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Quantum Mechanical and Semiclassical Approaches 

To Molecular Dynamics 

Shenghua Shi 

ABSTACT 

Several new quantum and semiclassical mechanical methods are 

proposed and tested by applying to a variety of problems in molecular 

dynamics. 

A new multichannel exchange kernel formalism for reactive 

scattering is· introduced. The central feature of the method is the 

expansion of the reactive scattering wavefunction in terms of the non

reactive coupled-channel scattering waves in all of the arrangements. 

The exact S matrix is found from the non-reactive wavefunction and the 

exchange kernel which are computed from the non-reactive coupled-channel 

scattering calculations in each arrangements. A approximate version of 

formula is obtained by virture of the distorted wave Born approximation 

(DWBA) where the non-reactive coupled-channel scattering wavefunction is 

utilized for distorted waves. Application to a standard test problem 

(collinear H+H2 ) shows that multichannel DWBA is extremely accurate if 

the reaction probability is no larger than 0.1 and if '" 3 to 4 

vibrational states are included in the non-reactive coupled-channel 

expansion. and that the full exact calculation is stable. accurate and 

easy to implement. 
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Semiclassical perturbation theory combined with two approximate 

models for polyatomic Hamiltonian-- the reaction path model and the 

kinetic coupling model-- leads to extremely simple, analytical formulae 

for S-matrix and the spectra of overtone~ The numerical tests indicate 

that these simple approximate methods are of useful accuracy. 

A new semiclassical approach is proposed • In this approach the 

evolution of the states of a system, which are parameterized by label 

variables, is determined by calculating the time development of the 

label variables classically. The formalism for calculating the S-matrix 

wi thin this framwork is developed. Sample calculations show that this 

method is very simple and describes quantum phenomena very well. 
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I) Introduction 

The development of modern experimental techniques which makes it 

possible to investigate processes at the level of molecular detail and 

the advent of powerful electronic digital computer have generated 

intense activity in the theoretical study of molecular dynamics 

beginning about twenty years ago. In progress towards the quantitative 

understanding the experimentally observed behavior of molecular systems 

and helping experimentalists in design of new experiments, many new 

theoretical approaches, models and computational procedures have been 

developed(l,2). The active interaction of theory with experiment has 

been fruitfully leading to a better and deeper understanding of 

complicated physical and chemical processes in molecular systems. Some 

of the newly developed theoretical approaches in molecular dynamics are 

also finding useful application in certain areas of physics. However, 

the theoretical methodology developed up to now is still so inefficient 

that only for the simplest possible reactive system, i.e., the H+H2 

exchange reaction, and only for low energies, the fully converged, three 

dimensional exact quantum reactive scattering calculations have been 

finished(3-6). Furthermore, it seems that there are few really new 

theoretical approaches which have been reported in recent years. In this 

thesis several new approaches towards improving the efficiency of 

theoretical treatments are explored. 

In Chapter II a new exchange kernel approach to quantum reactive 

scattering is formulated in both exact and DWBA versions. The 

renormalized Numerov algorithm(7), which has been proposed to solve the 
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coupled-channel equations for non-reactive systems, is investigated for 

use in reactive scattering calculation within this formalism. 

Application to the test problem of the collinear H+H2 exchange reaction 

is descri bed. In Chapter III two practical approximate methods-- the 

combination of the semiclassical perturbation approximation (SCP) with 

two approximate models for the polyatomic Hamiltonian, the reaction path 

Hamiltonian model and the kinetic coupling model, -- are presented. Two 

numerical calculations have been carried out to test the models. The 

results are presented and discussed. In Chapter IV a new semiclassical 

approach, the label variable classical mechanics method, is developed. 

The sample calculations for testing its usefulness and accuracy are 

described and discussed. Chapter V concludes with remarks. 
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II) Quantum reactive scattering by the exchange kernel approach 

I.a)Introduction 

The development of practical methods for a quantum mechanically 

accurate description of molecular reactive -scattering has been one of 

the most challenging subjects in theoretical dynamic study. The major 

complication in reactive scattering arises from the fact that 

coordinates descriptive of the asymptotic reactant arrangement differ 

from those appropriate to describe the asymptotic product arrangements. 

One had to solve the coupled-channel equations in each arrangement and 

match the solutions in the interaction region (8). This is not an easy 

job to do. A great deal of effort has been concerned with devising 

elegant coordinate systems which facilitated the treatment of the 

rearrangment(9-12). These methods, however, have to be tailored to match 

each problem. 

A more general formalism originally given by Miller( 13) has been 

applied to the collinear H+H2 exchange reaction(14,15). In this approach 

the total wavefunction is expanded in terms of the open channel internal 

states of all arrangments with the unknown radial functions, plus a set 

of the square-integrable "correlation functions" with the unknown 

coefficients to account for the effect of closed channels. The 

coefficients and the coupled-channel equations for the radial functions 

are obtained from the variational principle. The price paid is that the 

coupled equations contain a non local exchage interaction, i.e. J the 

coupled equations are coupled integro-differential equations. The ways 

which have been proposed to handle this exchange interaction(14,15) seem 

3 
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difficult to implement in the 3 dimensional case. 

In this work a easier and more general approach is explored. Here 

the total wavefunction is expanded in terms of the non-reactive 

scattering wavefunctions in all arrangements. It is discovered that the 

exchange interaction kernel obtained is energy independent, i.e., it has 

the character of a potential interaction. It is' also of practical 

significance that within this framwork all the numerical methods for 

treating the inelastic scattering can be readily applied to calculation 

of reactive scattering. 

II.b) Formulation 

To illustrate the methodology let us consider an atom-diatomic 

exchange reaction A + BC --+ AB + C, AC + B. The extension to more 

general reactive systems should be straightforward. We assume that using 

the Born-oppenheimer approximation to seperate 'the electronic and 

nuclear motions is valid, and the resulting ground electronic state 

potential energy surface V is known. It is further assumed that there 

are no low -lying excited electronic states nearby in the energy range 

we are interested in, i.e., the electronic excitation is excluded. Let 

Ka be the position vector of A with respect to the center of mass of BC 

and ra the position vector of C with respect to B. The vectors r b , Rb 

and r c ' Rc are similarly defined, as indicated in Fig.(I.l) The a =a, b, 

c, is used as arrangement index with a= (A + BC) and b= (B +CA) and c= 

(C +AB). The reduced channel mass ~a and the reduced internal masses rna 

with a = a, b, c, are 



mb "'me mA / (me + mA), 

mc - mA mB / (mA + mB)' 

IJa 
,. m

A ( mB + me ) / M, 

IJb -IDa (me + mA ) / M, 

IJc - me ( mA + ms ) / M, (II- 1a) 

with 

" 
M - mA + mB + me (II- 1b) 

where mA' mB' amd me are the masses of the atom A, B, and C, 

respectively. Two other sets of coordinates which we could use are the 

three Euler angles (ea'~a'~a) with (ea'~a)=ia= Ra / IRal, and ~a =twist 

about Ra , which orient the triangle formed by the three atoms in three 

dimensional space and three additional coordinates either (ra ,' Ra , Ya ) 
A A 

or (R a , cos Y ... = R eRa·' and aa a .. ... 
cosYa - raeRa' which specify the size and shape of the triangle. Then, 

it is easy to show that the volume integral reads 

J d T = J R2 dR J r2 dr J sin e de J sin Ya dy J d~ J dq, a a a a a a a a a 

... c J R2 dR J R2 ... dR ... J sin Y ... dy ... J sin e de J d~ J d~ a a a a aa aa a a a a 

- J R2 dR J dp a a a 
(II- 2a) 

where c ... -3 
sin Yaa"" (II- 2b) 

with 

(Il- 2c) 

and 
J dp - J r2 dr J a a a sin Ya dy J d~ J sin e de a a a a 

2 
= c J R dR J sin y ... d Y .. J d 4l J sin e de J d ~ a a aa aa a a a a 

(Il- 3) 
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The Hamiltonian for the three atom system can be written as 

p2 
R 

H - a + ______ ~ + ( V - v ) + h 
2 lAa 2 lA R2 a a 

where PR is 
a 

a a 

the translational radial momentum operator, 
, 

(II- 4) 

La is the 

orbital angular momentum operator, va is the potential for the diatomic 

molecule and ha is the Hamiltonian for the diatomic molecule. 

Now let I 4>-: ) be a common eigenvector of the square of total 

2 angular momentum J , the component Jz of J on the space fixed z axis, 

the square of obi tal angular momentum 

diatomic molecule h a , i.e., 

L 21 4>JM) = t (.t + 1) I 4>JM ) aan aa aD 

h I A,JM) "Da I A,~) a '1'011 = c. '1' ....... 

L2 and the Hamiltonian of the a 

(ll- Sa) 

(II- 5b) 

with D denoting a set of quantum numbers. If JM 
uan+a~D~> is a vector in 

the subspace Rat then the total wavevector of the system can be expanded 

in terms of the direct product states > in all 

arrangements 

I '1') = I (ll- 6) 
a,D 

.. 
with a = a,b,c. Then from the Schrodinger equation it is obtained that 

o < $-: I H - E 0 I 'I' > 

6 
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= L 
a' ,n 

+ 1 <4>-: Iv-val4>~n~)lu!"+alnl) 
n 

(I1- 7a) 

with (11- 7b) 

where F.o is the total energy of the system. To write it in a more 

compact form with matrices we denote 

( H - E ) I 
o 

(II- Ra) 

wi th 

( 
I TR 0 0 

) a 

t - 0 I T 0 
I{h 

0 0 .1 TI{ ( r 1- Bh) 
c 

') 
[(V-v. )+Lo-_,/(2u.

1
R )] 0 

.] n c.1 

.) 

o I [(V-vh)+L-I/C2uhRh)] 

o o 

:111d (TT- He) 



( I 

(E o-ha ) 0 U 

) r - 0 I (Eo-h b ) 0 

0 0 I (E -h ) (U- 8d) o c 

where I is a unit matrix. Then the Eq.(II-7) can be written in a matrix 

form 

oro - E ) u = v u ex (U- 9a) 

with 

0'0 _ 'f + VO (U- 9b) 

(U- 9c) 

Vex - ~T l (H-E 0) Xl •• (U- 9d) 

and 

K _ I E -e: 
o. 

(II- ge) 

where the superscript T denotes the transpose and the matrix e: is 

diagonal. with elements 

e: ~ ~ an. a n e: a 
<5 ~ <5 ~ n a. a n. n (II- 90 

the matrix X has no diagonal elements in arrangements 

an, 
~ = (l - <5 ~) 

an a, a 
(U- 9g) x 

while the matrix Y is diagonal in arrangement 

y ~ ~ 
an. a n <5 ~ a, a 

(11- '1il) 

."; 

w 

" 
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and the matrices u and t are defined by 

.~ 

U
JM ) b an +a"'o'" , a :z a, ,c (II- 91) 

and 

(II- 9j) 

If uO is the solution of the homogeneous equation 

( II-lOa) 

and a matrix operator is introduced 

(II-lOb) 

then the slution of Eq.(lI-9a) can be formally expressed as 

(II- 11) 

where 

T _V +V c;ov 
ex ex ex ex 

+ \Y Co \Y (;0 \Yex + 
ex ex 



=: 

(II- 12) 

Substituting Eq.(II-12) into Eq.(II-ll) gives 

,... 
u .. U-0 -+<:0 ( 1- V ao )-1 V 0'0 

ex ex (II- 13) 

According to the definition the exchange kernel Vex seems dependent on 

energy. Fortunately, in Eq. (11-13) instead of Vex we can use another 

matrix v which is energy independent and has the character of a 

potential. The v matrix is obtained from the definition of Vex by using 

Eqs.(II-Ba),(II-9c),and (II-lOa) 

(II- 14) 

with 

10 



- .T X [( 0' - • .T Y 0' J. 

( II-15a) 

and 

v:: [ X - X • .T Y J V (1I-15b) 

To see the physical meaning of the matrix w, we write out the element of 

matrix v 

Wan, a"o" = {:.JM I V I.+.JanM > 
't'a"o" -va" 't' 

for a = a" 

JMI JM JM I I JM - I <tP tP ...... ><tP ...... v-v .. tP .... > for a*a" • .... an ao ao a ao 
D 

(II-15c) 

Eq. (11-15c) states that the exchange kernel consists of two parts: the 

first part <tP!! I V - va" I tP~o" > is the direct exchange interaction 

between the states in different arrangements; while the second term on 

the right side of Eq.(11-15c) is the indirect exchange interaction via 

the intermediate states in initial arrangement. 

Similarly by using Eq.(II-IOb) one obtains 

- V c;o = II X (H- E ) J • ao 
ex 0 

11 
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= S' + V C:O (II-16) 

where 

S' = (tT x t) is the overlap between the basis states in different 

arrangements since the elements of matrix S are 

{ 
0 for a 1: a'" 

S' ao, a"'o'" ... 

< 4>-: I 4>~~o'" > for a 1: a'" (II-l7) 

Using Eq.(II-15) and Eq.(II-13) in Eq.(II-16) gives 

-u .. U'0 - C'0 ( I +S' + v Co ) -1 W 11° (II- 18) 

In position representation {1n R subspace) Eq.(II-9a),Eq.(II-I0a) and 

Eq.(II-I0b) reads as 

(II- 19) 

(ll- 20) 

and 

cS(R, R"') (ll- 21) 

where 

HO _ T(R) + VO (R), (II-22a) 

with 

(I1-22b) 



an, a"'o '" 
(R ) _ 

Yex(R,R'" ) has the elements 

v '" ",(R,R"') _ R <R I (V) '" ",IR'" "'> R'" '" 
ex CD, a ° a a ex an, a ° a a 

° '" G (R,R ) denotes the Green's functions with 

GO '" ",(R,R"') _ 
00, a ° R <R Ie '" '" IR'" '" > a a a,o,a ° a 

the wavefunctions u(R) are 

u an , a"'o'" (R) - Ra < l<.a I u-: +a"'o'" > 

6(R,R"') is a~diagonal matrix with the elements 

o '" '" (R,R"') = oCR ,R "') 0 '" 0 '" an,ao a a a,a 0,0 

the nonreactive wavefunctions uO(R) are 

u ° '" ",(R) _ R <R I 
00, a ° a a 

oJM 
U an + a"'n'" > 

and the elements of f dR'" Vex(R,R'" ) u(R"') are 

R'" 
a'" 

13 

(lI-22c) 

(1I-22d) 

(lI-22e) 

(1I-22f) 

(1I-22g) 

(1I-22h) 
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(II-22i) 

Here the unity identity has been used, i.e., 

I = J dR R jR><RI R, 

where 

(II- 23) 

By using definitions, Eqs.(11-22e), (11-22f), (11-22h), and unity 

identity, Eq.(I1-23), Eq.(11-18) in position representation becomes 

u(R) - uO(R) - J dR'" GO (R,R'" ) Z(R"') (II-24a) 

where 

(II-24b) 

where v(R,R"') has the elements 

w ...... (R,R"') _ R (R I; ...... IR'" ... > R ... 
an, a D a a aD, a D I a a 

(II-24c) 

Now let fO(R) and gO(R) be the regular and irregular solution of Eq.(11-

20) with real boundary conditions, i.e., 

fO(O)=O, lim fO(R)=lim J(R) + N(R) KO 
+ Si(R) + C(R)~o (1l-25a) 

R+<D R+<D 

and 



.,. 

lim gO(R) = lim N(R) + C(R) 
R...... R ...... 

(1I-25b) 

where o K is a constant matrix , J(R) and N(R) are given by 

Jan, a"o .. (R) 

N "o .. (R) an, a 

... 
) 1/2 ~a,a" ~o,o" for open channels , =r La (k..,Ra)/(vaD 

1t
a
+l/2(k anRa) (~~aRa)1/2~a,a" ~o,o" for closed channels, 

(II-26a) 

for open channels , 

~o 0" for closed channels, , 
(II-26b) 

is the translational velocity, 1t+l/2 and Kt +1/ 2 are the modified 
... 

spherical Bessel functions of· the first and third kinds, j t amd nt are 

Riccati-Bessel functions, the elements of matrices Sl(R) andC(R) are 

Si .... an, a n 

c .... = an, a n 

=lll/(V an)1/2) sin(kanRa-ta~/2) ~a,a" ~o,o" for open channels 

L1/(2v an )1/2] exp(kanRa) ~a,a" ~o,o" , for closed channels 

(1I-26c) 

[-1/vanl/2]cos(kanRa-ta~/2) ~ .. ~ .. for open channels a,a 0,0 

[1/(2v l'2 )exp(-k R) ~ .. ~ .. 
an an a a,a 0,0 

for closed channels • 

(1I-26d) 

Then it can be shown (Appendix A ) that the Green's functions are 

15 
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(2/y.2)fo(R) 

= I (2/~2)go(R) 
for RoO > R 

for R > R" 

(II-27a) 

(II-27b) 

where superscript T stands for transpose, and the matrix version of the 

Wronskian vr of two solution fO(R) and gO(R) is defined by 

(II- 28) 

where prime denotes the derivative with respect to R. It should be 

noticed that the Wronskian matrix is a constant matrix (for details, see 

Appendix A). Especially, for the choice of the boundary condition 

Eqs.(II-25) it is equal to the unit matrix. From Eqs.(II-24), (11-25) it 

is obvious that the regular solution of Eq.(II-19) for reactive 

scattering in the asymptotic region takes the form 

lim f(R) = lim fO(R) + lim gO(R) K1 
R+'" R..... R ..... 

= Si(R) + C(R) KO + C(R) Kl 

S1(R) + C(R) K (11-29a) 

with 

K - KO + l{l (II-29b) 

where 

Kl= -(2/'112 ) fdRfdR" fdR .... foT (R) 

R<RI(1 + ~ + ~o)-lIR">R 
.. 

fO(1{ .... ) w(R" ,R .... ) . (Il-29c) 

16 
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It is very crucial to find out a way to calculate 1(1. Our strategy is 

that first one expands the inverse matrix operator into a geometric 

series. Then all the integration is carried out by the trapez6idal rule, 

i.e., the approximation 

(II-30a) 

(II-30b) 

and 

Rat (R at I Rat;> Rat .- == ~ <5 i , i .- (II-3 Oc) 

is used. Here lJ. is the grid spacing. If lJ. has a same value for all 

integrals in Eq.(II-29c), the 1(1 can be expressed as 

(II- 31) 

o where f (R) is a matrix whose elements are 

o 
f iem,i "'OIl'" -

o 
f '" ",(Rai,Rat ",) <5 '" em, a n a,a (II-32a) 

the elements of Green function matrix GO are 

o 0 
Gi i"' ...... :: G ... ",(Rat,Rat ... ) <5 '" em, a n em, a n a, a 

(Il-32b) 

the overlap matrix s is defined by 

17 
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(II-32c) 

and the elements of v are given by 

(II-32d) 

Thus, solving Eq.(II-20) with the boundary condition, Eqs.(II-25), for 

and using Eq.(II-31) to calculate Kl, one can 

determine L Physically, we are only interested in the wavefunctions 

foo(R) corresponding to the open-open channels which in the asymptotic 

region are given by 

(II- 33) 

where 51 00 , Coo and Koo are open-open submatrices of matrices Sl, C and 

K, respectively. Since Sloo and Coo are diagonal matrices, we have 

(51 00) an, a"o" ... 

[( l/vl/2) sin (kR - t w/2)] (Il-34a) 

(_1_ )1/2 cos(k R - 1. w/2) 0 .. 00,0" 
van an a a a, a 

1/2 [(- l/v ) cos (kR - t w/2)] an,a"o" (Il-34b) 

or 



.... 

Sloo = ( l/yl/2) sin (kR - ! w/2) (II-35a) 

(II-35b) 

where matrices Y, kR and ! are all diagonal with elements 

v ~, _ 0 ~o , v 
an, a 0 a, a 0, a an (II-36a) 

(II-36b) 

t ~, _ 0 ,0 ~ t 
an,ao a,a o,a a (II-36c) 

By using Eqs.(II-35), Eq.(II-33) becomes 

lim foo(R) = ( 1/yl/2) sin (kR - ! w/2) - (1/yl/2) cos (kR - ! w/2), 
R-

or 

= ( 1/yl/2) exp(-i(kR + ! w/2)](Koo + 11)/2 

- ( 1/yl/2) exp( i(kR + L w/2)](Koo - il)/2 

lim foo(R) 2i(1 - i Ito )-1 :: 
R+~ 0 

( 1/yl/2) exp(-i(kR + t w/2)] 

+ ( 1/vl/2) exp( i(kR + ! w/2)](I+iKoo )(I-iKoo )-1 

(II- 37) 

(II- 38) 

On the other hand we know that the outgoing wavefunction satisfies the 

boundary condition : 

lim f+(R) - ( 1/yl/2) exp(-i(1tR + ! w/2)] 
R+~ 

19 



+ ( 1/v1/2) exp[ i(kR + t ~/2)] S (II- 39) 

where S is the scattering matrix. Comparing Eq.(II-39) with Eq.(II-38) 

one obtains 

+ -1 f (R) - foo(R) 2i(1 -i~oo ) (II-40a) 

(II-40b) 

II.c) The distorted wave Born approximation (DWBA). 

The distorted wave Born approximation basically is a first order 

quantum mechanical perturbation theory. In the threshold region of a 

chemical reaction with an activation barrier, the reactive cross section 

is small compared to the nonreactive cross section. In the formulation 

above the exchange kernel is the interaction "causing" the reaction. It 

is conceivable that' the exchange kernel Vex is small relative to the 

direct interaction ~o in the threshold region. Thus, one should be able 

to describe the tunneling behavior of the threshold region 

perturbati vely in the framework developed above. Applying the DWBA to 

Eq.(II-11), i.e •• using i ex for Tex gives 

u _ \1'0 + co f[ 0'0 
ex (II- 41) 

The corresponding approximate expression for the regular reactive radial 

wavefunction 1n the asymptotic region becomes 

11m feR) - Si(R) + C(R) KO + C(R) ~WHA 
R+CII 
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- Sl(R) + C(R) KDWBA (II-42a) 

where 

KDWBA l{0 + 1 - K DWBA (II-42b) 

with 

1 
KDWBA = foT v fO (II-42c) 

Then, the corresponding DWBA scattering matrix SDWBA reads 

SDWBA 

o 0 -1 1) 0 )-1 + i (l+iKoo)(I-iKoo ) (K DWBA 00 (I -i Koo 

_ SO + SDWBA 
r 

(1l-43a) 

where the terms which are higher than quadratic in K~~BA have been 

neglected, 

is a non-reactive scattering matrix, and 

scattering matrix 

SDWBA is 
r 

(II-43 b) 

a DWBA reactive 
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• (II-43c) 

II.d) Sample calculation ----- H + H2 collinear reactive scattering. 

To explore the use of this approach for reactive scattering we 

apply the formalism developed above to the standard test problem --- the 

collinear H + H2 reaction on the Porter-Karplus potential energy surface 
(16) 

e 

In the collinear case there are only two arrangements. It is 

straightforward to obtain the formalism for collinear A + Be reaction. 

The unity identity reads as 

I :: f dR I R)<R I ' 
with 

(Il-44b) 

The wavefunctions u(R) are 

(Il-45a) 

and the non-reactive wavefunctions uO are 

(II-45b) 

The Green~s functions take the form 

GO ~ ~(R,R~) :: <R I CO ~ ~IR~ ~> 
(»'l,an a an,an a 

( II-45c) 

22 

.~. 



'.' 

the direct interaction potential matrix VO(R) has the elements 

° V .... (R) _ 
an, a n 

(II-45d) 

the elements of the exchange kernel Vex(R,R~) are 

V .... (R,R") _ <R 1<~aIH - E l~a:>IR" .. > [1 - 0 .. J 
ex an, a nan ° n a a,a 

(II-45e) 

Correspond1ng to Eq.(11-32c) and Eq.(II-32d), the elements of the 

overlap matrix 8 are 

a a" I 
s i 1 .... ~ - <Rat I <~ I ~ .. > R "i ~ >(1 - 0 .. ) an, ann n a a, a 

( II-45f) 

w1th 
dr 

a 
c - dR ~ 

a 
r

a 
.. 
i 

.. = r ~(R i,R "i" ) a a a 

(II-45g) 

and the elements of the v matrix are 

a a" \ 
= c ~n(rai){(V - v .. )~ .. (r "1") - L 

a n -a n .... 

x(1-c5 .. ) 
a,a 

( II-45h) 

where I ~~ is the vibrational eigenvectors of diatomic molecule. 
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wavefunction, fO(R), gOeR) and Green'#s functions, GO(R,R"'), with the 

boundary conditions 

fO(O) - 0, lim fO(R) + Si(R) + C(R) KO , lim gOeR) + C(R) 
R+ao R .... 

and (II-46a) 

GO (R,R'" ) - 0, lim GO (R,R'" ) ... real (II-46b) 
R .... 

where the elements of matrices Sl(R) and C(R) are 

Si an, a"'n ",(R) = 

and 

Can'.'n'<Rl-! 

with 

{ I 1/2 } ! sin kan R. van 6.,.' 6n ,n' for open channel, 

{exp[kanRa/(2vaniI2]} 6a ,a",6n,n'" for closed channel, 

(II-47a) 

{cosk R Iv 1/2 } 6 '" 6 an a an a,a n,n'" for open channel, 

(II-47b) 

(II-4 7c) 

where E~ is the vibrational energy corresponding to the state j~an> in 

arrangement a. The transition matrix S, then, can be calculated by using 

Eq.(II-40b) and Eq.(II-31). 

o '" One might expect that the Green's function matrix G (R,R ) could be 

readily calculated, since one could use the well developed methods for 

non-reacti ve scat teri ng to calculate the non-reacti ve scat tering 

wavefunction feR) and g(R). In practice, however, no methods seem 

available for computing the feR) and g(R) accurate enough th~t one could 
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o ' calculate the Greens's matrix G (R,R ) with reasonable accuracy. The 

basic difficulty comes from the exponential growing and decaying 

wavefunction for closed channels in f(R) and g(R). To avoid this 

difficulty one could put GO(R,R') in another form which only involves 

the log-deri vati ve matrices and the ratio matrices (for details, see 

appendix B), then many numerical methods for non-reactive scattering 

become applicable in calculating the Green's matrix o ' G (R,R ). Two 

numerical mathods--the renormalized Numerov method(7) and the method for 

integrating the coupled second order ordinary differential equations, 

i.e., the trajectory integrator program(l7)- have been used. It is 

found that the Numerov method is much more efficient than the normal 

integrator. For the same accuracy the former is about forty times faster 

than the latter. All results presented here are obtained by using the 

renormalized Numerov method described in Appendix B. 

II.e) Results and discussion. 

The calculations for the collinear H+H2 reaction on the Porter-

Karplus potential energy surface have been carried out by using both the 

exact and the DWBA formalism. Table II.l and Table II. 2 give the DWBA 

and exact results for various numbers of channels (i.e., vibrational 

states) used in the expansion for the non-reactive scattering 

wavefunctions. For comparison the results of other exact quantum 

calculations(18) are also included in Table 11.1 and Table 11.2. 

The most important feature seen in Table II.l and Table II.2 is 

that the results converge quickly with respect to the number of channels 

in term which the non-reactive wavefunction is expanded. In the low 
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energy region O. 4546ev), where the reactive transition 

probabilities are less than 0.1, the DWBA version gives excellent 

results in contrast to other DWBA reactive scattering calculations(l9-

26) which of ten seemed tilt f th ti o g ve poor resu s or e reac ve 

probabilities. The basic reason is that in their calculations the 

distorted wavefunction essentially described only elastic scattering in 

each arrangement, while our distorted wave function is the non-reactive 

scattering wavefunction which includes inelastic as well as elastic 

scattering wavefunctions. One might be confused by the apparently 

unreasonable result that the DWBA values are better than the exact 

values in the low energy region. There are two reasons for that. First, 

al though the procedure for obtaining the non-reactive wavefunction are 

the same in both the exact and DWBA versions, in the exact version one 
-1 

-1 1 8 0 has to invert a huge matrix, M = (2 + - + W G) ,or more precicely, 
l!,. l!,. 

to calculate K-1w. Fortunately, wand 8 both are short range matrices in 

R. That is, if one divides the grids along R into two parts: the short 

range part P and the long range part Q, then in terms of the grid points 

in R the matrices 8, wand GO can be approximately written as 

o 
) (ll- 49) 

8pp 0 
( ) , and 8 = 

o o 0 

-1 Since w only has the block wPP ' one only needs calculate (M )pp. By 

using Eq. (1l-49) it is easy to show that 

-1 -1 
(ll-SOa) M w = (M )ppwpp 

and 

-1 _1 + 
8 pp -1 

( 
0 

(II-SOb) (M )pp 
l!,.2 

-+ wpp Gpp ) 
l!,. 
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All the exact results presented here are calculated by using Eqs.(II-50) 

in which the short range P is about 40% of the whole range. However, it 

should be pointed out that Eq.(II-50a) is only an approximation. In the 

low energy region vpp itself is small, thus, one has to extend the 

region P over the whole range to obtain accurate results. Due to the 

limitation of the computer capacity such a whole range computation has 

not been done yet. On the other hand, in the DWBA calculations .the whole 

range matrix v is used. Second, in exact calculation the trapezoidal 

rule has been used in the integrations, while in the DWBA calculations 

the Simpson's rule was used. 

In the middle energy region (O.8ev>E o>O.4546 ev) the exact version 

works very well, while the DWBA version begins to fail as one knows it 

must. This shows up in the present calculations by a lack of convergence 

in the reaction probabili ty as the number of channels in the non

reactive distorted wavefunction is increased. For the exact calculation 

in the high energy region (Eo>O.8ev), where more than two channels are 

open, the number of grid points and the number of channels in the non-

reactive wavefunctions required for obtaining converged results 

increase. This is an undesirable flaw, since the computing time is 

approximately proportional to the cube of the product of the number of 

grid points and the number of channels. Nevertheless, this approach is 

very general, straightforward and easy to implement. 
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Ill. The semiclassical perturbation (SCP) theory in dynamic calculations 

of polyatomic system. 

III.a) Introduction 

As one has seen from the discussion above, the exact quantum 

calculations for inelastic and reactive molecular collision processes 

requires rather substantial amount of computational labor even for the 

simplest nontrivial case of A + BC collinear collision. For a large 

molecule, such as a small hydrocarbon, even approximately solving 

.. 
Schrodinger's equation is s till an intractable problem. Semiclassical 

mechanics-- e.g., multidimensional WKB methods like the classical S-

matrix theory ( 'l.7 ) -- in principle, provides an appealing alternative, 

approach, since it combines the computational simplicity of classical 

mechanics with an approximate description of quantum effects. In 

practice, however, for a' polyatomic system the exact semiclassical 

mechanics approach also is too involed to implement. Besides the 

difficulty with the dynamical calculation the enormous ab initio quantum 

chemistry calculation required for a polyatomic system makes it 

impossible to determine the complete potential energy surface needed. 

In Ught of the great difficulties encountered in exact 

calculation, in this chapter we explore the application of the 

semiclassical perturbation theory in the dynamics of polyatomic 

molecule. It is our hope that the approximate semiclassical theory 

combined with the approximate interaction models for a polyatomic system 

would lead to a simple and amenable formalism by which one would be able 

to obtain a reasonably good understanding of the dynamics of the system 

of our interest, i.e., the quantities which characterize the dynamic 



processes are all quantitatively obtainable in a ab initio , but simple 

and straig~tforward way. 

III.b) The semiclassical perturbation approximation for the classical S-

matrix 

The formalism of the first order perturbation approximation to the 

. (28) initial value representation of the classical S-matrix theory for a 

very general class of potential interaction has been discussed by Miller 

and Smi th (29). Here we generalize the formalism to the more general 

cases where there is kinetic coupling as well as potential interaction. 

Consider a system of F degrees of feedom. The classical Hamiltonian 

of the system reads 

P 2 

H(Ps,s,o,q) - 2~s + Vo(s) + £(0, s) + H1(Ps ,s,0,q) 

- H (P ,s,o) + H
1

(P
s

,s,0,q) (III- 1a) o s 

with 
p2 

H s + V (s) + £(o,s) (III- 1b) - 2~ 0 0 

where (P s' s) are the coordinate and momentum for a special degree of 

freedom (e.g., the reaction coordinate), ~ is the reduced mass related 

to the motion s, £(o,s) and (o,q) ={(ni,qi)}' i=2, ••• ,F, are the 

Hamiltonian and the actlon- angle variables for the remaining F-1 

degrees of freedom. The initial value representation for the classical 

S-matrix is given by(2ti) 
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2 'IT d!. d g z< g 1 ,9 1 ) 1 / 2 
f F 1 [d ] exp i{~(gl' n 1 ) 
o (2'IT) - 91 

(II 1- 2a) 

with 

(I II- 2b) 

o 
where qo is the zeroth order values of the angle variables q defined 

variables !I and 0 determined by the classical trajectory with the 

init ial values gl and 01 ' and the action ~(!ll ,al) is more precisely 

desi·gnated by 

(III- 3) 

The zeroth order values 
o 0 0 0 

Ps ,s ,q and n are determined by the zeroth 

order Hamiltoninan, i.e., 

·0 
n 

·0 
q 

·0 
S 

o o , 0 (t) 

o 0 
d£(m zS )= 

0 
d n 

dH 
0 

0 --,", P 
3P 

0 s 
5 

0 
fII( s ), 

·0 
P 

s 

0 
q = 

dH 
0 

dS 

If we choose c '"' 0, then one obtains 

t 

f w[s (t')] dt'" • 

to 

( II 1- 4a) 

t 

f w[so(t')] dt' + c, (III- 4b) 
t 

0 

(III- 4c) 

(I 11- 5) 

From Eq.(lIl-2b) and Eq.(lll-4b) it is obviolls that to zeroth order, g 
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are the constants, i. e. , 

0 0 0 0 
SI '"" q qo = const. = Sll 

and thus (IlI- 6a) 
t 

0 + 0 a + J dt'" fAI[s (t "')]. q - 91 qo 91 
to 

(IlI- 6b) 

If we treat HI as a small perturbation relative to Ho' then to first 

with 

t2 

02(g1,01) a 01 + J dt 
t1 

a.1~ 
= ° ---

I 3g1 

00:0 + 
1 

(IlI- 7a) 

(lII- 7b) 

The deri vati ve of the action integral ~(91' 01) wi th respect to 91 is 

given by 

where Sl2 is determined only to zeroth order: 

(III- 9) 

Integrating Eq.(III-~) gives 
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2 a ~~(gl,Dl) 
gl 2 

ag
1 

2 a ~~(gl'Dl) 
2 

ag1 

(III- 10) 

where ~o is the value of ~(gl'nl) if HI ... 0, i.e., ~o is the zeroth 

order WKB phase shift 

o 82 0 
~ = -sP I + J P (s) ds 

o s sIs 
(III- 11) 

Substituting Eq.(III-9),Eq.(III-I0) and Eq.(III-7a) into the initial 

value representation Eq.(III-2a) one obtains 

e 

(III- 12) 

As it stands, the S-matrix in Eq.(III-12) is not symmetric (as the exact 

S-matrix is) and it can be symmetrized in following way: 

(III- 13) 

The symmetrized version of the perturbation approximation of the 

classical S-matrix thus reads 

i~ o 
2 'IT 

J 
o 

e e ( III-14a) 

(1l1-14b) 
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t 

dt H1{SO(t~), P:(t~), 91+ J 
to 

dt wlso(t~)], nJ 

(III-14c) 

where sO(t) and P~(t) are determined by Eq.(III-4c). 

III.c) The semiclassical perturbation (SCP) reaction path model 

As already mentioned, to obtain a complete potential surface for a 

polyatomic system is an unfeasable task. However, the advance in ab 

initio quantum chemistry has provided us with the methods for the 

accurate and efficient calculation of the gradient of a potential energy 

surface(30). This has made it feasable to determine the reaction path on 

a potential surface. This is the path of steepest descent (if mass-

weighted coordinates are used) from a saddle point on the potential 

surface to various minima 

The reaction path Hamiltonian model developed by Miller, Handy and 

Adams(31) is based on the reaction path and a harmonic approximation to 

the potential surface about it. The model states that a classical 

Hamiltonian for a general non-rotating molecular system can be 

constructed as 

H(P ,s,n,q) 

1 F 1/2 ~ ~(s) 2 

2" P - L Bk k ~(s) [(2nk+l)(2nk~+I)] ( ~(s) sinqkcosqk~)} s kzk ~= 2 ' 
F 2nk +1 

)1/2 2 
1 + L B (s) ( ~ (s) sinqk] 

k=2 k,1 

F 
+ Vo(s) + L (n + 0.5) ~(s) 

k=2 
(I II-15a) 
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where F - 3N-6 with N being the number of atoms of the system; (s,Ps ) 

are the reaction coordinate along the reaction path and the conjugate 

momentum; (n,q), k-2, ••• , F, are the action-angle variables for the 

normal modes of vibrations normal to the reaction path with the 

frequencies Uk, which are functions of the reaction coordinate S; Vo(s) 

is the potential energy along the reaction path; the coupli-ng elements 

Bk,k~(s) for k * kl describe the coupling between the (F-I) vibrational 

modes induced by motion along the reaction coordinate, and Bk,I(s) 

couples vibrational mode k to the reaction coordinate (which is 

designated mode k - 1). The coupling elements Bk l(s) are a measure of , 
how the curvature of the reaction path couples to mode k. The total 

curvature of the reaction path K is related to these elements by(29) 

F 
K(S) = [ I 

k=2 
(IlI-ISb) 

The coupling elements Bk,k(s) are due to the change of the frequencies 

of normal modes along the reaction path: 

"'k(s) 

2~(s) 
(III- 16) 

where the prime denotes the derivative with respect to s. The coupling 

functions as well as vo(s) and {~(s)}, k =2, ••• , F, are obtainable from 

the ab initio quantum chemistry calculation of the reaction path and the 

(31) . force constant matrix along it. The Hamiltonian for nonzero total 

angular momentum has also been derived(31) ,but it is more complicatedo 

If all the coupling elements are small, the reaction path 

Hamiltonian Eq.(111-21) can be approximated to first order as 
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H(P ,s,o,q) 
s 

'" H (P ,s ,!III) 
o s 

+ HI (P
s 

,s,o,q) , (III-17a) 

with 

1 2 F 
1 

H (P ,s,o) .. -P + L (n
k 

+ "2 ) ~ (s) + V (8) , o s 
2 

s 
k- 2 

0 
(III-l7b) 

and 

p2 
F 2~ + 1 1/2 

H
1

(P
s

,s,D,q) I \. 1 (s) ( 
~ (s) 

) sinqk s 
k-2 

, 

F 

- P I s k, k"'s 2 

~ ... (s) 1/2 

'\(s)] sinqkCOs q
k 

... 

(III-17c) 

Now we apply the semiclassical perturbation formula Eq. (III-14) to the 

approximate reaction path Hamiltonian Eqs.(III-l7). First, we rewrite 

Eq.(III-14c) as 

t2 s2 

f dt H = f ~ H 1 • 1 
(III- 18) 

s 

It is necessary to determine 
. 
5 and only to ze roth order by 

Eqs.(III-4): 

aH t .....,a"...~-= ±{2[E - V a(s)] /2:: ± / p~1 ' 
s 

and (III-19a) 

0 
t 5 W

k 
(5) 

qOk Z f ~ [s(t"')] dt'" '" f ds , 

to So ±/ p~1 
(III-19b) 

with 
F 

1 V (s) Z l: (n
k 

+ -2-) wk(s) - V (s) 
a k ... 2 0 

(III-19c) 

where Va(s) is the vibrationally adiabatic potential. By using Eqs.(III-

18)-(IIl-19) in Eq.(IIl-14) the semiclassical perturbation expression 

for the classical S-matrix reads 
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where 

GO 

i4l o 

+ i f d8 I P ~(8) I 
-GO 

o 
P (8) 8 

8 

2lT 
f dq exp{ -i ~n q 
o 

(III-20a) 

8 1- -GO • 

(III-20b) 

If one negelects the coriolis coupling Bk k"'(s) (they are often less , 
significant than the curvature couplings Bk 1(8) and the frequency , 
couplings Bk k(s», the S-matrix given by Eq.(III-31) takes an , 
especially simple form: 

i 4l 0 F 
= e IT 

2lT 
{ f 

ilyklsin(qk+ok) 
e 

k=2 o 

(III-21a) 

where 

(III-21b) 

(III-2Ic) 

and 

(III-21d) 

Introducing the identities 
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co 2'Tf 
1 = L J dQk O(Qk - 2qk -2m1T) 

m=-co 0 
for 0 " qk" 2'Tf , (IlI-22a) 

co co co 
L O(Qk- 2qk- 21Tm)" L 

m~-co m~-co 

L exp[- itk(Qk- 2qk)] 
t=-

(IIl-22b) 

and interchanging the order of summation and integration, one can 

integrate Eq.(111-21a): 

= e 
i~ F 

o II 

k=2 

i~ F 
.. eOn { 

k .. 2 

il"Yklsin(qk+ok) 
e 

where the regular Bessel functions. Then the 

transition probability is given by 

F 

P (E) - II I 
°2+ °1 k ... 2 

where J~ is the regular Bessel function. 
k 

If 

~= 0 contributes to the sum, and one has 

so that only the term with 

(IIl- 25) 

On the other hand, if the reaction path is approximately st raight, so 

that Yk" 0, k=2, ••• , F, the only terms which contri butes to the sum 

1s ~ = Mk/ 2 • Since i k are integers, tmk are requi red to be 
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even, and 

(II1- 26) 

i.e., without reaction path curvature, there is a selection rule: 

lln ... 0 ±2 ±4 .•. k ' , , 

The semiclassical perturbation reaction path model can also be used to 

describe tunneling through a transition state (i.e., saddle point) 

region of a potential energy surface. For the total reaction 

probablli ties 

the closure relation 

GO i~(q-q "") 

L e 
t.n=O 

and Eqs.(11-20) give 

21T 

J 
o 

(II1- 27) 

F-l 
= (21T) o(q-q""), (111- 28) 

(111- 29) 

The action integral ~o and ~~(q) are complex inside the barrier region, 

i.e., where E < Va(s), so that Eq.(111-2Y) becomes 

e 
-i 8 

o 
-2~8(q) 

e (IIl-3Ua) 
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where 60 is the vibrationally adiabatic barrier penetration integral 

(III-30b) 

and 46 is the first order correction due to the curvature of the 

reaction path and the frequency change along the reaction path 

(III-31a) 

with 

6 -1 

1/ F _ 1/2 0 
- E]} 2 L Bk l(s) [Ill. (s)] coshqok ,(III-31b) 

k'"'2' K 

s) F ~ (s) 
f ds L 0 

62 2,\(s) sinh2qok 
s< k=2 

and 

(III-31c) 

s '\(s) 
0 

f qck .. ds 
E]/h 

, 
0 {2[V (s) -a 

(III-31d) 

where s< and s) are the left and right classical turning points at the 

barrier, and the quantum number n has been set to O. With Eq.(III-31a) 

for 46(q) the integral in Eq.(III-30a) is easily performed to give 

-26 o 
GIl 

(lll- 32) 

where 12.t and I R. are modified Bessel functions of the first kind. One 

-26 
notes that e 0 gives the vi brationally adiabatic zero curvature 

tunneling probabi 11 ty and the remaining factors in Eq. (11l-3 2) provide 

the corrections. 
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III. d) Sample calculation: collinear He + H2 inelastic scattering. 

To illustrate the accuracy of the SCP reaction path model, 

calculations have been carried out for one of the standard inelastic 

scattering benchmarks, namely the Secrest-Johnson(32) collinear model of 

He + H2 vibrationally inelastic scattering_ This is a nonreactive 

process, but it is nevertheless possible to treat it via the reaction 

path model. 

In dimensionless units, the Secrest-Johnson(32)Hamiltonian is 

p2 2 2 
H(P R P r) - ---- + 2- + ~ + expla(r - R)] , , , 2u 2 2 (III- 33) 

and u -2/3, a = 0.3 for the He + H2 case, where (R,P) are the 

cartesian coordinate and momentum for the translational motion of He 

atom relative to the center of the mass of H2, and (r,p) are the 

cartesian. coordinate and momentum for the vibrational motion of the 

molecule H2- Figure (III-I) shows a contour plot of the potential 

surface V: 

V(r,R) -
1 
2 

2 
r + exp l a(r-R)] 

in the mass-weighted cartesian coordivates 

x -~ R, Y - r 

(III- 34) 

(I1I- 35) 

and the paths which were determined by following the gradient of 

potential V down from different initial points high up on the repulsive 

wal L. As it is shown. all the gradient paths converged to a "reaction 

path" which is essentially independent of the initial position over the 
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energy region of interest. According to the standard procedure(31), the 

curvature I<:(s) and the normal mode frequency w(s) along the "reaction 

path " were determined. The reaction path Hamiltonian for this system 

reads 

with 

and 

..l- [P +(n+ 1/ ) (w"'(s) 
2 s 2 w(s) 

H(P ,s,n,q) - I 
s [ 1 + (~~:~ ) /z I<:(s) 

p2 

) ]
2 

sinq cosq 

2 
sinq ] 

, 

H - -!...- + V (s) o 2 a 
, V (s) - (n+ 1/2) w(s) + V (s) , a 0 

(III-36a) 

(III-36b) 

H ... - p2 ( 2n+l) liz () i P (n+1/2) (w"'(s» i 1 s Ill( s ) I<: S S nq - s w( s ) s nq cosq • 

(III-36c) 

Since this is an inelastic scattering problem, the nonreactive 

trajectory in s determined by Ho ,is from s .. +00 to 0 (defined as the 

classical turning point) back to +00, rather than from s = -00 tos = +00 

as the reactive case. Accordingly, the Eqs.(III-21) becomes 

or 

and 

y -
00 2n+l liz 0 f ds f2(E - Va(s) I<:(s) (w(s» exp[-iqo(s)] (incoming part) 
o 

00 2n+l 1/2 0 
+ f ds' 2(E-V (s) I<:(S)(----(» exp[iq (s)] (outgoing part) o a w s 0 

00 

B :z f ds ~:~:~ (n+ liz) exp[-2iq~(s)] (incoming part) 
o 

... 
- f ds ~:~: ~ (0+ 1/2 ) exp [2iq~(S) J [outgoing part) 

o 

(III-37a) 
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or 

and 

.. 
Q - -2i J ds w"'(s) (n+ 1/2 ) i 2 0 
p 2w(s) s n qo 

o 

qO. jdS w(s) / {2[E -v (s)J}lh. 
o 0 a 

The vibrational transition prQbability is thus given by 

.. 
p - I I it 

n 2 + n 1 1--" 

(III-37b) 

(III-37c) 

(III- 38) 

In the present case lsi is so small that only the term with t = 0 makes 

a significant contribution to the sum in Eq. (III-38). So that one in 

effect has 

(III- 39) 

i.e., it is the coupling due to the curvature of the reaction path that 

causes the vibrational transition. The coupling due to the variation of 

w(s) has negligible effect. 

The results of Eq.(III-39) are given in Table (III-I) along with 

the exact quantum mechanical results of Ref.32. Some of these results 

are also shown pictorialy in Fig.(III-2). The SCP reaction path model is 

seen to provide a reasonable, semiquantitative description of the 

vibrationally inelastic process over a wide range of energies and also 

for large 6n transitions 

IIl.e) The SCP kinetic coupling model for the intramolecular vibrational 

relaxation and spectra of the local mode overtone in polyatomic 
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molecules. 

Another important aspect of polyatomic dynamics is intramolecular 

energy transfer, especially the vibrational relaxation of the local mode 

overtone, which plays a central role in the study of multiphoton 

excitation and bond selective chemistry. In light of the considerable 

interest in this area a great deal of experimental(33-34) and 

theoretical (35-39) work has been devoted to the investigation of the 

highly excited CH overtone states of polyatomic molecules. Here we show 

how the SCP approximation can be used to describe this problem 

quantitatively. 

An essential difference of the local mode overtone dynamics from 

the normal .mode study is that one has to be concerned with the large 

ampli tude of oscillation. In other words, the local mode has to be 

treated specially. We use the action-angle variables (ns,qs) to describe 

the local mode as a special degree of freedom s. The remaining F-l 

molecular degrees of freecom are described as a set of harmonic 

oscillators with the frequencies {wK}, k-2, ••• , F, with a set of action-

angle variables (o,q). Now suppose that the Hamiltonian of the system is 

approximated as 

H(n ,q ,D,q) - H (n ,0) + Hl(n ,q ,o,q) s s 0 s s s (III-40a) 

and 
F 

"o(n ,0) ::z e:(n ) + L (nk+ liz) Ill. • 
S s k=2 1<. 

(III-40b) 

If InsaO,a> is the initial state of the molecule -- and the state D of 

the normal modes will usually also be taken to be the ground state 0 

then the absorption spectrum I(w) is given by(40) 

43 



l(w) -
aD i(Eo + ){w)t/~ -iHt/~ 
J dt e <0,01 JJ e JJIO,o> , (III- 41) 

-aD 

F 
where Eo - £(n -0) + )( L C4 (~+ 1/2 ), and JJ is the dipole moment function 

s k-2 1(. 

of the molecule. As is usual, one assumes that JJ is a function only of 

the local mode coordinate, so that insertion of complete sets of states 

before and after the propagator in Eq.(I1I-41) gives 

-iHt/)i -iHt/)i 
<0,01 JJ e L <OIJJln ><n 01 e Ins~o><ns~IJJ/O> • 

~ s s n ,n 
s s (111- 42) 

If the local mode mixing, i.e., the terms with ns~*ns in Eq.(111-42), is 

neglected, then the absorption spectrum associated with the O+n 
S 

overtone of the local mode s takes the standard form 

I (w)... 1 <ns 1 JJ I 0> 12 
n ,0 s , 

aD itawt 
Jdt e C(t) with taw = 

-aD 
w - wn 0' 

s' 
(III- 43) 

where un 0 is the normal position of the O+ns overtone absorption line 
s' 

w c £(n ) - £(0) 
n ,0 s 

s 

and the correlation function C(t) is 

with 

E 

C(t) - e 

iE t 
n n 

s 

n n 
s 

.. e(n ) + ){ 
s 

-iHt/ ~ 
<nsnl e /nsn> 

(II1- 44) 

(III-45a) 

( lII-45b) 

In the framework of semiclassical mechanics the ini tial value 
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representation for the propagator is given by 

-iHt/ ~ 2~ dq 2~ dq 
<n D21 e In D > - I _s_ 1--

8 2 silO 2~ 0 (2~)F-l 

x exp{ -1. (t[D2(ql.q .n .D1).n (ql. q .n D1).D1.n ] 
~ 8 1 8 1 s2 8 1 8 1 . sl 

+ Ql[D2(Ql·qsl·Dl·nsl) - D2 ] + qSl [n82 (Ql·qsl,Dl,nsl) - n
s2

])} • 

(III- 46) 

By the same procedure as we used in section (III.b) it can be shown that 

with the SCP approximation to the propagator in Eq.(III-46) the 

correlation function Eq.(III-45a) takes the form 

2~ dq 2~ dQ i 
( 1_8 I [ (] C t) - F_lexp - u 6t t) 

o 2~ 0 (2~) " 
(III-47a) 

with 
t 

6f(t) - I dt-- Hl(n.q +w t--.D.Q+fltt--) • fit = {Ill. }.k =- 2 •••• , F , o s s S K 

(III-47b) 

and w:: £"-(n ) .where the prime denotes the derivative with respect 
S s 

are ready to be used to calculate the overtone absorption spectra of the 

local mode s. In fact, using the SCP reaction path model with the local 

mode coordinate as the reaction coordinate, one has obtained very 

compact, analytical expression for the line width of local mode 

overtone(41). In practice. however. for a polyatomic. molecule, even 

though reaction path model has reduced the computational effort 

significantly. it is still very time consuming to determine the 

interaction HI. In this practical perspective the kinetic coupling model 
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(42--44 ) proposed originally by Gribov(45) seems a more appealing 

approximate dynamic model. In this model the internal displacement 

coordinates, xi' i-I, ••• , F, i .. ee, the changes in bond lengths and 

bond angles, are used. One of the most important advantages of using 

internal coordinates is that in low orders of approximation, the 

anharmonic potential coupling terms between the local modes and the 

remaining degrees of freedom of the molecule, which are extremely 

difficult to determine, can be neglected. In the internal coordinate 

representation the kinetic coupling terms, resulting from the coordinate 

dependence of the effective mass on the internal coordinate motion, 

provide the dominant coupling responsible for the overtone line 

widths(44,46). The kinetic energy can be written in terms of internal 

coordinates in the form(47) 

1 
T ---2 

F 

I 
i,j 

(III- 48) 

where Pi are the momenta conjugate to xi and gij (x) are the Wilson G 

matrix elements which, in general, depend on the displacement coordinate 

x(47). The gij (x) can be expressed by a Taylor series expansion in the 

displacemint coordinates x about the equilibrium geometry x a 0, 

(III- 49) 

where o 
g ij are determined by the atomic masses and the 

equilibrium geometry of molecule .. Eq.(III-49) gives the kinetic energy 

to first order as 
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with 
F 

o 
= T + T 

1 
(III-50a) 

o F 
T ,. 112 I gij PiPj 

i,j 
and T 1 - 112 I (agij / 3'1t) '1t PiP. • 

i,j,k x=O J 
(III-50b) 

Let the internal coordinate Xs correspond to the local mode of interest, 

which to a good approximation can be described by a Morse oscillator 

with the Morse potential 

v -D(l-e 
s 

- a x s 

Then the potential energy can be expressed as 

V(x) = V 
s 

(III- 51) 

(III- 52) 

where the potential energy at equilibrum geometry has been chosen as 

zero. The classical Hamiltonian to the first order, thus, reads 

(III-53a) 

with 

( III-S3c) 

I I II 0 H - c x x + c XiXjXs + -2 g P P 
1 i~ is is i,j*sijs i*s is is 

(III-S3d) 
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In the internal coordinates the anharmonic potential couplings (the 

second term on the right side of Eq.(III-53d» usually are much smaller 

than the kinetic couplings(46) (the fourth term, on the right side of 

Eq. (III-53d». In the kinetic coupling model the anharmonic potential 

couplings are totally neglected. So that the Eq.(III-53d) becomes 

1 1 
(
3gij 

H ~ ~ 0pp +-2 ~ -) PP l~ L c i xix + 2 L gis i s L 3x
k 

~ i j 
i *s S s i *s i ,j ,k xaO 

(III- 54) 

The coefficients Cij in Eqs.(III-53) and Eq.(III-54) can be determined 

from the molecular force constants. Therefore, the kinetic coupling 

model makes the classical Hamiltonian easy to calculate. 

Now if we do normal mode analysis(47) for the Hamiltonian hand 

find the normal mode coordinates Qk' the corresponding eigenvalues ~ 

and eigenvector ~ with the elements Lik,i~I, ••• , F-l, then, the 

internal coordinates can be expressed in terms of the normal mode 

coordinates 

x ... 
i 

(III- 55) 

and the momenta Pi are given by 

(III- 56) 

where dot denotes the time derivative and the coefficients (L-1)t
it 

are 

related to elements Lit: 

and 
-1 
\j = 0ij , (III- 57) 
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where star * denotes the complex conjugate. Substituting Eq.(III-SS) and 

Eq.(III-S6) into Eqs.(III-S3)-(III-S4) gives 

with 

and 

-ax F-1 
H _ 1 g p2 + D(1 _ e s)2 + 1 I (Q2 

o 2 S8 s2 1-1 1 

H -1 I 
i*s 

I {( 
i,j *s 

F-1 

(III-S8a) 

(III-S8b) 

+! 
2 I I 

agij -1 t 1 t •• 
( ) L (L) (L - ). Q Q Q ax x=O kn i1 Jm 1 m n • 

1,m,n'"'1 i,j ,k*s s 
(III-S8c) 

The zeroth order Hamiltonian Ho con8istes of a Morse oscillator for the 

local mode and a normal mode "bath" for the remaining degrees of 

freedom. The H1 provides the couplings between them. According to 

perturbation theory it is known that the importance of the terms in H1 

depends on the frequency diffrence between the local mode and the bath 

normal modes. If the frequency of the local mode is close to the 

frequencies of the bath normal modes, then the first sumation in H1 is 

much more important than the last two. However, if the local mode 

frequency is about twice as much as the frequencies of the bath normal 

modes, then the second sumation is most important. The last sumation 

provides the coupling between the normal modes. 

To use the SCP formulae one carries out a canonical transformation 

from the local mode and normal mode coordinates to the action-angle 
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variable ns,qs and n,q with 

and 

q = {qk}' k - 1, ••• , F-1 

In terms of action-angle variables the normal mode coordinates Qk are 

given by 

(IIl- 59) 

and the local mode coordinate and momentum Xs and Ps are given by(48) 

-1 { -2 [1 -
2 1/ 

x - a log A (i-A ) 2 cosq 
s 

and 
(i 

2 1/ 
1 

(&) - A) 2 sinq 
P 

s s ----- 2 1/ 8 gss a [1 - (i - A) 2 cosq 
s with 

A-I - (n +1 ) a / (20/g ) 112 , 
s 2 ss 

and 
dh (n ) 

s s 
(&) - -~~~....;;..-... a 120g 
s ou ss 

s 

s 
1} 

h (n ) = -0).2 
s s 

(III-60a) 

(III-60b) 

(III-60c) 

(III-60d) 

where the units has been used such that ~=1. If the local mode overtones 

of interest are not too high in energy, i.e., ). .... 1, the Eq.(III-60a) and 

Eq.(III-60b) can be approximated as 

x 
s 

and P 
s 

Now 1£ the kinetic coupling model, Eqs. (IlI-S8), is used in the SCP 

expression for the absorption spectrum Eq.(IlI-43) and Eqs.(III-47), 
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.. 

then with the help of Eqs. (III-60) and Eqs. (III-61) the local mode 

overtone spectrum has the expression 

and 

with 

where 

with 

and 

with 

GO 

I (w) - l<n
s IJl lo>12 f dt eiwtC(t) , 

n ,0 s -
2'l1' dq 2w dq 

C(t) - f s 

6 (2'l1'l-1 
exp[ -if1~( t) ] 

0 2'l1' 

f1~(t) -

F-1 

= L W.t sin(qs-q.t+~.t) 
.t=1 

F-1 
II = I Z.tm sin [q -

.t,m=1 
s 

Z 
.tm 

- 1(2n +1)(2n +1) 
t m 

(q.t+qm) + a ] 
Rom 

_ ).2) 1/2 sin (1 
wtwm 4a w 

s 

(III-62a) 

(III-62b) 

(III-63a) 

(III-63c) 

(III-64a) 

W - (w + W ) 
s t m 

t 2 
- (w + w ) 

t m 
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and 
w - (W.,+ w

m
) _ ~ + __ ~S __ ~~N __ ~__ t 

2 2 

F-l 

III =.,I lYimn[AlSin(qn- qR.+qm+Yl)+A2sin(qn+qR.-qm+Y2) 
N,m,n-

with w -w +w 
sin( n ~ m t) 

Al :a 

A2 .. 

and 

w -w +w 
n R. m 

w +I.&).,-w 
n N m 

sin( 2 t) 

I.&) +w -I.&) 
n R. m 
I.&) -w -w 

sin( n 2 R. m t) 

W -1.&)-1.&) 
n R. m 

I.&) -w +w 
n R. m 

2 t" 

Y "" 11' -, 2 
w + w -w n R. m 

2 

w -w -w 

t , 

, 
_

.;::n~.;:R. __ m= 
Y - 11' - t • 3 2 

w 

w; 1} 
R. ss 

(III-64b) 

(III-64c) 

(III-65a) 

(III-65b) 

(IlI-65c) 

(IlI-65d) 

In many cases Eqs.(III-62) can be simplifed further. For example, if the 

local mode frequency is close to the frequencies of the normal modes, 

the the term I in Eq. (III-62c) provides the dominant contibution. So 

that the correlation function C(t) takes the form 

C(t) = 
211' dq 211' dq F-l 
J _s J .,=II1exP[-iW"Sin(qs-q,,+cS,,)] 
o 211' 0 (211'/-1 N N N N 

(IlI- 66) 

Introducing a new variable 

(IIl- 67) 

and using the identity 

1 - (IlI- 68) 
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one can perform the integrals in Eq.(III-66) and obtain a very simple, 

analytical expression for C(t) 

211' dq 211' dq 
C(t) - 1 _s I-~~ 

o 2'11' 0 (211'l-1 

where the relation 

2'11' . 
1 ...E.9. eiqn• 6 o 211' - n,O 

F-1 
.. n J o(W t) , 

t=1 
(IlI- 69) 

(III- 70) 

has been used and J k ' J o are the regular Bessel functions. Similarly, 
t 

if the local mode frequency is about twice those of the normal modes, 

then the dominant term II gives 

211' dq 211' dq F-1 
C(t) 2 I-_S 1 n exp[-iZ" sin(q - q,,-q +6,,)] 

O' i'll' 0 (2'11')F- 1.e,m_1 ~m s ~ m ~m 

(III- 71) 

where the same trick as that above has been used. 

III.f) Sample calculation: the CH(CD) stretch local mode overtone 

spectra of benzene(perdeuterobenzene C6D6). 

To demonstrate the use of the SCP kinetic coupling model the CH(DH) 

stretch local mode overtone spectra of benzene(perdeuterobenzene C6D6) 

have been studied. Benzene Is one of the very well studied molecules. 

The normal mode fundamental frequencies and the force constants are 

available in the literature(47,49,50). In benzene, as in most of 
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hydrocarbons, ·the hydrogen atoms vibrate along the direction of the CH 

bonds fairly uncoupled to the other motions in the molecule. So to a 

good approximation the hydrogen vibrational motions along the CH bonds 

can be treated as local modes. Besides, since the six CH bonds do not 

have common atoms, the direct kinetic coupUngs between the six CH 

stretch local mode motions are zero and it is also conceivable that the 

quadratic off-diagonal terms between the six CH stretch motions in the 

potential energy in terms of internal coordinates are negligible. So 

that to a good approximation the six CH stretch local modes can be 

treated as the six uncoupled anharmonic Morse oscillators wi th Morse 

potential V(xs ) - Dll-exp(-axs )]2, where 0 is the CH bond dissociation 

energy and a is the scaling parameter. Furthermore, the benzene molecule 

has the Dbh symm4!try and the six CH bonds are equivalent. Thus the 

problem can be further simplified to considering only a single CH 

oscillator interacting with the ring modes. Then, the Hamiltonian for 

the problem of the CH local mode overtone reads 

(1I1-7 2a) 

with 

and (11I-7 2b) 

1 1 (lll-iLc) , Uri - --
wh~re mH and mC are the masses of atom H and atom C, respectively. Here 

OJ 

only the fifteen in-plane normal ring modes are included, since there 

dr~ no coupling between the CH stretch local mode and the out- of-plane 

Ilorraal modes. HI consists of only the second term in Eq.(1II-62c), i.e., 

thek.inetlc coupling between the ell stretch xCH and the in-plane 



.. 

internal coordinates, due to the fact that because of the small mass of 

the hydrogen atom, the CH stretch mode has the frequeney (- 3000cm-1), 

considerably higher than the other modes (600-1600cm -1). The in-plane 

internal coordinates which are kinetically coupled with the CH stretch 

XCH are: the extension of the CC stretch coordinates xl' x6 and the in 

-plane CCH wag ~:KcHoB=XcHo('6-'I)/2, where 'I and '6 are the CCH bond 

angles and XcHo is the equilibrium length of the CH bond [see Fig.(lll-

3)]. By using the general formulae for the Wilson G matrix elements in 

Table Vl-l of Ref.(47) the kinetic coupling HI reads (for the details, 

see the Appendix C) 

(IlI-73a) 

with 
'if \.IC 

B1- -(- + - + XCHO X
CHo 

\.IC 
2X

CHO
) , B2- -If /(4XCHo )\.IC' B3=1.3/(4XCHo )\.Ic ' 

(1l1-73 b) 

where Pw' PI and P6 are the momenta conjugate to ~, xl and x6' 

respectively. With the interaction Hamiltonian HI given by Eqs.(111-73) 

the SCP correlation function Eq.(III-71) takes the form 

10 
C(t) - II Jo(Z.e.m) 

1,m-l 
(11l-74a) 

with 

Z - {B (L-1)t (L-1)t + B (L-1)t [(L-1)t _(L-1)t 1 +B wCH L 
1m 1 wt wm 2 wm 6t It 3 gCHwm wm 

W -w-w 
2 1/ i (CH 1 m) 

-1 t -1 t ,...,..,...---.,....,.."...---,--- (l-A ) 2 s n 2 t 
x[(L )61.-(L )Ul}I'(2nt+l)(2nm+l)WtWm . 2a (w

CH
-w

1
-w

m
) 

(1l1-74b) 

( 111-74c) 

55 



where the Morse potential paremeters D=0.199(O.218)aeu. and 

a-o. 9386(0. 898)a.u. for benzene(perdeuterobenzene C6D6 ) are determined 

such that the energy eigenvalues for the CH(CD) stretch Morse oscillator 

hCH(nCH ) - _D).2 fit the experimental CH(CD) overtone spacing listed 

in Table 111-2, the transformation matrix elements (L-1)!t' 

[(L-l)~t-L-l)It, and Lwm' t,m-l, ••• , 10 are given in Table 1II-3, and 

the fact that only ten modes have different frequencies (five modes are 

doubly degenerated) has been used. The overtone spectrum of the CH(CD) 

stretch local mode In o(w), then, can be determined by Fourier 
CH' 

transform of the correlation function C(t). Since Ztm(t)""'Sin[ (WcH-w -

wm)t/2j is an odd funcion of time t and Jo(Z tm) is a even function of 

Ztm. Consequently, the spectra given by Eq.(III-62a) is symmetric. 

The results for the CH stretch local mode overtones, n=5-9, in 

benzene C6H6 are shown as the solid line curves in Figs.III.5-III.7. For 

comparison the experimental results (33) are presented 'in Fig. III. 4. In 

Fig.III.5 the square of absolute value of the correlation function 

IC(t)1 2 plotted as a function of t. The logIC(t)1 2 as a function of t is 

plotted in Fig.III.6. The calculated absorption spectra of benzene are 

given in Fig.III.7. In Fig.III.6 it is seen that IC(t)1 2 does not decay 

simply exponentially and there are recurrences. However, as shown in 

Fig.III.7, except for the n-6 CH stretch overtone the spectra are 

structureless. It seems that the recurrences are not so substantial as 

to effect the major feature of the spectra. In order to see to what 

extent the recurrences effect the features of spectra, 1n Figs. III. 5-

111.7 we have also plotted the curves (dashed line) for It(t)1 2, 

loglt(t)1 2 and the corresponding spetra t(w)/t(w), where t(t) is defined 

by 
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G (t) -G(t) for O(t(tF and C (t) - exp(~t/TF) for t>tF 

with (III-75a) 

(III-75b) 

Here the time tF indicated by the arrows in Figs.III.5-III.7 is the time 

at which the IC(t)1 2 has decayed to about 0.01 (except for n-6, for 

which tF is about the end time of the initial rapid decay). In Fig.III.7 

it is seen that except for n-6,the dashed line very closely follows the 

solid line. Thus, it seems that the initial rapid decay of IC(t)j2 

dominates the main features of the absorption spectrum as along as 

I C( t) 12 is small (-(0.01) for later time. For n-6 CH stretch overtone 

there are strong recurrences. As a consequence, the absorption spectrum 

has some structure. The dashed line is different from the solid one. The 

former is close to being the envelope of the latter. 

Similarly, the results for C6D6 are shown in Figs. III. 8-III. 10. 

Fig. I II. 8 and Fig.III.9 show that for CD stretch overtone n-5 of C6D6 

the I C( t) 12 hardly has any decay. Consequently, the .spectra have an 

extremely narrow sharp peak. The IC(t)1 2 for CD stretch overtones n=6,7 

and 8 initially decay approximately exponentially (but with much slower 

decay rate than that for CH overtone), then strong recurrences occur. 

The line widths of the CH(CD) overtones of C6H6(C 6D6) taken from 

.. calculated spectra are listed in Table III.4 where the experimental 

results are also included. 

The compa,rison shows that the present SCP kinetic coupling model 

~ives semi-quantitively good results. For C6H6 the calculated line width 

of the eH stretch overtone n:aS is the largest while the line width of 
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the CH overtone n-9 is the smallest. The calculation reproduced the 

experimentally observed narrowing trend in the high overtone lineshapes. 

The line width calculated by the present model are systematically 

smaller than the experimental results. However, this is what might be 

expected from the fact that in this model only the linear terms of 

anharmonic kinetic couplings between the local mode and the ring normal 

modes are included. Taking into account the higher order terms in 

kinetic couplings and the other couplings such as the potential 

coupling, the couplings between the ring normal modes, and Coriolis 

coupling, etc., certainly will increase the decay rate of the overtone 

states, so that the lineshape will become broader. 

For perdeuterobenzene C6D6 the results of the present work have the 

general features of the line shape of the CD overtone, i.e., the line 

widths are narrower than those of the CH overtones. Unfortunately, the 

calculated line widths for CD overtones are too narrow. Certainly, this 

is due to the lack of considering the other couplings which might be 

important since the kinetic coupling is so weak for CD overtone. 

III.g) Remarks 

The SCP reaction path model and the SCP kinetic coupling model lead 

to the extremely simple, explicit formulas for the dynamic quantities of 

interest. They provide us with very practical, although approximate, 

ways to deal with the dynamic problem for polyatomic systems. The sample 

calculations show that these methods are semi -quanti tati vee The SCP 

reaction path model seems applicable to a variety of problems in 
I 

polyatomc dynamics(41), while the SCP kinetic coupling model is useful 

mainly in the study of the intramolecular energy transfer, which 
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certainly is a very important aspect of polyatomic dynamics. From a 

practical point of view the SCP kinetic coupling model seems more 

attractive. In this model the only input imformation needed is the 

harmonic force field of the molecule in the . equilibrium geometry which 

can be obtained either' by efficient ab initio quantum chemistry 

calculation(Sl), or by fitting the experimentally measured spectroscopic 

data(S2). From this input it is a simple matter to obtain the 

imformation about the energy transfer between the modes, and about the 

spectrum of the local mode, since we have a simple expression for that. 

It seems very promising that the SCP kinetic coupling model will find 

wide use in the theoretical study of the intramolecular dynamics of 

polyatomic system. 

59 



IV. A new semiclassical approach to the molecular dynamics--label 

variable classical mechanicse 

IV.a) Introduction 

In the light of difficulty with solving Schrodinger's equation and 

the failure of classical mechanics to account for the quantum effects 

prevailing in molecular dynamics, a great deal of effort have been 

devoted to developing a hybrid approach, semiclassical mechanics, by 

which simple classical mechanics could be used to obtain quantum 

imformation. The well known classical S-matrix theory(27) and the time

dependent wave-packet approach(S3) 'are among the successfully developed 

semiclassical methods. 

In a series of papers on continuous represention theory by 

Klauder(S4), an interesting point of view on the correspondence between 

quantum mechanics and classical mechnics is presented. If one 

establishes a correspondence between the unit vector I ~> in Hilbert 

space :, which describes the states of a system, and the sets of labels 

t in an abstract label variable space f. by a unitary mapping M(t): t e: f. 

+ I ~(t» e: =, then, it has been shown(S4) that under certain 

restrictions the label variables formally follow the laws of classical 

mechanics. So that the evolution of the state vector in Hilbert space 

can be (in general, approximately) determined by calculating the time 

development of the label variables classically. In this chapter, based 

on this idea as an alternative semiclassical approach, the formalism for 

calculating the transition probabilities of inelastic scattering is 

developed. 
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IV.b) The classical mechanics of label variables--the basic idea. 

It is illustrative to consider first the case of a single, 

nonrelativistic particle free moving in only one dimension. One begins 

with choosing a unit vector Ito? in the Hilbert space = of the system as 

a reference vector. Thus, 

(IV-I) 

In principle the reference vector I to> can be any proper vector in 

Hilbert space. A pair of self-adjoint oprtators acting in the Hilbert 
AI AI. A" 

space are denoted by Q and P; for example, Q and P might be the position 

and momentum operator, respectively. These operators obey the canonical 

commutation relation 

(IV-2) 

Using these operators one can generate a two-parameter, unitary family 

of operators 

(IV-3 ) 

that satisfy the composition law 

as well as the basic relation 

.. .. 
e-iqP / K e ipQ / K = eipq U[-p,-q] (IV-S) 
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Here p and q denote two arbitrary complex parameters. By acting on the 

reference vector I~;>with the unitary operartor U[p,q] one defines the 

unit vector 

(IV-6) 

which is labeled by p and q. It can be shown(55) that the set of these 

vectors I ~[p,q] > for all p and q form a continuous basis G of the 

Hilbert space E in the sense that we can resolve the identity operator 

as 

(IV-7) 

therfore, an arbitrary vector I~> € _ can be expressed in terms of the 

set of these vectors 

(IV-8) 

where ~(p,q) :: <~[p,q] I ~> is a representation of the vector I ~> in this 

continuous basis G. Now if one imposes on the reference vector I~o> the 

restictions 

(IV-9) 

.. .. 
i.e., the mean values of P and Q in the reference atate are zero, then 

it is easy to show that 

<~[p,q]lpl~[p,ql> = p and <~[p,q]IQI~[p,q]>= q. (IV-IO) 
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This means that, for such a choice of the reference vector, the label 

variables p and q acquire a physical significance, i.e., p and q now are 

the mean values of the operator P and Q in state It[p,q]), respectively. 

Eqs.(IV-9) and (IV-IO) immediately lead to the following canonical 

kinematical form 

" 
i~<t[p,q]1 t[p,ql) c <t[p,q]1 e-ipP/~ [qP-PQ] eiPQ/~lto) 

(IV-ll) 

where the dot denotes the time derivative. 

Consider now the equation of motion for evolution of the label 

variables p and q. As is well known in quantum mechanics(56), the time 

-evolution of a state obeys the Schrodinger's equation 

... H lIP) (IV-12) 

... 
where H is the Hamiltonian of the system. The solution of this equation 

can be formally written as 

llP<t» :a e-iHt/~ IljI(O» , (IV-l3) 

" if H does not depend on time t explicitly. The schrodinger's equation 

can be deduced by extremizing of the quantum action functional 

(IV-14) 

63 



under unrestricted variation of the vector 11/I( t »e The unrestricted 

variation means that the vector 11/I(t» can be any vector in the whole 

Hilbert space :.·Among all the vectors in Hilbert space only the vector 

which causes the action functional I to have an extreme value will 

correspond to a real state of the system. Suppose now the variation of 

the vector 11/1) is limited to a fairly restricted set of unit vectors 

such as the basis set vectors I~lp,q]) just defined. In other words, one 

uses 1~[p,qJ) instead of 11/1> in the expression of the action functional 

in Eq.(IV-14), and with the help of Eq.(IV-II) one obtains 

I' ... J dt{iti<~[p,q]li[p,qJ) - <~[p,q]IHlt[p,q]I)} 

... J dt (pq - H) (IV-IS.) 

with 

H _ <~[p,q]IHlt[p,q]) (IV-16) 

One immediately recognizes that formally this is a classical action 

functional. The extremal variation of I' with respect to arbitrary 

variation of p and q yields the classical Hamilton's equations of motion 

• 
q = 3H/ dp 

• p ~ - 3H/3q (IV-I]) 

There are two reasons why we have used the word "formally" here. First, 

H(p,q) is not equal to the classical Hamiltonian Hcl(p,q) which has the 

functional form of the quantum mechanical Hamiltonian with explici t p 

A A 

and q substitution for the operators P and Q, r-espectively. There is an 
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additional term O(~,to,p,q)(54), 

H(p,q) = <t[p,q]liilt[p,q]) -<tolii(p+p,Q+q) I to> 

(IV-18) 

For nonpathological Hamiltonians 0 depends only on the positive powers 

of ~. Hence, in this case 

lim O(~,t ,p,q) - 0 • 
~...o 0 

That is, in the classical limit ~+O, one has H(p,q)=Hcl (p,q) so that 

Eq.(IV-17) becomes the conventional classical equation of motion. Since 

classical mechanics arises only in the formal sense, one can just as 

well adopt H(p,q) itself as the "classical" Hamiltonian. Second, in 

classical mechanics p and q 'refer to the momentum and coordinate of a 

particle. Here, however, p and q just represent label variables for the 

state vector ~[p,q]. The physical significance of p and q depends on the 

choice of the reference vector Ito> and the unitary operetor U[p,q]. 

This essentially finishes the general description of the approach. 

The practical scheme is as follows: Suppose that the system initially is 

in a state I t(O»=I~[p(O),q(O)J>, i.e., the initial values p(O) and q(O) 

of p and q are known. Then, integrating the equation of motion Eq.(17) 

for p and q one obtains the values of p and q at time t, i.e., pet) and 

q(t). Hence, the state of the system at time t can be determined as 

I ~(t) > = I ~[p ( t ) , q (t) J> • (IV-19) 
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In general if the system initially in a ~tate which is not in the basis 

set G, then we can expand it in terms of the basis set states 

(IV-20) 

and at later time t we have 

(IV-21) 

where I t(po(t),qo(t» can be evaluated by using the procedure just 

described above. 

The crucial thing we have done during the derivation is the 

restricted variation of the functional. That is, we limited ourselves to 

considering only the vectors within the basis set G. It ,implies that we 

have assumed that if initially the system is in the state It(O» 

-I t[p(O),q(O)]) belonging to the basis set G, then later on the state 

vector I t(t» for the system would be within the basis set G all the 

time and never goes beyond the basis set G. Mathematically it means if 

I t(O» - I t[p(O),q(O)]> .: G for t .. O 

then 

1 t(t» - e-iHt/~1 t(O» :: tllp(t),q(t)J> e: G (lV-22) 

tur all t. In general, this is not true. The validity of this 

.Jpproximation depends on the choice ot the reference vector j ¢o> dnd on 
4 

tile Hamiltonian operdror H. For example, if the Hami ltonian is linear or 

'1uadrdt1c 1n P and ~, it would be exact(54). 
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It is straightforward to generalize the above formalism to a system 

of N degrees of freedom. All that is needed is the replace the scalar 

label variables with the vector label variables 

q + q • p + p • (IV-23 ) 

scalar operators with the vector operators 

.. ... 
Q + Q P + P (IV-24) 

and consequently the scalar product with the vector inner product 

qP +q.p • pQ +p.Q. (IV-25) 

... 
Here q and p denote the sets of labels {qi} and {Pi}' i=1.2 •••• ,N. Q and 
... ... ... 
P signify the sets of the operators {Qi} and {Pi}' i=1.2, ••• ,N, which 

satisfy the commutation relation 

... ... ... 
[Qi ,Pj ] - i)i°ij , [Qi ,Qj] = o. (IV-26) 

where 0ij is the Kronecker delta function •. 

IV.c) Application to the collinear inelastic scattering of A+BC. 

To illustrate the application of the general results obtained 

above, it is useful to consider the simplest nontrivial example of a 

collision system that possesses an internal degree of freedom in 



addition to translation. The Hamiltonian of the system is 

with 

H(P,R,p,r) - Ho(P,R,p,r) + V(r,R) 

H (P,R,p,r) o 

.. .. 

"2 
P --2J! 

(IV-27a) 

(IV-27b) 

where Rand P are the cartesian coordinate and momentum for translation 
.. .. 

of A relative to the center of mass of Be, and rand p are the cartesian 

variables for the vibration of Be. 

One must first choose the reference vector. It is obvious that one 

should take the initial state as the reference state if it is possible, 

since it corresponds to the zero initial value of label variables and 

there would be no ambiguity in deciding the initial condition. However, 

as a reference state it must be a proper vector, and things will be much 
A .. 

easier if the expectation values of P and R are zero as req-uired by 

Eq. (IV-9). In the present case, the initial vi brarional state 

corresponds to a proper vector in Hilbert space and can be chosen as a 

reference vector for the vibrational motion. However, in general it does 

not fulfill the conditions of Eq.(IV-9) 

(IV-28) 

where In i > is the initial vibrational state of molecule Be. But if the 
A .. 

new pair of self-adjoint operators p'and r' 

p'= p - p r'= r -r (lV-29) 
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are used as the generator of unitary mappong, one will have 

(IV-30) 

In contrast, the initial momentum eige·nstate for translation is not a 

localized state, i.e., is not a proper vector, so it cannot be chosen as 

a reference vector. Instead a Gaussian wave packet state I~ot> is 

chosen, which has the representation in positon representation 

(IV-31a) 

and in momentum representation 

(IV-31 b) 

where subscript t refers to translational motion, and ~ is a paremeter 

characterizing the width of the wave packet. l~ot> satisfies the 

condition of Eq.(IV-9) 

(IV-32) 

The direct product of these two reference vectors constitutes the 

reference vector for the complete system 

(IV-33 ) 

The unitary mapping operator is then defined by 
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A A A A 

-iqRP/)i -iqrP'/Vt iPRR/)i iprr'/Vt 
= e e e e (IV-34) 

where PR,qR,Pr and qr are label variables, and the unit vector is given 

by 

A A A A 

-iqR(t)P/Vt -q (t)p'/)i iPR(t)R/Vt ip (t)r'/Vt 
~ e ere e r Ini)l~ot) 

(IV-3S) 

where ... ... 
-iqR(t)P/Vt ipR(t)R/~ 

I ~t[PR(t),qR(t»)> = eel ~Ot> (IV-36a) 

and ... .. 
-iq (t)p'/Vt ip (t)r'/~ 

I~v[pr(t),qr't)]> = ere r In i > • (IV-30b) 

If at t=O one has 

(IV-37) 

then, from Eqs.(IV-3S) and (IV-36), it is clear that 

(IV-38) 

or 

(IV-39) 

and ...... 
-iqR(O)P/Vt iPR(O)R/" 

I~ [p (O),q (0)]> = e e I~ > 
t K R Ot 

(lV-40) 



According to Eq.(IV-1~), with help of Eq.(IV-35), it follows that 

p 2 
R 

II: -- + 
2lJ 

- 2 
(Pr+P) 

2m 

where 

and 

Similarly one has 

p 2 
R =--+ 

2lJ 

- 2 
(p r +p) 

2m 

From the scattering theory (57) it is well known that 

(IV-41) 

(IV-42) 

(IV-43a) 

(IV-43 b) 

(IV-44) 
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~ A A A 

~ iHot2/~ -iHt2/~ iHtl/~ -iH tl/~ 
lout>cslin>-lim e e e e 0 lin> 

t l - ClD,t2+ CID 
(IV-45) 

where lout> and lin> are out-asymptote and in-asymptote, respectively, 
~ 

and S is the scattering operator. Mathematically, as expressed in 

Eq. (IV-45) ttl should tend to -CID and t2 tend to +CID. But in practice it 

is sufficient that Itil = Itifl and t2 =t2f be large enough so that one 

has 

~ ~ 

-iHt/~ -iH t/~ 
e I t> :: e 0 I in> for t < t 1- - I t if I t (IV-46a) 

and ... ~ 

-iHt/~ -iH t/~ 
e I t> :: e 0 lout> for t > t2 = t2f (IV-46b) 

With this understanding one can rewrite the Eq.(IV-4S) as 

(IV-47) 

t ~= 
-iH(t2f+ltlfl )/~ 

e (IV-48) 

This form suggests that the out-asymptote lout> is obtained from the in-

asymptote by following its evolution during 3 separate time periods: in 

period 1 from t=O to t=t if the evolution of state is generated by the 
~ ~ 

Hamiltonian Hot or, equivalently, (-Ho) generates the evolution from t=O 

to t=ltIfl; in period 2 the state is evolved from tif to t Zf according 
~ 

to Hamiltonian H; and, finally, in period 3 the state is evolved from 
~ 

t=t Zf back to t=O by Ho• 

If one now identifies lin> = In i > Itot[PR(O),qR(O)]>, then by 

virtue of our approximation Eq.(IV-22) one has 
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(IV-49) 

classical trajectory calculation as follows. One first integrates the 

classical equations of motion Eqs. (IV-50) corresponding to 

dqR (t) PR(t) dqr(t) P + P r 
>= = dt JJ dt m (IV-50a) 

dPR(t) dp (t) a;(q ,r) 
0 r r ... , ... -

dt dt aq r 
(IV-SOb) 

with initial conditions 

qR- qR(O) , PRO: PR(O) , q ... 0 , and P = 0 , at t=O r r (IV-51) 

then continuously integrates Eqs.(IV-52) corresponding to H(PR,Pr,qR,qr) 

from t-tlf to t=t2f 

dt JJ dt m 

dPR(t) aV(qr,r,qR) .. -
dt aqR 

dp (t) a;(q ,r) __ ~r_____... _ __ __ ~r __ _ 
dt aq 

r 

(IV-52a) 

aV(qr,r,qR) 

3q r 
(IV-S2b) 

and finally integrates Eq.(IV-SO) from t=t 2 back to t=O. 

The projection of lout> on the final state I ntpf > then can be 

readily calculated 
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(IV-53 ) 

where 

1 i fs.. f 2 
=/~/ti II. exp{-;rqR(tf)P - [P - PR(t)] } 

('II') 4 fl 2ti2 
(IV-54) 

and .. .. 
iqr(tf)P~/ti -ipr(tf)r~/~ 

<nfltv[Pr(tf),qr(tf)]>- <nfl e e In i > 

iq (tf)p/ti -ip (tf);/K e iPr(tf)[r-qr(tf)]/K 
- ere r J dr<nflr> e <r-qr(tf)lni > 

-e 

(IV-55) 

Here Inf > and Ipf> are final vibrarional state and translational 

momentum eigenstate, respectively. 

On the other hand, one has 

dP f .. 
- J 2nK <nfP IslniP><pltt[PR(O),qR(O)]>=snf+ni (E) J 2~tipdEO(E-Eo) 

2 'll'ti f 1/2 pf 1/2 i 
x .::..::..!!.(PP) <pi t [PR(O),qR(O)]> == (-i) <P It [PR(O),qR(O)]>S (E), 

u t P t nf+ni 
or 

(IV-56) 

with 

pi... ';2 u (E - e: ) 
n ' 

i 
(IV-57) 

and 
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(IV-58) 

Here En 1s the vibrarional energy of molecule Be in the state n and Eo 

is the total energy of the whole system. Eq.(IV-56) is exact. Now if an 

approximation Eq. (IV-53) is used, then by virtue of Eq. (IV-54) and 

Eq.(IV-55) it is obtained that 

• ip (tf)[r-q (tf)]/~ 
Jdr<nflr>e r r <r-qr(tf)ln

i
> , -. 

(IV-59) 

where 

(IV-60a) 

(IV-60b) 

Thus, the transition probability can be calculated 

(IV-61) 

classical trajectory. 

IV.d) Example: The vibrationally inelastic scattering of collinear 



He+H2o 

To test the potential usefulness of this new approach a calculation 

for the Secrest-Johnson model(32) of collinear He+H2 vibrationally 

inelastic scattering has been carried out. In the usual dimensionless 

coordinate system the Hamiltonian reads 

with 

A 2 ... 2 ... 2 
P L r H(P,R,p,r) - ~ + 2 + ~ +exp[ - a(r-R)] 

2 
JJ - - and a - 0.3 3 

(IV-62) 

(IV-63 ) 

In this case the vibration states I n> are the eigenstates of harmonic 

oscillator, so that 

• 

Also, the "classical" hamiltonian has the form 

with 

and 

with 

222 
PR Pr qr 

Ho - -- + -- + -- + Op+ 0 2JJ 2 2 v 

"'2 
I ni>+<~ot It-I ~Ot> = const. 

'" 2 
and 0 =<n I-r

v i 2 

(IV-64) 

(IV-65) 

(IV-66) 

(IV-67) 

(IV-08) 
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It immediately follows that the equations of motion for the label 

variables are: 

and for H 

dPR ---dt 

dq 
r -- .. , dt 

dPR --a dt 

dp 
r 

0, and ~ = - qr 

dp 
r --dt - q - A a exp a(q -qR) r r 

(IV-69) 

(IV-70) 

In this example the matrix element Eq. (IV-55) has a simple analytic 

expression. In order to see this let us first make the following 

transformation: 

and 

Z(t) =[q (t) + ip(t)]/12 
r 

, and 6(t) 

It then follows that (for the details, see the appendix D) 

.. * -aZ (t
f

) 

e In i > 

IZ(t
f

)j2 
-i~IZ(tf)12sin26(tf) 2 .. e e 

(IV-7l) 

(IV-72) 

(IV-73) 
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* 1/ .. (ZZ ) 2. By virture of 

Eq.(IV-73), the transition probability Eq.(IV-61) becomes 

pi t.. f 2 i 2 2 
p - -- exp{- [(P -p (t» - (P -PR(O» ]}exp-lz(tf)1 

nf"+ni pf 2 R f 

n 4 k Ini!nf ! n -n +2k 2 

I \'&' ( 1) IZ(tf)1 f i I • 
)( k~O - k!(ni-k)!(nf-ni+k)! 

(IV-74) 

If this theory gave lout> .. Slni>1 tot[PR(O),qR(O)]> exactly, the 

transition amplitude Sn +n (E) obtained by using Eq. (IV-56) would be 
f i 

independent of the choice of 'PR(O) and qR(O). Since it is an 

approximation, though, the results of a calculation do depend on the 

.... 
choice of PR(O). Since PR(O) is the average value of the momentum p in 

the initial wave packet state Itf[PR(O),qR(O)]> with initial and final 

vibrational states Ini > and Inf > and total energy Eo specified, physical 

intuition suggests that the usual semiclassical choice of PR(O) should 

be reasonable 

(IV-75) 

The choice of qk(O) is more and less arbitrary. It only affects the 

determination of tlf and t 2f • So long as the conditions Eq.(IV-46) are 

satisfied, qR(O) can be any value. Furthermore, from Eq. (IV-70) and 

eq(IV-71) one can see that the parameter ~ which characterizes the 

reference vector I tOt> do not have any dynamic effect on the classical 

motion of label variables. That is, the initial conditions and the final 

values' of PR( t) and I Z( t) I are independent of ~. Therefore, one can 
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freely choose ~. However, ~ appears in expression Eq.(IV-74) for the 

probability Pn +0 • In order to eliminate this ~ dependence we use the 
f i : 

microreversibility condition 

(IV-76) 

and notice that for the semiclassical choice of PR(O) [see Eq. (IV-75)], 

one has 

pi ~2 f 2 i 2 
P - - exp{- .2...[(P -p (t » -(P - PR(o» ]Ff+i<lZ(tf)I)} n

f 
+01 pf 2 R f 

where 

It 1s easy to show that 

F f +i III F i+f • 

Thus, Eq.(IV-77) becomes 

p1 ~ f 2 1 2 
- exp{- [(P -p (t » -(P - PR(O» ]} 
pf 2 R f 

pf ~2 1 2 f 2 
= - ex p {- .2...[ (P -p (t » - (P -p R ( 0 » ]} . 

pi 2 R f 

(IV-78) 

(IV-79) 
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rearranging Eq.(IV-79) gives 

(IV-SO) 

then, one obtains 

, . 

with (IV-Sla) 

(IV-SIb) 

It is very interesting to notice that Eq.(IV-Sla) is identical to 

the semiclassical probability expression obtained from the forced 

quantum oscillator method(5S-61) except for the extra factor B which is 

close to one. We can see this, if one makes a substitution k+(ni-k) and 

realizes that IZ(t f )1 2 is just the classical energy transfer associated 

with the one trajectory being integrated. 

The results from Eqs.(IV-Sl) are given in table IV.l where for 

comparison the exact quantum mechamical results of Ref. (32) are also 

included. In Fig.IV.l we pictorially present the results for total 

energy, Eo=4,6e and 10 in units of "We For a given total energy Eo and 

an initial vibrational state ni only one classical trajectory needs to 

be calculated to determine the transition probability to a final 

vibrational state nf. 

The comparision in Table IV.l and Fig.IV.l shows that the present 

approach describes the inelastic scattering process encouragingly well. 
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One obtains reasonably good results over a wide range of energies for a 

great variety of ~ transitions. 

IV.e) T-V and v-v energy transfer in collinear collision of two diatomic 

molecules--an application of label variable classical mechanics. 

The above example shows the validity of this approach for the 

calculation of the absolute value of the S-matrix elements since the 

phase of the S-matrix elements is irrelevant in this example. For more 

complex collision processes a coherent sum of S-matrix elements is often 

involved, so the phase of the S-matrix elements, then, plays an 

important role. Therefore, any useful approximate method must be able to 

give the correct relative phase factors as well as the absolute value of 

the transition amplitude. 

In order to test how well the label variable classical mechanics 

method handles the phase problem, we consider the T-V and v-v energy 

transfer in collinear collisions of two identical harmonic oscillators, 

where quantum resonance phenomina are pronounced. A certain amount of 

work on this subject has been done using different approaches(63-71) It 

is a little surprising that only a few full quantum mechanical 

calculations(63-65) have been done. 

The Hamiltonian for the collinear collision of two diatomic 

molecules AB + BC, after separaring out the motion of the center of 

mass, has the form 

- 2 - 2 
_ p2 p 1 P2 
H .. -2 + -2- + -- + VI (;1) + v 2 (;2) + V (;1 • ;2' X) 

~ m1 2m2 
(IV-82) 

with 

. \ 



M = mA+mB+mC+~ 

(IV-83 ) 

where mA,mB'mc, and mo are the masses of the atoms A,B,C, and D, 

respectively, rand Yare the Cartesian coordinate and momentum for the 

relative translational motion between the centers of mass of two 

molecules, and x1,P1 and x2,P2 are the Cartesian coordinates and momenta 

for vibrational motion of two diatomic molecules, respectively. If one 

describes the molecules as two identical harmonic oscillators and uses 

the nearest atom approximation(72,73)for the interaction potential, 

i.e., one assumes that the interaction potential V(x1,x2,t) varies only 

with the distance between the two rearest atoms of the molecules; then 

the Hamiltonian, in dimensionless units, can be written as 

-2 -2 -2 
- ;2 PI r 1 P2 
H---+-+--+ 2 2JJ 2 2 

with 

and 

.... 
H 

H -~Co\) 

1/ 
- mw 2 ........ 
r =(-) (x -x ) 

1 ~ 1 0 

p = 

- - -+ + V[R-(r
1
+ r

2
)] 

1/2 ~ 
(_1_) --P' 

mwK ~+tDo 

(IV-84) 

- 1 1/2 .... 
P2=(~UlIIl) P2 

(IV-8S) 

where x o ' m and Co\) are respectively the equilibrium position, mass and 

the frequency of the harmonic oSillators, and mB=mc has been assumed. 

One now introduces the following variable transformations 

.... 1.... '" 
P = -=-(p + P2) 
+ r"2 1 

1 
p-= - (p - P2) 

,t2 1 

1 
r = - (r

1
+ r

2
) • and 

+ .,1'2 
(IV-86) 
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It is easy to show that p+, r+ and p_, r_ satisfy the canonical 

commutation relation, i.e., 

(IV-87) 

so that the Hamiltonian can be rewritten as 

. ~2 ~2 ~2 ~2 

;2 p + r+ p _ r _ ~ ~ 
H - - + -- + -- + -- + -- + V(R-i2 r+) 

2~ 2 2 2 2 

~2 p .. 
---+h +h 

2~ + 

.. 
+ V(R- .,12 r+) .. H+ + h (IV-88) 

~ 

~2 ~2 

p_ r_ ;2 ~ ~ ~ 
- -2- + -2- , H a - + h + V(R-.,t2r+) • + 2lJ + 

(IV-89) , h 

One immediately notices that the system now consists of the pseudo 

oscillators (+) and (-); and that the oscillator (-) couples neither 

wi th oscilator (+) nor wi th relative translation. In other words, the 
~ ~ 

operator h_ commutes with the total Hamiltonian H, and consequently 
~ 

commutes with transition operator S. Therefore, the S matrix is diagonal 
~ 

in the representation of the eigenstates of h_, i.e., if 

, 

then 

o(Ef-Eo) S f f i i:a <E~n~nf IsIE~n:ni ) = 
n+n_ +o+n_ 

or 

i 
n 

(IV-90) 

S f i 
n++n+ 

(IV-91) 

where EO and Ef are the initial and final total energy of the system, 



i 
n 

and S f i is the transition matrix for the pseudo atom-oscillator(+) 
n+ -+11+ 

... 
collision system described by the Hmiltonian H+, which can be calculated 

by using Eqs(IV-58),(IV-54) and (IV-73), 

i 
n+ 

x I 
k=O 

The real problem, however, is to calculate the transition 

(IV-92) 

amplitudes S f f i i(E), so one must establish the relation between 
n2n l + n2~1 

S f f i ICE) and S f f i ICE). In order to do this, the following 
n2n l + n2nl n+n_ + n+n_ 

creation and annihilation operators are introduced: 

and (IV-93 ) 
A A A At A A A _ A At A A 

a+=(r++ip+)/f2, a+=(r+-ip+)/f2, a_=(r_+ip_)/fl, a_=(r_-ip_)/f2 

(IV-94) 

These operators satisfy the canonical commutation relations 

A A A At 
[a

i 
,a

j 
] ... 0 [ai,aj ] .. °ij , i,j = 1,2 (IV-95) 

and 
.... ... A .... t 

[a t,am] = 0 [at,am] = 
<5 R.m ' t,m = + , - (IV-96) 

From their definition it is straightforward to show that 
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and 

, 

(IV-97a) 

(IV-97b) 

where In1n2> and In+n_> are the direct product states of the eigenstates 

'" "'2 "'2 '" "2 "2 
of h1,h2 and h+,h_ respectively, with h1=(P1+r1)/2 and h2=(P2+r2)/2 

Therefore one has 

n
1 

n
2 

k -it "'t k1+k2 "'t (n 1+n2)-(k1+k 2) 
2 2 (a+) (a_) 

I I (-1 ) ----:----,.-~-~-
k 0 k 0 k1!k2!(n1-k1)!(n2-it2)! 
1- 2-

In =0 n =0> 
+ '-

n 1 n2 n -it I n+!n ! 
I I (-1) 2 2 - 1 > 

k 0 k 0 k1!k2!(n1-k1)I(n2-k2)! n+,n_ 
1m 2= 

, (IV-98a) 

with 

• (IV-98b) 

Consequently, it follows that 

.; f, fl 1, 1, 
1 f i i I 1 f i f n1 n1 n2 n2 n1·n 1 n 2·n 2 · 

I 2 I I 
n+n+n_n_ 

= G k1 'k f , k1 'k f ,( i k1),( f kf), 
ki=O kf=O ki=O k1=O l' l' 2' 2' n 1- 1 . n 1- 1 . 

1 1 2 2 
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(IV-99A) 

With 

• (IV-99b) 

determined by a classical trajectory calculation according to the 

procedure described in Sections IV.c and IV.d, the transition 

probability P - IS f f i il 2 can be easily evaluated in accordance with 
n2n 1 +o2n 1 

Eqs.(IV-99), (IV-91) and (IV-92). 

IV.f) Example: the collinear collision of H2 + H2• 

To illustrate the methodology described in the last section the 

collinear collision of H2 +H2 with a 'exponential repulsive interaction 

has been considered. The Hamiltonian for the system, in dimensionless 

units, reads 

-2 -2 -2 -2 -2 
- P R P 1 r 1 P2 r 2 - - ... 
H - -- + -- + -- + - + - + exp{-a[R-(r 1+r 2)]} 

2~ 2 2 2 2 

"'2 -2 -2 -2 -2 
PR p+ r+ p_ r_ ...... 

= -- + -- + -- + -- + -- + exp{ -a[R-12 r+l} 
2~ 2 2 2 2 

(IV-lOO) 

with 

~ ,. 0.5 a = 0.2973 (IV-lOI) 

The "classical" Hamiltonian is 

22222 
PR p+ q+ - p- q-

H ~ ~ + -2- + -2- + A exp[ -a(qR-12 q+)] + -2- + -2- + Op + 0v 

(IV-I02) 
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where 

I -aRl il arl i A = C·O with C = <~Ot e ~Ot>a const. , 0 ~ <n+ e n+>= const. , 

(IV-103a) 

and "'2 "'2 "'2 

o p 0: < ~ at I : ~ I ~ at> + <n ~ I P; I n ~ > + <n: I P; In: > = const. (IV-103 b) 

• (IV-103c) 

The constants Op and 0v have no dynamic effect since they do not enter 

the equations of motion for the label variables, so they need not be 

calculated. The constant A, or more precisely, the constant 0 plays a 

crucial role in determining the transition probability, since it , as we 

will see later, determines the relative phase between the terms in the 

coherent sum for the transi tion S matrix' elements. It is a simple 

exercise to show that the constant 0 has the following analytic 

expression 

(IV-I04) 

Acoording to Eq. (IV-99) the transition probabilities for the T-V 

and v-v energy fransfer are given by the following expressions: 

i) i-quantum T-V energy fransfer 
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s = S 
1 

S a-

n 1 =0+1, n =0+0 n
1 

=0+0, n2:o:O+1 12 n+ =0+1, n =0+0 
2 

(IV-lOS) 

S S 
1 

S .. --n
1
-O+l, n

2
-1 +1 n

1
-1+1, n

2
-O+1 2 n+ =0+2, n .. 0+0 (IV-I06.) 

and (IV-107) 

S S =- .LS ~2S ) 
n

1
-O+2,n

2
111 1..o =- n

1
=-l+o,n

2
-O+2 2fi n+-1+2,n_=O..o -'f~, n+=O+l, n =1+1 ; 

(IV-lOB) 

ii) 2-quanta T-V . energy transfer 

1 
= - (IV-lOY) 

12 

1 --
12 

S 
n+ =0+2, n =0+0 

(IV-I10) 

iii) I-quantum V-V energy transfer 

,(IV-Ill) 

1 ... --
2/2 

iv) 2-quanta v-V energy transfer 

s -!..S +ls _ls 
n =0+2 n ==2-tO 4 n =2+2 n =0..0 4 n+=O+o,n_=2+2 2 n+=1+1,n_=1+1· 

1 '2 + '-. 
(IV-1l3 ) 

From the above expressions, one sees that the evaluation of a given 

transition probability consists of the calculation of a number of 

t ransi tion ampl1 tudes for a pseudo system. The corresponding ini tial 



values of the label variables are the same for all the calculations. 

However, the corresponding "classical" potential terms are different. It 

is the difference in the constant D that gives rise to the different 

phases of the terms in the coherent sum for a transition probability. 

The results obtained by using the Eqs.(IV-I0S)-(IV-113) are presented in 

Tables ' IV. 2-IV-6 along with the results of quantum mechanical 

calculations(64) and some other approximate calculations(70). 

From the comparisons in Tables IV.2-IV.6 it is seen that the 

results of present work are in good agreement with the quantum 

mechanical calculation except for the transitions 01+11, 01+20, and 

01~2 in 1-quantum T-V energy transfer (shown in Table IV.3) and 2-

quanta T-V energy transfer (shown in Table IV.4). But as the earlier 

work of Clarkr and Thiele (70) has pointed out, the quantum 

calculations(64) are in error at least for 2-quanta T-V energy transfer. 

Since Equations (IV-lOS) and (lV-llO) show that the exact transition 

probabilities Pn1:aO+O,n2:a0+2 and Pnl''"'0+I,n2=0+1 must be in the ratio 1 

to 2, the quantum results, however, are not in this expected ratio (see 

Table IV.4). Besides, as noted by Clarke and Thiele(70), the quantum 

calculation(64) included only states lij> for which i and j were no 

larger than 2. Therefore, their results for 01+11, 01+20 and 01+20 

transitions are questionable. Clarke and Thiele(70) have empirically 

corrected their numerical results, but unfortunately they have no way to 

correct the phase, which is very important in the present case. 

Therefore their results for transitions 01+11, 01+20 and 01+20 are also 

unlikely to be reliable. 

In contrast, the present calculation has neither the empirical 

correction nor the inaccuracy due to the choice of the basis set of 
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states. Since our results agree with the reliable parts of the quantum 

mechanical calculation (64) very well (shown in Table IV. 2 IV. 5 and 

IV.b), it might be not incongruous to expect that the present method has 

yielded reasonably reliable results as a whole. It would be interesting 

if a more complete full quantum calculation could be done to provide a 

more reliable result for further comparison. 

IV.g) Discussion. 

The principle idea of the present semiclassical approach has been 

to use classical mechanics in a formal sense to determine the time 

evolution of the state vector. In the above applications one may 

recognize some similarities to time-dependent wave packet methods(53), 

but in fact there are significant differences. The wave packet methods 

are essentially a combination of time-dependent Hartree-Fock theory and 

Ehrenfest's theorem; and an important aspect of them are the classical 

parameters, i.e., the coordinates and momenta of the particles. The 

actual equations of motion that characterize the wave packet, however, 

are nonclassical. In contrast, the present approach stems from the 

restricted variation of the action functional. This leads to a set of 

classical Hamilton's equation of motion for the label variables, which 

mayor may not have a direct physical interpretation. The "classical" 

Hamiltonian, which is the expectation value of quantum Hamiltonian in 

the reference state, is, in general, not identical to the classical 

Hamiltonian, while the wave-packet methods use the classical Hamiltonian 

with the potential energy approximated by the quadratic expansion at the 

average position of the wave-packet. 



Also, as seen in the example treated above, the present approach 

deals equally well with translational wave functions (as a Gaussian wave 

packet) and with stationary states. Thus one can easily use initially 

excited vibrational states, whereas the usual wave packet methods must 

represent excited states as linear combinations of Gaussians. It is also 

clear that the present approach can deal equally well with quantum 

systems that have no classical analog, e.g., spin systens(54). 

Finally, an important and practical feature of the present approach 

is its simplicity since for a given transition only one (in the example 

1) or a few (in the example 2) classical trajectories need to be 

calculated 

However, the present approach is an approximate method. The 

accuracy will depend on the nature of the system investigated and the 

choice of the reference vector. It is sufficiently promising, though, 

that its generalization to three-dimensional systems and also to 

polyatomic dynamics seems worthwhile. 
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V.Concluding remarks 

In this thesis we explored several new quantum and semiclassical 

approaches in the attempt to improve the efficiency of dynamic 

calculations for molecular, especially polyatomic, systems. This 

certainly contributes in the effort to reach the goal of doing 

quantitatively meaningful, really ab initio calculations in practice for 

polyatomic systems. However, it is our feeling that if one could not 

make any revolutionary break through, it would seem unlikely to reach 

this goal even by resorting to the supercomputer. 

In Chapter IV of this work, with the motivation of getting rid of 

the traditional semiclassical idea, i.e., using simple classical 

mechanics to describe the motion of the particle itself, we have tried 

to develop a new semiclassical idea based on uni tary mapping. The 

approach certainly, is still in a primi ti ve stage and should be 

pursued further at least in the spirit of doing something new. 
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Appendex A: Green's function matrix G(R,R~) 

The Green~s function matrix G (R,R~ ) considered here is defined to 

be the solution of the following matrix equation 

(A--l) 

with the boundary conditions 

(A--2) 

where dagger (t) denotes the complex conjugate transpose, the prime 

denotes the derivative with respect to R, I is the unit matrix , E is a 

diagonal matrix, and V(R) is a Hermitian matrix. We demand G (R,R~) be a 

continuous function. One labels 

G (R,R~) ... G
1 

(R) for 0 ( R < R~ (A-3) 

and 

(A--4 ) 

Then, we have 

for 0 " R < R~ 

(A-Sa) 

for R ~ ( R < "" 

(A-5b) 

with the boundary conditions 



(A-6a) 

and 

(A-6c) 

Integrating both sides of Eq.(A":'l) from R---e: to R"+e: and taking the 

limit e: + 0 , one obtains 

(A-6c) 

or 

• (A-6d) 

Now let f(R) be a regular solution of the equation 

(A--7) 

which satisfies the boundary condition 

f(R) - 0 , (A--8) 

and g(R) be a irregular solution of the same equation 

(A--9) 

Which satisfies the boundary condition 

(A-lO) 

94 



and is l1nearUy indepedent of f(R), then the solutions f(R) and g(R) 

have following properties: 

(1) 

(11) 

(11i) 

Yf(R)-f~(R)f-l(R) - [f-1(R)]t [f~(R)]t = [f~(R) f-1(R)]t = 

(A-ll ) 

(A-12) 

yl (R), 

(A-13 ) 

where vr is the Wronskian matrix of two solution f(R) and g(R), and Yf , 

Yg are the log-derivative matrices for the regular solution f(R) and the 

irregular solution g(R), respectively. Now first let us prove the 

property (i). Taking the complex conjugate transpose of Eq.(A-9) gives 

(A-14). 

where the Hermitian property of matrix V has been used, and the double 

prime denotes the second derivative with respect to R. Multiplying 

Eq.(A-14) from right by f(R), eq.(A-7) from left by gt(R) and 

subtracting term by term, one obtains 

or 

Thus 

:R [ gt(R) f~(R) - gt ~(R) f(R)] = 0 

v :: gt (R) f ~(R.) - gt ~(R) f(R) = const. 
r 

(A-lS) 
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Similarly it can be shown that 

f t (R) f '(R) - f t '(R) f{R) 

and 

... const. , (A-16a) 

(A-16b) 

To prove properties (ii) and (iii) using boundary condi tion Eq. (A-8) 

gives 

or 

(A-I7) 

By virture of boundary condition Eq.{A-I0), Eq.{A-16b) leads to 

or 

-1 -1 t t 
Yg = g'(R) g (R)'" [ g"{R) g (R) J = Ig (A-18) 

From comparing Eq.(A-5) and Eq.(A-6) with Eq. (A-7)-Eq. (A-IO) it is 

obvious that one may take 

{

G
1 

(R) = f(R) A 

G(R,R"') ... 

G
2

(R) .,. g(R) B 

o c; R < R'" 

R'" C; R < GO 

The continuity at R = R'" (Eq.(A-6-c) requires 

The discontinuity in the first derivative (Eq.(A-6-d) becomes 

(A-19 ) 

(A-20) 
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21J 
f "(R") A - g' (R "") B-1 

- ~2 • 

Solving the Eqs~(A-20) and (A-21) for A and B we have 

and 

A - --- [ g""(R"") g-I(R"") f(R"") - f""(R"") ]-1 

~2 

21J -1 t 
- -2- v g (R "") , 

h r 

21J 
B - ---

~2 
[ g""(R"") - f""(R"") f-1(R"") g(R"") ]-1 

(A-21) 

(A-22) 

(A-23 ) 

where the Eqs.(A-ll)-(A-13) have been used. Eq.(A-22) and Eq.(A-23) 

shows that if the determinant of the Wronskian matrix wr is not equal to 

zero, then one has 

21J -1 g t (R "") 

I : 

(R) - -2- feR) W for 0 " R < R"" , 
~ 

r 

G(R,R"")-
21J t -1 f t (R "") (R) .. 

7 g(R) ( W ) for R"" " R < CD • r 

(A-24 ) 

It is well known that the nonvanishing of the determinant of the 

Wronskian matrix wr is a necessary condition for linear independence of 

feR) and g(R). From Eq.(A-24) it is obvious that 

(A-25) 

Appendix B: Numerical calculation of Green's function matrix G (R,R") 
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At first glance it seems easy to calculate the Green's function 

matrix G(R,R '), since according to Eq. (A-24) what one needs to do is 

solve homogeneous equations Eq.(A-7) and Eq.(A-9) for the regular 

solution f(R) and the irregular one g(R). In practice, however, it is 

extremely difficult to obtain f(R) and g(R) with enough accuracy for 

calculating accurate G(R,R'), because f(R) and g(R) both involve 

exponential functions. In order to avoid the difficulty with directly 

calculating the regular solution f(R) and irregular solution g(R) one 

rewrite the Green's function matrix G (R,R' ) in the following form 

. 

_1(2lJ/~2) 
G (R,R' ) -

(2lJ/~2 ) 

for 0 < R < R', 

for R' < R < GO, 

(B -1) 

where Eq.(A-19), Eq.(A-20), Eq.(A-22) and Eq.(23) has been used. In this 

form the G(R,R') can be accurately and efficiently calculated by using 

renormalized Numerov method. The matrix renormalized Numerov 

algorithm(7) is an efficient method that can be used to obtain the 

numerical solution u(R) of Eq.(A-7) or Eq.(A-9). The basic formula is 

the three term recurrence relation 

F u - (12 I - 10 F 1) u 1 + F 2 u 2 = a , n n n- n- n- n-
(B -2) 

where 

F = I - T 
n n 

(B -3) 

and 

T - (6/12) ( ~ ) ( E - V(R ») 
n ~ n 

(B -4) 
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Here 1 is a unit matrix and A is the spacing between the N equally 

spaced grid points Ro' R1, R2, ••• , RN, with point N being in the 

asymptotic region. Now we introduce the ratio matrix 

I. - u n n-l 
-1 

u 
n 

, n - 1,2, ••• , N • 

Using Eq.(B-2) and Eq.(B-5) one obtains 

'R - 12 1 - 10' 1 -, 2 I. 1· n n n- n- n-

Then for regular solution we have 

I.f _ (.12 1 10' , I.f ) -1 , , 
n - n-l - n-2 n-l 

or 

and the initial value of 1.1 is 

since we have 

(B -5) 

(B -6) 

(B-7a) 

(B-7b) 

(B-8a) 

(B-8b) 

Starting from 1.1 and propagating the solution of Eq.(B-7) outwards one 

obtains 

For the irregular solution one has 

(R.g )-1 = [ 12 1 - 10' - , (R.g )-1]-1, 
n-l n-l n n n-2 ' 

(B-9a) 
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or 

(B-9b) 

Beginning with the asymptotic boundary condition (~)-1 .. ~/gN-l one 

can solve Eq.(B-9) iterativly to obtain ~ 

g -1 g -1 g -1 g -1 
(~-I) , (~-2) , ••• , (a~p , •.. , (ItI ) • 

To calculate the log-derivetive matrix Yn we use the matrix version 

of Blatts(74) formula, i.e., 

(B-I0) 

Thus, 

... -1 -1 -1 
Yn .. un un - A [(0.5 I - Tn+1) Rn+l - (0.5 I - Tn-I) Rnl • 

(B-11 ) 

It is straightforward to show that 

1[R R .... R for n < n" n+l n+2 n'" 
-1 

- I for n'" U un'" n = n 
-1 -1 -1 

for n > n'" (B-12) R R •••• Rn ... +! n n-l 

since according to Eq.(B-5) one has 

U - R R •••• R f (B-13) n n+l n~2 -N N 

Now we are ready to express the numerical solution of G(R,R"') in terms 

G (n , n'" ) 

2lJ f f f f 

{

-2- a 1····R ... (Y ... -Y ... ) for 0 <0"', 
~ 0+ 0 n 0 

_ ~ ( __ f _.J! )-1 f' 
- 2 ~, I~... or 0 = 0 , 

ti 
~ (Rg )-! ••• (R g )-1 (yf, - yg ) for n > 0', 
)(2 0 0'+1 0 0' 

(B-14) 
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where Eqs.(B-l) and (B-IZ) have been used, and 

__ f -1 f -1 f 
~,- A [(O.S I - Tn'+! ) (Itn '+1) - ( O.S I - Tn '-1) Itn'] , 

(B-lSa) 

(B-15b) 

There are couple advantages of using formula Eq. (B-14) to calculate 

Green's function matrix G (R,R'). First, by using Eq.(B-S) one can 

efficiently generate the all matrices Rn, na l,2, ••• , N. Secondly, since 

matrices Rn, n-l,2, ••• , N, are the ratio matrices there is no difficulty 

wi th the exponentially growing or decaying wavefunctions for closed 

channels. 

Appendix C: The first derivatives of Wilson G matrix elements. 

For the internal coordinates of benzene defined in Fig. III.1 the 

relevant Wilson G matrix elements can be determined from Table VI-1 of 

Ref.(4S): 

g _ X Z xZ [~+ (l + _1 + _3_) ] 
w g aa CHo - CHo s Z sX 4X ~C 

s 0 0 

(C -1) 

XCHO ~CXCHO [.fS +~] 
gwt - -Z- (g", t - g", t ) = Z s X 

6 '1'1 6 '1'6 6 0 

(C -Z) 

X
CH

'
O 

2: t - -Z- (g ... t - g ... t ) 
'-'W 1 '1'1 1 '1'6 1 

(C -3) 

with (C -4) 



1 
, '11-~ (C -5) 

where me and ~ are the masses of atom C and atom H. Then the relevant 

derivatives are 

ag ~ _W_I __ (2( + 
aXCH x-O XCH 0 

(C -6) 

ag
wt6 If\.lc 

aXCH Ix-O· - 2XCHO ' (C -7) 

ag
t6s If \.I

C 
axw IxmO· 2 XCHO ' 

(C -8) 

Appendix 0: 

... ... 
Let P and Q be a pair of self-adjoint operators which satisfy the 

canonical commutation relation 

(0-1) 

Introduce a unitary operator 

A ...... 

U[p,q] : exp (-iqP/)i) exp(ipQ/)i) (0 -1) 

where p and q are the parameters. Now let us do the lollowing 

tranformations: 

Z:(q+ip)/Iii" -1-2,. , and 8: tan 
q 

(0 -2) 

At 
Here a and a are well known annihilation and creation operators. Then 
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it follows that 

A A At .. A 
i(-qP + pQ)/~ - 8 z -z a 

"k I n I 1/~ 
a n> - [(n-k)I] In-k> 

and 

A At 
[a,a ] - 1 

At n 
, In> - (8 ) 10> 

Inl 

(0 -3-) 

(0 -4) 

(0 -5) 

where In> is the eigenstate of harmonic oscillator. Using Eq.(0-3) and 

Eq.(D-5) gives 

<nflexp[-iqi/~)exp(iP~/~)lni> = exp(-ipq/2~)<nflexp[-iqi/~+iP~/~1Ini> 

-i~in2e ;tz-z*; -il~12sin2e -LrL2 ;tz -(_Z*)kAk 
De <nfle Ini>-e e <nfle kIo ~ a Ini > • 

(0 -6) 

With help of Eqs.(0-4) one has 
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n i k * k Inilnf ! nf-ni+k 
- L (-1) (Z ) kl(n -k)l(n -n +k)I Z 

k-O i f i 

(0 -7) 

where IZ) = exp(~tZ) IO)exp(-IZI2/2) is the well known coherent 

(62) A state which is an eigenstate of the operator a such that 

~jZ) - ZIZ) and <nIZ) - exp(-lzj2/ 2 ) (0 -8) 

Substituting Eq.(0-7) into Eq.(0-6) yields 

A A I Z 12 
<nflexp(-iqP/~)exp(lpQ/~)lni) - exp(-l~ sin2e) 

(0 -9) 
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Table 11.1 • DWBA reaction probabilities for collinear H+H 2 

on the Porte~-Karplus potential surface 

Totala 

energy(ev) 1 3 

No. of channels 

4 6 8 14 QM 

10 

0.3028 2.92-10c 7.61-10 7.74-10 7.75-10 7.75-10 

0.3128 4.07-9 1.08-8 1.10-8 1.10-8 1.10-8 

0.3228 3.43-8 9.28-8 9.44-8 9.45-8 9.45-8 

0.3428 1.03-6 2.89-6 2.994-6 2.95-6 2.95-6 

0.3628 1.43-5 4.24-5 4.32-5 4.33-5 4.33-5 

0.3828 1.19-4 3.78-4 3.87-4 3.90-4 3.90-4 

0.4028 6.90-4 2.39-3 2.47-3 2,50-3 2.51-3 

7.76-

1.07-8 

9.33-8 

2.88-6 

4.37-5 

3.89-4 

2.46-3 

0.427b 4.20-3 

0.4334 . 6.00-3 

1.64-2 1.73-2 1.77-2 1.77-2 1.74-2 1.74-2 

2.46-2 2.61-2 2.68-2 2.68-2 2.66-2 2.65-2 

0.4428 1.06-2 4.57-2 4.90-2 5.07-2 4.97-2 4.90-2 

0.4465 1.31-2 5.77-2 6.21-2 6.45-2 6.42-2 6.45-2 6.17-2 

0.4546 2.01-2 9.34-2 1.02-1 1.06-1 9.32-2 1.06-1 1.00-1 

0.4628 3.04-2 1.48-1 1.63 -1 1.71-1 8.94-2 

0.4768 5.79-2 3.06-1 3.41-1 3.43-1 3.76-1 

0.482b 7.40-2 3.99-1 4.49-1 4.28-1 5.40 

0.4898 9.44-2 5.45-1 6.15-1 5.07-1 1.20-1 

0.50 

0.6U 

1.43 -1 

1.46+1 

8.14-1 9.08-1 4.09-1 

9.95-1 8.41-1 8.74-2 

1.31-1 

2.B7-1 

1.56-1 

4.09-2 2.97-1 

1. 12+1 3.70-1 

8.90-1 4.65-1 

6.01-1 

1.00 

a.The zero of energy is the bottom of the reactant diatom potential. 

b.Keference(IB). 

c. 2.92-10 := 2. 92x!U-1U. 
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Table 11.2. Exact quantum reaction for collinear H+H2 

on the Porter-Karplus potential surface 

Totala No. of channels 

enerSI(ev) 1 2 3 4 5 6 

0.3128 4.10-ge 8.30-9 9.65-9 9.84-9 1.32-8 1.45-8 

0.3628 1.46-5 3.31-5 3.86-5 4.01-5 4.87-5 4.67-5 

0.4028 7.23-4 1.91-3 2.26-3 2.36-3 2.63-3 2.61-3 

0.4334 6.55-3 2.02-2 2.43-2 2.52-2 2.73-2 2.69-2 

0.4546 2.26-2 7.73-2 9.28-2 9.00-2 1.02-1 1.01-1 

0.4826 8.56-2 3.02-1 3.50-1 3.68-1 3.70-1 3.70-1 

0.5000 1.64-1 5.22-1 5.78-1 5.97-1 6.01-1 6.01-1 

0.6000 8.34-1 9.97-1 9.97-1 1.00 1.00 1.00 

0.7000 9.91-1 9.93-1 9.92-1 9.~H-l 9.91-1 9.90 

0.8000c 9.96-1 9.68-1 9.47-1 9.5-1 9.51-1 9.49-1 

0.8706 9.78-1 8.56-1 2.72-1 1.78-1 1.88-1 1.66-1 

0.8976 9.72-1 4.95-1 6.28-1 6.78-1 6.59-1 6.70-1 

1.2026 8.27-1 3.52-1 2.08-1 2.33-1 2.13-1 2.28-1 

1.3966d 7.07-1 1.73 -1 1.42-1 1.36-1 1.32-1 

1.6466 5.44-1 3.37-2 8.08-2 7.86-2 7.39-2 

a.The zero of energy is the bottom of the reactant diatom 

w~ll. 

b.Reference 18 

c.Two channels are opened. 

d.Three channels are opened. 

e.See c of Table li.l. 
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Other b 

gM 

1.07-8 

4.37-5 

2.46-3 

2.65-2 

1.00-1 

3.70-1 

6.01-1 

1. 00 

9.91-1 

9.95-1 

1.1B-1 

6.62-1 

2.29-1 

1.31-1 

8.00-2 
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Table 111.1. Vibrational transition probabilities 

Eo(~w) 10 8 6 4 3 

n 1 + n2 QMa SCpb QM SCP QM scp QM SCP QM scp 

0 0 O.ObO 0.025 0.204 0.225 0.538 0.573 0.892 0.882 0.978 0.964 

1 0.218 0.181 0.434 0.334 0.394 0.254 0.108 0.064 0.022 0.014 

2 0.366 0.237 0.291 0.148 0.064 0.029 1.2-3 7.1-4 

3 0.267 0.120 0.071 0.025 

4 0.089 0.028 

1 0 0.218 0.181 0.434 0.334 0.394 0.254 0.108 0.064 0.022 0.014 

1 0.286 0.081 0.034 0.020 0.244 0.422 0.850 0.905 0.977 0.987 

2 9.0-3 0.064 0.220 0.314 0.345 0.237 0.042 0.025 9.0-4 1.5-3 

3 0.170 0.232 0.261 0.139 0.037 

4 0.240 0.114 0.051 0.014 

5 0.071 0.018 

2 0 0.366 0.237 0.291 0.148 0.068 0.029 

1 0.009 0.064 0.220 0.314 0.345 0.237 

2 0.207 0.109 0.039 0.025 0.347 0.579 

3 0.018 0.075 0.250 0.336 0.233 0.141 

4 O.lbY 0.236 0.189 0.086 6.0-3 2.7-3 

5 0.194 0.077 0.016 0.004 

b 0.U34 6.9-3 

a.The exact quantum results of Ref.(32). 

b.The results of the SCP reaction path model. 

0.0139 

1.2-3 7.0-4 

0.042 0.025 

0.955 0.982 

1.3-3 2.0-) 
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ii, 

.. 

.. 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Table 111.2 Energy spacings between successive 

CH and CD overtones in C6H6 and C6D6 respectively. 

~vn-I ,n (cm- I ) 

CHa CDb 

3043 2294 

2929 2209 

2814 2153 

2700 2097 

2586 2040 

2472 1984 

2358 1928 

2245 1871 

2129 1815 

a. Calculated by using the formula for the observed spacing in the CH 

stretch overtone spectrum(33): 

v (cm-1) = 3157.1 (n + ; ) - 57.1 (n + ~ ) 2 

b. Calculated by using the formula for the observed spacing in the CO 

stretch overtone spectrum(33): 

v (cm- i
) = 2322.3 (n + ; ) - 28.2 (n + ~ )2 
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Table 111.3. The ring normal modes of C6H6 and C6D6 

and the coefficients in Eqs(III-74)a 

L...ri(C) 

CH CD CH CD CH 

A1g 993 945 0.0000 0.0000 0.0000 0.0000 0.0000 

A2g 1350 1059 0.3644 0.4685 0.0000 0.0000 0.4574 

E2g 606 579 0.0874 0.2314 1.7068 1.4389 0.0784 

E2gb , 1599 1557 -.1828 0.1157 -1.609 1.8256 -.3894 

E2gb 1178 869 -.5430 0.7773 -1.621 -1.825 -.4699 

B1u 1010 970 0.0000 0.0000 0.0000 0.0000 0.0000 

B2u 1309 1282 0.1656 0.0637 1.2968 1. ~49 0.2738 

B2u 1146 824 0.3740 -.5759 -1.100 0.8446 0.3229 

E1ub 1037 814 -.4140 -.7258 0.8338 0.8023 -.2533 

E1ub 1482 1333 0.3892 0.3098 0.3588 0.5746 0.5865 

a.Results taken from Ref.(44). 

b.ln square root of atomic weight mass unit. 

c.ln (l/square root of atomic weight mass) unit. 
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CD 

0.0.000 

0.3557 

0.1041 

0.2687 

0.3565 

0.0000 

0.1488 

-.2730 

-0.289 

0.3949 
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Table 111.4. Line width of CH(CD) stretch overtone 

of benzene(perdeuterobenzene C6D6) • 

FWHM( cm -1) 

nCH CH CD 

Exp.(a) SCPKC(b) Exp(a) 

5 111 82 50 

6 95 23-60 37 

7 90 60 -35 ) 

8 100 56 65 

9 56 32 

a.Reference (33). 

b.Present work--SCP kinetic coupling model. 

SCPKC(b) 

)7 

)8 

)6 
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Table IV.1 The transition probabilities for collinear He+H 2 

vi brationally inelastic scattering. 

Eo (~w) 10 B 6 4 3 

n1+ n2 QMa LVCMb QM LVCM QM LVCM QM LVCM QM LVCM 

0 0 0.060 0.099 0.204 0.253 0.53B 0.531 0.892 0.B51 0.978 0.955 

1 0.218 0.279 0.434 0.393 0.394 0.333 0.108 0.102 0.022 0.023 

2 0.366 0.306 0.291 0.212 0.064 0.057 1.2-3 1.6-3 

3 0.267 0.168 0.071 0.050 

4 0.089 0.050 

1 0 0.21B 0.279 0.434 0.393 0.394 0.333 0.108 0.102 0.022 0.023 

1 0.286 0.144 0.034 0.001 0.244 0.248 0.850 0.847 0.977 0.983 

2 9.0-3 0.015 0.220 0.251 0.345 0.327 0.042 0.045 

3 0.170 0.214 0.261 0.229 0.037 0.040 

4 0.240 0.195 0.051 0.049 

5 0.071 0.062 

2 0 U.366 U.306 0.291 0.212 u.Ub8 0.057 1.2-3 1.6-3 

0.009 0.015 0.220 0.251 U.345 0.327 0.042 0.045 

2 0.207 0.188 o. U39 0.012 0.347 0.349 0.955 0.971 

3 0.018 1.7-5 0.250 0.257 0.233 0.243 1.3-3 2.0-3 

4 O.lbY 0.191 0.189 0.190 b.0-3 8.9-3 

5 0.194 0.181 0.016 0.022 

b 0.034 0.043 

a.The exact quantum resu 1 ts of Ref. (32). 

b.The results of the lable variable classical mechanics. 
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Table IV.2. Transition probabilities for 1-quantum T-V energy transfer 

Transition Adiabaticc 

i iff 
n1 n2+n1n2 

E/~w QMa LVCMb (corrected) PDKd 

UU + 01 2.U5 1.69-6e 1.61-6 1.69-6 3.13-6 

2.25 7.84-5 7.64-5 7.84-5 1.49-4 

2.50 6.50-4 6.29-4 6.50-4 1.23-3 

2.75 2.31-3 2.24-3 2.31-3 4.39-3 

3.05 6.41-3 6.27-3 6.41-3 1.24-2 

3.50 1.74-2 1.75-2 1.74-2 3.47-2 

3.95 3.26-2 3.49-2 3.26-2 6.83-2 

a. The quantum mechanical results of Reference (64). 

b. The results of the label variable classical mechanics. 

c. The results of the first order adiabatic approximation corrected 

against QMa results in Reference (7U). 

d. The results of the first order distorted wave T-matrix method 

(partially decoupled T matrix) of Reference (7U). 

e. See c of table 11.1. 
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Table IV.3. Transition probabilities for l-quantum T-V energy transfera 

Transi tion AdiabaticC 

nini+nfnf 
1 2 1 2 

E/~w QMa LVCMb (corrected) PDKd 

01+11 3.05 1.95-6b 1.60-6 1.54-6 2.98-6 

3.50 2.86-4 6.28-4 5.68-4 1.15-3 

3.95 6.53-3 4.59-3 3.82-3 8.16-3 

01+02 3.05 1.11-6 3.22-6 3.12-6 5.93-6 

3.50 1.52-4 1.24-3 1.12-3 2.21-3 

3.95 4.44-4 8.80-3 7.74-3 1.54-2 

01+20 3.05 5.60-8 8.21-9 1.13-7 1.89-7 

3.50 4.55-5 2.04-5 9.93-5 1.71-4 

3.95 4.13-4 4.28-4 1.22-3 1.85-3 

a. See Table IV.l for an axplanation of the different results. 

b.See c of Table 11.1. 

..' 
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Table IV.4. Transition probabilities for 2-quanta T-V energy transfera 

Transition AdiabaticC 

nini .. nfnf E/~w QMa LVCMb (corrected) PDKd 
1 2 1 2 

00 .. 11 3.05 1.50-8b 1.05-8 9.98-9 3.74-8 

3.50 2.24-5 1.15-5 9.89-6 4.14-5 

3.95 3.97-4 1.73-4 1.20-4 6.11-4 

00-+02 3.05 3.50-9 5.28-9 4.94-9 1.87-8 

3.50 1.89-6 5.75-6 4.94-6 2.07-5 

3.95 1.81-5 8.63-5 5.99-5 3.05-4 

Ratio of 

transition 3.05 4.3 2 2 2 

probabilities 3.50 11.85 2 2 2 

21.9 2 2 2 

a. See Table IV.l for an explanation of the different results. 

b. See c of Table 11.1 
.. 
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Table IV.5. Transition 2robabilities for l:guantum v-v energ~ transfera 

Transition AdiabaticC 

nini ... nfnf E/~w QMa LVCMb (corrected) PDKd 
1 2 1 2 

01+10 2.05 4.1-3 b 4.49-3 4.10-3 4.00-3 fI' 

2.25 2.11-2 2.02-2 2.09-2 2.02-2 

2.50 4.38-2 4.00-2 4.29-2 4.00-2 

2.75 6.81-2 5.96-2 6.55-2 5.94-2 

3.05 9.89-2 ts.23-2 9.32-2 8.18-2 

3.50 0.140 0.113 0.137 0.113 

3.95 0.188 0.139 0.178 0.13 7 

Table IV.6. Transition probabilities for 2:guantum v-v energy transfera 

Transition AdiabaticC 

E/~w (corrected) 

02+11 3.05 7.82-3 7.76-3 7.84-3 7.70-3 

3.50 7.61-2 7.40-2 7.88-2 7.39-2 

3.95 0.132 0.134 0.148 O. l3 2 

.--:. 

02+20 3.05 1.70-5 1.67-5 1.71-5 1.67-5 

3.50 1.57-3 1.50-3 1.71-3 1.49-3 • 
3.95 5.17-3 5.23-3 b.51-3 5.15-3 

a.See Table IV.l for an explanation of the different results. 

b. See c of Table 11.1. 
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Figure Captions 

Figure lI.l Relative coordinates pertaining to the A+BC + AB+C (AC+B) 

reaction. 

Figure Ill. 1 A countour plot of the potential surface [Eq. (111-34)] in 

mass-.Jeighted coordinates [Eq. (111-35) 1. Also shown are the reaction 

path, and the gradient paths starting from different initial points high 

up on the potential wall. 

Figure 111.2 Vibrational transition probabilities P (E) 
n2,nl 

as a 

function of final vibrational quantum number n2' for nl=0,1,2, ••• and 

three different values of the total energy Eo. 

Figure 111.3. ~umbering of in-plane internal coordinates which are 

kinetically coupled with CH stretch XcH : s=xCH+XCHO is CH bond length; 

are CCH bond angles; a is CCC bond angles; Xo and XcHo are equilibrium 

bond lengths of CC bond and CH bond, respectively. 

Figure 111.4. The experemental absorption spectra of C6H6 (C 6D6 ) of 

Ref. (33) • Each panel contains: spectral assignments where n indicates 

the number of quanta of CH(CD) stretch exitation, positions of band 

- -1 -1 maxima or band centers (voin cm ), and FWHM b':lnd widths in cm (less 

certai n bandwidths are given in parentheses). Ordinates are absorption 

cross sections -27 2 (0 values, in millibarrns (mb=lO cm) and abscissa are 

spectral shifts relative to the band maxima. 



Figure 111.5. The square of absolute value of the correlation function 

Ic(t)1 2 for CH stretch local mode overtones n=5-9 in C6H6 as a function 

of time. The dashed line corresponds to c(t) defined by Eqs.(III.75). 

Figure IlI.6. The logarithm of lC<t)1 2 as a function of time for CH 

stretch local mode overtones n=5-9 in C6H6• The dashed line corresponds 

to c(t) defined by Eqs.(III-75). 

Figure 111.7. The absorption spectra I(6v)/I(vo) for CH stretch local 

mode overtones n=5-9 in C6H6• The dashed line corresponds to c(t) 

defined by Eqs.(III-75). 

Figure 111.8. The square of absolute value of the correlation function 

Ic(t)1 2 for CD stretch local mode overtones n=5-8 in ~6D6 as a function 

of time. 

Figure IlI.9. The logarithm of Ic(t)1 2 as a function of time for CD 

stretch local mode overtones n=5-8 in C6D6• 

Figure 111.10. The absorption spectra I(6V)/I(vo) for CD stretch local 

mode overtones n=5-8 in C6D6• 

Figure IV. 1 Transition probabili ties for the collinear He+H Z 

vibrationally inelastic scattering. 
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