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they just are a general framework or supersymmetry and inflation are more closely re-

lated is a matter of taste, but it seems desirable to require that the sector that drives 

inflation is also the one that breaks sypersymmetry. Actually, in the case where this 

sector consists of one scalar field - called inflaton - the thermal constraint imposes 

such a breaking of supersymmetry [3,4). The thermal constraint is the requirement that 

at high temperatures, a sufficient amount of energy is stored in the scalar field to give 

enough inflation - in other words, the inflaton field must start its evolution far away from 

its global minimum, slowly roll down (causing the universe to inflate) and eventually 

settle at its global minimum. The problem with this approach is that supersymmetry 

must be broken at a very large scale: typically [4], the mass of the gravitino m3/2 must 

be greater than ",2/M (M = Mp/..;B; = 2.4 x 1018GeV) where ",4 is the energy density 

of the false vacuum (a typical value for "ii of 10-3 to 10-4 is required to give rise to 

density fluctuations with the right amplitude; m3/2 is then greater than 1010 GeV). This 

has to be reconciled with models describing our low energy world where the breaking of 
, . 

SU(2) x U(I) gauge invariance is driven by soft terms induced by supergravity - which 

scale like m3/2 [5]. Therefore in these models, the gravitino mass and the mass of the 

weak gauge boson Mw must be of the same order. 

This problem has been addressed recently by Ovrut and Steinhardt who solve 

it by using two scalar fields in the inflationary sector (6]. They employ a mechanism 

(7] which sets the symmetry-breaking Bcale to a much smaller value than the scale "': 

4 

typica1Jy, the gravitino mass is of order W which coiucides therefore with the weak 

interaction scale (Xi ,.... 10- 4 ). This can be worked out into a successful inflationary 
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universe scenario [6] at the price however of some fine-tuning (at least in the explicit 

example given in Ref. 6). 

In this letter, we will take a different point of view and relate the smallness of 

the scale of supersymmetry breaking to the smallness of a parameter which is of basic 

importance in any inflationary universe scenario: the slope ( of the potential near the 

origin. Actually, since we want a scale of supersymmetry-breaking very small compared 

to the scales of relevance in the inflation sector (of the order of the Planck mass), it 

seems plausible that the ground state must be obtained by perturbing a supersymmetry 

conserving ground state. We will see in Sect. 1 that this imposes some constraints on 

the model that we are starting from. We do not know for the moment what is the 

nature of the perturbation but it has to be characterized by a parameter which must 

be very small. A natural (or possible) choice is precisely the slope l: if we want a slow 

roll-down along the plateau region of the potential, the slope has to be very small at 

the origin. Actually, in most models, it is taken to be zero. No symmetry argument 

supports such a choice (except simplicity, which is not thought to be asymmetry) hence 

we have no clue as to why l is so small. But taking it for granted, we will show that the 

supersymmetry breaking scale can be related to it for a particular class of potentials. 

Moreover, even though l is arbitrarily small, the scale of supersymmetry breaking that we 

obtain is stable under radiative corrections. In other words, in our approach, choosing 

the gravitino mass of the order of Mw is natural in the technical sense. In Sect. 2~ 

we describe the inflationary scenario that arises in a model which we consider as a 

typical example of our approach and we discuss what kind of constraints we obtain for 
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the parameters l and 1'. It turns out that the thermal constraint mentioned earlier is 

violated. In Sect. 3, we show how to circumvent this by introducing a second scalar 

field in the inflation sector. 

1. We first detail the procedure that we adopt to find a model that fulfills our 

requirement. The idea is to start with a potential for which l = 0 and the ground state 

is supersymmetry-conserving, then perturb this potential by taking l :F 0 and see under 

which conditions the minimum becomes supersymmetry-breaking. 

Let us first prove a result that applies to this situation in general, independently 

of the nature of the parameter l. Consider a scalar field 4> in a locally supersymmetric 

theory. Its interactions are described by a superpotential /(4)) and the corresponding 

potential reads (assuming a flat Kabler potential) [8]: 

(1) 

where 

(2) 

and M is the reduced Planck mass M = Mp/v'8i ~ 2.4 x 1018GeV. The variabje 

l parametrizes a perturbation on the coefficients of the superpotential, which is left 

unspecified for the time being. 

If the minimum - (ToM - of the potential V (with a zero cosmological constant) 

is supersymmetry-conserving when ( = 0, then a necessary condition in order that the. 

perturbed minimum (with zero cosmological constant) breaks supersymmetry is that: 

8
2

/ I 84>2 (0'0) (=0 = 0 (3) 
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A n equivalent lormulation involving the potenti~l is that its second derivative (and then 

automatically its third one) is zero at the minimum: 

(4) 

The proof is straightforward. Since, when f = 0, the minimum O'o(V(O'o) = 

V'(O'O) = 0) conserves supersymmetry: 

(5) 

On the other hand, since wE! want a breaking .of supersymmetry when we turn lon, we 

must require that: 

(6) 

The minimum 0' is determined by the equations (4) and 1 are taken to be real): 

V(O') = 0 _I Dt/lI(O') 12= 31/(0') 12 (7) 

V'(O') = 0 - [:4> Dt/lI(O')]Dt/lI(O') = 3[:4>1(0')11(0') (8) 

Therefore combining Eqs. (6) and (7), we obtain from (8): 

(9) 

which in turn gives Eq. (3). It is immediate to show, using the form of the potential 

[Eqs. (1) and (2)] that (3) and (4) are equivalent. 
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We now apply this result to a specific example which will prove to be generic. Let 

us consider the superpotential 

(10) 

The corresponding potential reads, near the origin on the real axis, 

(11) 

As a first step, we require that the potential is flat near the origin and that the 

minimum uoM is supersymmetry-conserving. The first condition (V'(O) = 0) gives: 

and the second [Eq. (.5)) yields 

- 3uo 
130 = 2(2 + (5) 

(12) 

(13) 

It has been noticed already [3] that for such a family of superpotentials, the fact 

that 130 and Uo are of opposite signs leads to a violation of the thermal constraint [3.4]. 

We will return to that question in Sect. 3. 

We then relax ('ondition (12) by allowing a small slope near thf" origin and WP: 

write instead: 

( 14) 
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The location of the minimum u and the parameter P are now given by series in the 

parameter (: 

(15) 

The requirement that supersymmetry is broken at the minimum - expressed by the 

condition (3) - gives 

(16) 

in which case we obtain from (13) 

(17) 

We have actually two sets of solutions: 

v'6 4 J2 2 PI = ±- ,Ul = =f-V6,(j2 = - ±-J3 
8 9 3 9 

(18) 

The amount of supersymmetry breaking at the minimum is given by 

(19) 

which yields for the gravitino a mass 

1 C1' 12 I I Jl2(f J6 m3/2 = -e /(u) = -(1 ± -). M2 AI 3 
(20) 
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Typically, as we shall see in Sect. 2, IJ/ M - 10-3 which gives a gravitino mass in the 

range of Mw for l- 10-10• Thus the scale of supersymmetry breaking is small because 

it is of order £. The smaller £ is, the more inflation we have: we will actually see that 

the length of the inflation era goes as £-1/2. We could therefore say that, in this model, 

the scale of supersymmetry breaking is small for the same reason that we get inflation. 

This will allow us to put an upper limit on the mass of gravitino. In the same way, an 

upper limit on the amount of inflation (which we do not have at hand presently) would 

set a lower" limit on the mass of the gravitino. 

To recapitulate, we start with the superpotential 

2 tn[ 3 4> 3 ( 4> 2 1 4> )4] /0(4))=1-' Mv2--+--- -) +-(-
8 Mv'2 4 Mv'2 8 M.j2 

(21) 

which has a supersymmetry conserving minimum at 0'0 = v'2. 

We then make a small perturbation by allowing for a non-zero difference between 

the coefficients of the constant and quadratic term £ = ao - a2 (or, in other words, a small 

linear term in the corresponding potential). The new minimum breaks sypersymmetry 

and the corresponding scale is of order £ [Eq. (20)]. 

The superpotential that we are starting from is unique within the class described 

by Eq. (10). Of course, we could allow for more general potentials - in particular include 

a cubic term in Eq. (10) - but we think that this restricted class, and therefore 10 (<fJ) ! 

is very representative of the general behavior of the superpotentials which, by obrying 

Eq. (3), give a super-symmetry-breaking scale of order £ (defined as the slope of the 

potential at the origin). Therefore, from now on, we will restrict ourselves to the ca..<;e 
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of /0(4)) [Eq. (21)], although we will stress the relevance of some of its properties to the 

general case. 

The corresponding potential Vo(4)) is very flat near its minimum since its first 

three derivatives are zero [Eq. (4)]: 

(22) 

Vo is shown in Fig. 1, together with its shape at temperature T == M, as computed 

from the results of Ref. (4). As stressed earlier, the temperature ~orrections do ~ot 

. stabilize the field at the origi.n· for high temperatures.· 1 We will return to that point in 

Sect. (3). 

Thming E on displaces the absolute minimum from eTo to eT given by Eqs. (15), 

(17), and (18). The superpotential now reads 

(23) 

The corresponding potential V(4)) is computed in the standard way [Eqs. (I) and (2)]. 

The first terms of its expansion around the origin are, to order E: 

(24) 

lOne can Ihow that this is 10 eveD if we include a cubic term in Eq. (10) 
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and, around the minimum 17M, to order £: 

It is un distinguishable from potential Vo on the scale of Fig. (1). 

The objection that one could raise to our linking the scale of supersymmetry 

breaking to the parameter £ is that we need to choose an arbitrarily small value for £ • 

. -
This seems unnatural (in the technical sense); the radiative corrections could induce large 

corrections to the scale of supersynimetry, thus putting an end to our hopes of bringing 

that scale down to Mw. But, as we will now see, one has to take into account the very 

special properties of renormalization in supersymmetric theories and the unique features 

of the superpotential that we consider [Eq. (3)]. The one-loop radiative corrections to 

the potential V of Eq. (1) are given by [9] 

(26) 

where 

(27) 

In this formula, A is the cut-off and N is the total number of chiral fields in the theory. 

We first note that, since /((70)1(=0 = /'((70)1(=0 = 0, the ground state remains 

unchanged at the zeroth order in f. when we include the radiative correction. Moreover 
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it is straightforward to prove that if V satisfies Eq. (4) then V + c5VA satisfies also Eq. 

(4) (using Eq. (3) for f). Therefore, using our initial result, we conclude that radiative 

corrections to the potential will at most induce corrections of order £ to the scale of 

supersymmetry breaking. 

To be more explicit, let us show how this works on the specific example of Eq. 

(23). When we include the "radiative corrections [Eqs. (26) and (27)], the following 

changes occur: the minimum of the potential is displaced to: 

(28) 

and the parameter f3 is now: 

3 rn Vii 5 Vii 2 f3 = --v2 + f(±-)[l -IC( - ± -)] + 0(£ ) 
8 8 6 3 

(29) 

Note that no correction appears to the zeroth order in f, which is exactly what we have 

proved in the general case. The value of the sllperpotential at the minimum is therefore 

still given by [compare with Eq. (19)]. 

(30) 

where f3~ is the coefficient of order l in the expansion of f3 [Eq. (29)]. Thus the mass of 

the gravitino is 

(31 ) 
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It is precisely the fact that this scale is of order p2( that justifies our approach a poste-

riori. Had corrections of order p 2tt for example appeared in Eq. (31), the smallness of 

the scale of supersymmetry breaking would have been a unnatural feature of our model. 

Equation (31) shows that no such corrections appear. 

2. We now review the set of constraints that the models that we consider must 

satisfy in order to give rise to a successful cosmological scenario [see for example Ref. 

(10)]. We will do that for the explicit example of Eq. (23) but, its salient features being 

a consequence of Eq. (3) and therefore shared by more general potentials, we believe 

that this analysis is applicable to any of them. We first have to follow the evolution of 

the inflaton field with time. This evolution is summarized in Table 1. . 
The inflation period starts when the energy density becomes dominated by the 

energy stored in the vacuum: 
. 5 

Po = Vo = _",4 
32 

(32) 

We assume that the inflaton field is initially located near the origin; then its value when 

inflation starts is of the order of the Hubble parameter: 

~o '" Ho = (~)1/2 = Is ,.,,2 
- 3M2 VOOM (33) 

As long as radiation can be neglected, the classical evolution of the infl.ation -field is 

governed by the equations 

- . av 
~+3H~=-

a~ 

2 1 11 .2 )] H = 3M2 2~ + V(q, . 

12 

(34) 



During the slow rollover - i.e. the inflation period - the motion of tP is friction 

dominated and the ~ term is negligible. In terms of the potential, this can be expressed 

as [10] 

V"(tP) < ~2IV(tP)1 

V'(tP) < ~IV(tP)1 (35) 

It turns out that for the potential that we consider, it is the second of these equations 

that breaks down first, at a value tPe that is almost independent of l: 

(36) . 

The number of e-foldings that the scale factor undergoes during inflation is given 

by 

(37) 

We can approximate the Hubble parameter in the numerator by its value of the origin 

[Eq. (32)) and the potential in the denominator by the first terms of its expansion [Eq. 

4 

(24)). It turns out that when l « fl. (in particular l = 0), the main contribution comes 

from the lower bound tPo (where the field spends most of the inflation epoch): 

IfsM 2 M 
N= --+O(-} 

48 p.2 P. 
(38a) 
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4 
On the other hand, when ( » fir (non-negligible linear term in the potential), the 

upper bound tPe gives the leading contribution which happens to be independent of p.: 

N = 51r 1 (-1/2 

32 (24V2)1/2 
(38b) 

We checked numerically that these approximate formulas are very accurate and com-

puted N in the intermediate region «( ~ p4 IM4 ). A value of N typically greater than 

60 is required [1] if we want our present observable Universe to have emerged from a 

single causally-connected patch. Using Eqs. (38a,b) and our numerical computation, 

we can use the condition N.> 60 to constrain our parameters (and p.IM. To be more 

accurate, we must take into account the fact that some time elapses between the end of 

inflation and reheating. We will see that, during this period, the cosmic scale factor R 

grows by a factor 

(c.f. Eqs. (42) and (46); tc is defined in Eqs. (43), (44) and r is the inflaton decay 

rate). Expressing all these quantities in terms of I' and (, we obtain the condition on 

the number of e-foldings [10] 

5 I' 1 
N > 66 5 + -in- - -inc . 3 M 12 

(39) 

We draw the corresponding curve (labelled UN = 60") in the l, p./M plane of Fig. 2. 
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The inflation field reaches the value tPe at time te ~ :". It turns out that this 

value corresponds also to the point where the curvat.ure of the potential changes sign. 

The field therefore starts oscillating around the minimum u. In a first stage, it does not 

feel the details of order ( of the potential near the minimum [Eq. (25)] and therefore 

oscillates in the tP4 potential of Eq. (22). We show in Fig. (3) the first few oscillations 

of the inflation field (te < t < 1.006te). It is straightforward to compute the frequency 

of these oscillations: 

We have 
. • 2 
~ ':. He = (V(tPe) )1/2", 0 13L 
MN M - 3M4 -. M2 

(40) 

(41) 

and, after a few oscillation, w » H. We can therefore apply the results of Turner [11]: 

after averaging over an oscillation period, the energy associated with the coherent field 

oscillations behaves like relativistic matter. Therefore the cosmic scalar factor R and 

the coherent energy density p~ scale with time as: 

R(t} [ }]1/2 R(t
e
) = 1 + 2He(t - te , (42) 

This will go on until time tc when the field oscillations take place only in the close 

vicinity of the minimum where the potential can be approximated by the first term of 

its expansion in Eq. (25). This will happen approximately for: 

I ~ - u I~ 3t:1
/

2 
, V(tPt) ~ 6 x 102 t:21l4 (43) 
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which gives, from (42) 

(44) 

From tc onward, we can consider that the field oscillates in a ,p2 potential, with a 

frequency equal to the mass of the inflaton field: 

2 
m ,.... ~Ll/2 
~- M~ (~5) 

and (since m~ > H(,pt) = Ht), according to Ref. [11], the coherent energy density 

behaves like non-relativstic matter. Therefore, for t > tc, 

R( ) . 3 .. 
_t_ = [1 + -Ht(t _ tt)]2/3 
R(tt} 2 

(46) 

This will last until t ,.... r- 1 when reheating takes place through the decay of the 

infiaton field. The decay rate is, following Eq. (45), 

(47) 

The photon density at t = r-1 reads (assuming that the infiaton decays mostly into 

photons) 

R(r-1 } R(r-1) 
p..,(r-1) = p..,(t,)( R(t,) )-4 + p~(t,)( R(t,) )-3 

One can check that R~~t~;) » 1 and p</>(tt) »p..,(tt), in which case the second terms 

is dominant. Using Eq. (46), we thus obtain 

p..,(r- 1
) ~ ~(rM)2 

16 

(49~ 
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and the universe is reheated to a temperature 

(50) 

where g. is the number of effective spin degrees of freedom (g. - 102). We see that, 

although our potential has some peculiar features, the result for the reheating tempera-

ture agrees with the standard one (in the ~called poor reheating case)[10,U,12]. Using 

(47) we find that 
3 

T I' 3/4 
RH--f M2 (51) 

We wish to emphasize kt this point the complete generality of this result. Because 

all the potentials that we consider must satisfy Eq. (4), the mass of the inflaton field 

must of of order ( and is therefore given by Eq. (45) [in the general case, I' is an overall 

scale defined as in (10)]. This in turn gives Eq. (47) for r and Eq. (51) for TRH 

Before discussing the consequences of such a reheating temperature, we have to 

further constrain the parameter 1'/ M by studying the amplitude of the density fluc-

tuations. It is well known [13-15] that inflationary models yield a scale independent 

spectrum (the ~called Harrison-Zel'dovicb spectrum [16]) with an amplitude at time 

t I when the fluctuations reenter the horizon in the F RW phase given by: 

(52) 

where ti is the time when the perturbations leave the horizon in the de Sitter phase~ and 

6¢(t) is the space-averaged perturbation of the scalar field. 
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Taking into account the details of the reheating period described above, one can 

show that the number of e-foldings that take place between ti and the end of inflation 

te is given, for a scale i, by [10] 

(53) 

where Ml is the corresponding mass scale. Considering the typical scale of a large galaxy 

(Ml ~ 1015 M 0 ) and using Eqs. (36) and (51), this gives: 

. Nt = 60+ ~lnM + !In£ 
3 I' 4 

(54) 

It is easy to show that the corresponding value for the scalar field 4>(ti) (» £1/2) is 

given by 

4>(t,) ___ 5_~ _ 17 10-3 
M - 48../2 Nl - . X 

(55) 

Since we are in the slow-rollover period of the evolution of the 4> field, its motion 

is friction-dominated and, linearizing the equation of motion for 64>, we can write Eq. 

(52) as: 

Taking 64>(ti) ~ -¥: [13-15,17), we obtain from (33) and (55) 

fJp 1'2 
-p(t/) ~ 20 M2 

18 

(56) 

(57) 



Let us note that the uncertainty on the numerical factor (20) is at least of one order 

of magnitude. H we consider that the amplification factor due to the evolution of the 

fluctuations subsequent to t/ is not larger than 105 [see e.g. Ref. (18)), galaxy formation 

(~ ",",0(1)) requires 

(58) 

On the other hand, the scales relevant to the cosmic microwave background reenter the 

horizon when the universe is matter-dominated, which decreases the amplitude of the 

density fluctuations [Eq. (54)) by a factor lo [14]. Following Sachs and Wolfe [19], this 

gives an anisotropy in the cosmic microwave background 

(59) 

Allowing for an observed temperature anisotropy on large angular scales smaller than 

10-4 puts a limit 

(60) 

Therefore the study of the amplitude of the density fluctuations restrict the pa-

rameter #lIM to the region 10-4 < #lIM < 10-2 , as shown in Fig. 2. On the same 

figure, we have also drawn the curve m3/2 = Mw where m3/2 is given by Eq. (20) (we 

choose the lower sign in this equation). H we restrict ourselves to such values of the 

supersymmetry-breaking scale, then { is typically of order 10-lO±2. 

We now turn to the problem of baryon number generation. The limits on it [Eq. 

(60)] and { (see Fig. 2) put a bound on the reheating temperat.ure: 

(61) 
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Similarly, because the mass of the tP field is related to the gravitino mass according 

to [compare Eqs. _(20) and (45)) 

(62) 

the tP field is too light (taking m3/2 = Mw gives m. < 106 Mw = 108 GeV) :to decay 

into the color triplet isosinglet superheavy Higgs bosons whose decays can lead to baryon 

number generation. Therefore, such superheavy Higgs bosons cannot be, produced di-

rectly by the decay of the coherent infiaton field oscillations, as in the standard poor 

reheating scenarios [20]. We, thus have to resort to models of cosmological baryon gen-

eration at low temperature [21]1 We will also see in Sect. (3) that in trying to fulfill the 

thermal constraint, we gain another possible solution to baryogensis. 

We finally consider the so-called gravitino problem. Light gravitinos such as the 

ones that we consider have a very long lifetime: 

m~/2 ",.6 3 r 3/ 2 - ----l M2 M5 (63) 

It is therefore quite plausible that they will become non relativistic and dominate the 

energy density of t~e universe before they decay, which would dramatically perturb 

1 Let us note however that in the cue of interest to us (m3/2 = Mw). the reheating temperature is in 

the 1 GeV .1 TeVregion (TRH = (m3/2/M)3/2 MC3/4 ~ 10-& GeV(-3/4). We therefore need to adapt 

the models of Ref. 121J to such a low reheating temperature. This is possible because the mass of the 

fields responsible for baryon number generation is only limited by the mass of the inflaton field which 

lies in the 106 to lOa GeV region Isee Eq. (62)J. 
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the successes of the standard big bang scenario. Gravitinos produced before inBation 

are diluted away [22] and we need not consider them. But they can be produced by 

thermal equilibrium processes after reheating [23,24] or directly through the decay of 

the inBaton field [25]. In the first case, the density of gravitin08 produced after reheating 

has been shown to be proportional to TRH [24] and a low value for TRH can solve 

the problem. It turns out that the most stringent bound comes from the analysis of 

deuterium dissociation caused by the photons resulting from gravitino decays; this gives 

[241 

. ( m3/2 )-1 lOG V 
TRH < 100GeV x 10 e (64) 

The corresponding curve is shown on Fig. 2. It is clear that, at least for m3/2 = Mw, 

this does not give any further constraint. 

The second source of gravitinos is the decay of the inflaton itself. Using an 

argument due to Ovrut and Steinhardt [251, one can show that, because the mass of 

the inflaton field is much bigger than the reheating temperature, the gravitinos that it 

produces will remain relativistic for a long period and will decay before they dominate 

the energy density of the universe. 

3. We stressed earlier that the temperature corrections t.o the potential Vo or 

V do not have an absolute minimum at the origin [see Fig. Ij. Therefore the thermal 

const.raint is not satisfied. In this section, we wish to study in detail a remedy to this 

problem which has been recently suggest('d [121. The idea is t.o introduce a second chira) 

field in the inflaton sector of the theory. We will denote its scalar component by \lI. Tht" 
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superpotential is chosen to be: 

(65) 

where /(4)) is given by Eq. (23) and 9 is a function of the 4> field only. Actually, we will 

only be interested here in the first terms of g(4)} and write 

(66) 

The corresponding potential V(4), \If) is given by the standaa:d formula, generalizing Eq. 

(1) to the case of two fields: 

From the results of Ref. [4], it is easy to compute the temperature corrections to that 

potential. For a moment, we will restrict ourselves to the \If = 0 direction, where the 

potential at temperature Treads: 

(68) 

VT (4)) is the non-zero temperature version of thepotential V(4)) studied in the previous 

sections. Its first terms in a 4> expansion are: 

VT (4)) = V(4)) + T2 1l4el~12 1M2 {(!N + 13) _ ~J2(N + 2)( 4>- +.t) + O(() + ... } (69) 
24M2 8 164M M' 
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where N is the total number of chiral fields in the theory [4,26]. Typically, N is of the 

order of 102• It is clear from Eq. (69) that the potential Valone does not satisfy the 

thermal constraint since already the linear term in t/J tends to destabilize the inflaton 

field towards the minimum (1. But if we allow the parameters of g(t/J) - 60 and 61 - to 

satisfy the relation: 

(70) 

the extra terms in Eq. (68) will thwart this effect and stabilize the field t/> near the origin 

(at least along q, = 0). Similarly, the coefficients of higher order terms in g(t/» can be 

arranged in order to cancel destabilizing effects of higher order terms in VT(t/J). 

Of course, if we consider the superpotential W(t/>, q,) as a whole, the constraint 

(70) which imposes that certain parameters (60 ,61 ) are of order N (~ 102 ) compared 

with the others, is extremely artificial. This could be a reason sufficient to reject the 

solution of introducing a second field in the inflation sector, and advocate a yet-t~be-

known mechanism to explain why the scalar field t/J starts its evolution near the origin. 1 

We will however pursue that solution to see what we can gain from it. In fact, we will 

take 60 of order N and 61 of order 1 [satisfying (70)J and show that this is enough to 

obtain an absolute minimum at high temperature near the origin and a valley of the 

potential (at T = 0 and T:F 0) in the q, = 0 direction. 

It is easy to realize first that, because W(t/>, q,) has only terms independent of q, 

or quadratic in q" ~ is of order q,. Keeping only terms of order 6~ because they are 

1 The chaotic inflation scenario of Lindt' 127J could actually provide an answer. 
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leading in N(0(N2)), we have in fact (we take ~ and 'II to be real) 

This shows that the only possible extrema of V are in the q, = 0 direction. Moreover 

the coefficient of q, in (71) is always strictly positive which means that the q, = 0 

direction is a valley of the potential V. A similar analysis can be performed on the 

temperature corrections which shows that q, = 0 direction remains a valley even at non-

zero temperature. Therefore, at bigh temperature, the ~ field is stabilized around the 

origin and when the temperature decreases it starts evolving along 'II = 0, in precisely 

the way studied in the previous section since V(~, 'II = 0) = V(~). The only apparent 

effect of the q, field is to give the right behavior at high temperatures. 

But what happens to the'll field from then on? To answer this question, it is 

interesting to note two points. First, the'll field is heavy: from Eqs. (65),(66), (67), we 

find a mass 

(72) 

2 
Therefore, in the region ~ - 10-2 , the 'II field is heavy enough to decay into the 

superheavy color triplet Higgs field of GUTS, leading therefore to the standard scenario 

of baryogenesis. 

The second point is that this decay occurs after the end of the inflation period. 

More precisely, the'll decay rate is, similarly to the case of the ~ field (Eq. (47») given 

by 

(73) 
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The decay occurs at a time r;l which satisfies, according to Eqs. (33), (38), and (47), 

(74) 

Therefore the decay products of the II field - the precious color triplet Higgs - are 

not washed away by inflation and, when reheating occurs, are very far from equilibrium. 

Baryon number generation can then take place. One might worry about other decay 

products of the II field - the gravitinos. But the same argument as in the case of the 

q, field applies here because mtf is much bigger than the reheating temperature. 

To conclude, we have studied inflationary models where the scale of supersym

metry breaking is proportional to a small parameter which we chose to relate to the 

slope of the potential at the origin. This scale can therefore be as low as the mass Mw 

of the weak gauge boson. The study of the quantum corrections shows that this scale 

is stable under radiative corrections. These models share in common a low reheating 

temperature which helps in solving some of the problems (e.g.,the gravitino problem) 

that inflationary models usually face. Indeed, the study of the simplest of these models 

showed that no particular problem arises except for a violation of the thermal constraint: 

temperature corrections do not stabilize the ,inflaton field away from its minimum. We 

showed however that one can deal with this problem by introducing a second field in 

the inflaton sector, whose sole effect is to modify the temperature corrections. This is 

a very artificial way of solving the thermal constraint but we gain another mechanism 

for baryon number generation. Anyway, whether or not we introduce this second field, 

25 



this only field which plays a dynamical role as far as inflation is concerned is the original· 

inflaton (being responsible for the de Sitter phase and for reheating). We conclude there

fore that there exist viable cosmological scenarios which allow a mass for the gravitino 

as low as Mw (see also Refs. [6] and [25]). 
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FIGURE CAPtIONS 

Figure 1: Potential V/p.4 corresponding to the superpotential/(tP) given by Eq. (23) (or 

Eq. (21) since, on this scale, they are indistinguishable). The dashed curve gives the 

shape of the potential at T = M (taking N = 50 chiral superfields in the theory [4]). 

Figure 2: Cosmological constraints on the parameters f and p./M. The curve N = 60 

limits the region where enough inftation takes place [see the condition given by Eq. 

(39)). The study of the amplitude of density fluctuations gives limits on p.IM only [Eqs. 

(58)-(60)] and the gravitino problem gives a bound on the reheating temperature [Eq. 

(64)]. Finally, we have drawn the line m3/2 = Mw [Eq. (20) with the lower sign] which 

corresponds to the successfuI"low energy models [5]. 

Figure 3: Oscillations of the tP field around the minimum u M of potential V (Fig. 1) 

immediately after the end of inflation (te < t < 1.006te ). 
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