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The postulates of the LPL (lethal, potentially lethal) model (Curtis, 

1983) lead to the conclusion that for low dose rates there will be an 

interplay between lesion fonnation and lesion repair, some lesions repairing 

(or misrepairing) before others are fanned. This will be the case when the 

irradiation time is the same order of magnitude as the repair time. To 

include this situation, the model must be modified accordingly. This paper 

presents a more general fonnulation of the model utilizing differential 

equations governing lesion fonnation and elimination that takes low dose rate 

into account and so can be used for any dose rate. 

The present treatment will be valid only for cells not progressing 

through the cell cycle during the times of irradiation and repair; that is, we 

assume no fixation points or variation of repair constants with time through 

the cell cycle. 

The differential equations will include a rate of lesion creation 

(assumed constant). The initial conditions will be that the number of lesions 

is zero at the start of the irradiation period. 

As in the case of the high dose rate treatment, we assume the fonnation 

in the radiation field of two types of lesions: one type, nPL' repairing with 

mean repair constant £PL (per unit time) or interacting with another lesion of 

the same type with constant £ to produce a lethal lesion, and the other 
2PL 

type of lesion, nl' irrepairable and lethal. We assume a constant average 
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rate of production per ce 11 nuc 1 eus of each type of 1 es ion, KPL for the 

repairable lesions and KL for the irrepairable lesions. Since KPL•t and KL•t 

are the average total number of repairable and irrepairable lesions created in 
• a time, t, per cell nucleus, and we assume a constant dose rate, D, we can 

immediately write the expressions for the rates of formation of the two types 

of lesions: 

• • 
KPL = 11PL D and KL = TIL D where 

nPL and \ are the average rates of formation per unit of absorbed dose per 

cell nucleus of the repairable and irrepairable lesions, respectively. 

The differentia 1 equations describing the rates of change with time of 

the average number of the two types of lesions per cell nucleus, nPL(t) and 

nl(t), can be written: 

( 1) 

dt 
2 

KL + ~PL nPL (t) (2) 

We will solve these equations for nPL(t) and nl(t), with initial 

conditions nPL(O) ~ nl(O) = 0, in order to obtain the average number of each 

kind of lesion per cell at the end of the irradiation time. Then we can use 

the equations obtained previously (Curtis, 1983) to apply to the final repair 

time after the irradiation is complete. In those equations, we need only to 

replace nLD by nl(t) and npLD by nPL(t) where each function is evaluated at 

the end of the irradiation time t. 

- 2 -



r4i\l 

·:& 

Equation (1) is seen to be of the general Ricotti type, but can be 

directly integrated. We rewrite equation (1) and integrate: 

/L I t 
dnPL flt· - - = 

12 I 

0 ( e:2PL nPL + epL nPL - KPL) 0 

we can write the integral immediately from the tables: 

~ [log 2e:2PL nPL + epL - e:o 

e:o 2 e:2PL nPL + epl + ~::o 
= - t 

-t 

Simplifying, remembering the definition of e:
0 

from equation (4), 

exponentiating each side and solving for nPL' we obtain 

-£ t 
2KPL (1 - e 0 

) 
nPL (t) = -____;-=-------

-£ t 
e:o + epl + ( e:o - epl )e 

0 

Now to solve for nl(t), we can immediately write from equation (2): 

t t 

nL(t) = fKL dt' + 'zPLfn:L(t')dt' 
0 0 
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( 5) 
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t 

= KL t + t:2PL J n:L ( t I )dt I 
0 

We change variables by letting: 

-€ t 
x( t) = e o 

Then~= -t: e-eot =-ex and dt/dx = -1/e
0
x 

dt 0 0 

We can now rewrite equation (7) : 

l 

+ :2PL f 2 
nPL (X I ) dx 1 

nl(t) = Klt 
xl 

0 
X 

Looking only at the second term and, substituting equation (8) into 

equation (6), we have: 

l l 1 

{ dx 1 

} ~-~ -( a_+_b_x_1_)_2 

{ 2 dx 1 

-}(-a _+_b_x 1-)-2 

{ X
1 dx 1 

+}(-a _+_b_x_
1
_)_

2 

X X X X 

where we have made the substitutions: 
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(11) 

After again consulting the integral tables, and simplifying, we obtain: 

2 
b log x 

alb 2 

+ (x-1)(a+b}] 

ab(a+bx) 
( 12) 

From the definitions of a and b [equation (11)] and e:
0 

[equation (4}] we 

can write: 

a + b = 2e: 
0 

Then we can rewrite equation (12): 

To obtain nPL(t) in the same notation, we can rewrite equation (6}: 

=2KPL(l- x) 
nPL(t) 

a + bx 

(13) 

(14} 

The sum of these two equations gives the time dependence of the total number 

of lesions after the start of an irradiation: 
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( 15) 

The survival equations·from the previous treatment (Curtis, 1983) can be 

written in general in terms of the initial numbers of lesions at the end of 

the irradiation: 

n (T) E 

S = exp (-nTOT(T) )[1 + PL (1-exp Epl(T-t 1
))] 

€ 

(16) 

where T is the total irradiation time and t•-T is the time for repair after 

the irradiation is complete and E = Epl/~PL" Written in more conventional 

terms involving the dose rate, D and absorbed dose (D = DT), we have: 

. 
nPL(D/D) 

(1-exp[ 'i>L (0/0-t')]) r ( 17) 
€ 

Here t• is the total time from the beginning of the irradiation to the 

time beyond which potentially lethal lesions cannot be repaired. This lesion 

fixation process is an important concept of the LPL model and can be neglected 

only for cell populations such as those we are considering here that have been 

given adequate time for repair (i.e., when t•-T»1/Epl). 
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Approximations Applying at High and Low Dose Rates 

I. High Dose Rate 

We define the high dose rate region as that high range of dose rates 

where the shape of the survival curve does not change appreciably as the dose 

rate changes. This will be the case when the irradiation time, T, is much 

1 ess than 2/ E
0 

and when E5 is much greater than E~L; 

that is, when: 

2 
T « 2/ E

0 
and E2 » ~L 

0 

This leads to the restriction on the dose rate: 

• 
D» 

The proof of this result is given in the Appendix. 

With these restrictions, the survival curve reduces to 

since nTOT(T) = = 

{18) 

(19) 

(20) 

We note that there is no dependence on the dose rate; this is the same 

expression obtained in the earlier treatment (Curtis, 1983). 
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II. Low Dose Rate 

We will define the low dose rate approximation to exist when & = 
0 

This wi 11 be true when: 

2 2 
& • ePL 

KPL « _fL or D « 
2e;2PL 2TlPL e2PL 

(21) 

Proof: 

4 K e2PL 1/2 (l + PL ) 
&pl e2 

PL 

If the inequality of equation (21) holds, the second and succeeding terms 

are negligible and we have e
0 

= &pl· 

In this case, b = 0, a = 2i>L' and the last two terms in equation (15) 

vanish. This yields: 

nPL (T) 

-&... T 
K (1 - Q ~L ) 

= PL 

Now the survival expression reduces to: 

-€... T 1 e 

( 
KPL(1- e ~L) -;, (t•- T) 

S = exp (-\D) 1 + ~..;;;._ ___ (1 - e L ) 
e;PL e 
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" .. 

and, remembering that e = i>L/ ~PL, 

[ 

-£... T ~e . K e (1-et'L - (t'-T) 
S = exp (-\D) 1 + PL 2PL 2 ( 1 - e i>L ) 

&pL 

{23) 

But from equation (21), we have assumed that: 

and since the two factors involving the exponentials in time are both always 

less than unity, the second term in the major brackets can be neglected and we 

have: 

low dose rate (24) 

Equations (20) and (24) represent the two limits of the survival expres-

sian for high and low dose rate respectively in the LPL model. High dose rate 

is defined as the region of dose rates where D » ~L/4nPL e2PL and 1 ow dose 

rate as the region of dose rates where 0 << ~L/2nPL e2pL· 

For intermediate dose rates, equation {16) must be used, with equations 

(14) and {15} inserted with t = T, the irradiation time. An example of a set 
_3 •. 

of survival curves for various dose rates from 5 x 10 to 10~ Gy/hr is shown 

in Figure 1. Here the values for the four parameters in the model were chosen 

to correspond to the experimental data obtained with c3H-10Tl/2 cells in 
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stationary phase (Wells and Bedford, 1983). Specifically, the values chosen 

were: 

_1 
T"L = 0.1366 Gy 

Clearly seen are the. two limits: the low dose rate limit producing an 

exponential survival curve with D
0 

= 1/0.1366 = 7.32 Gy, the high dose rate 

limit occurring for dose rates greater than 100 Gy/hr. 

In Figure 2 is shown the dependence of e
0 

on the dose rate, ca 1 cul a ted 

for the same set of parameters. 

Comparison with Experimental Data 

The model has been compared with the experimental data obtained by Wells 

and Bedford (1983) using C3H-10T1/2 in stationary phase. The values mentioned 

above were obtained as follows: nl is simply the reciprocal of the D
0 

for the 

exponent i a 1 curve obtai ned at very 1 ow dose rates. l'lpl and e were chosen to 

yi e 1 d the survi va 1 curve at high dose rate and epl was chosen to reflect a 

characteristic mean repair time of two hours. A comparison between the 

experimental data and the calculated survival curves is shown in Figure 3. 
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Summary 

The present analysis expands the LPL model to include the effects of dose 

rates for which lesion formation occurs during the repair (and misrepair) 

process. In terms of the parameters of the model, three regions of dose rate 

can be identified: 

• 2 
1. High dose rate: D >> lPL/4~PL e2PL. Here the survival curve reduces to 

S = exp [- ~ D- n D] PL L [
. ~PL. D] e 
1 + -

€ 

and is not a function of dose rate. 

• 2 
2. Intermediate dose rate: D - e PL/{4~PL e2PL). Here the survival curve is 

given by equation {17) and is a function of the dose rate. 

2 
3. Low dose rate: D << e PL/2~PL e2PL. Here the survival curve is independent 

of dose rate and reduces to an exponential, S = exp{-"LD). 
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APPENDIX 

We start with the two general equations for "PL(T) and "TOT (T) [equations 

(14) and (15) ]: 

(A1) 

and "ror(T) (A2) 

-e: T 
Here a = e:

0 
+ Epl , b = e:

0 
- Epl' x = e 0 

, and T = the irradiation time. 

First we use the restriction of short irradiation times (i.e., T << 2/e:) 
0 

to make the approximation x = 1 - e:
0

T and 1 - x = e:
0

T. Then: 

= (A3) 

We have neglected 1/2{e:
0
-£pl)T in the denominator by invoking the short 

irradiation time restriction. We note here that if T « 2/e:
0

, then T « 

2/(e:
0
-£pl) since Epl is always positive and less than or equal to e:

0
• 
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Now from equation (A2), we see that the second term on the right can be 

simplified by expanding the exponential in the denominator: 

2€ = € 1 og __ ___;o:;.._ ____ _ 

€o + EJ>L + (€o- EJ>L)( 1-€oT) 

1 
= € log------

1-[1/2 ( €o- EJ>L) T] 

We expand the log in a series expansion requiring now that 

4 
T «---

( €0-epl) 
remembering the definition of €, we obtain 

= €pl ( €o- tpl )T = €PL €o T - --
2 ~PL 2 ~PL 

The third term on the right of equation (A2) can be written: 

2 

€ o €PL T + €pl T 

4 ~PL 2 ~PL 4 ~PL 

(A4) 

(AS) 

Now, upon adding this term to the one derived in equation (A4), we note a 

cancellation yielding: 
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2 2 2 2 2 
- e:PL T e:o T ~L T ( e:o - Epl )T 
-- + - + -- = ___;::..-_:-=---

2 e:2PL 4 e:2PL 4 ~PL 4 ~PL 

Equation (A2) becomes 

( e: 2_ e:...2)T 
"TOT (T) = ~D + o ~L 

4 ~PL 

Now, if we require e:~ >>EpC' we can write 

"ror (T) 

But from the definition of e:
0 

(equation (4) ), we see 

and if e:~ » ~L, 

. ·-

. 
So 4nPL D e:2PL » 1 

2 

e:PL 
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. 
and the restriction on the dose rate, D, becomes 

D » 
2 

Epl (high dose rate) 

Also, from the above inequality, (AS), 

• 2 
4nPL0 E2PL » f:pl 

2 
and we see that E reduces to 

0 

2 • 
Eo = 4nPL D E2PL. 

Now substituting this expression forE~ into equation (A7), we obtain 

. 
nTOT(T) = nLD + 4 T1pL0 E2PLT 

4 ~PL 
. 

= \ D + Tlpl DT = \ D + 'PL D. 
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Figure != 

Figure != 

Figure != 

A family of survival curves as calculated from the LPL model. 

Values of the parameters used are given in the text. At high and 

low dose rates, the survival curves become independent of dose 

rate. Curves a through h denote values in the midrange of dose 

rates where the survival curves are a function of dose rate. 

(XBL 844-7694) 

Dependence of e: on the dose rate. Low dose rate conditions 
0 

occur when e:o is constant and equal to i>L. High do~e rate 

occurs when e:o reaches a va 1 ue of about 5 for the values of the 

model parameters chosen. (XBL 844-7693) 

Comparison of survival curves calculated from the LPL model 

(solid curves) and the experimental data from C3H10Tl/2 density 

inhibited cells irradiated with 137Cs gamma rays obtained by 

Wells and Bedford (1983). Parameters in the model are given in 

the text. 

(XBL 8311-4138) 
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