of Eq. (VII.2), the

fixed points are 0 and ±(A_1)1/2, provided that A > 1. For A( 1, 0 is

the only fixed point.

The properties of the iterates of a function may be called the

dynamics of that function [103]. Fixed points have an important

influence on the dynamics of a function, particularly if they are

stable. A fixed point x is stable if the iterates xn of all initial

points in the neighborhood of x converge to x as n increases. The

stability of x is determined by evaluating the derivative of f at x,

i.e. f'(x). If f'(x) ( 1, x is stable; if f'(x) > 1, x is unstable.

Stable fixed points are sometimes called attractors. Initial points in

the neighborhood of an attractor converge geometrically if 0 < f'(x) <

1; that is xn-x = f'(x)(x n_1-x). The most rapid convergence occurs

when f'(x) = O. In that case, x is called superstable. In the example

of Eq.(VII.2), 0 is an attractor when A(1. It is superstable when A =

. O. The points ±(A_1)1/2 are attractors when 1 ( A( 2, and superstable

when A=3/2.
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Figure VII.2: An example of a function of a single variable x that
illustrates the concepts and behavior that underlies the analysis of

•iterative schemes. The points tx ~ t/i/2 are superstable fixed points;
the point x =0 is an unstable fixed point. All initial points between
-xc and +xc ' with Xc -{S/2, converge to i, -x, ~r 0 upon iteration.
The open intervals (O,a), (-b,-a), (b,c), etc.' converge to x, and
therefore constitute the basin of x. The points a, b, c, etc. converge
to O.
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b. Basins of attractors

The assessment of the stability of a fixed point is based on a

linearization of the function in the neighborhood of the fixed point.

Only the first derivative is considered. However. when a fixed point is

stable. it can affect the dynamics of the function far beyond its

imediate neighborhood. i.e. in the non-linear regime. Large regions

of initial points. not just the nearby initial points. may converge.to

an attractor. The set of points that converge to an attractor is called

the basin of that attractor.

For the function of Eq.(VII.2). with A = 3/2. the iterates of all

initial points in the open interval (-15/2./5/2) converge to one of the

three fixed points. (-15/2.J5/2) may be divided into subintervals that

converge to one or the other of the superstab1e fixed points as depicted

in Figure VII.2. First. note that it is sufficient to examine (0./5/2).

since fn(_x) = _fn(x) for all n. All initial points in the open

interval (0.13/2) converge to the superstab1e fixed point at x =1ii:2.

This interval is denoted by la. The point a =l:V2 satisfies f(a) = O.

Beyond a. there is an open interval Ib that maps onto (-a.O) on the

first iteration • and therefore converges to -1li2. The upper bound of

Ib is a point b that satisfies f(b) = -a. or f2(b) = O. Beyond b. there

is an open interval Ic that maps onto (-b.-a). which converges to(i/2.

Ic is bounded by a point c that satisfies f(c) =-b. or f3(c) • o.
Continuing in this way. the interval (0.15/2) is decomposed into open

intervals that converge alternately toJ1/2 and -(i/2. The intervals are

separated by isolated points a. b. c. etc. that map onto 0 with



162

increasing numbers of iterations. The sequence a,b,c, ••• converges to

the point Xc .(S/2. This point satisfies fn(xc)= (-l)nXc • Its iterates

alternate between -xc and xc. Xc may be called a fixed point with a

period of 2. For x > xc,'f(x)/ > 'x~ Therefore, the iterates of points

in (- 00, -xc) and (xc,oo ) diverge.

4. Remarks

The example of Eq.(VII.2) and Figure VII.2 illustrates a number of

general features. A function may have more than one fixed point. The

attractors influence the dynamics of the function over large ranges of

initial points. The basins may consist of many disconnected regions •.
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In the following sections, the above principles are applied to

iterative schemes that generate composite w pulses. Algebraic and

numerical methods for analyzing the dynamics of the corresponding

functions are developed.

B. Iterative schemes for broadband population inversion

1. Propagator space for an isolated spin or two-level system

The propagator for a pulse of length tis:

R = exp(-ia.I)--
where:

(VII.3)

(VII.4)

R is a rotation operator in the spin angular momentum vector space. The

density operator describing the initial, equilibrium spin state is

proportional to Iz; rf pulses merely rotate the density operator to a

linear combination of Ix, Iy ' and Iz• Therefore, the relevant space of

Hermitian operators is the three-dimensional space spanned by Ix, Iy and

Iz• For describing the propagator, only a sUbspace of this space is

required. Any sequence of rf pulses produces a transformation that is a

product of rotations, equivalent to a single net rotation. The net
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rotation is completely characterized by a vector~. as in Eq.{VII.3),

where the magnitude of a 1s the net rotation angle and the direction of-
a is the net rotation axis. a 1s determined by the pulse lengths and- -
phases of the sequence. and by the values of 6w and WI. Since any

product of rotations is equivalent to a net rotation of w or less, ~

lies in a sphere with a radius of w. Since rotations of w about

antiparallel axes are equivalent. antipodal points on the surface of the

sphere are identified. This spherical subspace represents the group of
+rotations. called SO(3) or 0 (3) [104]. It is pictured in Figure VII.3.

2. An iterative scheme and the corresponding function

A class of iterative schemes that may be applied to any inital

pulse sequence So is defined by the following operations:

1. Construct N phase-shifted versions of SO' with overall phase

shifts. i • The phase-shifted versions may be denoted by s6i
).

Nis taken to be an odd integer.

2. Concatenate the phase-shifted versions, producing a new sequence

S - ·S{l)S{2) S{N)
1 - 0 0 ••• 0 •

The operations may be applied to SI to generate S2' and so forth. An

iterative scheme of this class is specified by the notation

[.I ••2' •••••N]' with the phase shifts given in degrees. Under such a

scheme. Sn is Nn times longer than SO.

A [.I'.2' •••••N] scheme dictates a function on SO(3) space. If So

produces a rotation corresponding to the point 20 = (ax.ay.az). then SI

produces a a rotation corresponding to the unique point 21 satisfying:

~

•
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y

50(3)

Figure VII.3: The spherical space that represents the group of
rotations SP(3). Each distinct rotation corresponds to a point in the
space whose distance and direction from the origin are respectively the

•angle and axis of rotation. The space has a radius of '. and antipodal
points are identified (correspond to the same rotation). Aclosed path
in the space .is shown. Iterative schemes that generate pulse sequences
that act on isolated spins are treated as functions on the space. The
equator corresponds to rotations. or pulse sequences. that invert spin
populations.
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(VII.5).

with:

(VII.6)

Eq.(VII.6) is a statement of the fact that an overall rf phase shift by

~i rotates a pulse sequence propagator about z by ~i. The only possible

ambiguity in the definition of « arises if the right-hand side of-Eq.(VII.5) is equivalent to a net rotation of w, but this ambiguity is

resolved by the identification of antipodal points in SO(3). The

mapping of 20 to 21' and then to higher iterates, makes no reference to

the details of the pulse sequence SO. If two different sequences

produce the same net rotation, possibly with different values of Aw and

wI' then their iterates will produce the same net rotations,

corresponding to the same series of points 20'21'22' etc. The function

that generates these points is F, with 2n =Fn(20).

Certain fixed points of F are immediately obvious and are common to

all [~I'~2' ••• ~N] schemes with odd N. First, if 20 =0, then the

right-hand side of Eq.(VII.5) is the unit operator, making 21 =o.

Thus, the origin of SO(3) is always a fixed point.

A second type of fixed point appears from the following

considerations. Suppose 20 = (wcosy,wsiny,O). Then So produces a

rotation of w about an axis in the ~ plane, taking Iz to -Iz• Any

phase-shifted version of So also produces a rotation of w about an axis

in the~ plane. An odd number of these rotations will again take Iz to

-Iz ' and is therefore equivalent to a net rotation of. about an axis

1n the xy plane. In fact:



with:

21 = (.cos{y + +T) ,.sin(r + +T)'O)

N - 1
+T = I (_1)1+ +-

- 1 11=

(VII.7)

(VII .8)
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20 and 21' as well as higher iterates generated by F, lie on the equator

of 50(3), although they are generally different points. To describe

this situation, in which F generates iterates that are all contained in

a specific set of points, the definition of a fixed point must be

generalized somewhat. The equator of 50(3) is called a fixed, or

invariant, set of points. Note that there are schemes in which all

points on the equator are individually fixed, in particular when +T = 0

or +T = w. The equator is an especially significant set of points,

since a rotation that takes a density operator of Iz to -I z corresponds

to perfect population inversion.

The third fixed set of points common to all [+1'+2' ••• '~] schemes

is the z axis of 50(3). If go lies on the z axis, then the right-hand

side of Eq.(VII.5) is a product of rotations about the z axis,

equivalent to a net rotation about the z axis. Thus, gl lies on the z

axis as well. Specifically, a1 = (O,O,Na). Points along the z axis.... z
for which az= 2nw/(N-l) for some integer n are individually fixed

points.

3. Stability of the fixed points

a. The origin
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As discussed in section A, the stability of a fixed point is

assessed by a linearization of the function in the neighborhood of the

fixed point. A linearization of F about the origin of 50(3) is effected

by evaluating the right-hand side of Eq.(VII.5) to first order in ,~O,.

The result is:

~-

N N-1 1
21 =20 + 20 + •••+ aO (VII.9)

Eq.(VII.9) expresses a linear transfonmation, which can be written as

21 = To2o· The linear operator To is a sum of rotations about the z

axis by angles 'i:

(VII.10)

In the {X,y,z} basis , To is:

N N
I cos'n I sin'n °n=l n=1

T = (VII.l1)
0 N N

-I sin'n I cos'n °n=l n=l

° ° N

One eigenvector of TO is (0,0,1), a vector along the z axis of 50(3).

Its eigenvalue is N. Since N> 1, the z axis is an unstable direction.

The other eigenvectors are (l,i,O) and (l,-i,O), with eigenvalues A~ and

AO respectively:



N
A~ = E exp(ti+n)

n=1
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(VII.I2)

The existence of complex eigenvectors and eigenvalues is indicative of a

rotation. To stretches or shrinks vectors in the xy plane by a factor
+ .

of IAo'and rotates them about z by an angle ++' where ++ is the phase of

. A~. The stability of the origin of 50(3) along directions in the xy

plane is thus determined by 'A~'. Eq.(VII.I2) implies:

(VII.I3)

+If , AO' < 1, the origin is stable with respect to displacements in the

xy plane.

b. The equator

The assessment of the stability of the equator of 50(3) is

complicated by the fact that points on the equator are not individually

fixed under F, but constitute an invariant set. The linear analysis can

take two forms. One is to write 20 as 20 =!O + ~,where !O lies on the

equator and ° is small. The right-hand side of Eq.(VII.5) can then be-
evaluated to first order in ,~, using relations such as:

exp[-i(!o+~)·l] =exp(-i!o·l)exp(-i£·l)

where:

£ = (-2ozsiny/w + OxCOS2y + 0ysinYCosy,2ozCOSY/w

+ 0xsinycosy + 6ySin2y,26xSiny/w - 2oycosy/n)

(VII.I4)

(VII.IS)
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Eq.(VII.1S) assumes that !o = (wcosy ••siny.O). and is valid to first

order in 161. In fact. the analysis can be somewhat simplified by....

requiring that 6xsiny - 6yCOSY = O. This may be done because 6xsiny 

6yCOSY is the projection of ! onto a direction in the xy plane

perpendicular to !O. namely (siny.-cosy.O). To first order. the

component of A perpendicular to iO merely converts ~O to another point

on the equator. still in the invariant set of points. Thus. there are

really only two significant directions for displacements from the

equator. which may be obvious in retrospect.

Amore concise way of treating the linearization about the equator.

and one that simplifies the algebra. is to write the propagator for So

in the fonm of the right-hand side of Eq.(VII.14) immediately. with the

restriction £z = O. Such an expression is actually completely general.

regardless of '£1. In other words. any net rotation at all can be

expressed as the product of two rotations in the xy plane. the first by

It/ and the second by 180°. Again. this fact may not be surprising in-
retrospect. since there are still three variables in such an expression.

i.e. the direction of ~o and the magnitude and direction of £.For a

given net rotation. those three variables are uniquely detenmined in all

cases except when the net rotation is about the z axis.

A linear analysis using an expression for the net rotation in the

fonm of the right-hand side of Eq.(VII.14) proceeds as follows. If:

exp(-iaO.I) =exp[-i(I cosy+I siny)w]exp(-i£.I) (VII.16)
'#ttl ,.., x y ""'I1lV
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then, to first order in I!I

exp{-i~1·1) = exp[-i{Ixcos{y + +T)+Iysin{y + +T)).]exp{~1!T·l)

(VII.l7)

n-1
r = + + t {_1)m+1Z+ , n odd
n n m=l m

where:
N

'T = tn=l
(&xCOSrn-&ySinrn,{-1)n+1&yCOsrn+{-1)n+1&XSinrn'0)

(VII .18)

(VII.19)

n-1
= + -Zy + t {-l)mZ'm' n even

n m=l
(VII .ZO)

Eq.{VII.16) presents the initalrotation as the product of an error

rotation characterized by &with a perfect w rotation with a phase y.-
Eq.{VII.17) indicates that the effect of F 1s to transform that rotation

to a new rotation of the same form, but with the error £T and the phase

y + +T. £T is related to £ by a linear transformation Te• Te can be

expressed in terms of rotations as:

Te = [Rz{rN) + Rz{r n_Z) + ••• + Rz{r1)]

+ Rx{w)[Rz{r
N
_1) + Rz{r

N
_
3

) + ••• + Rz{r Z)] (VII .Zl)

(0,0,1) is always an eigenvector of Te with eigenvalue 1, but this is

not a significant direction since &always has a z component of O. In-

T =e

the {X,y} basis, Te is:

N
rcosrnn=l

~ {_1)n+1sinr
n=l n

N
~:lSinrn

~ {-1)n+1cosrn
n=l

(VII.ZZ)
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In investigating the dynamics of F near the equator. the phase

sh·ift +T is ignored due to the fact that the equator is generally an

invariant set of points within which individual points are not fixed.

Therefore. in studying the transfonmation of £.it is the direction of &- -
relative to the phase Y and the direction of £T relative to the phase y

+ +T that are important. For this reason. it is convenient to rewrite

Eq.(VII.17) as:

where:

exp(-i21.!) =exp(-iIz+T)exp[-i(IxCOSY + IySiny)w]

Xexp[(-i£T'·I)exp(iI +T)
- - z

(VII.23)

(VII .24)

The significant linear transfonmation is no longer Te• but is the

product Rz(-+T)Te• denoted by T~. Eq.(VII.21) implies that T~ has the

same matrix fonm as Te in Eq.(VII.22). but with a redefinition of rn:

N
I cosr ~

n=1
T' =e

n
r' =r + (-1) 'Tn n

N
-I sinr ~
n=1

N +1
I (-1) n cosr'

n=1 n

(VII.25)

(VII .26)

The eigenvectors and eigenvalues depend on the choice of the iterative

scheme. Three possible scenarios exist: First. the eigenvalues can be
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real and distinct, implying the existence of two real eigenvectors.

Second, the two eigenvalues can be complex and conjugate to one another,

implying two complex conjugate eigenvectors. Third, the two eigenvalues

can be real and degenerate. In this last case, there may be either one

or two independent real eigenvectors. It should be realized that T~ and

Te are generally not hermitian, and so need not have a complete basis of

e~genvectors. This statement is generally true of iterative schemes.

The eigenvalues of T~ are A~' given by:

A~ = (cosri+cosr3+•••+cosrN) ± [(cosr2+cosr4+",+cosrN_1)2

(
• I • I • I ) 2 (. I • I • I ) 2]1/2+ slnr2+s1nr4+ +slnr N_1 - slnr 1+slnr 3+···+s1nr N

(VII.27)

The criteria for stabl1 ity at the equator are , A:' , 1 and IA; " 1.

The eigenvalues are independent of y but the eigenvectors are not. The

eigenvectors for y ~ 0 are related to those for y = 0 by a rotation

about z by y.

4. Schemes for which the equator of 50(3) is superstable

Iterative schemes can be found with various stability properties at

the equator and the origin. One way to find iterative schemes is to

make use of vector diagrams. This is particularly useful for finding

schemes for which the fixed points are superstable. For example,

Eqs.(VII.18) through (VII.21) suggest the following picture: £T is the

sum of Nvectors of equal magnitudes in the xy plane, rotated about z by

r n• These vectors may be divided into two groups, those with odd nand
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those with even n. Those with even n. in addition to being rotated

about z. are rotated about x by w. Now. if r n can be found such that

the two groups of vectors separately add up to zero. !T will be zero

regardless of ! and regardless of y. Then the equator is superstable.

Examples of vector diagrams that imply iterative schemes for which the

equator is superstable are given in Figure VII.4. A minimum Nof S is

required. Once the rn are determined. the phase shifts +n can be

derived with Eqs.(VII.19) and (VII.20). For N = S. possible

superstability conditions are:

r 3 = r 1 + 2'1/3

f 4 =r2 + 'I

rS =r1 + 411'/3

(VII .28a)

(VII .28b)

(VII .28c)

Two schemes that satisfy Eq.(VII.28) are [0.0.120.60.120] and

[0.330.60.330.0]. If the inital sequence is chosen to be 1800• i.e. a

single w pulse. these schemes generate sequences of sn 'I pulses.

Table VII.1 lists the phases of thew pulses in the first three iterate

sequences generated by [0.0.120.60.120].

The arguments above make no reference to the source of the error £.

Thus. errors due to rf inhomogeneity and miscalibration or resonance

offsets are both cancelled by iteration. Figures VII.S through VII.8

show inversion plots for the iterate sequences of 1800 under

[0.0.120.60.120] and [0.330.60.330.0] as functions of ~~/~~ and ~l/w~.

Note that large bandwidths of essentially perfect inversion are achieved

with respect to both parameters. Acontour plot of the inversion as a

function of A~/~~ and ~1/~~ simultaneously for the 2S-pulse sequence
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Table VII.1: Rf phases in degrees of individual w pulses in the

broadband inversion sequences 51' 52' and 53 generated

from an initial pulse 1800 by the iterative scheme

[0,0,120,60,120]

---------------------------------------------------------------------------

52: 0,0,120,60,120,0,0,120,60,120,120,120,240,180,240,60,60,180,

120,180,120,120,240,180,240

53: 0,0,120,60,120,0,0,120,60,120,120,120,240,180,240,60,60,180,

120,180,120,120,240,180,240,0,0,120,60,120,0,0,120,60,120,

120,120,240,180,240,60,60,180,120,180,120,120,240,180,240,

120,120,240,180,240,120,120,240,180,240,240,240,0,300,0,180,

180,300,240,300,240,240,0,300,0,60,60,180,120,180,60,60,

180,120,180,180,180,300,240,300,120,120,240,180,240,180,

180,300,240,300,120,120,240,180,240,120,120,240,180,240,240,

240,0,300,0,180,180,300,240,300,240,240,0,300,0
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FigureVII.4: Vector diagrams that describe iterative schemes for which
the equator of 50(3) is superstable. Such schemes generate broadband

c
population inversion sequences. a) Adiagram that describes schemes of
the form [O •••120+2••60+3••120+4.J. b) A diagram that describes schemes
of the form [0 •••90+2••300+3••240+4••300+5••90+6.J. See Eqs.(VII.19)
and (VII.20) and section 8.4 of Chapter VII.
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Figure VII.5: Inversion as a function of the relative resonance offset
for pulses sequences generated iteratively according to the scheme
[0.0,120,60,120]. From a to d, the pulse sequences are composed of 5,
25. 125. and 625 phase-shifted. pulses, with the phase shifts given in
Table VII.I. Simulations appear in the solid lines. Experimental
~asurements appear in dots. The results apply to isolated spins or to
two-level systems in general.
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Figure VII.6: Same as Figure VII.S. but with the inversion plotted as a
function of the relative rf amplitude.
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Figure VII.7: Same as Figure VII.5, but for the scheme
[0,330,60,330,0].
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Figure VII.S: Same as Figure VII.7. but with the inversion plotted as a
function of the relative rf amplitude.
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generated by [O,O,120,60,120J is shown in Figure VII.9.

Iteration also cancels errors that arise from experimental pulse

imperfections. These include pulse shape errors and phase transients.

Other errors, such as amplitude imbalances among the rf pulse channels

or rf phase misadjustments, may also cancel, depending on how the

experiment is performed. The requirement for cancellation is that the

error transform under a phase shift as a rotation about z. The

cancellation of experimental imperfections probably contributes to the

good agreement between the simulations and experimental measurements in

Figures VII.S and VII.6.

Similar vector diagrams apply to the linear analysis about the

origin of SO(3). Eqs.(VII.9) and (VII.I0) indicate that the origin will

be superstable with respect to displacements in the xy plane if the sum

of N unit vectors in the xy plane making angles 'n with x is zero. In

fact, IA~I is the magnitude of the resultant vector, as is clear in

Eq.(VII.13). For [O,O,120,60,120J, then, IA~I = 3. For [0,330,60,330,0],

IA~' = (11 + 4J3)1/2. The origin 1s unstable in all directions for both

schemes.

c. Numerical analysis of iterative schemes in SO(3)

1. Motivation

In section B, iterative schemes were constructed so that the fixed

points at the origin and the equator of SO(3) were unstable and
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1.0-1.0

0.5

1.0

1.5----------------

0-

~-a

Figure VII.9: A calculated contour plot of the population inversion
perfonmance of the 25-pulse sequence of Figures VII.5b and VII.6b,
illustrating broadband inversion with respect to the resonance offset
and the rf amplitude simultaneously. In the region enclosed by the
dotted line, the inversion is greater than 0.99. Contours corresponding
to an ~nversion of 0.90 (dashed line) and 0.50 (solid line) are shown as
well.
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superstable. respectively. The stability determines how the functionF

corresponding to some scheme transforms points in 50(3) that are close

to the fixed points. However. it would seem that most points in SO(3)

are not close to the fixed points. In the example of section A.3. the

fixed points were shown to affect the dynamics of a function far from

the fixed points. Methods for examining the dynamics of F over its

entire domain are needed.

For the problem of broadband population inversion. the stability of

the equator is most important. since points on the equator correspond to

rotations that produce complete inversion. Typically. So is chosen to

be a pulse sequence that produces complete inversion when Aw = 0 and wI

= w~. There will necessarily be small ranges of Aw and wI for which

the rotation vector 20 lies close to the equator. If the equator is an

attractor. then the iterates of So will produce increasingly good

inversion over those ranges. However. it is possible that the ranges of

Aw and wI for which the iterates of 20 converge to the equator can be

quite large. This is apparent in the results in section B. Amethod of

determining which initial rotations will converge to the attractor. i.e.

the basin of the attractor. and the number of iterations required for

convergence is needed. In particular. it is desirable to know the

region of 50(3) that converges quickly. Knowledge of the rapidly

convergent region allows So to be chosen so that the iterative scheme

acts most efficiently.

If a fixed point is unstable or only stable in certain directions.

as is always the case for the origin for the schemes considered here and

is sometimes the case for the equator. then other points may not

converge to the fixed point. However. with successive iterations. they
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may approach the fixed point along a stable direction before diverging

along an unstable direction. Thus. an initial sequence So may approach

a desired form in a transient way. In the neighborhood of a fixed

point. the linear analysis implies that the dynamics of F may be

pictured in terms of smooth flows. Away from the fixed points. the

dynamics may be apparently irregular or random. Amethod of

illustrating the flows and defining the reg,ions in which they apply is

needed.

Finally there may be fixed points. either stable or unstable. that

are not anticipated! priori. Locating them and determining their

basins or flows may assist in the selection of SO.

2. Maps of basins

Since a simple expression for F is not available. basins must be

mapped with a computer program. The rotation corresponding to a vector

a in 50(3) can be represented by a 3X3 real matrix R(2):

sin2ecos2,+sin2,cosa -cosesina sinesin,sina

+cos2ecos2,cosa +sin2ecos,sin,(1-coSa) +cosesinecos,(l-cosa)

cosesina sin2esin2,+cos2,cosa -sinecos,sina

+sin2ecos,sin,(1-coSa) +cos2esin2,cosa +cosesinesin,(l-cosa)

-sinesin,sina sinecos,sina cos2e+s1n2ecosa

+cosesinecos,(l-cosa) +cosesinesin,(l-cosa)

(VII .29)



184

where a is lal and e and + are the polar and azimuthal angles defining....

2 in polar coordinates. Given any initial vector 20 in 50(3). the

corresponding rotation matrix R(20) can be constructed. Phase-shifted

versions R(n)(20) are fonmed according to R(n)(20) =Rz(+n)R(So)Rz(+n)-1.

Finally. these are multiplied together:

By examining the matrix elements of R(21)' 21 may be extracted.

Repeating this process. the series of iterates of 20 can be generated

numerically for any ~O and iterative scheme of the fonm [+1'+2"" '+N]'

The task of mapping the dynamics of F is greatly simplified by

symmetry with respect to rotations about z. If ~O and ~O are related by

a rotation about z. then their iterates ~n and ~~ are related by the

same rotation. as follows from Eq.(VII.5). Acorollary is that the

fixed points must have symmetry about z. i.e. if ~O is a fixed point.

or a member of a fixed set of points. then so is any other vector

related to ~O by a rotation about z. Thus. in what follows it is

sufficient to consider any single half slice through 50(3) containing

thez axis. For the following maps. the slice defined by y = 0 and x )

o is chosen.

The series of iterates of a representative grid of points in the

slice are generated. A criterion for convergence to a fixed point must

be established. In the following maps. the criterion for convergence on

k iterations is:

(VII .30)
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This criterion is necessarily somewhat arbitrary, with consequences that

are discussed below. In checking Eq.(VII.30), the vectors are always

rotated about z so that they both lie in the xz plane with x ) O. In

other words, the phase shift 'T is removed. Amaximum value kmax is

defined so that, if a particular initial point does not converge after

kmax iterations, the iteration process stops and kmax is assigned to

that point. Thus, an integer k is assigned to every initial point on

the grid. This constitutes a map of the basins. The map only specifies

the number of iterations required to reach a fixed point, and not the

fixed point itself. If there were multiple attractors, it would be

necessary to examine the vectors, ~k to determine whichattractor

corresponded to a basin.

Figure VII.I0 is a basin map of the scheme [0,0,120,60,120].

Initial points were examined in ±5° increments in both the x and z

directions, starting with the point (2.5°,0,2.5°). The map was

displayed on a graphics terminal by shading 5° x 5° blocks, centered at

the initial points, according to k.

Figure VII.10 reveals a large region near the equator that

converges to the equator after only severa1 iterat ions. . Except for a

small number of isolated points, the rest of 50(3) also converges to the

equator. Those isolated points apparently converge elsewhere, but that

convergence is probably an artifact of the mapping procedure, as

explained later. These results suggest that very high iterations of

[0,0,120,60,120], applied to an arbitrary initial sequence, will

generate sequences that invert spin populations for most values of ~w

and wI. Of course, experimental hardware and software limitations, as



Figure VII.10: Basin map of the scheme [0,0,120,60,120]. Shown is the
xz plane in SO(3). Regions are shaded according to the number of
iterations required for an initial point in a given region to converge
to a fixed point. The shade scale is shown to the left.
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well as intrinsic factors such as relaxation processes restrict the

length of a useful sequence and thus the feasible number of iterations.

Thus, it is the size and structure of the rapidly convergent region that

is of practical importance.

Figure VlI.l1 is a basin map for the scheme [0,330,60,330,0]. The

region of SO(3} that converges raptdly is somewhat different than in

Figure VII.lO. However, the most striking qualitative difference is the

symmetry with respect toa reflection in the xy plane in Figure VII.l1.

This symmetry is a consequence of the symmetry of the phase shifts in

[0,330,60,330,0]. In general, if +n = +N-n+l and if two initial vectors

~O and ~O are related by reflection in the xy plane, then 2i and 21 are

related by the same reflection. Again, an obvious corollary is that, if

20 is a fixed point, there must be a fixed point related to 20 by

reflection in the xy plane. A second corollary, which will be important

in Chapter VIII, is that the iterates of an initial point in the xy

plane must all remain in the xy plane.

3. Maps of fixed points and the flow of iterates

As mentioned above, certain isolated initial points in the basin

maps apparently converge to points not on the equator. This suggests

the existence of unanticipated fixed points. It is unlikely that

unanticipated attractors exist in the schemes considered, since an

attractor would probably have a basin large enough to be apparent in

Figure VII.lO or VII.ll. However, even if a fixed point is unstable,

initial points move slowly in its neighborhood. Consequently, due to

the criterion in Eq.(VII.30}, there may be an apparent convergence to an



Figure VII.ll: Basin map of the scheme [0,330,60,330,OJ.
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unstable fixed point.

Unstable fixed points are difficult to identify in the basin

mapping procedure for two reasons. First, initial points can only be

examined in increments of some finite spacing. It is likely that fixed

points will be missed.· Second, the calculation of the iterates of an

initial point involves many matrix multiplications. Inevitably,

round-off errors become significant, so that a point that should remain

fixed will apparently move. It is therefore not possible to distinguish

conclusively between a fixed point and a region in which the movement of

iterates is merely slow. For the purpose of designing pulse sequences,

however, such a distinction is not necessary. One method for finding

unanticipated fixed points is as follows. The first iterates of initial

points in a slice through SO(3) with a spacing of 2° in the x and z

directions are calculated. If an initial point 20 and its first iterate

21 satisfy:

(VII.31)

then ~O may be close to a fixed point. Again the choice of 20° is

somewhat arbitrary. All initial points satisfying Eq.(VII.31) are

plotted. The plot that results from the procedure applied to the scheme

[0,0,120,60,120] is shown in Figure VII.12a. The anticipated fixed

points at the equator and along the z axis are clearly visible. The

structure of the plotted points near (O,0,w/2) suggests the existence of

another unstable fixed point. A more detailed examination indicates

that there is probably a fixed point at approximately (w/4,0,0.39w),

since initial points near (w/4,0,0.39w) appear to rotate around that
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Figure VII.12: Fixed point map of the scheme [0,0,120,60,120]. Half of
the xz plane of 50(3) is shown. Initial points that move less than 20°
on the first iteration are plotted in a, revealing regions around
possible fixed points. The first, second, and third iterates of the
points in a are plotted in b, c, and d , revealing the stability
properties of the fixed points.
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point and diverge from it. Again, it is impossible to distinguish

definitively between a true unstable fixed point and a region in which

the flow of iterates is merely very slow. It should also be realized

that the fixed points may actually be fixed sets of points, related by a

rotation about z.

Figure VII.12 traces the flow of iterates initially near the fixed

points. The superstability of the equator is apparent, as is the

instability of the other fixed points.

Figure VII.13 is a fixed point map for the scheme [0,330,60,330,0].

There are two unanticipated fixed points along the x axis, at

approximately (0.3989n,0,0) and (0.7035n,0,0). The fixed point at

(0.3989n,0,0) is unstable. The eigenvalue in the direction of the

origin is approximately -3.6; the eigenvalue along z is approximately

-1.7. The fixed point at (0.7035n,0,0) is stable along z, with an

eigenvalue of 0.19, and unstable towards the origin, with an eigenvalue

of 2.4, The eigenvalues and the positions of the fixed points are

determined by a detailed examination of the flow of initial points in

the dotted regions of Figure VII.13a. The fixed points could be

localized precisely in this case because the symmetry of

[0,330,60,330,0] results in a one-dimensional movement of points along

the x axis. The instability of the origin and the other fixed points on

the z axis, the superstability of the equator, and the one stable

direction near (0.7035w,0,0) are apparent.
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Figure VII.13: Fixed point map of the scheme [0,330,60,330,0]. In this
case, in addition to the superstable fixed point at the equator and the
unstable fixed point at the origin, two other fixed points in the xY

plane appear. One of these is stable with respect to displacements in
the z direction.
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D. Generation of pulse sequences for broadband population inversion

The schemes [O,O,120,60,120J and [O,330,60,330,OJ can be used to

generate sequences for broadband population inversion, as in Figures

VII.S through VII.g. Here it is shown how the maps of section C can be

used to guide the selection of an initial pulse sequence So whose

iterates have larger inversion bandwidths than the iterates of a single

w pulse.

The selection of So is based on the idea that, for any SO' there is

a locus of initial points 20 in SO(3) that corresponds to the

experimentally relevant ranges of 6w and wI. As an example, Figure

VII.14 shows the loci for a single w pulse that arise from variations

of 6w and wI separately. A comparison of Figure VII.14 with Figures

VII.10 and VII.11 reveals the ranges of 6w and WI for which the

inversion will be nearly complete for sequences resulting from a small

number of iterations of [O,O,120,60,120J and [0,330,60,330,0] acting on

an initial single w pulse. Those ranges are given by the portions of

the loci in Figure VII.14 that lie inside the rapidly convergent regions

in Figures VII.I0and VII.11.

The iterates of initial sequences for which the analogous loci lie

inside the rapidly convergent regions for larger ranges of 6w and WI

will produce nearly complete inversion over larger ranges of 6w and WI.

Such sequences can be found by means of a computer search. For example,

the rapidly convergent region of the scheme [O,O,120,60,120J is roughly

defined by the requirements:
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Figure VII.14: loci of points in 50(3) corresponding to a single w

pulse. resulting from variations in the relative rf amplitude (a) and
the relathe resonance offset (b).



40° , • , 140°

125° , r , 180°

195

(VII.32a)

(VII.32b)

where. and r are polar coordinates in 50(3). A search is conducted

over possible initial sequences consisting of two pulses with phases of

0° and 180° and flip angles in increments of 10°. For each possible

sequence, the point 20 is calculated for all values of 6w between -1.4w~

and 1.4w~, in increments of O.lw~. This is done by treati~g the pulse

sequences as a product of 3X3 rotation matrices and extracting 20 as in

section C.2. One sequence for which 20 lies inside the region defined by

Eq.(VII.32) for -1.4w~ , 6w , 1.4w~ is the sequence 3000120180 • The

corresponding locus of initial points is shown in Figure VII.15.

Simulations of the population inversion as a function of 6w for the

first four iterates of 3000120180 under the scheme [0,0,120,60,120] are

given in Figure VII.16. Figure VII.16 shows nearly complete inversion
o 0for -1.8w1 ' 6w ,1.8wl • For comparison, the results in Figure VII.5

using 1800 as the initial sequence showed nearly complete inversion for
o 0-0.9wI ' 6w ,1.lwl • Thus, the inversion bandwidth is nearly doubled by

the choice of an appropriate initial sequence.

In any experimental situation, there is a range of wI values as

well as 6w values. Figure VII.17a shows the locus of points in SO(3}

corresponding to a single w pulse with simultaneous variations of 6w

o 0 0 0between -wI and wI and wI between 0.4w1 and 1.6wl • For the scheme

[0,330,60,330,0], this locus extends outside of the rapidly convergent

region. In particular, the rapidly convergent region is limited in its

extent along the x axis, due to the existence of the fixed point at

(0.7035w,0,0) seen in Figure VII.13. This fixed point primarily limits
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Figure VII.IS: Locus of points in 50(3) corresponding to the sequence
300012°180 with variations ;n the resonance offset. Compar;son w;th
Figures VII.14b and VII.I0 reveals that the locus for 3000120180
conforms to the bas;n of the equator under the scheme [0.0.120.60.120]
over a larger range of offsets than the locus for 1800•
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Figure VII.16: Simulations of inversion as a function of the relative
resonance offset for sequences generated iteratively from 3000120180 by
the scheme [0,0,120,60,120]. The performance of 300

0
120

180
alone (a),

and of its first, second, and third iterates (b through d) is shown.
Comparison with Figure VII.5 demonstrates that the inversion bandwidths
of the iterate sequences are substantially improved by choosing an
initia' sequence for which the locus of points in SO(3) conforms to the
basin of the equator.
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Figure VII.17: Loci of points in 50(3) for the pulse sequences 1800 (a)
and 16501651051650 (b) resulting from simultaneous variations of the
resonance offset and the rf amplitude. Points for offsets in the range
-1 ~ w/w~~ 1 in increments of 0.05 and rf ampl itudes in the range
0.4~ wl/w~~ 1.6 in increments of 0.05 are plotted. 16501651051650
is chosen because its locus of points conforms to the basin of the
equator under the scheme [0,330,60,330,0].
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the range of ~1 for which inversion is achieved if a single. pulse is
used for SO. Figure VII.17b shows the locus of initial points for the

sequence 16501651051650. for the same variations of ~~ and ~1. This

sequence was found by a computer search. fitting the initial points into

a region defined by:

40 0 < • < 1400

1300 < r < 1800

(VII.33a)

(VII.33b)

for -0.8~~ < ~~ < 0.8~~ and 0.7~~ < ~1 < 1.3~~. The locus of initial

points is clearly more concentrated in the rapidly convergent region for

16501651051650 than for a single. pulse.

Figure VII.18 shows inversion contour plots for sequences generated

by two iterations of [0.330.60.330.0]. where So is either a single.

pulse or the sequence 16501651051650. As anticipated. the inversion is

nearly complete for larger simultaneous variations of ~~ and ~1 when So

is 16501651051650. The bandwidth is especially enlarged in the ~l

dimension.

E. Summary of principles of the fixed point theory

The viewpoint of the fixed point theory is that an iterative scheme

for generating pulse sequences corresponds to an underlying function on

the propagator space. The fixed points of the function and their
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F;gur~ VII.18: Invers;on contour plots for pulse sequences that are the
second iterates of 1800 (a) and 16501651051650 (b) under the scheme
(0,330,60,330,0]. Shown are the 0.99 (dotted line) and the 0.50 (solid
line) inversion contours. The results demonstrate that the area of
unifonn population inversion is enlarged by choosing an initial pulse
sequence for which the locus of points in 50(3) confonns to the basin of
the equator for simultaneous variations of the offset and the rf
IIIIpl1tude.
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stability determine the behavior of the scheme.

The process of designing an iterative scheme begins with the

identification of a general form for the desired propagator. The

relevant propagator space and the locus of points in that space that

corresponds to the desired propagator are determined. Next, a class of

operations on pulse sequences for which that locus is a fixed point or

an invariant set of points must be discovered. The stability properties

of that fixed point or set of points, as well as other fixed points that

are known! priori, may be calculated for a general member of the class

of operations. A particular member with the desired properties is then

selected.

The choice of the particular scheme may be made with the help of

the mapping techniques of section C. As in section 0, those techniques

also may be used to select an initial sequence on which the iterative

scheme acts most effectively.

The mapping techniques are quite feasible in problems where the

relevant propagator space is three-dimensional, e.g. all isolated spin

problems. In higher dimensions, or in problems where the number of

dimensions is arbitrary, representative maps are more difficult to

compute. For those cases, a qualitative understanding of the variety of

types of behavior is provided by the three-dimensional examples.
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Chapter VIII: Iterative SChemes for Narrowband Population Inversion

A. Motivation

Certain members of the class of iterative schemes introduced in

Chapter VII can generate pulse sequences for narrowband, rather than

broadband, population inversion of isolated spins. Of particular

interest are pulse sequences that invert populations only over a narrow

range of w1 centered at w~ and leave populations undisturbed at other

values of w1• Such sequences can be incorporated into a method for

spatially localizing NMR signals in an rf field gradient. This method

is discussed in section C.

The fixed point theory of Chapter VII can be used to analyze the

narrowband inversion schemes. The basic idea is as follows. While the

equator of 50(3), pictured in Figure VII.3, is stable for broadband

inversion schemes, it is unstable for narrowband inversion schemes. The

origin of 50(3) is stable with respect to displacements in the xy plane

for narrowband schemes. Points close to the origin move towards the

origin upon iteration. If the initial sequence is chosen to be 1800,

points close to the origin correspond to rf amplitudes that are close to

even multiples of w~, as shown in Figure VII.14. Points at the equator,

~ich remain at the equator upon iteration, correspond to rf amplitudes

that are odd multiples of w~. Points close to the equator are repelled

from the equator. Thus, the iterate sequences are expected to develop

the desired narrow inversion profile.
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B. Generation of pulse sequences.

The simplest example of an iterative scheme based on phase shifts

for which the origin is superstab1e with respect to displacements in the

~ plane is [0,120,240]. The superstabi1ity follows from the discussion

in Chapter VII.B. The equator is unstable, with A: = -1 ± 12 i as

defined in Eq.(VII.27). A fixed point map for [0,120,240], produced

according to the procedure in Chapter VII.C.3, is shown in Figure

VIII.1. The instability of the equator and the stability of the origin

in the xy plane are apparent.

Inversion plots as a function of wi for the first four iterates of

1800 under [0,120,240] are shown in Figure VIII.2. The narrowband

property is obvious. However, it appears that significant inversion

develops at intermediate values of wI in the higher iterations. This is

because the origin of 50(3) is unstable along the z axis and because the

z axis itself is not stable. Thus, points may move towards the origin

on the first few iterations, then escape along z to become rotations

that affect spin populations. This behavior is depicted in Figure

VIII.3. The development of the desired inversion profile is only a

transient property of [0,120,240]. It is nonetheless useful, however,

and serves as an illustration of the significance of fixed points that

are not unconditionally stable.

One way to prevent the escape of points along z is to use an

iterative scheme with symmetric phase shifts, as discussed 1n Chapter

VII. Initial points 1n the ~ plane are constrained to reaain 1n the xy

plane by the symmetry. [l80-cos-10.25,180+cos-10.25,O,18O+c0s-10.25,

180-cos-10.25], or roughly [104.5,255.5,0,255.5,104.5], 1s an example of



a

[0, 120, 2401

c d

204

Figure VIII.I: Fixed point map for [0.120.240J. showing that the origin

of 50(3) is superstable with respect to displacements in the xy plane
and the equator is unstable.
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Figure VIII.2: The extent of population inversion as a function of the
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single w pulse by the scheme [0.120.240]. From a to d. the pulse
sequences are composed of 3. 9. 27. and 81 phase-shifted w pulses.
Pulse sequences generated by [0.120.240] exhibit narrowband inversion.
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Figure VIII.3: The movement of iterates in 50(3) under [O,120,240J.
Initial points in the xy plane first move towards the origin, but
diverge on higher iterations. This results in the reappearance of
significant inversion at rf amplitudes far from wI =w~ in Figure
VII I.2d.
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a symmetric scheme for which the origin is superstable in the xY plane"

and the equator is unstable. A fixed point map for this scheme is shown

in Figure VIII.4. Since there are no other fixed points in the xy

plane, the iterates of initial points 1n the xy plane flow from the

equator to the origin. Inversion plots as a function of wI for

sequences generated from an initial 1800 sequence are shown in Figure

VIII.5. The narrowband inversion profile is clearly not transient.

c. App11 cat ion to the spatial 1oca1hation of NMR signal s

If rf inhomogeneity is deliberately introduced, pulse sequences

that are sensitive to the value of wI can be used to spatially localize

NMR signals [105-107], i.e. selectively observe those signals that

arise from a region in space where wI has a particular value. This is

particularly useful for in vivo studies using surface coils [56,108].

Typically, it is desirable to observe signals from a single organ

without interference from surrounding tissue. If signals are excited

with a single pulse, the degree of spatial localization is often

insufficient, requiring that the organ be surgically exposed [109,111].

A higher degree of spatial localization can be achieved if surface coils

are used in conjunction with following method, called NOBELS (Narrowband

Excitation for Localization in Space).

Let P be a narrowband inversion sequence and R be a "read" pulse or

pulse sequence. As illustrated in Figure VIII.6, NOBELS consists of the

fo11 owi ng steps:

1) Digitize and store the FlO following R alone, as in Figure VIII.6a.
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[104.5, 255.5,0, 255.5, 104.5]
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Figure VIII.4: Fixed point map for [104.5,255.5,0,255.5,104.5], showing
the instability of the equator of 50(3), the superstability of the
origin with respect to displacements in the xy plane, and the absence of
other fixed points in the ~ plane. The symmetry of the scheme
constrains points in the ~ plane to remain in the ~ plane, flowing
towards the origin on successive iterations.
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F

Figure VIII.6: Schematic representation of NOBELS. P is a narrowband
inversion sequence, inverting spins over a small range of rf amplitudes
as in Figures VIII.2 and VIII.5. R is a "read" pulse or pulse sequence.
The FlO signal in b(i} or b(ii} is subtracted from the FlO in a.
Contributions from transverse magnetization created by P are eliminated
by dephasing during T in b(i} or by phase cycling in b(ii}, with, = 0
and, = w. When the pulses are applied with a surface coil, the
remaining signal arises only from the localized spatial region in which
P inverts spins and R excites signal.



2) Digitize and store the FlO following the sequence of FigureVIII.6b(i).

T is a delay during which residual transverse magnetization dephases.

A static field gradient may be required during the delay. In the FID,

signals arising from the spatial region in which P inverts spins are

themselves inverted.

3) Subtract the FlO of step 2 from that of step 1. Only spins inverted

by P contribute to the remaining signal.

The need for a pulsed field gradient may be eliminated by a variant of

NOBELS:

I') Digitize and store two FIDs following R alone.

2') Digitize and store two FIDs from the sequence in Figure VIII.6b(ii).

The notation p. indicates that the overall rf phase of P is cycled

between 0 and w.
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3') Subtract the sum of the FIDs of step 2' from the sum of the FIDs of

step I'. The phase cycling in step 2' cancels the effects of residual

transverse magnetization following P.

In principle, the two forms of NOBELS produce the same spatial

localization. The choice is a matter of experimental convenience. One

effective narrowband inversion sequence is the sequence of 27

phase-shifted pulses, each with a nominal flip angle of w, illustrated

in Figure VIII.2c.

The inversion produced by the 27-pulse sequence is periodic in

wl/w~, with a period of 2. Any sequence of. pulses will be periodic

in this way. Thus, spins are inverted in regions of space where the rf
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amplitude is any odd multiple of w~. This presents a problem for

spatial local ization. If w~ is taken to be therf amplitude at a region

of interest at some distance from a surface coil. there will be regions
o 0closer to the coil where the rf amplitude is 3w1. Sw1• etc. These

regions may contribute to the signal collected with NOBELS. If a gap

between the surface coil and the sample is permitted. the problem is

alleviated somewhat. However. it is still desirable to minimize at

least the contributions from the 3w~ region.

One way to eliminate signal from the 3w~ region is to use a nominal

w/3 pulse as the read pulse R. Then. at 3w~. R is in fact a w pulse and

does not excite signal. In Figure VIII.7. a calculated plot of the
. 0

signal amplitude as a function of wI/WI resulting from either version of

NOBELS is shown. using the 27-pulse sequence of Figure VIII.2c for P and

a nominal w/3 pulse for R. The signal amplitude is normalized to its

value at wI = w~. Note that the maximum signal in the 3w~regiOn is

smaller than that at w~ by a factor of 0.07.

Figure VIII.7 applies to any surface coil geometry. It may be

desirable to design a coil such that the size and shape of the w~ region

conforms to that of the interesting sample region. If the same coil is

used for both the excitation and the detection of signals. then the

observed signal amplitude is further weighted by a factor of w1/w~.

This is because the intrinsic sensitivity at a given point in space is

proportional to the transverse field amplitude that would be produced at

that point by a unit current flowing in the detection coil [112].

Figure VIII.7 is intended as an indication of the high degree of

spatial localization that is possible with NOBELS. The qualitative

features are independent of the specific pulse sequences used. Other
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Figure VIII.7: Simulation of the signal resulting from NOBELS as a
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is used for R. For comparison, the signal amplitude resulting from a
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choices for P, perhaps with a different periodicity, are possible. R·

may be a sequence of pulses, rather than a single pulse, with its own

narrowband properties. It may also be profitable to combine NOBELS with

shaping of the static magnetic field to further localize signals.

With both the surface coil and the sample held fixed, it is

possible to move the region from which signals are detected in two

equivalent ways. Either the rf power is varied while maintaining

constant pulse lengths, or all pulse lengths in P and R are varied

proportionally while maintaining a constant rf power. A series of NMR

spectra from various spatial regions may thus be collected.

D. Resonance offset behavior

The pulse sequences generated by [0,120,240] and [104.5,255.5,

0,255.5,104.5] also invert spin populations over narrow resonance offset

ranges, with ~1 = ~~. Inversion as a function of offset for sequences

generated from an initial single 1r pulse by [0,120,240] is shown in

Figure VIII.B. If the chemical shift range of a sample is significant,

the narrowband behavior with respect to the resonance offset makes

spatial localization in an rf field gradient with these sequences

impossible. The acquired signal will arise from nuclei with different

chemical shifts located in different parts of the sample. In order to

observe signal from all chemically shifted nuclei in a single spatial

region, sequences that invert populations over a broad range of offsets

and a narrow range of rf amplitudes are needed.

As a step towards the derivation of broadband/narrowband

combination sequences, consider the iterative scheme [0,200,230,30,95].



215

a b

co--ct)
~

CI)
>c

-1.0 0 1.0

o

-1.0 o 1.0

c d

e

-1.0 0 1.0
Aw/w~

1

.\I e,--, _

o

1.0•

e_-e

-1.0 0 1.0
A..,/w~

-1.0

c
o--ct)
~

CI) 0
>c

Figure VIII.8: population inversion as a function of the relative
resonance offset for the iterates of 1800 under [0.120.240].
Simulations (solid lines) and experimental data (dots) are shown for the

first four iterates in a through d.



216

As is apparent 1n the fixed point map in Figure VIII.9. for this scheme

the origin of 50(3) is stable with respect to displacements in the xy

plane. The equator is unstable towards the origin but stable along

the z direction. Specifically. A~ = 0.196 ± 0.388i and A: = 0.826 ±

0.845. Displacements along z arise from resonance offsets if the

initial pulse sequence is a single. pulse. Thus. resonance offset

effects should be removed by iteration. at least near the equator. due

to the stability with respect to displacements along z.

Plots of inversion as a function of 1Il1/1Il~ for the 25-pulse sequence

that is the second iterate of 1800 under [0.200.230.30.95] are shown in

Figure VIII.10 for several values of 1Il/1Il~. Near 1Il1/1Il~ =1.

the inversion is insensitive to the offset as expected. Elsewhere,

however. the inversion is still dependent on the offset. These other

values of 1Il1/1Il~ correspond to initial points in 50(3) that are not

near the equator,. so that their offset dependence is not removed by

iteration.
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Figure VIII.9: Fixed point map in 50(3) for the scheme [0,200.230,30,95J.
The origin is stable with respect to displacements in the xy plane. The
equator has one stable and one unstable direction.
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Chapter IX: Fixed Point Theory Analyses of Other Iterative Schemes

A. Motivation

In this chapter. iterative schemes developed by other authors for

various purposes inNMR are examined. The treatments of those schemes

are not intended to be complete descriptions, complete descriptions are

given in the original papers. The intention is only to demonstrate the

applicability of the fixed point theory. Modifications that are

reqUired when an iterative scheme is not strictly equivalent to a

function on the propagator space are discussed. In addition. an example

in which the relevant space is not the three-dimensional space 50(3) is

treated.

B. Heteronuclear decoupling in liquids

Recently. several authors have demonstrated pulse sequences. and

iterative schemes for generating such sequences. designed to remove

heteronuclear couplings in liquids. e.g. to decouple protons from

carbon-13 nuclei by applying a pulse sequence to the protons. allowing

the observation of the carbon-13 spectrum without line splittings caused

by the coupled protons. The decoupling sequences are designed to

compensate for the existence of a large range of proton chemical shifts.

1. Waugh's theory of decoupllng



220

Waugh has given a criterion for evaluating decoupling sequences: ·'A

good decoupling sequence is one for which the net rotation experienced

by isolated spins is independent of the resonance offset over a large

range of offsets [53]. In addition, Waugh has demonstrated a particular

iterative scheme that produces pulse sequences that are equivalent to

net rotations of nearly zero over a large range of offsets [54]. They

are therefore good decoupling sequences. It is shown here that, for a

specific range of Offsets, the scheme leads to a stable fixed point at

the origin of the space SO(3).

The iterative scheme may be applied to any initial sequence of w/2

pulses. The operations are to permute a w/2 pulse from the end of the

sequence to the beginning, to form a version of the permuted sequence

phase-shifted by 180°, and finally to concatenate the permuted sequence

with the phase-shifted, permuted sequence. These operations generate a

new pulse sequence that is twice as long as the original one. The new

sequence is also made up of ./2 pulses, so that the operation may be

applied iteratively.

Since the criterion for decoupling involves a single, isolated

spin, the pulse sequence propagators are described by points in the

spherical space in Figure VII.3. For particular values of ~W and WI'

the initial sequence corresponds to an initial vector £ in SO(3).-
Assuming for simplicity that the phase of the last w/2 pulse in the

initial sequence is 0, the propagator for the new sequence is a rotation

R given by:

R =exp[i{6Ix-~Iz)./2]exp{-1i.!)exp[-i{6Ix-~Iz)./2]exp[-i{6Ix+~Iz)w/2]

Xexp{-1&.I)exp[i{6Ix+~I )./2] (IX.I)
-- z
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(IX.2) -

c
L

6 and ~ are the relative rf amplitude and the relative resonance offset,

respectively, defined as the ratios of wI and ~w to the nominal rf
aamplitude wI. The net rotation vector associated with R is ~.If £ =

(0,0,0), then R= I and! = (0,0,0). Therefore the origin of 50(3) is a

fixed point of the relation implied by Eq.(IX.I). To determine its

stability, Eq.(IX.I) is linearized. To first order in 1£1, it can be-
shown that:

! = (O,0,2£xcoS6Sin6(l-COS~)+2£ySin~cos6+2£z(COS2ecos~+sin26 ))

(IX.3)

where:

~ = (62+62)1/2w/ 2

tane =6/6

(IX.4)

(IX.5)

The linear transformation relating £ and! in Eq.(IX.3) has a doubly

degenerate eigenvalue of 0 and another eigenvalue AW' with:

(IX.6)

The eigenvector with eigenvalue AW is (0,0,1). This eigenvalue and

eigenvector are independent of the phase of the permuted ./2 pulse.

There are two other eigenvectors with eigenvalue 0 except in the case

where Aw=a and either cosesine(l-cos~) ~ 0 or sin~cose ~ O. In that

case, there are altogether two eigenvectors.
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The dynami cs given by Eq.( IX. 3) has a simple interpretat ion. Near

the origin. points are either taken directly to the origin on a single

iteration. or they are taken to the z axis. Once on the z axis. they

move either towards the origin or away from the origin. dictated by the

magnitude of Aw• Thus. iflAwl< 1. the origin is stable.

If 6 = 1.0. Eq.(IX.6) shows that the origin is stable if/AI< 1.732.

If 6 =0.8. the origin is stable if'~'< 1.216. If A=0. the origin is

stable if 6 < 2/3. When the origin is unstable. successive iterations

of Waugh's scheme may not be expected to generate pulse sequences that

produce net rotations successively closer to zero. Thus. the fixed

point analysis leads to a prediction of intrinsic limits on the offset

and rf amplitude ranges for which the scheme may be effective.

Finally. it has been suggested that the scheme be applied to

initial sequences composed of comPosite. rather than single. w/~ pulses

[25]. This may increase the accessible offset or rf amplitude ranges.

In addition. it has been shown that an appropriate initial sequence can

improve the decoup1ing performance of the iterate sequences [24.25].

2. MLEV decoup1ing sequences

Levitt. Freeman et a1. have demonstrated heteronuc1ear decoup1ing

sequences. called MLEV-4. MLEV-16. etc •• that are also derived with an

iterative scheme. These sequences provided the impetus for much of the

subsequent work on decoup1ing sequences and composite pulses. The

original development of the MLEV scheme [32] was in terms of coherent

averaging theory. Successive iterations eliminate successive terms in a

Magnus expansion of the effective heteronuc1ear coupling. However.

-

l
F
~



223

Waugh's criterion for decoupling may also be applied to the MLEV

sequences. Here it is shown that the origin of 50(3) is a stable fixed

point under the MLEV scheme for specific ranges of wI and Aw.

The MLEV scheme operates on an initial sequence composed of an even

number of composite w pulses. The composite w pulses are all of the

same type, with overall phases of either 0 or 180°. Four versions of

the initial sequence are formed: the initial sequence itself; the

initial sequence with an overall phase shift of 180°; the initial

sequence with one composite w pulse permuted from the end to the

beginning; the permuted sequence with an overall phase shift of 180°.

In the simplest example of the MLEV scheme, the four versions are

concatenated to generate a new sequence, still composed of composite w

pulses, that is four times longer than the original one. Although the

full MLEV theory allows considerably more flexibility in the

construction of iterates, only this simplest case is considered for the

sake of clarity. If the initial sequence produces a rotation

corresponding to the point £ in 50(3), and if the permuted composite 1f....

pulse produces a rotation P, then the new sequence produces a net

rotation R, given by:

where:

- - --1 -1 - (.)R = P exp(-i£.!)f Pexp(-i£.!)P exp(-i£.!)exp -1£.! (1X.7)

(1X.8)

and E is as in Eq. (IX.2). Again, the question is what point! is....

associated with R. If £ = (O,O,O), then! = (0,0,0), so that the origin

of 50(3) is a fixed point. To assess its ~tabi1ity, P may be expressed
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in the following form:

(IX.9)

Evaluating the right-hand side of Eq.(IX.7) to first order in 1£1:

The MLEV scheme is thus equivalent to a linear transformation on 50(3)

in the neighborhood of the origin. Eq.(IX.10) is obviously analogous to

Eq.(IX.3). so that the dynamics of the MLEV and Waugh schemes are

similar. Eq.(IX.10) defines a linear transformation with a doubly

degenerate eigenvalue of 0 and a third eigenvalue AM:

(IX.ll)

In view of Eq.(IX.11). the stability condition Am < 1 is the same as the

requirement that the population inversion produced by P be greater than

or equal to 1/2. since the inversion is -cosY2' For a given composite w

pulse. this inversion requirement dictates particular ranges of w1 and

Aw.

3. Remarks
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To begin with, the equator ofSO(3) is not a fixed point in the

decoupling schemes as it is in the inversion schemes. The origin of

50(3) is stable in all directions under certain conditions in the

decoupling schemes, while it is always unstable along z in the inversion

schemes. These differences are in accordance with the different

purposes of the schemes. The purpose of a decoupling scheme is to

produce net rotations of nearly zero, while the purpose of an inversion

scheme is to produce rotations of ••

There are other, more qualitative differences that affect the

applicability of an analysis, such as that in Chapter VII.C, designed to

map out the dynamics of a function. First, the decoupling schemes act

only on pulse sequences of a particular form, i.e. composed of ./2 or w

pulses. In itself, this fact is not very significant. However, it is

related to a second, important difference. The decoupling schemes are

based on the creation of new versions of an initial sequence by the

permutation of pulses. If an initial sequence, with propagator UQ, is

composed of Mpulses with propagators Vi' then:

(IX.12)

Permuting a pulse gives a new version with propagator U~l}, given by:

(IX.13)

(IX.14)

Since the transformation VMdepends on parameters in the

Hamiltonian, for example ~i and 6~, as well as the f9rm of the permuted
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pulse, or composUe pulse, the relationship between Jol)and Uo depends ·on

those parameters. Consequently, if the initial sequence corresponds to

a point 20 in SO(3), the first iterate 21 depends on parameters in the

Hamiltonian and the form of the permuted pulses. An iterative scheme is

therefore generally not equivalent to a single function when it relies

on the permutation of pulses. The fixed points, their stability, and

their basins are not determined by the iterative scheme alone. This is

apparent in the above discussion of decoupling schemes, where the

stabil ity of the origin depends on !J. and 6, as in Eq. (IX.6), as well. as

the form of the permuted pulses, as in Eq.{IX.11).

Despite the fact that a function on SO(3) is not uniquely defined,

useful results are obtained from a fixed point analysis of decoupling

schemes, specifically the limits on the stability of the origin of

SO(3). In addition, a function does exist for each pair of values of !J.

and 6 and for a particular form of the permuted pulses. For example, if

an MLEV sequence is composed entirely of composite w pulses of the form

900180180900' and if !J. =0.5 and 6 =1.0, then the MLEV scheme, in the

simplest case discussed above, defines a function FOon SO(3) when the

overall phase of the permuted composite w pulse is o. If the overall

phase of the permuted composite w pulse is ., then the function is F••

F. and FOare related by:

(IX.1S)

Eq.{IX.1S) implies that it is sufficient to study the single function

FO•
With the above complications in mind, th~ development of decoupling
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sequences based on a fixed point analysis might proceed as follows:

1. Decide on the experimentally relevant ranges of 6 and 6.

2. Study the properties of FOfor representative values of A and

6. using various composite. pulses (for the MLEV scheme) or

composite ./2 pulses (for the Waugh scheme). In particular.

find a composite pulse for which the basin of the origin is large

and converges rapidly for the chosen values of A and 6.

3. Select an initial sequence. made up of the chosen composite

pulses. for which the locus of relevant initial points lies within

the basin of the origin.

Ageneralization of this procedure would apply to other iterative

schemes for other purposes in which the function on Liouville space

depends on parameters in the Hamiltonian and on the structure of the

pulse sequences.

C. Composite Pulses

1. Recursive Expansion Procedure

Levitt and Ernst have proposed the recursive expansion procedure

for generating broadband composite ./2 pulses [101]. Operating on any

initial pulse sequence. the recursive expansion procedure depends on the

existence of an inverse sequence. i.e. a sequence that produces the

inverse rotation. When A = O. inverse sequences are easily constructed

by phase shifting the initial sequence by 1800 and reversing the order
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of the pulses. When A ~ 0, there is no general method for constructing"

an exact inverse sequence, although an approximate method has been

proposed [66]. Thus, the recursive expansion procedure, and other

iterative schemes that rely on inverse sequences, are primarily useful

for problems in which the resonance offsets are small.

The propagator ROfor an arbitrary initial sequence can be written:

-

L
"

(IX.16)

where £ reflects the deviation from a perfect composite w/2 pulse.

Recursive expansion consists of concatenating the initial sequence with

its inverse, phase-shifted by 90°. If the initial sequence is SO' the
-1new sequence may be symbolized by 51 = So (SO )90. 51 has a propagator

R1 given by:

R1 =exp(-ilzw/2)exp(ilzY2)exp[ilx(w/2+£)]exp(ilzw/2)

Xexp[-ilx(w/2 + £)]exp(-il zY2) (IX.ll)

To first order in £:

(IX.18)

Rl in Eq.(IX.18) is a rotation that brings a vector from the z axis into

the xy plane, exactly. Eqs.(IX.10) through (IX.18) show that such

rotations form a superstable invariant set under the recursive expansion

procedure. The explicit form of the vectors a in 50(3) that belong to-
that set is:



with:

a • lal (sinecos+,sinesin+,cose)..., ..., (IX.19)

( IX.20)
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These vectors define a closed surface in 50(3), pictured in Figure IX.I.

There is only one significant direction of deviations from that surface,

i.e. the direction normal to the surface, as indicated by the fact that

only one error parameter, £, appears in Eq.(IX.16).

2. Composite w pulses

5haka and Freeman have introduced iterative schemes that generate

pulse sequences for population inversion that are either broadband or

narrowband with respect to the rf amplitude [113]. These schemes rely

on inverse sequences i -so that they are most useful incases where All) :=

O. One scheme that produces narrowband inversion sequences may be

represented by 51 = 50(50
1)60(50)120' i.e. a concatenation of the

initial sequence, the inverse sequence with a phase shift of 60°, and

the initial sequence with a phase shift of 120°. Using the methods of

Chapter VII, it can be shown that the equator of 50(3) is an unstable

fixed set of points under this scheme. However, every point on the z

axis is superstable with respect to displacements in the x and y

directions. To see this, write the propagator ROfor 50 in the general

form:

(IX.2I)
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z

y

Figure IX.!: The surface contained in SO(3) that is the locus of points
that correspond to rotations. or pulse sequences. that create transverse
-agnetization when acting on isolated spins at equilibrium.
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where the z component of £ is zero. The propagator R1 for Sl is then:

R1 =exp[-iI z(y+2./3)]exp(-i£.!)exp(iI z·/3)exp(i£.!)

Xexp(iI z./3)exp(-i£.!)

To first order in '£', Eq.(IX.22) reduces to:

(IX.22)

(IX.23)

Since the z axis is an attractor, points in SO(3) that are not on the

equator converge to the z axis, corresponding to rotations that do not

invert populations at all. Points on the equator, corresponding to

perfect inversion, remain there. This leads to narrowband inversion, as

in the schemes [0,120,240] and [180-cos-10.25,180+cos·10.25,O,

180+cos-10.25,180-cos-10.25] discussed in Chapter VIII, although in

those schemes it is only the origin that is superstable to displacements

in the xy plane, rather than the entire z axis.

5haka and Freeman also suggest a scheme in which SI =

50(50-1)30050. For this scheme, the equator of 50(3) is a superstable

fixed set of points, leading to broadband population inversion. In

addition, they demonstrate a scheme represented by SI =50(501)27050.

This scheme leads to broadband inversion, but the equator of 50(3) is

not an attractor. It can be shown that, in a linear analysis, the

eigenvalues at the equator are A: = I, using the notation of Chapter

VII.B.3. Broadband inversion is instead the result of the fact that

this scheme converts rotations of the form of Eq.(IX.18) or Eqs.(IX.19)

and (IX.20) to rotations that produce complete inversion. In other
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words this scheme maps the surface in Figure IX.1 onto the equator.

Finally. Shaka and Freeman demonstrate a scheme for which
-1

S1 = SO(SO )90(SO)180. This scheme maps the surface of Figure

IX.1 onto the z axis. and leads to narrowband inversion.

Inversion plots for the last two examples do not exhibit the smooth

regions of uniform inversion seen in Chapters VII and VIII. Rather. the

inversion as a function of ~1 displays ripples [113]. This is due to

the fact that the points in SO(3) that correspond to the desired

transformations are not attractors.

3. Remarks

The mapping techniques developed in Chapter VII.C can be applied to

the above iterative schemes to investigate basins. fixed points. and

flows. As in Section III. these techniques can aid in the selection of

an initial sequence and in the development of new schemes.

Several operations on pulse sequences that may be used in iterative

schemes have been encountered. namely phase shifting. pulse permutation.

and the reversal of the order of pulses. These operations are intended

to produce some transformation of the pulse sequence propagator. In

general. the effect that an operation has on the propagator is dependent

on the Hamiltonian. as has been seen particularly in the cases of pulse

permutation and order reversal.
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D. Selective excitation of multiple quantum coherence

The first true iterative scheme for generating pulse sequences for

NMR applications was developed by Warren, Weitekamp, and Pines for

selectively exciting multiple quantum coherences in coupled spin systems

[46]. The objective was to excite coherences only between spin states

that differ in their Zeeman quantum number by a multiple of a particular

integer n, i.e. nk-quantum coherences. The propagator for a pulse

sequence in a coupled spin system is a general transformation Uo which

may be written in terms of irreducible tensor operators T1m(q), where

the index q is necessary because there may be several, independent

operators with the same 1 and m:

Uo =exp(-iQ)
1

Q = I I I C1m(q)T1m(q)
q 1 m=-l

Amust be Hermitian, which implies:

m *C1_m(q) = (-1) C1m (q)

(IX.24)

(IX.26)

(IX.26)

Alternatively, instead of using the irreducible tensors themselves as a

basis, a basis of Hermitian combinations A1m(q) and B1m(q), as defined

in Eqs.(V.18) and (V.19) may be used:
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The coefficients alm(q), blm(q) and C10(q) are real. The set of these

real coefficients is a generalization of the vector a in SO(3) that-
describes the transformation of a system of uncoupled. isolated spins.

For a system of Ncoupled spin-1/2 nuclei. there are 4"_1 independent.

real numbers that specify Q. Thus. the relevant propagator space is

(4~1)-dimensional. The pulse sequence propagator is characterized by a

point in that space.

The selective excitation scheme employs the phase shifting and·

concatenation operations discussed in Chapters VII and VIII. For

selective nk-quantum excitation. the scheme

[O.lx360/n.2x360/n ••••• (n-1)x360/n] may be used. Phase shifting has the

effect of rotating Qabout z. so that. if the initial sequence has the

propagator Uo of Eq.(IX.24). the first iterate sequence has the

propagator U1:

with:
1

Q = E E E exp[-im(2wp/n)]Clm(q)Tlm(q)
p q 1 m=-l

(IX.28)

(IX.29)

Eq.(IX.29) depends on the property of irreducible tensor operators that:

(IX.30)

To first order in the coefficients Clm(q). the exponents in Eq.(IX.28)

can be added. Using the identity:



n-1 {t exp[-im{2wp/n)] = n. ma multiple of n
p=O O. otherwise

U1 becomes:

U1 = exp{-iQT)

QT = t t t' n Clm{q) Tlm{q)
q 1 m

(IX.3l)

(IX.32)

(IX.33)
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where the sum over m in Eq.{IX.33) is restricted to multiples of n.

Since the propagator in Eq.{IX.32) contains only Tlm{q) operators with m

a multiple of n. it generates coherences only between spin states that

differ in their Zeeman quantum number by a multiple of n. i.e.

nk-quantum coherences, when it acts on a spin system initially at

equilibrium.

In terms of a fixed point analysis, the origin of the propagator

space is a fixed point. Eqs.{IX.24) through (IX.33) show that the

origin is superstable along directions corresponding to Tlm{q) with m

not a multiple of n, and unstable, with an eigenvalue of no along

directions corresponding to Tlm{q) with ma multiple of n. The

situation is formally analogous to the scheme [0,120,240] in SO(3) where

the origin is superstable along x and y and unstabl'e along z. If the

scheme for selective excitation is to be successful, the initial

sequence must be such that Q in Eq.{IX.24) is small, i.e. close to the

origin. Then the first several iterations may produce sequences for

which the desirable tensor components are much larger than the

undesirable ones. However, with higher iterations, the point that

describes the sequence propagator will move away from the origin, and

may develop large components of undesirable tensors. In other words,
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the scheme may only be effective in a transient way. This is because

the axes in the propagator space that correspond to the desired

transformations are a fixed set of points, but are not stable.

analogous to that in Figure VII.3 is expected.

The development of the iterative schemes for selective excitation

of multiple quantum coherences was originally based on coherent

averaging theory. It was shown that successive iterations cause the

undesirable tensor components to vanish from successively higher terms

in a Magnus expansion of the propagator. The need for an initial

sequence for which A is small was recognized as a requirement for the.

convergence of the Magnus expansion [46].
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Chapter X: Conclusion

The previous chapters describe in detail two methods for deriving

pulse sequences for broadband excitation. The work described in those

chapters does not exhaust the potential of either method. however. Some

extensions and areas for improvement of the methods are listed here.

Two obvious extensions of the coherent averaging approach are the

derivation of higher-order composite pulses and the derivation of

composite pulses with broadband properties with respect to two different

experimental parameters at once. Both extensions require improvements

in the numerical methods to allow more complicated equations to be

generated and solved. Promising avenues to pursue are the use of

symbolic manipulation programs and directed searches. as described in

Chapter IV.C.5. It may also prove fruitful to lift the restriction to

constant pulse amplitudes and piecewise-constant phase functions.

Piecewise-constant or continuously varying pulse amplitudes and

continuously varying rf phases may result in improved excitation

sequences.

Coherent averaging theory calculations by the direct numerical

evaluation of the Magnus expansion have not been employed in NMR

problems outside of the construction of composite pulses. Such an

approach may be useful in other problems when suitable sequences can not

be found by the usual means. Even when sequences can be found by other

means. those that are derived numerically may turn out to be more

effective.

The generation of pulse sequences by iterative schemes is an area
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of NMR whose potential is as yet unknown, beyond what has be~n presented

in Chapters VII through IX. Some problems that deserve attention are

the generation of pulse sequences that produce constant net rotations,

pulse sequences that are broadband with respect to one parameter and

narrowband with respect to a different parameter, pulse sequences for

broadband excitation in coupled spin systems, and improved sequences for

selective multiple quantum excitation. All of these problems are likely

to require an investigation of new classes of operations that may be

applied iteratively to an initial pulse sequence.

Finally, the incorporation of broadband excitation sequences into

NMR experiments in general, and the comparison with the more traditional

forms of those experiments, is an important area for future research.
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Appendix A: Experimental Methods

1. Spectrometers

Experiments were performed on two home-built NMR spectrometers that

have been described in detail in other dissertations [99,114]. One

spectrometer, operating at a proton Larmor frequency of 360 MHz, was

used to obtain the data and spectra in Chapters II and V. The other,

operating at a proton Larmor frequency of 180 MHz, was used to obtain

the data and spectra in Chapters VI and VII.

Both spectrometers are based on Bruker superconducting magnets (42

and 84 kG). The timing sequence of rf pulses, delays, and signal

acquisition is stored in and controlled by a pulse programmer with an

independent microprocessor. Overall triggering of the pulse programmer,

data storage and averaging, Fourier transformation, and other data

manipulations and analysis are accomplished by Data General Nova

computers, running the SPEC operating system [115]. The principal

components of the spectrometer are diagrammed in Figure A.1.

An unusual feature of many of the pulse sequences investigated in

this dissertation, from the experimental standpoint, is their uncommon

rf phase shifts. The spectrometers normally operate with four proton rf

pulse channels and four X nucleus channels, each producing pulses with

relative phases of 0°, 90°, 180°, and 270°. Phase generation and pulse

gating takes place at an intermediate frequency (IF) of 30 MHz. In

addition, there is a digital phase shifter capable of producing overall

phase shifts in increments of 360°/256 [87.114]. The overall phase

-

~
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Figure A.l: Block diagram of the principal components of the pulsed NMR
spectrometers used in the studies described in this dissertation.
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shift produced by the phase shifter can be determined by an eight bit

binary number stored in a RAM. Thus, the overall phases can be set to

any value within a nominal precision of 360°/512 by loading the

appropriate numbers into successive RAM locations. Approximately 2.5 ~s

is required for the phase shifter to change state, however, so that 2.5

~s gaps are required between pulses if the phase shifter RAM is used to

set the pulse phases. Pulse phases were set in this way for experiments

whose results are given in Figures V.2, V.4, V.5, and VI.5.

In cases where gaps between pulses would degrade the performance of

a sequence due to the presence of large resonance offsets or dipole
~

couplings, or in cases where the required phase shifts were

cpmparatively simple, the phase shifter was not used. This applies to

data in Figures V.2, V.3, V.7, V.II, V.13, VI.5, VII.5, and VII.6.

Where necessary, the relative phases of the rf channels were readjusted

with a combination of delay cables and phase tweakers. Relative phases

were measured with a vector voltmeter. For the experiments that

produced the data in Figures VII.5 and VII.6, six rf channels with

phases in increments of 60° were required. Therefore, the outputs of

two of the X nucleus channels were combined with the outputs of the four

proton channels and the relative phases were adjusted appropriately.

A schematic diagram of the phase generation circuitry is given in

Figure A.2.

2. tf\1R probes

The two probe circuits used in the experiments are given in Figure

A.3. The 360 MHz probe in Figure A.3a was designed and built by Erika
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Figure A.2: Block diagram of circuitry for generating phase-shifted rf
pulses. The components are: divider (a). 0·/180· hybrid (b). 0./90°
hybrid (c). phase and amplitude tweakers (d). rf switch (e and k).
four-way combiner (f). two-way combiner (g). RAM circuit (h). Dalco
phase shifter (i). mixer (j). This set up allows pulses with seven
chosen phases to be given at one frequency and pulses of a single phase
to be given at another frequency. In addition. overall phase shifts in
increments of 360°/256 can be performed by the phase shifter.
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a}

-- --
proton corbon -13

b)

--

proton

Figure A.3: NMR probe circuits. a} Double-tuned circuit for proton (360
MHz) and 13C studies. C1 and C2 are tuning capacitors. C3 and C4
are for impedance matching. Isolation between the proton and 13C sides
is provided by the open and closed A/4 cables on either side of the
coil. b} Circuit for proton (180 MHz) studies.
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Schneider and Kurt Zilm. It is a double-tuned probe, suitable for

irradiating and detecting signals from protons and 13C nuclei

simultaneously, although only the proton side was used in the

experiments in this dissertation. The coil consists of four turns of 2

mm wide, flattened copper wire. The coil is 10 mm long, with an inside

diameter of 7 mm.

The 180 MHz probe in Figure A.3b was built by Warren Warren. The

probe is designed for liquid crystal experiments, requiring the

capability of controlling the sample temperature. An auxiliary

temperature controller is used to read the voltage from a thermocouple

positioned near the sample and switch current through a heater.

Temperature regulation was employed in the experiments of Figure VI.5.

The coil in the 180 MHz probe is wound from 7 turns of 2 mm wide,

flattened copper wire, with a length of 22 mm and an inside diameter of

8 mm.

3.' Samples

Experiments to demonstrate the performance of composite pulses as a

function of the resonance offset or the rf amplitude were performed on

a~ H20(t) sample in a glass bulb with an inside diameter of 3 mm. The

spectra in Figure V.ll were obtained from a sample of Ba(C103)2·H20

powder packed into a glass tube with an inside diameter of 3 mm. The
I

sample was 5 mm long. The dimensions of the squaric acid crystal used

jn the experiments of Figure V.13 were approximately 5 mm by 6 mm by 8

mm.

The sample of CH2C1 2 dissolved in Eastman 15320 liquid crystal for
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Figure VI.S was prepared as described in Chapter VI.C.I. The sample was

sealed in a glass bulb with an inside diameter of 4 om.

4. Additional remarks on techniques

Population inversion measurements were made with sequences

analogous to that in Figure V.9b. Variations in wI were mimicked by

equivalent variations in pulse lengths in the inverting sequence, since

it is experimentally easier to calibrate wI once and then vary the pulse

lengths rather than varying wI and recalibrating it for every data

point. The length of the ../2 "read" pulse was kept constant. The

inversion was measured by the peak height in a magnitude spectrum,

normalized to the peak height after the read pulse alone.

When the inversion is incomplete, transverse magnetization is

created by the composite.. pulse. The transverse magnetization

dephases due to static field inhomogeneity during T .in Figure V.9, but

is partially refocussed at a time T after the read pulse, giving an echo

signal. In the H20 inversion experiments, T was taken to be 20 ms. The

static field homogeneity was spoiled by missetting the magnet shims so

that the FlO after the read pulse did not overlap with the echo.

Typically, the inhomogeneous linewidth was several hundred Hz.

In order to measure inversion as a function of ~w, it was necessary

to give the composite.. pulse off resonance while keeping the read

pulse on resonance. An independent rf gate, fed by a fixed 30 MHz IF

source, was used to give the read pulse. The remaining gates were fed

by a variable IF from a frequency synthesizer. The outputs of all gates

were combined. Thus, the frequency of the composite w pulse could be
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varied at will without affecting the read pulse.

Pulse lengths corresponding to flip angles in multiples of w/4 were

calibrated by giving a sequence of four identical pulses and observing

the ensuing FlO. The pulse lengths were adjusted to produce a null in

the FlO signal. When necessary. pulse lengths for other flip angles

were interpolated.

Measurements of signal phases were made directly from the FlO.

using Eq.(11.75).
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Appendix B: Computer Programs

1. Simulations

Simulations of signal amplitude, signal phase, or inversion as a

function of ~w/w~ or wl/w~ were accomplished with FORTRAN programs

similar to DELTA.FOR, reproduced along with the necessary subroutines in

Figure B.l. Specifically, DELTA.FOR calculates the final x, y, and i

components of a Bloch vector as a function of ~w/w~ for any given pulse

sequence. The pulses are treated as a sequence of rotations applied to

an initial vector aligned with the z axis.

Simulations of signal amplitude or inversion as a function of

dipole coupling constants in a system of coupled spin-l/2 nuclei were

carried out with NROT.FOR and its associated subroutines, reproduced in
o

Figure B.2. The number of spins and the nominal values of dij/wl are

entered, along with the pulse sequence. The final density matrix in a

direct product basis is calculated as a function of an overall factor C

that multiplies all coupling constants.

Simulations of powder pattern spectra for an isotropic

orientational distribution of pairs of coupled spin-l/2 nuclei were

produced by WQDP.FOR and FFT.FOR in Figure B.3. WQDP.FOR generates the

FID after a given sequence of pulses and delays. FFT.FOR Fourier

transforms the FID, using the IMSL subroutine FFT2C.

2. Derivation of pulse sequences in the coherent averaging theory

approach

-
~
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Figure B.2: NROT.FOR
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.u~routin••,t•• ll.,b,.,n,rv)
eo.~l'M .In,n),bln,n),pvln),.
era 14 i*i ,.
do 12 ';-1, •
• -0.0
do 11 ..-Ir.

11 .-••• li,kl'eonJ.CbC';,k"
12 pvl';)-.

aD 13 J*i,1
13 .Ci,';).rvl';)
24 eontinut

r.turn
.nd

e
e

~ubroutin••,tr.lC.,b,.,n,ev)
eo.~l'M ,In,nl,bCn,n),evCn),.
do 14 ,;-1,.
do i2 i-1o •
• -0.0
ltD . 'tl"1'!-;rk"-1:!.."...,--

11 .-••• Ci,k).bCk,';)
12 evli)-.

do 13 i-I,.
13 bli'';'-evCi)
14 eontinu.

r.turn
.nd

e
e di ••on.liz••• r •• l h••iltoni.n.
chi•• on.-di••n.ion.l v.etor who•••l •••nt.
eo-----'-~iY' tola.nl in tn' u~~'f nllf 6' tn'
e h•• iltoni,n. on r.turn, th••i ••nv.lu••• rt
e in th. fir.t n loe.tion. in h. • i •• v.etor
e who•••l •••nt ••r••uee••• iv••i ••nv.etop••
e n 1. th. dl ••n.lon.litv.
e

--~~outin' r.l ••h(N,I,nl
di ••n.ion hll),.Cl)
.,tll,';)-';'C';-I)/2+i
onan
••n••-l.0.-7
i';-O

- - --.-. d1T ·'21tO~J"*T2.,""n'--------------------
do 20 1-1,n
iJ-1J+1
.C1J)-0.0

20 ffrt; ••• j) .CiJ)-1.0
.nor.-O.O
d6 30 J-2.n
';01-';-1
do 30 1-1,J.l
iJ-••tI1,';)

30 .no••-.nor.+hrij)'hlij)
.nor.· •• ptC2.0••nop.)
1'('"0'•. 11.'1"." 10 t6 125
,nor.x-.nor.,p,n••/on
ind-O
thr-.nor.

40 thr-thp/on
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50

61

62
63

64

65

10

do 100 .·2.1'1
------ ••2·.-2

do 100 1.1 •••11.·•• tO •• )
I'C.b.ChCl.».lt.thr) 80 to 100
lnd·l
n·••to.u
_-•• Lf ••• )
dl 'taM•• ) -h C11 )
I'Cdl".I•• O.O) dl".I.OI-I'
••·0.5••t.nC2.0.hC1.)/dl")
.in.*UnC,,)
l:o.,·t'o.C•• )
.11'1,2·.11'1.'.11'1.
t'0.,2·t'0•• 't'0••
do 10 k.l.n
ifC~-l) 61.10.62
U •••tck. u
.... • ...tC~ ... )
eo to -os-..:::...:..-------------------
l'C~-.) 63.10,64
H·••tO.k)
".·•• tck •• )'0 to 65
U·••tCl,k)

--.._ •••"tfI~';)-------
hh·t'o•••hCkl)-.ln••hC .... )
hCI<.)·.in.'hCkl)+l:o•••hCII..)
hC"'l)·hh
t'ontinul
••·2.0•• 1n.'t'0•••hC1.)
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80
100

120
12'

hh·tdi'2'~(11)'llni2.n(•• )-ii
hf •• )·.ln.2.hCl1)+l:o••2,hC•• )+••
hnn·J1h
he la ).0.0
do 80 1*1,1'1
11. Cl-lI'n+i

- ---""1...1'.-1 "nfl
••·t'0•••• Cl1)-.ln••• Cl.)
.Cl.)·.ln••• Cl1)+l:o•••• Cl.)
sCill·••
t'ontlnui
t'ontinul
Hfliid ••o.O) .0 to no
lnd·O.0 to '0
i'Cthr •• t ••nor.x) .0 to 40
do 130 1.2,1'1
ii·•• tCiti)

------ ~T)·~(il)

130 t'ontinue
retllrn
.nd



Figure B.3:

•

WQDP.FOR and FFT.FOR
WQDP.FOR

di ••n.ion .~II024),.ill024),n~.vI20),\C20).~hC20)

di ••n.ion .(3),MI3,!),hl,) •• IY)
~o.~l.M ~hoI3,3).h•• 13,3),~C3),vC3.3)
~oo~I.M ~~~13.3),z,uI3,3)

\wo~i-8.010.001'.\.nll.0)

~~wt-l.0

n~olo·O

do , i-l,102"
.r(1)-O.O
.i Cl )-0.0
i'(i.lt.20) 10 \0 ,
"'loti)*O.O
t< i )-0.0
~hCl )-0. 0
continu.
do IS i-103
do l' j-l,3
R(i.J)·O.O
vli,j)-e.~lM(O.O,O.O)

.1' continu.
K(I,~)·I/(•• ~tI2.0))
xI2.n-Kfl.2)
Kl:!,3)·Kll,2)
xI3,2)-xll,2)
v(I.2)-c.~lx(0.0,-xll,2))

",12.3)-vfl,2)
",(2,1)-e.~lx(O.0,x(I,2))

v(3.2)-vI2,1)
t",~•• ,'how ••nv .u.d~u~ol. 'r••u.nei ••,'
.~C:I~t •• nw.
tv~••• ·~owd.~ ~.t\.rn9'

.ee.~t I.n.. ~
i'fn~~ ••o.l) tv.... ,'y.rv w. 'roo -w./2 \0 tw.'
tv... I.'.nt.r low .nd hilh WO y.lu•• '
.ee.~t ',W01.WO'
~\I" ~.~·.·.~n;;'v~l..t·'~~"'i"""'iMn"""~"'u"""'l"'i"'."""I"""'."'u"".'"n...f........t ...'-----------
.ee... t I,n~

tv~••• '.n\.~ ..ul •••t~.nl\h Ckhz)'
.~~.~t I,wl
t",.... ,'.nt.r •••u.ne. Y.e\o~'

.ee~~t •• (n...vli).i-l,n.. )
---- - ~w'" •• Inti' ,n.li. '

.~e ... t •• I~hCi).i.l,n~)
do 10 i.ltn~

·..h(i) ...hli).1000.01\wo.. i/360.0
10 eontinu.

t",..... ·.nt.~ ..ul •• l.nlth. lu••~)'
--. ~eTII't -., t t t i ) , i .l"i'lf~~~).:.=..:.:.:.::......;.;:==~----------------

tv~••• '~••ov. eoh.~.n~•••rt.r .0...t.~'·
.~e... t I,.eoh
irC.eoh •••• O) 10 \0 20
t",..... ·.rt.r "hi~h .t... ,·
.~e.~t •• n~oIO

~- tv", •• 'ntlf • 6f ~cl1n(., •••~un. r.t. tor tAa (u••c) ,
.cc... t •• n'id,t'id
~~int I,n'id.trid
w.inc-O.O
ir(nw••••• l) 10 \0 190
w.inc-l".'-w.i)/Cn".-I)

~ d6 100 iU.*I.nwl
irCi"••••• I) ".-w.i-w.inc
w.-w.tw.ine
do 30 i-l.3
do 30 J-l.3
rhofi,J)-e... lxlO.O,O.O)

._------1'I'n( 1, J).e.,li (0. 0, O. 0)
30 eontinu.

rholl,l)-,"... IMll.O,O.Ol
rhoI3,3)-,"0.. lxl-l.0,0.0)
hll)_./J.O
h(2)-wl/•• r\12.0)
h(3)--2.0IhU)
h(4)-0.0
hlS""'2)
hI "-hI1)
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40

~.ll r.i ••nCh ••• 3)
do 40 i.l.3
• t i ) 8ft (i )
~ontinu.

u(lol ) •• 11)
u(l,:)·.C4)
uCl.3)·.c7)
uC:ol ) •• C:)

--'[]Urf,"'2",7'1TI.;t"'SM,r-------------------
uC:,3)·.C8)
uC3, 1 ) •• C3)
uC3,2)·.C6)
u'3,3)·.'9)
do 110 i~.l ,n~

1'(".19(1.) ••••0' .0 \6 60
do 70 i.l,3
do 70 J.103
i"i •••• J) .0 to SO
ft•• 'l,J)·~.~lx,O.O,O.01.0 to 70

254

~o Z.t.~lk(O.O'-.(iJ.t(i').tUo'i)

ft•• <i.i)·~.x~<zl
70 ~ontinu.

~.ll u.u.<u,h•• ,3,r)
do 10 i.l,3
do 80 ';.103
f~~Cl,Jl·e.~lx(O.O,O.Ol

80 ~ontinu.

z-~.~lxCO.O,~h'i~)'

r~~Cl,I)-~.x~C-z)

r~~<2,2)-~.~lx'I.0,0.0)

r~~(3,3)-~.x~(z)

----~.rr 11.u~,""Q1i ,70-'......' -----------.0 to '0
60 do 120 i-l,3

do 120 ';·1,3
h•• (i,J)-~.~lxCO.O,O.O)

120 t'ontinu.
- - z"e.":-:'l;"x~(;"O~.0""=",n..-.·.·t..,(...i...~'""'.....t......"'O...,~.....i..,7..3-.'...O..,-------

h•• (l,l)·~.x~(-z)
h•• C2,2):~.x~C2.0'z)
h•• C3,3)-h•• <1,1)

'0 e.ll u.u.Ch•• ,rho,],f)
i'(.eoh ••G.O) .0 to 110
ifCl~.n•• neo.o) 10 to 110
do 220 i-l,3
do no J.l,3
i'<i ••G.';) .0 to 220
rhoCl'.;)·t'.~lx<O.O.O.O)

220 t'onti~u.

11 0 --~l1nt"l-n~u~tr------

do 160 i-l,3
do 160 j-l,3
h•• Ci,J)-e.~lx<O.O,O.O)

160 t'ontin.~.

z-e.~lx(0.0'W•• t'ld.two~i/3.0)
__ n m.f"1l1"'.t'.,,~(-rr-

h•• (2,2)·e.x~(2.0'z)
h•• (3,3)-h•• (1,1)
i'<n~~ .••• l) ~.11 ~~••n(iw.,nw.,~~wt)
do 130 1fid-l,n'id
l'Cifid •••• l) .0 to ISO
~.11 u.u.Ch•• ,rho,3,r)

150 .".x-O.O
'''.v·O.O
do 140 i·l,3
do 140 j.l,3
....x-....x+x(1,JI'fhoC';,il

"--~V'.·'O.w."ti,J)'fn6(J,I)

140 t'ontinu•
• rCi'idl·.r<ifid)+ xl~~vt/2.0

.i(i'idl-.iC1'id)+ vl~~vt/2.0

130 ~ontinu.

tv~•• ,'.~in • '.iw.
-!1Tr"--eont inu.

do 170 i.1orifid
• r , i , •• f <II Inw.
sa (i) •• i Ci I/nw.
~rint 1,1 •• f<11,.iCl)

170 t'ontinu.
- -----·.to~

.nd



subroutine u.uelu,b,n,v)
t'----=~.:..:..:::.=~...::~...:.=.:...:..::.:.:.;..:.:...------------

~ ~erfor.s uniterv tr.nsfor••tion
~ b-u~'u.dJoint

c
eo.~t.x u(n,n),bfn,n),vfn)
c.ll ••tr.l(u,b,n,v)
till ••\ ••1'6,0,h,0)
return
end

c
c

toa,llk a<h,h),btn,nl,rv,n),1
do 14 i-I,n
do I:! j-t,n
s-O.O
do 11 .-I,n

11 s-s+.li,k)'conJ.lbIJ,k))
t~ - FY (.ttw1r --------------------

do 13 j-lon
13 .(i,J).rv(J)
14 continue

return
end

~

c
subroutine ••tr.ll.,b,n,cv)
co.~leK .In,n),bln,n),~yln),s

do 14 J-I,n
do 12 i-I,n
.-0.0
do II k-l,n

:1 s-s+.li,k).b(k,J)
12 cyli)-s

do 13 i-Ion
13 bli,j)-cyli)
14 eOhtinu'

return
end

subroutine ~~.enliv.,nv.,~~wt)

~~wt-sertI2,0'(nw.-I)

fitID•• n•. !) r'U\*••,tti.OitriWi-i,}(iUi-j»
return
end
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FFT.FOR
~h.r.~t.rI15 'n•••
di ••n.ion ,r(1024) ••1(1024)
tii.inlidR ialiii)
~o.~hl( .(1024)

. "1.1I~. I. ·.nt.r ~Ow.r or 2n~ TId 1In.\"'·-·
I~~.~t •••
tll~. '.·out~~ ,.'1(1) 0' 1.,~2) .~.etru.~·

.~c.~t •• i.
t .... If .fit., "••• of 'ld rll1
,cc.~t 20.n,'n,•• (1:n)

20 tor••t( •• ,)
0~.n(uni\·2.nl••-tn••• (1:n) •• t.tu.··01d·.r••donll1)
n'ld-2".
tll~' •• ·~l•• r on. but'.r 0' tid ,.
ice,lit "let»
ibc-O
It(leb.n•• O) tll~' •• ·whlch one (t or 2) ?
i'(lcb.n•• O) .ce.~t •• ibc
r ••dI2 •• ) nn.t'ld
do 30 i-l.n'id

.----·-,..••d ( 2,.) rin,' f ( 1 , , • i ( i )
i'(ibc ••o.l) Ir(i)-O.O
l'11~c••o.2) liCl)-O.O
.(i)·c.~ll(,r(i).'i(l»

30 contlnu.
tv•••• ·.nt.r d••~in. It.u. ~.r 128 ~t.)·

aee.pit ',d••,
d•••·d••• /128
do :s 1-1.n'ld
.(i)-.Cl)'.I(.(-d'.~'i)

25 continua
c.ll "t2cC •••• i"k)
l'<i •• n•• l) .0 to 50
do 40 i.l.n'id/2
k-Hn'idl2
.rint '.i.r•• l(.(k»

40 ~ontinu.

do 42 i.l,n'id/2
-- --~OiTf"i'iTldl2

~rint •• k,r•• lC.Ci»
42 continua

'0 to 10
50 do 60 i-l.n'id/2

•. ·i+n'ld/2
"tnt i,I,.11•• tatl»

60 ~ontinu.

do 62 1-1,n'ldT2
k·Hntid/2
~rint •• k,.l ••,C.Ci»

62 contlnu.
'0 uldth*1000.0,tfld

tll~••• ·.~.ctr.l width(khz) - '.width
~10•• Cun1t-2)
.to~

.nd
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The programs HOPE. FOR and RF2180.FOR were used to find first order

composite. pulses that are broadband with respect to resonance offsets

and rf amplitudes, respectively. Q180.FOR was used to find zeroth order

composite. pulses that are broadband with respect to dipole and

quadrupole couplings. HOPE.FOR, RF2180.FOR, and Q180.FOR are reproduced

in Figures B.4 through B.6. They follow the procedures outlined in

Chapter IV.C.3 and IV.C.4.

3. Generation of maps for iterative schemes

The program CARTMAP.FOR, along with subroutines ITER. FOR,

EXTRACT.FOR, and REFINE.FOR was used to generate data for the maps of

attractor basins in Chapter VII.C.2. The programs are given in Figure

B.7. CARTMAP.FOR accepts information that specifies a scheme. That

information is passed to ITER. FOR, along with the coordinates of an

initial point in 50(3). ITER.FOR sets up the corresponding 3X3 rotation

matrix and applies the scheme to generate a new 3X3 matrix corresponding

to the next iterate. The new point in 50(3) is calculated by

EXTRACT. FOR and REFINE. FOR. ITER.FOR then checks for convergence to a

fixed point, according to the discussion in Chapter VII.C.2.

Related calculations, leading to data of the type presented in

Figures VII.12 and VII.1S, were carried out with programs that were

modified versions of those in Figure B.7.



Figure 8.4: HOPE.FOR

DI"EHSIOH C(6'"
DI"EHSIOH CT(1000),ST(1000),C1(?',STC?',CPC?),SPC?',HC?'
G(Al,A2,A3,A4'-Al.Cl.-A3'+A2.A4
ISA-O
IKT-O

C
C CREATE COSINE AND SINE TA'LES
C FOR ANGLES BETWEEN -360 AND +360 DEGREES
C ANGLE I IS -361+1
r-

1"1-4 ••ATANO.'
DO 10 1-1,721
CTCI'-COS«-361+I"1"1/180)
5TCI)-SIHC(-361+I'.PI/180'

10 CONTINUE
-e
C GET RAHGES OF PARA"ETERS, CRITERIA
C

TYPE 600
600 FDR"AT CIX,'EMTER LDW VALurs FUR 3 PHASES')

ACCEPT ',"2L,"3L,"4L
it'E 601

601 FOR"AT (IX,'ENTER HIGH VALUES FOR 3 PHASES')
ACCEPT .,N%H,"IH,"4H
TYPE 602

602 FOR"AT CI~,'EHTER LOW VALurs FOR 4 FLIPS"
ACCEPT .,NIL,N2L,N3L,N4L
i 1ft 603

603 FOR"AT (IX,'ENTER HIGH VALUES FOR 4 FLIPS"
ACCEPT .,NIH,N2H,N1H,H4H
TYPE 604

604 '~"AT CIX,'ENTER PHASE IWCRENENT"
ACCEPT ',"IHC
if FE 605

60S FOR"AT CIX,'ENTER FLIP INCRE"ENT')
ACCEPT .,NINC
TYPE 606

606 FOR"AT (IX, 'ENTER INVERSION, HCO', H(I) CRITERIA')
ACCEPT .,WIN,WHO,WHI

~

C INITIALIZE PARA"ETERS
C

"2-"2L
N3-"3L
"4-"4L
H(i)-NiL
N(2)-N2L
N(3)-N3L
N(4)-N4L
IUS)·,U3)
N(6)-N(2)
"<"·"(1)
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C
C
C
:!t'

BtT SINtS Awn COSINES YROM rA.lES

CPI2'-CTC"2+361 ,
C'13'-CTC"3-"2+361'
e'(4'-C""4-""'ii'
CP I:Sl-CP I4 I
CPI,,-cpc3>
CP I"-CP C2 I
SP(2'-STC"2+36i )
5'(3)-STI"3-"2+361)
S'(4'-S'~"4 "'+'ii'
SP ISl--SP I 4)
''161--'10(3)
SPI "--SPI 2)
CFli'-CTCNll>+361>
CFc2'-CTCH(2)+361)
CFC3>-CTCHC31+3'1>
CF(4)-CTIHC4)+361>
CFI5>-CY(3)
CF I "-CF I 2 >
CFI')-CFC1 )
SFll)-STINll)+361>

----~5~F~\~~~j.sriNt2"36IJ

SFI31-STINI3>+361)
5FI4>-STINC4>+3'l'
SFISI-SFI3>
SFI"-SFe:!)
SF(7)*SF( 1 I

259

c·----·---
C CHECK IHVERSIOH EQUATIOH
C

Xl-CF(l'.CFI2).CFI3)-SFC1).CPI2).SFI2).CFC3)
1 -5Yll'.CPI:!'.CF(2)'CPI3"SFC3,-CYC1>,SFI2>'CPI3,.SFC3)
1 +SFll).SPI2).SPI3).SFI3)

X:*-S'(J)iC'(2'iCF(2>.CPl3'iCFt3)-CFtiJiSF(2J.CPt3J'CFtJ)
1 +SF(1).SPI2).SPI3).CFI3)-CFll).CFI2)'SFC3'
1 +SY(i)teI012)~12'~13)

X3--SFC1'.SP(2)'CPC3)-SFll,.CPI2).CFC2)'SPC3)
-CF(1)'SFI2)~f3)

X4-Xl.CCF(4)'CFC3)-SFC4'.CPC4).SFC3»+X2.CCPI4).SFC4)
I i,'t!"C't4'iCFl4"CPl4,'SFtJj+SPt".SPt4'.SFtJ)
1 +X3.C-SPC4"SF(4)'CFC3)-SPC4).CFC4).CPC4).SFC3)
1 """ft1"'t .-nsP C4> .SF C3) )

X5-Xl'C-SF(4).CP<4).CFI3'-CFC4"SF(3"+X2.ICPC4)
.cFT4TtrP(4)'CFI3)fSPI4).SPC4).CFC3)-CPC4"srI4)'SF(311
+X3.C-SP(4).CF(4).CPC4).CFC3)+CPI4)'SPI4).CFC3)
'1',4,I.F(4).5'(3»
X6-Xl.SF(4).SPC4)+X2.CSPC4).CPI4)-CPI4).CFI4'.SPI4»
+X3.ICP(4).CPC4)+SPC4).CFC4"SPC4')
X*X4.ICF(2)'CFll)-SFI2,.CPC2"SFC1»+XS.ICPI3).SFI2>

1 .CF(1)+CPI3)teFC2"CPI2)'SFll)-Spr3"SPC2).SFrl»
1 +X6.ISP(3).SF(21'CFll'+SPC3).CFC2)'CPI2).SFll>

----.--y- ,CPlJ)iSP(2J'SF« i»
IF CX.GT.WIN) GO TO 500

C
C BET CCI.J) "ATRIX
C

C<l.l)-O.
cez. n- ..
CI3.1'-"
Cf4.P-O.
CC5.1)-0.
CUd '-0.
DO 100 K-2.,
en "0-0.
CC2.K'*I.
CI3.1()-1.
C(4.K)-0.
CC5.I('-0.
CI,.K'*O.
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..

CHECK M(O,

30
100
C

-e-
C

- ----n-33'C'O-LL1Lt'l-r.2h'rllKr-------------------
L -1(+2-ll
J-l-l
01-C(I,I().C~(J)-C(3,1().CP(l).S~(J)-C(S,KI.SP(l).S~(J)

D2-C(2,1()'CFlJ)-CI4,1()'CPll)'$FlJ)-C(6,I(I.SPlLI'SF(J)
D3-CI3,I(I'CPlL)'C~IJ)+ClS,I()'SPlL)'C~(J)+C(I,K)'S~1J)

-~4-e1~~)'C'lt)'C'I~,k)'SPlLT*CTTJ)+CI2,K)'SF(J)
DS-ClS,I().CPlL)-CI3,K)'SPlL)
D6-CI6,1()'CPlL)-CI4,1()'SPlL)
C(I,K)-OI
Cl:!,f()-D2
CI3,I(I-D3
CI4,1()-D4
C(S,I()-lIS
C(6,K)-n6
CONTINUE
C1nfTTIfUE

8X-D(~(S,1),CI6,1),C'(1),S'II»+DIC(S,2),CI6,2),

1 C~(2),S~12»+O(C(S,3),CI6,3),C~(3),S~13»

1 +GlCI5,4),CI6,4),CFI4),$F14»+GlC(S,S),CI6,S),CFlS),
1 S~IS»+OIClS,6),CI6,6),CFI6),SFI6»+G(ClS,7),C(6,71,

- ---.-cn 7), SF (7) j

1I11-IIUlill
IF 11i1l.DT.WHO) GO TO 500
IIY-0ICI3,1),CI4,1),CFII),SFII»+0ICI3,2),CI4,2),
CF(2),S~12»+DICI3,3),CI4,3),CFI3),$F13»

+0IC(],41,C(4,4),CF(4),SF(4»+OIC(3,5),CI4,5),CF(S),
____ "-y---sr(!) ) '0« C( 3, 0) , Cta, •0) , CF ( 6) , SF (6) ) '6« C(3, ) ) , C( .. , ;) ,

C~ ( 7) , S~ ( 7 ) )
IIT-IIT.UY
IF (IIY.OT.IIHO) 00 TO SOO

CHECK Hll)
C
C-- -r-------------------------------

110

PPI-PI/180
VZ-O.
110 11 0 I -I , 7
VZ-VZ+l$Flt)-Nft)~~I).fCf3,t'WCf6'Tl-C~,T1~rs,rT1

CONTINUE

120

1
1

1'0 130 1-2, ,
DO 120 J-l,I
VZ-I1Z+0fCrs,1> .Cf6, J) ,UfJ) ,Sf"t n )wren,.n ,CC lI, J),
CFlJ),SFlJ»-OICI3,I),C(4,I).CFlI).SF(I».O(ClS.J).
Cf6,J1.UlJ).$FfJ»
CONTINUE

-no eONi 1WUE

t40

1
1

vz-VZtVZ
--rr<vz. IT •""1) G'O TO ~

VX-O.
tnt TW 1-1.7 - -- --- -------
VX-Vll+IS~II)-NlI)'PPI)'ICll,I)'CI4.I)-C(3,I)'CI2,I»

CONTlNU!
DO 160 1-2.7
Btl 150 J-1fI
VX-Vll+0ICI3,I).CI4,I).C~II).SFlI»'0ICll,J),CI2,J),

UlJ),SFlJ»)-GfCfl,I),CC2,I).UCI),SFlI».GfCI3,J),
C(4,J).CF(J),S~IJ»

COM 11HOE
CONTINUE
vx-vx.vx _
IF lVX.GT.IIHl) 80 TO 500
VY-O.
DO 170 1-1,7
Oi wOl,tiFC!)-NtlJ'PPj)ittl2,J).tt5,l,-Cli,JJiftl,!»)

170 CONTINUE
DD 1"0 li12,7
DO 110 J-l. I
VT-I1T+I(Cll.I).Cf2,J),CF(I).IFCI».DlClS.J),CI6.J>.
CF(J),I~IJ»-O(CI5,I),C(6,I>,C~II>.SFlI»'OICll,J),

Ct2,J),CFtJJ ••,tJ)
180 CONTINUE
1"0 CONTINV£



VY-VYIVY
IF CVY.OT.WH1) 80 TO SOO
ISA-UA+1
PRINT 620,"Z,"3,"4,N(1),N(2),N(3),N(4),ISA

620 FOR"AT C1X,IIS)
PRINT 6Z1,X,WX,WY,VX,VY,VZ

6~1 FORMAT C1X,6Fl0.S)
500 "Z-K2+"INC

I" C"2. LE. "ZH.•)-=.0.:.0_T.:.:O=-.:2:.,:0:..-- _
--~1'l7L-

MJ-MJ+"INC
IF CKJ.LE.II3N) BO TO 20
IIJ-IIlL
"4-"4+"INI:
IF (N4.LE."4H) 00 TO 20
""-",,,N( U-NC1 )tNINC

1f f71 -1fT 1)
IFCN(1).LE.N1H) 00 TO 20
ReD-WIL
NC')-"Cl)
H(2'*Ht2J'NJNC
N(6)-NCZ)
IF CN(2).LE.N2R) 00 TO 20
N(2)-H2L
N(6)-NC2)
H(3)-HCJ)+HINC

,--''litC ~) -N C, )
IF CNCl).LE.H]H) GO TO 20
N(])-N]L
N(5)-NC])
IkT-IkTU
TYPE "',IKT

- ", 'DR"~T(lX, fNeR!"!NT~TfD" • ,f.)
H(4)-NC4l+NIHC
IF (NI4).LE.N4H) 00 TO 20
STOP
END
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Figure 8,5: RF2180,FOR

~- 'RDOR~" 'E~RCHE' PDR 4 PdtSE IN,ERTINI SEOdENt!
C
C WITH HIO'*O AWD Mll)*O FOR RF rWWOHOBENErTT-
C

DrHENSION CT(2000),STr2000l,~r~,SFr~),CPf41

DIHENSION SP(4),NI4),VI3~4)

--nA*O
IKT*O

C
C CREATE COSINE AND SINE TAILES
C FOR ANGLES IETV£rN -360 AND +720 Dt8R££S
C ANGLE I IS -361+1
C-

GET RANGES OF PARAHETERS, CRITERIA

PI*4,'ATAN(1, ,
DO 10 1*1,1081
CTII)*COSII-361+I"PI/180)
STII)*SINII-361+1)'PI/180)

10 CONTINUE
C ----
C
C

C
C INITIALIZE PARAHETERS
C

TYPE 600
600 FORHAT IlX,'ENTER LOW VALUES FUR 3 PHASES')

ACCEPT ',H2L,H3L,H4L
- ...,...,n--an --------------------

601 FORHAT /lX,'ENTER HIGH VALUES FOR 3 PHASES')
ACCEPT ',H2H,H3H,H4H
TYPE 602

602 FORMAT /lX,'ENTER LOW VALUES FOR 4 FLIPS')
ACCEPT .,NIL,N2L,N3L,N4L
TYPE 603

603 FORMAT I1X,'ENTER HIGH VALUES FOR 4 FLIPS')
ACCEPT .,HIH,N2H,N3H,N4H
TYPE 604

604 FORHAT /lX,'ENTER PHASE INCREKENT')
ACCEPT ',HINC

---TT'f'£"- 605
605 FORMAT /IX,'ENTER FLIP INCREHENT')

ACCEPT ',NINC
TYPE 606

606 FORHAT flX,'ENTER INVERSION, HIO), NIl) CRITERIA')
ACCEPT ',WIN,WHO,WHl --------

H2*H2l
H3*"3l
H4*H4l

--w-t1"').rI"~I""l-----------------------
N(2)*N2L
N13l.N3l
N/4)*N4L

C
C GET SINES AND COSINES FROH TAILES
C
20 CP(2).CTIH2+361)

CPC!)·CTIH!-H2+361l
CP(4)·CT/H4-H3+361)
"(2)·~IH2+361)

IP(3)*ITIH3-H2+361)
IP(4)."'H4-H3'361)
CF(1)*CTCHIl)+361)
CF(2)·CTrNC2)+361)
CF(3)·CTINI3)+361)
CF(4)*CTCHI4)+361)
IFll)·STIHII'+361)
'PC21·ITiNCJI'3.1)
IF(3)·STCHI3)+361'
IFC4'·ITCNC4'+361)



C
C
C

C

C
C
L

40
SO
t
C
C

60

CHE C1( r IfV£RS r 0111 nuATI0111

Xl*e't!)iCFt2,iCFtJ)-SFi!Ji'P(2J'SF(2'iCFt3J
1 -S'Cl).CPC2).C'C2)'CPC3).S'C3)-C'Cl)'S'12)'CPC3).SFC3)
1 tST(1)-SPC2).SPC3)'S'C3)

X2--S'(1).CPC2).C'(2).CPC3).C'(3)-C'II).SFC2).CPI3).CF(3)
1 +S'(I)'SPC2)'SPI3).C'C3)-CT(I).CTC2)'STC3)
1 tSFll)'CPC2)'SFI2)'S'13)

X3*-SF(!J'SPt2'iCPl3)-SFtiJ.CPt2J.CF(2JiSPtij
1 -CFll)'SFI2>'SPI3)

X-Xl'CF(4)+X2'CPC4)r$T(4)-X3'SPC4)'STC4)
IF lX.GT.WIN) GO TO SOO

-. II' (1 )-0.0
COHV-PIII80.0
CONV:!zCONV'CONV

CREATE TOGGLING ~A"E RF VECTOR

V1"1rt)-1.0
V(2,1>*0.0
VI3,1)-0.0
DO SO 1-2,4
V(1,I>=1.0
VI 2, 1)"0.0
~'I :3, I ) -0.0
DO 40 J-2,1
l\'=r-J+1
L-K+1
VX-VC1,1)'CPlL)-VI2,I).SPlL)
VY-Vll,I).SPCL)'CFCK)+VC2,r)'CPCL).CFCK)+VC3,I)'SFCK)

---- vr-;;vrr,nnl"nTI'VClr} -Vr2"i ntCPTl. It"!''(1( ltVC!, fnCF(ti;T----
V(I,I)-VX
V(2,I)*VY
Vl3d )-VZ
CONTItW£

___ C~".TI~~__ .... . _

CHECK HlO)

AX-O,O
AY-O.O
AZ-O.O

.-- W -;.6;.O~I...I~,.--------------------------
AX-AX+VC1,I).NlI)
AY-AY+VC:!,I)'NCI)
AZ-AZ+VC3,I>'NCI)
CONTINUE
AX-AUCONV
,,'-""COHI;!
AZ-AUCONV
A-AX.AX+AT.AY+AZ.AZ
IFlA.OT.WHO) GO TO SOO
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C
C CHECK Hll)
C

8X-0.0
8Y-O,O
8Z-0.0
DO 80 1-2.4
DO 70 J-l.I

--I n-BXf(ve.!, 1110, 3,J)-O( 3, 1 )iOt2,J) "Ntl "NtJ)
8Y-8Y+(V(J.I"V(1.J)-V(1.I"V~J.J"'NII)'N(J'

JZ-8Z+(Vll.I,.V(2.JI-VC2.Il*VC1.JI).NfII.MfJI
70 CONTINUE
80 CONTINUE

8X-8X*COHV2
-- _u-n-"'COHv.:

8Z-8ZICOHV2
P-PXIBX+8YIBY+8ZI8Z
IF(I.GT.WH1) GO TO 500
r5A-ISA+1
P~INT 620."2."J."4,Hll"NI2"N(J),N(4),I5A

Il~-- """"JIlT, 1X,1II~) ---
PRINT 621,X,AX,Ay.AZ,8X,8Y,8Z

621 FOR"AT(lX,'FI0.S)
500 "Z-"2+"INC

IF 1"2.LE."2H) GO TO 20
"2'""2L
1't!"W1'f93*"+"lO'r"'H..C--------,--------------
IF I"J.LE."JH) GO TO 20
"3-"lL
""-"H"JNC
IF ("".LE."4H) GO TO 20
""-""LH( 1 )Yfttt )+ft~----- - -------- -----
IF(N(l'.LE.NIH) GO TO 20
N(J)-NIL
N(2)-N(2)+NINC
IF IN(2).LE.N2H) GO TO 20
N(2)-N2L
N(3)-HI3l+NINC
II" IH(l).LE.NJH) GO TO 20
NIJ1-HJL
IKT-IKT+l
TYPE 7??, IKT

777 FOR"ATIIX.'IHCRE"EHTATION ",14'
NC .. '-M(4)'MINC
IF (NI").LE.H4H) 00 TO 20
STOP
END
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Figure B.6: Q180.FOR

DI"ENSION CT(1000),ST(1000),C'(7),I'(7),C'(7),S'(7),N(7)
DI~NSION T(~,7,2),RC~,S,",S(S,2}

R6D8-SQRTI6.0)/8.0
CONV-4.0.ATAMC1.0)/180.0
DO 10 1-1,721

265

10

"*(-361+1)I'ONO
CTeI )-COSIA)
STII)-SI"IA'
CONTINUE
ISA-O
IKT-O
i iFE 100

600 FOR"ATIIX,'ENTER LOW VALUES FOR 3 PHASES')
ACCEPT .,,,2L,W3L,"4L
TYPE 601

601 FOlt"ATC!X, 'ENTER "ISH ~.LUE'S F'lJR "3 MAirS'}
ACCEPT ',"2H,"3H,"4H
i ""E 802

60Z FOR"ATIIX, 'ENTER LOW VALUES FOR 4 FLIPS')
ACCEPT ., ..IL,W2L,.3l,H4L
TYPE 603

603 'OR"ATI!X, 'ENTER fftSH 11lI1LU£S F'lJR 4 nfPS')
ACCEPT .,NIH,NZH,N3H,N4H
TiPE 80.

604 FOR"AT(lX,'ENTER PHASE INCRE"ENT')
ACCEPT ',"IHC
TYPE 60S

60S FOR"ATC1X,'ENTER 'LIP INCRE"EWT"
ACCEPT ',NINC
i iFE 606

606 FOR"ATllX,'ENTER INVERSION, H(O) CRITERIA')
ACCEPT .,WIN,WHO
"Z-"2L
"3-"3L
"4-"4L
N(1)-NIL
NIZ)-NZL
H(3)-N3L
N(4)-N4L
NCS)-HI3)
N(6) -NIZ)

--- 1IT?T.JIT1::'~)------------------
20 "ZP-"Z+361

"3P-"3-"2+361
"4"-"4-"3+361
HIP-NC 11+361
NZP-N C2) +361-- -W3'P-" 13) +362
N4'-NC4>+361
CPCZ)-crC"2P)
CP(3)-CTC"3P)
CP C4' -CTC"4P)
CPCS)-C.. C4)
C.. ID)-C .. 13)
Cpc7'-CP(2)
"'12,-ITC,,2P,
IP(3 )-IT ("3P)
Itt (4) -IT ("4""
SP(S)--IP(4)
.',6'··S'(S,
SPC7J--SPI21



tf"(1 ).CTOflP)
CFI:!)-CTIM2P,
CF 1I'-CTCM3P)
CFI .. )·CTIM..")
e, nil -e, <:1>
CFI"-CFI:!)
CF(7)-CFll)
IFIlI-STCH1")
IFC2)-ITIN2")
IF I3 ).ST CN3")
sr(4)-SlCU')
8FCS)·8FCI)
S'C61-SF(2)
IF(7)-SFC1)

)(1 Etf" e-t )*Cf" C2 )*Cf" CI ) -Sf' CIlttf' t"2'l""n-ncrtTt 
-IF(1).C"C:!).CFC2).C'C3).5FCI)-CFC1) ••'C2).C'CI).8'C3)

1 fSF(1)'Sr(2JiSP(3Ji,FtJJ
)(2·-5FC1).CPC2).CFC2).CPCI).CFCI)-CF11).S'C2).CPC3).CFII)

1 +5Ftl)'5PC2)'I'CI)*Cf"CI)-tf"CI)*Cf"t2't$TC71
1 +5F(1).CPI2).5'C2).5FC3)

X3·-SF'Cl)r!PIZ)-ePCI)-SFtl'-eP12)*Cf"C2)rtPT31
-C'Cl).SFI2).IPC3)

---X"4.~t-(4~)'''C~,,",(ril~)r.-'1S"'''''(:-Il4n)''lI.rt':PP'T(''44'')''''S'''T(:fIT,T,+~xr.22'l'''(MC::tP''(r'l4M''''l''!SlP'''("II4n,----
1 .CF(3)+CPI4).C'C,,),CPC")'5'C3)+IPI")'IPC .. ).IFI3»
1 +X3' I-Sf' I.. ) i'SF (,,) acT (I) -Sf' t" )"i1:Ft41-eP(Oa'SF tV
1 +CP(4).SPC4).SFCI»

XS-Xl'l-sr(4)ttf'14'*Cf"CI,-tf"14''''CI').X2*C~.)

1 ,CFI .. )'CPI4)'CF(I)+5PC4).SPC .. ).CFC3)-CPI4).5FI4).SFC3»
1 tX3.(-S'(4JiCF(4,iC'(4'.CFt3JfC',4IiSPt.,aCFt3)
1 +SP(4).SFI4).SFII»

X6-Xl.SF(4)'Sf'14)+X2'(Sf'(").CPC4)-CPC4).tT<4"Sf'C4)
+X3'ICPI4'.CPC .. )+SPC .. )'CFC .. ,.5PC .. »
X-X.. '(CF(2).CF(I)-SFC21'CPC2)'S'Cl»+I!tCCPCI).SFC2)

1 .CF(1)+C,.(3).CFC2).CPC2)'5FC1)-SPCI)'SPC2).SFC1»
1 .X6'(S'(3/'5'12),C'(I)+5P(3,'C'(2)ICP<2)I.Fll)
1 +CPCI)'SPI2).SFC1»

l' CX.OT.WIN' 80 ~ '00
DO 40 1-107
T(1.1.1'--R6~IHII)ttDHV-5'CI)'C'CI)'
Tll.I.:!)-O.O .
TI2.ld)-0.0
T(2.!.2)-2.0'R6D8,SFI!)'8FCI)
TI3.I.l)-INI!).CONV+3.0,SFCI)'CFII».0.2S
TI3.1.2)-0.0
TI4.I.l)·0.0
TI4.I.2)-TI:!.!.2)

.. -- i ( :I , 1 , t ). i ( 1 , 1 , i )
TI5.1,2)-0.0

40 CONTINUE
1I0 SO 1-1.6
CPL I-CF CI )+1 .0
C"I-CFII)-1.0
RI!.I.!)-CPLI.CPLI'O.zS
R(I.2.1)-SFII)'CPL1'O.5
RC1.1.1)--R6D8.2.0.SFCI),IFCI)
RCI,4.!)-SFI!)'C"I'O.5
Rll.S.I)-C"I'C"I'O.25
R(2.2.!)-CPL1'12.0.CFII)-1.0)'O.5

·--1t'f~'3TT1.R6D8'iit OiS' (1 'iCF (1 j - --------------

RI2,4.1)-C"I'12.0,CFII)+1.0),O.5
RC2.,.I)-R(I.4.I)
RI3.3,1)-C3.0.CFI!).CFI!)-1.0).0.5
RCI .... I)·RI2.3.1,
RI3.5.I)-Rll.3.!)

. --1lT4 , 4, I ).R I 2. 2. I ,
RI4.5,!)·Rll.2.!)
RC5.S,I)-R(I.l.1)
RI2.1,!)-RII.2.1)
RC3.2.1)·RC2.3.1)
RC3.1.1)-Rll.3.!)
.t4,~,I)·R(3.4.1'

RC ... 2,1)-RC2.4,!)
RC4,1.!)-RC1.4.I)
R(5.4.!)-RI ...5.!)
RC5.1.!)-RCI.5.I)
RC5.2,!)-RI2.S.!)
.(5,1.1'·.(1.5.1'

50 CONTINUE
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56

•

DO 70 1=2,7
DO 60 )=201
!t=I-J+2
L-K-I
'E*CPIK,iCPtK'-SPtkJi.,tkJ
,F=2.0.CPCk)'SPCkl
HR=TCI,I,I) ••E+TCI,I,2) ••r
HI=TII,I,2)'.E-TCI,I,I) ••F
TCI,I,II=HR
TC 1oI,:!)=HI
HW*i(2.1.J).CPtKj'it2,j,2J.SPtk)
HI=TI2,1,2IaCPCk)-TC2,1,1)'SPCK)
TC2,1,1I=HR
TC201,2)-HI
HR=TC4,I,I)rtPC!t)-TC4,1,2).SPC!t)
HI=TC4,1,21.CPCK)+TC4,I,I).SPCK)
T(4,i,I)-HM
TC4,1,2)=HI
HR=TC5,1,1)'~-TC5,1,2)'JF
Hl=TCS,I,21"E+TCS,I,II"F
TCS,I,I)-IfR
TC5 01 ,2) -If I

DD " rr=I,',2 _
S<II,I)=RIll,I,L)aTCI,I,I)-RCII,2,L).TC2,1,2)

1 +Rlrl,3,L)'TC3,1,1)-RCII,4,L)'TC4,1,2)-
1 +RCll,S,L).T<S,I,I)

.Clr,Z)=RCrr,l,l).TC1,1,2)+Rcrr,2,L)aTC2,r,1)
1 +RIll,3,L).T<3,I,2)+RCll,4,L).TC4,I,1)
I +R<II,S,L)aTCS,I,2)

CONTINUE
DO 56 n=2,4,2
5 CII,I)=-RCII,I,L)'TCI,I,2)+RCII,2,L)aT<2,1,1)
-RIII,3,L)'TC3,1,2)+RCII,4,l)'T(4,I,i) -
-RCIl,S,LI'T<S,I,2)
SIII,J)*RIll,l,lJ.ltr,J,JjfRtJJ,2,LI,tt2,J,21

1 +RCll,3,LI'TC3,I,I)+RCII,4,L)'T(4,I,2)
I +RCIl.S.LI.TCS,J,11 ---

CONTINUE
T<I.I,I)=SII,11
T<I,I,2)=5Cl,21
11 2 oJ , II=S t 2 .Il
TCZ,I,2)=512,2)
TC!,I,n=5C!.%)
T<301,2)=SI3,2)
TU,I,II=SI4,11
T(4,1,2)=5<4.2)
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.so
70

TI', 1 , • ) =5 I , oJ )
TCS,I,21=5<S,2)
COIifTItlUE
CONTINUE
DO 80 1=2,7
T'I.l,II=T<I,I,II+T<I,I,I)

80

621

TCl,1.2)=TII' •• 2).TCI.I,2)
T<2.1,1)=TC2,1,II+T<2,1,11
TC2,1.2)=TC2,I,ZJ+TI2,1.2)
T<3,1,1)=TC3,I.ll+T<3,1,11
T(3.1,2)=TC3,I,Z)+TC3.1,2)
TC4,1,1)=TI4,1.II+T<4,1,1)

--- ,.4,1I2>=T"III,2,.T<4,1,2> -------------
TCS,I,I)=TCS,I,I)+T(5,1,1)
TC5,1,2)=TCS,I.2)+TCS.I,2)
CONTINUE
XX=T<I.l.1).TCI,I,I)+TC1,I,Z)'TCI,1,2)

I +TC2.1,1)'TC2,1,1)+TC2,1,2).TI2,1,2)
--r- .,'3,1,1)n 13.111 )tTI3, 1'2 >nl 3'112>

1 +TC4.1,1)'T(4,1,1)+TI4,1,2).TI4,1,2)
I +TIS,I,I)'TIS'I,1)+TCS,I,2)~CS,I,2)

IFIXX.GT.WIfO) 00 TO 500
ISA=IS,H1
pRINT 620,"2,"3,"4,NII),HC2),HC31,NC4)

.~ .DAHMltil"iS,
PRINT 621,X,XX,ISA
FOR"ATIIX,2FIO.S,IIO)
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..

-_.- -wrn -Nt i ,'NINC

SOO "2-"2+"INC
IFl"~.LE."~H' GO TO 20
"2="2L

-.----~"!'"!HC

IFl"J.LE."3H) GO TO 20
"!*H3l
"4*"4+"INC
IFlH4,lE.H4H) GO TO 20
"4*"4L

.....~EW'I.....----------

N(7)"Nl 1)
JFlNll',lE.NlH' GO TO 20
NlI)*NIL
N(7)*NC1'
N(2)*NC2>+NINC

..--- "1ttlS I -N (2 I
IFCN(2),LE.N2H) GO TO 20
NC21*N2l
N(6)*HI2)
NeJ> *Nl 3 I+IUNt
NlSI*NI31
CAll TI"E <THYME)
TYPE 7?6,THY"E

776 FORMATlIX,AI5)
IFINC3I,LE.N3H) GO TO 20
H131*N3l
HC.5)*NI3)
lKi*iKf'i
TYPE 7?7,JKT

'77 FORHATIIX"INCR~£HTATIOH",14)
HC41*NI41+HINC
IFINI4'.lE.H4H) 00 TO 20
STOP
END



•

Figure B.7: CARTMAP.FOR

C PROGRA" "APS OUT FIXED POINT OF
e----,.,......-SH1F i J iERNi IbN IN CARiESI".
C COORDS
C

DOUJlE PRECISION A",AT,AP,P(20),X,Z,CINC
DOU8LE PRECISION CONV,C,XX,RAD
DATA CONV,C/3.141"26S3S8"'32384626434,180.01
DATA X,Z/O.o,aIIO.OI

TY~ ., 'EIf1TR ITERATlOIf LEIf6TH, "AX • OF I1TRATlOIfS'
ACCEPT .,NS,NI
TYPE .,'EIfTEW PHASE SHIFTS (FIRST SHOULD IE lERO)'
ACCEPT .,(p(I),lal,NS)

- -ITP"E'"Tf~ "R""E""S"'O"'C"U"',1....0..."......0..',....,0..R""'I...0.......-------·----
ACCEPT .,CINC
00 10 lal,NS
pll)aPll)'CONV/C

10 CONTINUE
20 IF(X.X.lT.0.0001) GO TO 100

RIIO-UX+ZiZ
IF(R"P.GT.3~400.0) GO TO 100
A"apSORTCRAO)
XXaPAPSCX)
AT-CONV/2.0-DATANlZ/XX)
ATaAUC/CONV

_. _... -"JIPWO·.V" .:......-------------------
CALL ITERCA",AT,Ap,p,NS,NI,N)
IF(N.EO.-l) NaNI+l -
PRINT *.~Z,N

100 XaX+CI"L
IFIX.LE.lI0.0) GO TO 20

.._--~

Z-Z+CINC
IFCZ.LE.180.0) 80 TO 20
STOP
EQ

SUBROUTINE ITERlA",AT,Ap,P,NS,NI,NNI)
C PttOtttlll1'l ~rn PttIFlED PHoIISE-SHIFT
C ITERATION TO GIVEN INITIAL ROTATION,
e 8lff. AElbLtiNG AOTalIOH.
C

~E ParCISIOIf R(3,3),oIIC3),TC3,3,2OT,UT3,7',PC20)
DOUBLE PRECISION CONV,AII,AT,Ap,CAIl,SoIIlI,CAT,IAT,W
DOUJLE PRfCISIOIf CoIIP,SollP,C,S,C2,S2,SC,oII"",ATT,~

CONVa3.141S'26S3S89"323.4626434/110.0
c
C CONSTRUCT INITIAL ROTATION ""TRIX
C
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20

NNlaO
A"-"MCDNV
"raollUCONV
"'aoll'.CONV
"""aA"
"TTaAT
",paAp
CAllaDCOSlA")
SA"-DS!NI All)
["'*DCDStR')
IATaDUNcAn
CAPaDCOSCAp)
"'P-DSIN("P)



RC1.l)-SAT.SAT.CA'.CA'+SA"SA'.CA"+CAT.CAT'CA"CA',CA"
RC2.2)-SAT.SAT'SA'.SA'+CA"CA,.CA"+CAT.CAT.SA'.SA'.CA"
WtJ,]J·CM"'Ai+SAi'SM"CA"
RC1.2)--CAT.SA"+SAT'SAT.CA"SA'.Cl.0-CA")
RC2.1)-RC1.2)+2.0'CAT'SA"
RC1.3)-SAT.SA"SA"+CAT'SAT.CA'.Cl.0-CA")
RC3.1)-Rll.3)-~.O'SAT'SA"5A"

RlZ.3)--SAT.CA'.5A"+CAT.SAT'5A'.Cl.0-CA")
R(3,2).RI2,3)'2.0.SAT.CA'.SA"

30 DO 100 J-2.NS
C=DCOSl'lJ»
S-DSINlPIJ»
C2·C.C
52·US

-. - _._- SC*UC
Tll,1,J)-Rll.1).C2-RC1.2).SC-RC2.1).SC+RC2.2).S2
TC~.1.J)-Rll.1)tSC-Rll.2).s2+RC2.1)'C2-RI2.2)'SC

TI3.1.J)-RI3.1).C-RC3.2).S
TC1.Z.J)-Rll.1).SC+RC1.2).C2-Rt2.1).SZ-Rf7.2).SC
TC2.2.J)-Rll.1).S2+RC1.2).SC+RC2.1).SC+RCZ.Z).CZ

.- ---T1"3T2TJ )*R (3, i JiSfR( J, 2' ie
TC1.3.J)-Rll,3).C-RC2.3),S
T(2.3,J).R(I.3)'S+RC2,3)'C
TI3,3,J)-RC3.3)

100 CONTINUE
DO ISO J-Z,NS
DO no 1(*113
DO 120 l''103
UCI(,l'-Tll(,I,J,.wll.L)+Tll(.2.J,.w12,l)+TtK.3.J).wt3.L)

120 CONTINUE
130 CONTINUE

DO 1410 1(-;.1.;.;.3 _
---w t~I.3

RCI(,U-UCK.U
135 CONTINUE
HO CONTINUE
150 CONTINUE

W-Rll,I)'Rll.1)+RC1.2).Rll.2)+Rll.3)'Rll.3)
1 'RI2,1)'RI2.1)'RI2.2),RI2.2)'RI2.3).RI2.3)
1 +Rl3.1).RC3,1)+RC3.2)'R(3.2)+RC3.3),RC3.3)

....DIQRT(3.0,.,)
R( 1 , 1 )- RI1.1 )
Itt 1.2) .w1 1.2)
Rfl. 3) -"'R I 1 .3)
RI2,.,·.'R,2,0
lit I2. 2) -WtlH 2.2)
1t(2.3)aW.ItC2.3)
RI3.1)-..'RI3,1)
RI3.2)·...R(3.2'
Rl3,3)-..'R(3.3)
CALL EXTRACTIR.A)
..NI-NNI+1
Aft·ACl)
AT=A(2)
A'-A(3)
I~IAft.lT.0.001) 00 TO SO
DI~~-Aft'A"+Aft"'A""-2.0'A"'A""'DCOSIAT-ATT)

Aft"·A"
ATT-AT
APP.AP
IFICDIFF.OT.O.Ol).AND.CNNI.lT.NI» 80 TO 30
IFCHNI.EG.NI) HHI--l

'0 A"-A",CO"O
AT.AT/CONV
A'-A'/CONV
RETURH
tND
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eo

-~-- iUiRDUiiiE FliD. i011fidi ViCt. AtS)
C FRON ROTATION NATRIX R(3,3)
C

IUIROUTINE EXfRACf(R,A)
DOUILE 'RECISION Rf3,3),Af!)
1'1-3.1415'26535""323'4626434
,wCWti,iJfRC',2,'.C.,3'-i.O,Ji.O
IFI1.8T.I.0) f-l.O
rFlf.LT.-I.O) f--I.O
AL-ACOSlf)
IFfAL.GT.O.OI) 80 TO 10
T-O.O
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10

"-0.0
80 TO 500
"ft'I-AL).LT.O.OJ) 10 TO 100
IA-UNfAL)
T-t~2,l)-.tl,%')rt2,"'A)

l'IT.OT.l.O) T-l.O

T-ACOSfT)
'-0.0
IFfT.LT.O.OI) 80 TO 500
I'IIPI-T).LT.O.OI) 10 TO 500
ST-UNIT)
CP·(~(3.2)-R'2t3)),t2,O'Si'SM)

S'-IRfl,3)-Rf3,l»/12.0ISTISA)
CALL IWVCOSICI'.SP,,)
00 TO 500

T-RI3,3)
IFll.8T.l.0) T-l.0
IFIT.LT.-I.O) T--l.0
IT-ACOSIT)
1'-0.0

C
C ALPHA-PI SECTION
.~_......:::::.:...:.::..:....:....:..~:..:..:~----------------

100

,. i 1)2.0
IFITT.LT.O.OI) 00 TO 500
IFI(PI-TT).LT.O.OI) OD TO 200
sn-SINITT)
CP-Rfl,3"STT
Sp-RI2,3)/STT
CALL IHOCDS(CP,SP,P)
STaUNfT)
X-2aSnSTtCpISP
X-IX-Rll.2)).IX-Rll.2))
IFIX.LT.0.001) GO TD 500
T-PI-T

"-'H'GO TD 500
C
C ALPHA-PI AND THETA-pI/2 SECTIDN
C
~OO CTp-Rll.l)

STI'-R(1.2)
CALL INVCDSICTp.STp.TP)
1'-"'/2.0

c
C FINAL SECTION
C
500 Mti)'A'

A(2)-T
A(3)-p
IFIA(1).8T.0.01) CALL RE'INEIR,A)
RETURN
ENII

-e--_=':':':~--------------------
C SUIROUTINE FINDS AN8LE IETWEEN 0 AND 21"1
C "0" SINE AND COSINE

IUIRbuTINE INUCOSIC.S,A)
IFIC.GT.I.O) C-l.0
IFeC.LT.-l.0) C--l.0
.·.eOlcc,
T"I-'.OIATANel.0)
I'IS.LT.O.O) A-TPI-A
RETURN
["D



C SU'ROUTINE TO REFINE ROT.TION .XIS
C EXTRACTED .y SUtROUTIMt EXTR.er
C

.-- .--- SU.RDtllINE reE!"INElre.",
DOUBLE PRECISION RC3.3).AC3) ••X,.Y,.Z,.X,.Y,'Z
DOU.LE ~CISION •• (3),DOT.DOTO
N·O
ND·O
.A(2)·AC2)

----- -n13'·"(3)
W·0.1

10 .ZEA(1)'DCDtCAAC2»
AX·.(1)'DSINC •• C2l)'DCOSCAAC3»
AY.AC1'.DSINCAAC2,)'DSINC.AC3»)
BX·RC1.1)'AX+RC1,2)'AY+RC1,3)'AZ
II t *"12,1 I '''U'' C:! ,~~,"'3H)r'I'MII"r'J%~--------------
IlZ E RC3.1)'AX+RC3,2)'AY+RC3.3).AZ
DOT·CAX'BX+AY.BY+.Z'BZI/CA(1).AC1)
OOT.cDOT-1.0)'COOT-1.0)
IFCN.EO.OI DOTO.DOT
IFCOOT.OE.DOTO) GO TO 1S

-- --- ~NE.OI N-N-.
NIl·O
ACZI.AAC::!1
AClI-AA(3)
OOTO-IIOT
GO TO 20

t ...S----<I....I"~(1' ••"1!~Ot:,:-tO"'-ftGftO-TTlD~2P'lOr_----------------------
IFCK.EO,O) •• (2).AAC2)-W
IFCK,EO,1) A.(2).A.C2)+W
IFCK.EO.2) AA(3).AAC3)-W
IFCY..EO.3) .AC31 ••AC31+W

20 H.N+1
"·;;."Nll~'J"j.r---------------------------

IFCND,GE,S) GO TO 200
I(·N-4tlN/4 )
IFCK.EO,O) A.CZ) ••• C2)+W
IFlK.EO.1) .A(2)*A.12)-W
IFCK.EO.2) .AC3l ••• C3l+W
IFCK,EO.3) •• C3l ••A(3)-W
GO TO 10

200 U-V/IO.O
N·O
NO·O
IFCW,GE.O,OOOS) 00 TO 20
RETURN
ENO
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