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Quantum Mechanical and Semiclassical Approaches

To Molecular Dynamics

Shenghua Shi

ABSTACT

Several neQ quantum and semiclassical mechanical methods are
proposed and tested by applying to a variety of problems in molecular
dynamicse.

A new nmultichannel exchange kernel formalism for reactive
scattering is introduced. The central feature of the method 1is ;he
expansion of the reactive scattering wavefunction in terms of the non-
reactive coupled—channel scattering waves in all of the arrangements.
The exact S matrix is found from the non-reactive wavefunction and the
exchange kernel which are computed from the non-reactive coupled-channel
scattering calculations 1in each arrangements. A approximate version of
formula is obtained by virture of the distorted wave Born approximation
(DWBA) where the non-reactive coupled—channel scattering wavefunction is
utilized for distorted waves. Application to a standard test problem
(collinear H+H2 ) shows that multichannel DWBA is extremely accurate if
the reaction probability is no larger than 0.1 and 1if ~ 3 to 4
vibrational states are included in the non-reactive coupled-channel
expansion, and that the full exact calculation is stable, accurate and

easy to implement.
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Semiclassical perturbation theory combined with two approximate
models for polyatomic Hamiltonian—-- the reaction path model and the
kinetic coupling model-- leads to extremely simple, analytical formulae
for S—matrix and the spectra of overtone:. The numerical tests indicate
that these simple approximate methodé are of useful accuracy.

A new semiclassical approach is proposéd « In this approach the
evolution of the states of a system, which are parameterized by ;abel
variables, 1s determined by calculating the time development of the
label variables classically. The formalism for calculating the S-—matrix
within this framwork is developed. Sample calculations show that this

method is very simple and describes quantum phenomena very well.
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I) Introduction

The development of modern experimental techniques which makes it
possible to investigate processes at the level of molecular detail and
the advent of powerful electronic digital computer have generated
intense activity 1in the theoretical study of molecular dynamics
beginning about twenty years ago. Lo progress towards the quantitative
understanding the experimentally observed behavior of molecular systems

and helping experimentalists in design of new experiments, many new

. theoretical approaches, models and computational procedures have been

developed(l’z). The active interaction of theory with experiment has
been fruitfully leading to a better and deeper understanding of
complicated physical and chemical processes in moleéular systems. Some
of the newly developed theoretical approaches in molecular dynamics are
also finding useful application in certain areas of physics. However,
the theoretical methodology developed up to now is still so inefficient
that only for the simplest possible reactive system, i.e., the H+H2
exchange reaction, and only for low energies, the fully converged, three
dimensional exact quantum reactive scattering calculations have been
finished(3—6). Furthermore, it seems that there are few really new
theoretical approaches which have been reported in recent years. In this
thesis several new approaches towards improving the efficiency of
theoretical treatments are explored.

In Chapter Il a new exchange kernel approach to quantum reactive
scattering is formulated in both exact and DWBA versions. The
(7)

renormalized Numerov algoritham , which has been prbposed to solve the



coupled-channel equations for non-reactive systems, is investigated for
use 1in reactive scattering calculation within this formalism.
Application to the test problem of the collinear H+H, exchange reaction
is described. In Chapter III two practical approximate methods—— the
combination of the semiclassical perturbation approximation (SCP) with
two approximate models for the polyatomic Hamiltonian, the reaction path
Hamiltonian model and the kinetic coupling model, —— are presented. Two
numerical calculations have been carried out to test the models. The
results are presented and discussed. In Chapter IV a new semiclassical
approach, the label variable classical mechanics method, is developed.
The sample calculations for testing 1its usefulness -and accuracy are

described and discussed. Chapter V concludes with remarks.



II1) Quantum reactive scattering by the exchange kernel approach

I.a)Ilntroduction

The development of practical methods for a quantum mechanically
accurate description of molecular reactive .scattering has been one of
the most challenging subjects in theoretical dynamic study. The major
complication 1n reactive scattering arises from the fact that
coordinates descriptive of the asymptotic reactant arrangement differ
from those appropriate.to describe the asymptotic product arrangements.
One had to solve the éoupled—channel equations in each arrangement and
match the solutions in the interaction tegion(S). This is not an easy
job to do. A great deal of effort has been concerned with devising
elegant coordinate systems which facilitated the treatment of the
rearrangment(9—12). These methods, hpyever, have to be tailored to match
each problem.

A more general formalism originally given by Miller(l3) has been

(14’15). In this approach

applied to the collinear H+H2 exchange reaction
the total wavefunction is expanded in terms of the open channel internal
states of all arrangments with the unknown radial functions, plus a set

of the square—integrable “correlation functions”™ with the unknown

coefficients to account for the effect of closed channels. The

‘coefficients and the coupled—channel equations for the radial functions

are obtained from the variational principle. The price paid is that the
coupled equations contain a nonlocal exchage interaction, i.e., the

coupled equations are coupled integro—-differential equations. The ways

(14,15)

which have been proposed to handle this exchange interaction seem



difficult to implement in the 3 dimensional case.

In this work a easier and more general approach is explored. Here
the total wavefunction 1is expanded in terms of the non-reactive
scattering wavefunctions in all arrangements. It is discovered that the
exchange interaction kernel obtained is energy independent, i.e., it has
the character of a potential. interaction. It is also of practical
significance that within this framwork all the numerical methods_for
treating the inelastic scattering can be readily applied to calculation

of reactive scattering.
II.b) Formulation

To 1illustrate the methodology let us consider an atom—diatomic
exchange reaction A + BC -—+ AB + C, AC + B. The extension to more
general reactive systems should be straightforward. We assume that using
the Born-Oppenheimer approximation to seperate ‘the electronic and
nuclear motions 1is valid, and the resulting ground electronic state
potential energy surface V 1is known. It is further assumed that there
are no low -lying excited electronic states nearby in the energy range
we are interested in, i.e., the electronic excitation 1s excluded. Let
la be the position vector of A with respect to the center of mass of BC
and r, the position vector of C with respect to B. The vectors Ty Rb
and L., RC are similarly defined, as indicated in Fig.(I.l) The a =a, b,
¢, 1s used as arrangement index with a= (A + BC) and b= (B +CA) and c=
(C +AB). The reduced channel mass My and the reduced internal masses m,
with a = a, b, ¢, are

m, = mc my / (mc + mB)’

Iy
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My = my (mg +mg ) /M,

ub'mB(mc+mA)/M’

Mo =me (my +mp ) /M, (II- 1la)
with

M=m +op +m , (II- 1b)
where mA; mg, amd me are the masses of the atom A, B, and C,
respectively. Two other sets of coordinates which we could use are the
three Euler angles (8, ¢,,¥,) with (8,,¢ )=R = R / |xa|, and y, =twist
about R, which orient the triangle formed by the three atoms in three
dimensional space and three additional coordinates either (ra,‘Ra, Ya)

or (Ra’ R

a”* Yaa) With r,= Iral’ Rq = Ixa,’ COS Yqa~ = R, R

cosy, = ;ufﬁa’ which specify the size and shape of the triangle. Tﬁen s

g
G

it 1s easy to show that the volume integral reads

2 2
[dr=[R _dR_[r_dr [sin 6 d6 [ siny dy [dy [ dé,

2 2 -
c fRa dR fRa,dRa,f sin y . dy . [ sin 6, d6_ [ dv [ d¢,

- 2 , (II- 2a)
= fRa dR [ dp_
where c = sin—3yaa,, (II- 2b)
with
cos = - [m / (@, + o X(m +m )]/2 (LI- 2¢)
Yaa” a ™ a c b c ’
and

_ 2 .
J dp, = / r, dr, [ stny_ dy_ | d¢ [ sin 8_d6

=c fRa dR [ sin Yoar Yea- jd% / sing_d6_ f dy, .

(I1- 3)



The Hamiltonian for the three atom system can be written as

H = + + (V=-v)+h
a 2 uR @ a , (1I- 4)

where Pp 1s the translational radial momentum operator, La is the
a

”~

orbital angular momentum operator, Va is the potential for the diatomic
molecule and h is the Hamiltonian for the diatomic molecule.

Now let |¢12 > be a common eigenvector of the square of total
angular momentum JZ, the component Jz of J on the space fixed z axis,

the square of obital angular momentum Lg and the Hamiltonian of the

diatomic molecule ha’ i.e.,

L2 6> = n (2 + 1) o> (1I- S5a)
JM a JM :
hq '¢an> = € I $on 7 (1= 35b)

M -> 1s a vector in

with m denoting a set of quantum numbers. If I Uonea’n

the subspace Ra’ then the total wavevector of the system can be expanded

in terms of the direct product states | ¢i§>|ui2+a’n’ > 1in all
arrangements
J
¥y > = czxn | 1 >|um’}m.n,> (1I- 6)
]

with a = a,b,c. Then from the Schrgdinger equation it is obtained that

0 =< ¢ |u-E | ¥>
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) ™ . M ™
=) < ¢ I H E, o n- “a’n'+a1n1

a”,n

M >

=(T, - E+ e®|u
Ra 0 n l (m*aln1

JM >

+ fﬂa(£a+‘)/2“Ra]|“an«a,nl

+ Z‘ <¢g: |V‘"a'¢i§nt?l“£:'«a,nl>

n
™M - JM M
+ ) <bemn l H - K ,¢a’n’> ua’n'*alnl > (I11- 7a)
a’#a,n”
with Ty = PR /(2u) , (I1- 7b)
a a

where EO is the total energy of the svstem. To write {1t in a more

compact form with matrices we denote

( H - £ Y I =T+ 9V + & , (1I- 8a)
with
1T 0 0
Ra
T - 0 I T 0
Ry
0 0 1Ty , (I1- 8b)
-
2
L[ (v=v )+L" /(2uR )] 0 0
2
V = 0 I ((V—Vb)“’l‘kh/(ZUth)] 0
0 0 I [(V““'c)ﬂ‘zc/(‘z“cR«‘)] ,

and (11- Bc)



I (E~h,) 0 0
g = 0 L (E -hy) 0

0 0 I (E-h) , (LI~ 8d)

where I is a unit matrix. Then the Eq.(I1-7) can be written in a matrix

form
(A° - E )a = Vo @ . (LI- 9a)
with
° = ¥ + ¢° . : (LI- 9b)
°:=e' YT o , (1I- 9¢)
- T : -
vex =-¢ | (HE) X ] e, (II- 94d)
and
E=1E -¢ , | A (1I- Ye)

where the superscript T denotes the transpose and the matrix € is

diagonal, with elements
= X .
€ o . = € § - 8 - ’ (II.“ 9f)
the matrix X has no diagonal elements in arrangements

X .= -6 2) ; (I1- 9g)
an, om a, a _ :

while the matcix Y is diagoual in arrangement

w]’aana = 6(1’ Q’ M (ll_ 9“)



and the matrices u and & are defined by

Son, an” = | Wi <qn- > » @ = &bc (11~ 94)
and
JM ‘ Qs
°m’ Q‘n‘ a, a‘dn,n‘ ‘¢an > . (II 9J)

If a° is the solution of the homogeneous equation

( 8° -Ea°=0 (1I-10a)

and a matrix operator is introduced

e =z f° g1, | (LI-10b)

then the slution of Eq.(1I-Y9a) can be formally expressed as

~ ~0 0 ) ~
u=u’+@G Véx u

=G0+ 80 U G°+Q°V, 80V, &

=~0 0 ~o -
a’ + & Téxu , (II- 11)
where

T =V +V ¢°W

ex ex ex ex

TR AN LI AN LA A

ex €ex



= U, L L+C°(V +V C° Vv + )]

ex ex

= Vex[I+(:°‘I’e]

X

-(r- ¥_¢° ! v, - (1I- 12)

Substituting Eq.(II-12) into Eq.(II-11) gives

~ _ ~0 0 - o -1 ~0 : -
a=ua%+6° (1 v;xﬁ ) v ex U . (II- 13)
According to the definition the exchange kernel vex seems dependent on
energy. Fortunately, in Eq.(II-13) instead of Vex we can use another
matrix w which is energy independent and has the character of a
potential. The W matrix is obtained from the definition of vex by using

Eqs.(1L-8a),(II-9¢c),and (II-10a)
~0 T ~0
-Vv;x a = & [(H-EO)X] éu

= o' [X (T +9+B ) Jo a°

(' X ) (T+E)u%+ o (XVed°

o X [8(-9° +7V e a°

= waua’ (LI- 14)

with

10
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= X [((T-0e YV |o

=6I ; ® . : (1I-15%a)
and

w=[X-Xe# YV . (1I~-15b)

To see the physical meaning of the matrix w, we write out the element of

matrix w

-

0 for a = a
<°ib3n‘ l v ~Va* l‘ﬂlg 2

JM
Z <¢ '¢ “n ;,><¢ - ,,'V-V |¢ “a ,) for a#a” . (II-ISC)

Eq.(1I-15¢) states that the exchange kernel consists of two parts: the
first part < | = Voo '¢iqn‘> is the direct exchange interaction
between the states in different arrangements; while the second term on
the right side of Eq.(II-15¢) 1is the indirect exchange interaction via
the intermediate states in initial arrangement.

Similarly by using Eq.(II-10b) one obtains

~ ~O T ~0
Vex G = ¢ [ X (H Eo)] ¢ G

= (ol xe ) (T+E) T +of (XV) &0°



=(e"xe)-(otxo )V CO+ 8l (XV) @O
=8+ w0° , (I1-16)
where
§ = (‘T X ¢) 1is the overlap between the basis states in different
arrangements since the elements of matrix § are
0 for a # a“ ,
<M e L for a # a® . (LI-17)
Using Eq.(II-15) and Eq.(II-13) in Eq.(II-16) gives

G=0°-0°(1+§+at€°)ylgge . (II- 18)

In position representation (in R subspace) Eq.(II-9a),Eq.(II-10a) and

Eq. (II-10b) reads as

(R°-E ) u(R) = [ dR” V__ (R,R” ) u(R") , (I1- 19)
( H° -E ) u°(R) = 0, (LI- 20)
and
( H° - E ) G® (R,R” ) = &R,R") , (LI- 21)
where
H® = T(R) + VO (R), ‘ (11-22a)
with
Tem, an- (R) = =(R%/2u) Cd%/dRE ) 6 6y o0, (11-22b)

e |



voe an- (R

JM JM
an, [ <¢an l V(Ra) Va l¢an’>

2
* 2402 + 1)/Q2uRE) 8y oo | 6y oo

a, a

Vex(R,R‘ ) has the elements

. ARR?) =R R |(V ) _ |R* >R,
ex an,a’n a a ex ' an,a’n a a
G°(R,R‘) denotes the Green's functions with
o ~ '
G . {R,R®) =R <R |G . . |R°. > R°,
on, a’n a al' a,m,a’n a a

the wavefunctions u(R) are

UJM -

an +a’n )

Uon, g7~ (R) I Ry < Ky ]

8(R,R”) 1s a diagonal matrix with the elements

Gan,a'n‘ (R,R7) = G(Ra.Ra,) Ga,a‘ Gn,n‘ ;

the nonreactive wavefunctions uo(R) are

aJM

u . (R) SR R | u .
a a an €« an

and the elements of f dR~ Vex(R,R‘ ) u(R”) are

-e

(L1-22¢)

(I1-224)

(1I-22¢)

(II-22f)

(I1-22¢g)

(I1I-22h)

13



x Ra‘o <Ra4‘ l UJ};" P >

a n +apna . (II—ZZi)

Here the unity identity has been used, i.e.,

I = [dRR [RR| R,
where

( JdRR |R><R|R) 2(fR2 dr |R O<R_|)6

o, a’n” a,a‘Gn,n"
(1I- 23)
By using definitions, Eqs.(II-22e), (I1-22f), (LL-22h), and unity

identity, Eq.(I1-23), Eq.(II-18) in position representation becomes

u(R) = u’(R) - [ dR” G6° (K,R” ) Z(R") , | (1I-24a)
where

Z(R*) = [dR"“ dR“““ R R7[( I+ 8+ &€° )L r->r™"

x w(R“%,R*7%) u®(R*"7) , (11-24b)

where w(R,R”) has the elements

w . (R,R") =R <R |S R >R . (1I-24¢)
oan, a“a a a an,a’n a a

Now let £°(R) and go(R) be the regular and irregular solution of Eq.(II-

20) with real boundary conditions, i.e.,

£°(0)=0, éim f°(R)=é1m J(R) + N(R) K° » S1(R) + C(R)K° (LI-25a)

and

14



lim g°R) = lim N(R) » C(R) (11-25b)
R+ R+
where K° is a constant matrix » J(R) and N(R) are given by

jla(kana)/(vun ) 172 6a,a' Gn,n‘ for open channels ,

Jan,a’n‘(R) =
I (k _R ) (wp R )1/26 § for closed channels
£d+1/2 o a Ha™q a,a” “n,n” ¢ ’
' (1I-26a)
5 (k R )/ (v )1/2 § § for open channels
S AN ] an a,a” "n,n” p ’
Nm'a,n,(R) =

1/2
K2a+1/2(kanRa)(uaRa/w) Ga,a‘ Gn,n‘ for closed channels,
(1I-26b)
where k . = [2u (E_. - €% )]l/2 is the channel wave number, v__ = Kk __/
on uu o n ; * Yan an “a
is the translational velocity, Il+l/2 and K2+1/2 are the modified
spherical Bessel functions of. the first and third kinds, 5£ amd 62 are
Riccati-Bessel functions, the elements of matrices Si(R) and C(R) are

)1/2 -
[1/(vqn ] 81"(kanRa lan/Z) éa,a‘ ) - for open channels

n,n
Sian,a‘n‘ =
[1/(2van)1/2] exp(kanRQ) Ga,a’ Gn,n‘ , for closed channels
(II-26¢c)
[-l/vunl/z]cos(kanRa—zaﬂ/Z) Ga,a‘ 6n,n‘ for open channels
Can,a‘n‘ =

1/
2 -— [ ]
(1/(2v__)'¢ Jexp(-k Ra) Ga . Gn 0’ for closed channels

» & ’

(1I-26d)

Then 1t can be shown (Appendix A ) that the Green's functions are

15



2/KHE°®R) w ! g TRY) for R > R, (LI-27a)
G°(R,R") =

°T(R") for R > R~ , (LI-27b)

(2/%2)g°R) (w T) ~lf
where superscript T stands for transpose, and the matrix version of the

Wronskian w_ of two solution £°(R) and go(R) is defined by
w_ = £°-T(r) g°R) - foT(R) g°“(R) = const. matrix , (LI~ 28)

where prime denotes the derivative with respect to R. It should be
noticed that the Wronskian matrix is a constant matrix (for details, see
Appendix A). Especially, for the choice of the boundary condition
Eqs.(I1-25) it is equal to the unit matrix. From Eqs.(IlI-24), (II-25) it
is obvious that the regular solution of Eq.(II-19) for reactive

scattering in the asymptotic region takes the form
o o 1
lim £(R) = lim £ (R) + lim g (R) K
R+ R+ R+
= S1(R) + C(R) K° + C(R) K!

= S1(R) + C(R) K . (11-29a)
with
K = K° + K . (1I-29b)
where
Kl= —(2/#%) [dR[dR”[drR-"£°T(R)

RKR| (1 + § + W)L RDOR™ w(r”,R*") £2(k"7) . (1I-29¢)

16
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It is very crucial to find out a way to calculate Kl. Our strategy 1is
that first one expands the 1nverse matrix operator into a geometric
series. Then all the integration is carried out by the trapezoidal rule,

i.e., the approximation

JdrR £(R ) = 4 g £(R ) , (11-30a)
I =/ drR RalRa><Ra| R> =4 % Rai'Rai><Rai R , (LI-30b)
and
1
R BRLIR 4 OR =5 8.1~ | (1I-30c)

is used. Here A is the grid spacing. If A has a same value for all

integrals in Eq.(I11-29¢), the k! can be expressed as
kb= - 2/k%) T (w2 1+ ) (as+ (8)2 w GO)k] w £°
- 2 o] 2 o -1 o .
==(2/8°) £ [ /() +s8/a+wG | " wf |, (II- 31)

where fo(R) is a matrix whose elements are

o _ ¢O _
f fon,i“an” = f an,a'n‘(Rai’Rai‘) Ga,a’ . (I1-32a)
the elements of Green function matrix G° are
o o
= I-32
Gian,i‘a’n‘ Gan,a’n‘(Rai’Rai‘) Ga,a‘ ’ (11-32b)

the overlap matrix 8 is defined by



~

= Ra‘L<Rai S >R ... (I1-32¢)

8 R
ian,1i “a’n” an,a’n”! a’i” a’i

and the elements of w are given by

(1I~32d)

wian,i‘a'n’ wan, a‘n‘(Rai’Ra‘i‘) *

Thus, solving Eq.(l1I-20) with the boundary condition, Egqs.(I1I-25), for
f°(R), go(R) and Ko, and using Eq.(II-31) to calculate Kl, one can
determine K. Physically, we are only interested in the wavefunctions
foo(R) corresponding to the open-open channels which in the asymptotic

region are given by

11{%:: foo(R) *sj‘oo*'coo Koo » (II- 33)

where Sioo, C o and Koo are open-open submatrices of matrices Si, C and

0o

K, respectively. Since Si,, and C,  are diagonal matrices, we have

(81oo)an, a’n” ~

1/2 _
(1/ch ) Sin(kanRa f.a n/2) Ga,a’ Gn,n‘

= [( 1/v!/?) sin (kR - £ 7/2)] an,a"n” (L1-34a)
(coo)cm,a‘n’ =
- (— fﬁ (k_R -2 1/2) 6 §
Von CosiXan"a a a,a” n,n”
= [(- l/vl/z) cos (kR — & n/2)] an, a”n” , (L1-34b)

or



S1,, = ( 1/v1/2) sin (kR - 2 7/2) (11-35a)
C = (= 1/vt%) cos (kB - £ n/2) (11-35b)

00

where matrices v, kR and £ are all diagonal with elements

Vm’ aono = GQ, aasn’n; V(m ’ (11_363)
(kR)an’a‘n; = Ga,a’én,n‘ kan > (II-36b)
lm’a¢n, = 60’ aoan’na 2(! . (11—36(:)

By using Eqs.(II-35), Eq.(II-33) becomes
U £,,(R) = ¢ 1/9!/%) stn (& = 2 7/2) = (1/9!/?) cos (kB - 2 7/2),
= (1/912) expl-1(kR + £ 7/2)1(K  + 11)/2

- 12y expl 1(KkR + £ W/2))(K,, - 11)/2 (1I- 37)

or

in

-1
éii foo(R) 21(X - 1 koo)
( 1/v'/2) expl-1(kR + £ w/2)]

+ (1/vH2) expl 1(KR + 2 7/2)](I+1K, ) (I-1K )7L . (11~ 38)

On the other hand we know that the outgoing wavefunction satisfies the

boundary condition :

lim £7(R) ~ ( 1/v!/?) expl-1(kR + & 1/2)]

R+
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+ (1/v/2) exp[ 1(kR + £ w/2)] § (LI- 39)

where S is the scattering matrix . Comparing Eq.(1I-39) with Eq.(1I-38)

one obtains

£7(R) = £, (R) 21(L -1K__ y~1 , (11-40a)
S = (1+1xoo)(1-1xoo)‘1 . (LI-40b)

Il.c) The distorted wave Born approximation (DWBA).

The distorted wave Born approximation basically is a first order
quantum mechanical perturbation theory. In the threshold region of a
chemical reaction with an activation barrier, the reactive cross section
is small compared to the nonreactive cross section. In the formulation
above the exchangé kernel is the interaction "causing” the reaction. It
is conceivablée that’ the exchange kernel vex is small relative to the
direct interaction V¥° in the threshold region. Thus, one should be able
to describe the tunneling behavior of the threshold region
perturbatively in the framework developed above. Applying the DWBA to

Eq.(II-1l), i.e., using Véx for Téx gives

~ . ~0 ) ~0 -
uz2a°+C vexu . (II- 41)

The corresponding approximate expression for the regular reactive radial

wavefunction in the asymptotic region becomes

1im £(R) ~ S1(R) + C(R) K° + C(R) K6WBA

R3
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= S1(R) + C(R) KPWBA (1I-42a)

where

DWBA _ 1

K = K° + K'pupa , | (1I-42b)
with

1 - goT o -

Kowga = £77 w f . (L1-42¢)

S DWBA
Then, the corresponding DWBA scattering matrix S reads

DWBA _ DWBA - DWBA -1
s = (L +1 RMBA)y (1 - 4 kMBA)

1 _ 1 -1
=[(I + 1 K:)O +1 (K DWBA)OOI [X -4 K;O i (K DWBA)OO]

-1

~ ° - 1 - -1
- (I+1‘oo)(1 K%o) +1 (K DWBA)oo (I 1‘80)

° - -1 1 _ o y—~1l
+1 (Iﬂloo)(I iK;o) (K DWBA)oo (I -1 l(oo)

= 50 + sDWBA (11-43a)

’
DWBA
where the terms which are higher than quadratic in Koo have been

neglected,

o = o _o‘l -
S° = (I+1K°o)(l Koo) (II-43b)

is a non-reactive scattering matrix, and S?WBA is a DWBA reactive

scattering matrix

DWBA _ o y=l (gl _k° y-1
S, = 21 (I-KY )7 (Kpupa) oo (I°KG,)
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= _wo y—-1 oT o —wo y—1l
= 21 (1K )7L (£°T w £°)  (1-K3)

(II-43¢)

Il.d) Sample calculation ————- H + H, collinear reactive scattering.

To explore the use of this approach for reactive scattering we

apply the formalism developed above to the standard test problem ——— the

collinear H + Hz reaction on the Porter—Karplus potential energy surface

(16),

In the collinear case there are only two arrangements.

It 1is

straightforward to obtain the formalism for collinear A + BC reaction.

The unity identity reads as
I = [drR |[RO<R]| ,

with

CJdR|ROCR|) o ey s 2 (f 4Ry [R <R [)6

n

The wavefunctions u(R) are

u a’n’(R) = <Ralu > 5

an, om,a’n”

. o
and the non-reactive wavefunctions u~ are

o -
u m,a’n‘(R) = < Ra u (!n,(l'n‘> -

The Green”s functions take the form

o]
4‘RR‘
a, a-n - )

iH

<R | ¢° . _Ir- >
« an,a’n a

) -
a,a” n,n

(a ; IRai><Rai’|)6a,a’6n,n‘

(I1-44b)

(I1I-45a)

(11-45b)

(L1-45¢)
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the direct interaction potential matrix V°(R) has the elements

° = a - a -
Ven, arn-R) = <o VR - v [40> 6 . , (11-45d)

the elements of the exchange kernel Vex(R,R’) are

o = aj, _ a’(lp- _ )
ex a,an-(RIRD 2 <R _[<o2|H = E_[eo.>[RZ> (L Sq,q°) 3
(II-45e)
Corresponding to Eq.(II-32¢) and Eq.(II-32d), the elements of the

overlap matrix s are

- a ,a° _
s ien,i“a’n” ~ <qu |<¢nI ¢n‘>|Ra‘i‘ >(1 Ga,a')
=c oXr ) ¢%(r Yy (L-6 ) (11-45¢)
with
dra
€= dRa' » T ra(Rai ’ Ra’i‘ ), rq’i’ - ra‘(Rai’Ra'i' ) ’
(11-45g)

and the elements of the w matrix are

“{an,1%an” [ <Rail<¢:l(v - va’)'¢§f>|Ra‘i’>

a a” a” a” -
- £,<Rgd.<¢n'¢n"> <o |V -va,]‘¢n,>|Ra, >I =5 )

= coon(r DIV = v elx ) =T et(r L <o |V - v a0
n”~ :

x (1 -6 _) , (LI-45h)
a,a

’

where |¢:> is the vibrational eigenvectors of diatomic molecule.

Eq.(II1-20) and Eq.(lI-21) are solved numerically for the nonreactive:



24

wavefunction, f£f°(R), go(R) and Green”s functions, GO(R,R‘), with the

boundary conditions

£0(0) = 0, 1im £0(R) + S1(R) + C(R) K0 , 1im gO(R) + C(R) ,
R+ R+

and (I1-46a)

¢° (R,R” ) = 0, 1lim G° (R,R* ) = real , (LI-46b)
R+
where the elements of matrices Si(R) and C(R) are

1/2
{sin Ko Ra/van } Ga,a' Gn,n‘ for open channel,

S1gn, qon~(R) =

Y,
{expl(k LR/ (2v 1) 2]} 84,a°8n,n- for closed channel,

(I1I-47a)

and {cosk R /vl/2 } 68 ) for open channel

an “a’Van a,a” °n,n” P ’

Cm’ aan‘(R)g
l/
{exp(-kanRa/(Zvan) 21} Ga,a‘sn,n’ for closed channel,
with ' (11-47b)
kg = [2u(E, - ]2y v, = Kk / (I1I-47c)
an a”o n ’ an an’ Ha?

where eg is the vibrational energy corresponding to the state ’¢an> in

arrangement a. The transition matrix S, then, can be calculated by using
Eq.(11-40b) and Eq.(II-31).

One might expect that the Green's function matrix GO(R,R‘) could be
readily calculated, since one could use the well developed methods for
non-reactive scattering to calculate the non-reactive scattering
wavefunction f(R) and g(R). In practice, however, no methods seem

avallable for computing the £(R) and g(R) accurate enough that one could



calculate the Greens's matrix GO(R,R‘) with réasonable accuracy. The
basic difficulty comes from the exponential growing and decaying
wavefunction for closed channels 1in £(R) and g(R). To avoid this
difficulty one could put G°(R,R‘) in another form which only involves
the log-derivative matrices and the ratio matrices (for details, see
appendix B), then many numerical methods for non-reactive scattering
become applicable 1in calculating the Green's matrix GO(R,R'). Two
numerical mathods——the renormalized Numerov method(7) and the method for
integrating the coupled second order ordinary differential equations;
i.e., the trajectory 1ntegrator program(l7)—- have been used. It is
found that the Numerov method is much more efficient than the normal
integrator. For the same accuracy the former is about forty times faster
than the latter. All results presented here are obtained by using the

renormalized Numerov method described in Appendix B.
Il.e) Results and discussion.

The calculations for the collinear H+H, reaction on the Porter-
Karplus potential energy surface have been carried out by using both the
exact and the DWBA formalism. Table II.l and Table II.2 give the DWBA
and exact results for various numbers of channels (i.e., vibrational
states) used 1in the expansion for the non-reactive scattering
wavefunctions. For comparison the results of other exact quantum

(18) ,re also included in Table Il.1 and Table IIL.2.

calculations
The most important feature seen in Table II.l and Table II.2 is
that the results converge quickly with respect to the number of channels

in term which the non-reactive wavefunction {s expanded. In the low
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energy region (E9<  0.4546ev), where the reactive transition

probabilities are less than O.l, the DWBA version gives excellent

results in contrast to other DWBA reactive scattering calculations(lg-

26) which often seemed to give poor results for the reactive
probabilities. The basic reason 1is that 1in their calculations the
distorted wavefunction essentially described only elastic scattering in
each arrangement, while our distorted wave function is the non-reactive
scattering wavefunction which includes 1inelastic as well as elastic
scattering wavefunctions. One. might be confused by the apparently
unreasonable result that the DWBA values are better than the exact
values in the low energy regioﬁ. There are two reasons for that. First,
although the procedure for obtaining the non-reactive wavefunction are
the same in both the exact and DWBA versions, in the exact version one
’ -1
has to invert a huge matrix, Hfls (l—-+ LY w Go) »Or more precicely,
A A

to calculate H—lw. Fortunately, w and 8 both are short range matrices in

R. That is, if one divides the grids along R into two parts: the short

26

range part P and the long range part Q, then in terms of the grid points

in R the matrices s, w and G° can be approximately written as

w 0 8 0 G.. G
':(PP ),a:(PP ),and G°=(PP PQ)

(II- 49)
o o 0o o e Cqq

Since v only has the block Wpp, oOne only needs calculate (H—l)PP. By
using Eq.(II-49) it is easy to show that

wle =ly , o (1I-50a)
and

IR =(—é-+—+w ¢ ) , (11-50b)



All the exact results presented here are calculated by using Eqs.(II-50)
in which the short range P is.abOut 40% of the whole range. However, it
should be pointed out that Eq.(I1I-50a) is only an approximation. In the
low energy region Wpp itself 1is small, thus, one has to extend the
region P over the whole range to obtain accurate results. Due to the
limitation of the computer capacity such a whole range computation has
not been done yet. Qn the other hand, in the DWBA calculations the whole
range matrix w 1is used. Second, in exact calculation the trapezoidal
rule hés been used in the integrations, while in the DWBA calculations
the Simpson's rule was used.

In the middle energy region (0.8ev>E >0.4546 ev) the exact version
works very well, while the DWBA version begins to fail as one knows it
must. This shows up in the present calculations by a lack of convergence
in the reaction probability as the number of channels in the non-
reactive distorted wavefunction is increased. For the exact calculation
in the high energy region (E_>0.8ev), where more than two channels are
open, the number of grid points and the number of channels in the non-
reactive wavefunctions required for obtaining converged results
increase. This 1s ‘an undesirable flaw, since the computing time 1is
approximately proportional to the cube of the product of the number of
grid pointsvand the number of channels. Nevertheless, this approach {is

very general, straightforward and easy to implement.
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I11. The semiclassical perturbation (SCP) theory in dynamic calculations

28

of polyatomic system.

IIl.a) Introduction

As one has seen from the discussion above, the exact quantum
calculations for inelastic and reactive molecular collision processes
requires rather substantial amount of computational labor even for the
simplest nontrivial case of A + BC collinear collision. For a large
molecule, such as a small hydrocarbon, even approximately solving
Schrgdinget's equation 1is still an intractable problem. Semiclassical

mechanics-- e.g., multidimensional WKB methods 1like the classical S-

matrix theory (27)__ in principle, provides an appealing alternative.

approach, since it combines the computational simplicity of classical
mechanics with an apprbximate description of quantum effects. In
practice, however, for a- polyatomic system the exact semiclassical
mechanics approach also 1is too 1involed to implement. Besides the
difficulty with the dynamical calculation the enormous ab initio quantum
chemistry calculation required for a polyatomic system makes it
impossible to determine the complete potential energy surface needed.

In 1light of the great difficulties encountered 1in exact
calculation, 1in this chapter we explore the application of the
semiclassical perturbation theory in the dynamics of polyatomic
molecule. It is our hope that the approximate semiclassical theory
combined with the approximate interaction models for a polyatomic system
would lead to a simple and amenable formalism by which one would be able
to obtain a reasonably good understanding of the dynamics of the system

of our interest, i.e., the quantities which characterize the dynamic



processes are all quantitatively obtainable in a ab initio , but simple

and straightforward way.

III.b) The semiclassical perturbation approximation for the classical S-

matrix

The formalism of the first order perturbation approximation to the

(28) of the classical S—matrix theory for a

initial value representation
very general class of potential interaction has been discussed by Miller
and Smith(zg). Here we generalize the formalism to the more general
cases where there is kinetic coupling as well as potential interactién.

Consider a system of F degrees of feedom. The classical Hamiltonian

of the system reads

p 2
8
H(Ps,s,n,q) ol + VO(S) + e(n, s) + HI(PS.S,n,q)

= HO(PS,s,n)‘+ Hl(Ps,s,n,q) , (I1I- la)
with
’,
Ho = 7u + Vo(s) + ¢(n,s) , (III- 1b)

whefe (Ps,s) are the coordinate and momentum for a special degree of
freedom (e.g., the reaction coordinate), u is the reduced mass related
to the motion s, ¢(m,s) and (m,q) ={(ni,qi)}, i=2,...,F, are the
Hamiltonian ané the action- angle variables for the remaining F-l
degrees of freedom. The initial value representation for the classical

S-matrix is given by(zg)

29



30

2n  dq Bgz(gl,nl) 1/2
S = | — | ] exp 1{0(q,, n )
o n, 0 (Zn)F 1 agl 1 1
+4q, (g,,2))[ ny(q;,m) - “2]}’ (11I- 2a)

with
o
49*9-49, » (III- 2b)
where qg is the zeroth order values of the angle variables q defined
below (Eq.lLI-5)), gz(ql,nl) and nz(ql,nl) are the final values of
variables @ and n determined by the classical trajectory with the
initial values q and o , and the action @(gl,nl) is more precisely

designated by

°(g1)nl) = o[nz(QI:nl)anll' (III"' 3)

The zeroth order values Pg,so,qo and n° are determined by the zeroth

order Hamiltoninan, i.e.,

<0 o
n =0, n(t)-= o, , (I1I- 4a)
L) d€ ( ° O) o o ¢ o
q = - _mo)s_g m(s )’ q = f w[s (t,)] dt‘ + C, (III- Ab)
3 n t
o
§°=3—HO= po, PO = - gH . (111~ 4c)
3p s s s
s
If we choose ¢ = 0, then one obtains
o t
a, = [ wls (£7)] dc” . (ILI- 5)
t
o

From Eq.([I1-2b) and Eq.(Ill-4b) it 1s obvious that to zeroth order, g



are the constants, i.e.,

o o o _ o
g4 =q - q, = const. = q; ,

and thus (I1I- 6a)
t
q°=gq; +q)=gq; + [ dt” wls(t)].
t0
' (11I- 6b)

If we treat H1 as a small perturbation relative to H,, then to first

order ny(gq;,n;) is given by

t t

2 2

n,( n,) =n, + f dt n = n, + f dt (-'EE— )

y AR ThAd 1 1 aq
t t 1
1 1
o, .. .0, _ tz, o, .
., aul{s (£7),B_(c”),q,+ { dt” w(s (t7)],n}
1
= q - f dt
1 ; 391
1
3Ad
- g - 240 (LLI- 7a)
1 3g1,
with ¢ _ t
(e} 2 o o o
A¢(gl,nl) = f dt HI{S (Cf),PB(t'), Sl+ f wls (t7)] dt‘:nl}'
t t
1 , o

(ILI- 7b)

The derivative of the action integral 0(g1,n1) with respect to q is

given by
2
3®(q, ,n,) on,(q,,n,) 3 ad(q,,n,)
R SO R q4,( q,,a,) 2'21°71 - q 1’71 (III 8)
= > - » -
agl 2 1’71 agl 1 33%

where ¢, is determined only to zeroth order:

g,(q;,0y) = g,. (LII- 9)

Inteygrating Eq.(LLI-8) gives

31
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32A0(gl,nl)
¢(gl,nl) =0+ fdg1 31"'""_353—'_
! 1
32 a6 ( )
4,°7
= ¢ - A¢(gl,nl) + q; 3 ’ ‘ (I11- 10)
331

where ¢, 1is the value of ¢(q1,n1) if H = 0, i.e., ¢, 1is the zeroth

order WKB phase shift
o)

8
o 2 o)
= - <+ ° -
¢ sPSlsl f Ps (s) ds (I11- 11)

Substituting Eq.(I1I-9),Eq.(III-10) and Eq.(III-7a) into the initial

value representation Eq.(LII-2a) one obtains

1o, ) 2n -1 (ay,-m)q; -1 aé(g;,m))
Sa,«n, " ¢ F-1 /99 € :
2 1 (27) 0
(L1I- 12)

As it stands, the S-matrix in Eq.(III-12) is not symmetric (as the exact

S-matrix is) and it can be symmetrized in following way:

1
n,——+ — (n

1 2 + nz) = n - (III- 13)

1

The symmetrized version of the perturbation approximation of the

classical S—matrix thus reads

) 100 2n dgl -1 Angl -1 A¢(gl,n)
n+n - © f — fF-] © e (III~14a)
2 1 0 (27)
with
on = n, - o, , (ILI-14b)



t

2 t
Ao(gl, n? = f dt Hl{so(t‘), Ps(t’), 91+ f dt m[so(t‘)], n} ,
t t
1 o

(ILI-l4c)

where s°(t) and Pg(t) are determined by Eq.(III-4c).

IIl.c) The semiclassical perturbation (SCP) reaction path model

As already mentioned, to obtain a complete potential surface for a

33

polyatomic system is an unfeasable task. However, the advance in ab

initio quantum chemistry has provided us with the methods for the
accurate and efficient calculation of the gradient of a potential energy

(30). This has made it feasable to determine the reaction path on

surface
a potential surface. This 1is the bath of steepest descent (if mass-
weighted coordinates are used) from a saddle point on the potential
surface to various minima )

The reaction path Hamiltonian model developed by Miller, Handy and
Adams(31) is based on the reaction path and a harmonic approximation to
the potential surface about it. The model states that a classical

Hamiltonian for a general non-rotating molecular system can be

constructed as

H(P ,s,n,q) =

] F “‘k .(s)
-5 { Ps—kzk'= sz,k‘(s) [(2nk+1)(2n +1)] wk( 3 sinchosqk,)}
F 2n, +1
k 1/2
[ 1 + g=23k,l (s) ( mk(s) ) sinqk]
F
*V(s)+ ] (n+0.5) g(s) , (1II-15a)
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where F = 3N-6 with N being the number of atoms of the system; (s,PS)
are the reaction coordinate along the reaction path and the conjugate
momentum; (m,q), k=2,..., F, are the action—angle variables for the
normal modes of vibrations normal to the reaction path with the
frequencies 4 , which are functions of the reaction coordinate s; V (s)
is the potential energy along the reaction path; the coupling elements
Bk,k‘(s) for k # k” describe the coupling between the (F-1) vibrational
modes induced by motion along the reaction coordinate, and Bk,l(s)
couples vibrational mode k to the reaction coordinate (which 1is
designated mode k = 1). The coupling élements Bk,l(s) are a measure of
how the curvature of the reaction path couples to mode k. The total

curvature of the reaction path x is related to these elements by(zg)

F 2 1/2 .
x(s) = [} B, ,(s)7] . (11I-15b)
k,1
k=2
The coupling elements By k(s) are due to the change of the frequencies
»

of normal modes along the reaction path:
Bk k(s) 2 -, (ILI- 16)

where the prime denotes the derivative with respect to s. The coupling
functions as well as vo(s) and {wk(s)}, k =2,..., F, are obtainable from
the ab initio q&antum chemistry calculation of the reaction path and the
force constant matrix along 1t(31). The Hamiltonian for nonzero total
angular momentum has also been derived(3l) ,but it is more complicated.
1f all the coupling elements are small, the reaction path

Hamiltonian Eq.(III-21) can be approximated to first order as
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H(Ps,s,n,q) = Ho(Ps,s,m) + Hl(PS,s,n,q) , (III-17a)

with
1 2 F ) 1

H(P_,s,m) = ;"Ps + k-§2 (n, + ) u.\k(s.) +V (s) , (ILI-17b)

and
F 2n, + 1 1/2
2 "
Hl(Ps,s,n,q) = - PS kgz Bk,l(s) ( mk(s) ) sinqk
F wk,(s) 1/2
- P ) E'.z Bk,k‘(S) [(an+1)(2nk,+l) “:ET;Y-] sinchosqk’ .
(I1I-17¢)-

Now we apply the semiclassical perturbation formula Eq.(I1II-14) to the
approximate reaction path Hamiltonian Eqs.(III-17). First, we rewrite

Eq.(1l1~l4c) as

t2 S
a¢(q ,m) = [ dt H, = / -£¥?—i{1 . (111~ 18)
Cl 'sl S

It {s necessary to determine § and P only to =zeroth order by

Eqs.(II11I-4):

3H
s . SH_ _ .92 . - /2 - o
s 3PS Ps - BPS t{Z[E Va(s)]f =% IPS' ’
and (I1I-19a)
o t ) ’ s wk(s)
ag = [ alste]de” = — ds , (III-19b)
to . SO ilPs'
with'
d 1
Va(s) =k}2 (n + =) w(s) - Vo(s) , (11I-19¢)

where Va(s) is the vibrationally adiabatic potential. By using Eqs.(I1II-
18)-(IL11-19) in Eq.(III-14) the semiclassical perturbation expression

for the classical S-matrix reads
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i¢

o) 2n
S (E) = ————7;——— f dq exp{ -i An q
i I (2w) 0
o ° 2n +l /2 o
+ 1_£ ds [P (s)| ] B 1(8) ( “k( )" sinlq + qg )
E W - (s)
+ B, . (s) {(2n,+ 1)(2n, +1) ] sin(q, + q ) cos(q +q )1,
K, k=2 k,k k k mk( s) k ok k *ok
(1II-20a)
where

s
s
o 2 o
°o = - Ps(s) s |81+ £ ds Ps(s) with B, @, 5T ~= .
L (III-20b)
If one negelects the coriolis coupling B, k‘(S) (they are often less
?
significant than the curvature couplings Bk l(s) and the frequency
?

couplings B, ,(s)), the S-matrix given by Eq.(III-31) takes an
? .

especially simple form:

] 1o F 2n  dq  -ian q ilyklsin(qk+6k )
S, « g (E) =e n {/J 5r © e
27 M k=2 0
1|8 |sin(2q, + n )
xe K kR (11I-21a)
where o
© 2n, +1 iq
= °© _k A ok _
Y —fmds lp ()] B 1(s) T 1’2 e , (I11-21b)
© ) 12qok
B, =_£ ds (n,+Y2) B () e , (111-2lc)
and
Gk = arg (Yk)’ M = arg (Bk) . (I11-214)

Introducing the identities
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o 27n
1= 7 [ dq  6(Q - 2q, -2am) for 0 < g, < 2m , (I1I-22a)
m=—o
) 6(Q = 29, = 2m) = )) T 1 expl- 12, €Q - 291,
me=—x m=-—00 2=-—Q
(11I-22b)

and interchanging the order of summation and 1ntegfation, one can

integrate Eq.(Il1I-2la):

i¢ F o 27 dq, - i(An -2 )q ily Isin(q +8, )
s @eeCn( 1 J 5;5 . TN T kO

v | k=2 g =0
2n dQ -i£Q, 1|8 |sin(Q + n)
xf-z—-—e e }
L
0
16 F i § { E ' o | 5]
= e I e exp[=ig (& -2n, )] J, ., ({v, |) J, (|8,])} »
o b e ATt Tan —2g UM I B
(I1I- 23)

where Jﬂnk-zzk and Jzk are the regular Bessel functions. Then the

transition probability is given by

F o«
2
P (E) = 0| ]  expl-12,(§ - 2n)]J Ay, 1) 3, (8. )] »
n,¢ kﬂZl 2k-_° ' ,k k k Ank— Zlk ' kl lk i kl I
= (L1I- 24)

where JAn is the regular Bessel function.

k
If y: = 0, f.e., Bk,k= 0, then Bk= 0, so that only the term with

£k= 0 contributes to the sum, and one has

F
2
P“z* 0, kfz ]JAnk(|yk|)| (I11- 25)

On the other hand, 1f the reaction path {s approximately straight, so

that Yk= 0, k=2,¢.., F, the only terms which contributes to the sum

is £k= Ank/ 2 . Since lk are 1integers, Ank are required to be
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even, and

F
C e m|J sk =2,00., F, (III- 26)

2
= (18,1)
17 %2 k=2 A“k/ZIkH

{.e., without reaction path curvature, there is a selection rule:

&n, =0, £2, b, --- .
The semiclassical perturbation reaction path model can also be used to
describe tunneling through a transition state (i.e., saddle point)

region of a potential energy surface. For the total reaction

probabilities
PL(E) = L L L® (111~ 27)
=0 "2 7
the closure relation
® 14n(q-q7) F-1
I e = (2m)  6(q-q7) , (I1I- 28)
An=0
and Eqs.(11-20) give
r g 2 ,
P(E) = [ ———0 10 _+ 186(q)|° - (11I- 29)
R G (ZW)F—I o

The action integral ¢, and A9(q) are complex inside the barrier region,

i.e., where E < Va(s), so that Eq.(III-29Y) becomes

-i8_ 2w -246(q)
PE) = e ] —— . , (111-30a)



where 6, is the vibrationally adiabatic barrier penetration integral

S> 1 \
/ .
6, = [ ds [2(V (s) - E] 2, (II1-30b)

8¢
and A8 is the first order correction due to the curvature of the

reaction path and the frequency change along the reaction path

A6(q) =>elsinq + 62c062q , (I1I-31a)
with
S
2 ) HQF -1y o
o, = [ dasf2(v_ - E]} ) By, 1(8) (@ ()] coshq ,(I11-31b)
S¢ k=2
s
> F ow (s) o
6, = [ds ) sinh2q _, , (I1I-31c)
27 5 k2 24 ok
and
s (s)
ag= | ds & 7 (I1I-31d)
0 {2(v_(s) - E]}"?

where s, and s, are the left and right classical tufning points at the
barrier, and the quantum number m has been set to 0. With Eq.(III-31la)
for A6(q) the integral in Eq.(III-30a) is easily performed to give

-2 ©

(o]
PL(E) = e ) I,,(28)) 1,(20)] , (I1I- 32)

===

where 122 and I2 are modified Bessel functions of the first kind. One

notes that e e0 gives the wvibrationally adiabatic zero curvature
tunneling probability and the remaining factors in Eq.(III-32) provide

the corrections.

39



I1l.d) Sample calculation: collinear He + HZ inelastic scattering.
To 4{llustrate the accuracy of the SCP reaction path model,
calculations have been carried out for one of the standard inelastic

(32) collinear model of

scattering benchmarks, namely the Secrest-Johnson
He + H, vibrationally 1inelastic scattering. This 1s a nonreactive
process, but it is nevertheless possible to treat it via the reaction
path model. |

In dimensionless units, the Secrest-Johnson(3Z)Hamiltonian is

2 2 2

= + %— + %— + expla(r = R)] (III- 33)

P
H(P,R,p,r) =

and u =2/3, a= 0.3 for the He + HZ case, where (R,P) are the
cartesian coordinate and momentum for the translational motion of He
atom relative to the center of the mass of H,, and (r,p) are the
cartesian . coordinate and momentum for the vibrational motion of the
molecule H,. Figure (III-1) shows a contour plot of the potential

surface V:
1 2
V(r,R) = —— T * exp [ a(r-R)] (LII- 34)

in the mass-weighted cartesian coordivates

x =Yy R, y=r . (LII- 35)
and the paths which were determined by following the gradient of
potential V down from different initial points high up on the repulsive
wall. As it 1is shown, all the gradient paths converged to a “reaction

path ” which is essentially independent of the initial position over the

40



(31), the

energy region of interest. According to the standard procedure
curvature x(s8) and the normal mode frequency w(s) along the “"reaction

were determined. The reaction path Hamiltonian for this system

path ”
reads
'—;‘ (P +(n+1/2) (22 gs; ) sinci cosq ]2
H(P ,s,n,q) = WS
s’ 2n+l 2
{1+ (= () ) ‘“k(8) sinq ]
+ (a+Yy) w(e) 4V (s) = H® + B, : (111-36a)
with pz |
H '%"’ Va(S) ’ Va(s) = (n+1/2) w(s) + Vo(s) s (II1I-36b)
and
Hl = - P§ ( 3;(1:;) /2 k(s) sinq - P (n+1/2) (CRL2 ES; ) sinq cosq .

(IIi-36c)
Since this 1is an 1inelastic scattering problem, the nonreactive
trajectory in s determined by H, -is from s = + to 0 (defined as the
classical turning point) back to +=, rather than from s = -® to s = +w
as the reactive case. Accordingly, the Eqs.(IILI-21) becomes

Y= fds Y2(E ~ Va(s) k(s) ( ir(ls;) /zexp[-iqg(s)] (incoming part)
0

1 /2

+ | as/ TETV _(5) x(s) (22
0

w(:;) exp[iqg(s)] (outgoing part)

or

2n+!l

w(s)

1
) /Zcosqg(s) , (I11-37a)

Yy=2 j'ds Y 2(E - V_(s) x(s)(
and

8 = f ds w(s) (n+ 1/2) exp[-Ziqg(s)] (incoming part)

o 2uw(s)
- [ ds %:—g— (n+ 1/:,_) exp[ZIqZ(s)] [outgoing part)

0
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or
B = =21 g ds-%;%%% (n+-U§) sian: . (I1I-37b)
and
© 1
a2 = [ds ws) / { 2(E - V_()1} 2. (111-37¢)
0 a

The vibrational transition probability is thus given by
L 2

In the present case '8' is so small that only the term with £ = 0 makes
a significant contribution to the sum in Eq.(III-38). So that one in

effect has

Py, ® s (v aep? . (111~ 39)
i.e., it is the coupling due to the curvature of the reaction path that
causes the vibrational transition. The coupling due to the variation of
w(s) has negligible effect. |

The results of Eq.(III-39) are giveﬁ in Table (III-l) along with
the exact quantum mechanical results of Ref.32. Some of these results
are also shown pictorialy in Fig.(IIL-2). The SCP reaction path model is
seen to provide a reasonable, semiquantitative description of the
vibrationally inelastic process over a wide range of energies and also

for large An transitions

IIlI.e) The SCP kinetic coupling model for the intramolecular vibrational

relaxation and spectra of the local mode overtone in polyatonmic



molecules.

Another important aspect of polyatomic dynamics 1is intramolecular
energy transfer, especially the vibrational relaxation of the local mode
overtone, whichv plays a central role in the study of multiphoton
excitation and bond selective chemistry. In light of the considerable

1(33-34) and

interest in this area a great deal of experimenta
theoretical(35-39) work has been devoted to the investigation of the
highly excited CH overtone states of polyatomic molecules. Here we show
how the SCP approximation can be used to describe this problem
quantitatively.

An essential difference of the local mode overtone dynamics from
the normal mode study 1s that one has to be concerned with the large
amplitude of oscillation. In other words, the local mode has to be

treated specially. We use the action—angle variables (n ) to describe

s*s
the local mode as a special degree of freedom s. The remaining F-l
molecular degrees of freecom are described as a set of harmonic
oscillators with the frequencies {“x}’ k=2,..., F, with a set of action-

angle variables (m,q). Now suppose that the Hamiltonian of the system is

approximated as

H(n_,q_,n,q) = H (n_,n) + H (n_,q_,m,q) (LII-40a)
and
5 1
Ho(n,m) = ea) + [ (a+17) o - (L1I-40b)
k=2
1f |ns=0,n> is the initial state of the molecule — and the state a of

the normal modes will usually also be taken to be the ground state o —

then the absorption spectrum I(w) is given by(ao)

43
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®  i(E_ + Hu)t/h ~1He /K
I(w) = f dt e <0,n| ue u|0,n> , (III- 41)

F
where E = e(ns-O) + ukzzak(nk4-yé), and p is the dipole moment function
of the molecule. As is usual, one assumes that u is a function only of

the local mode coordinate, so that insertion of complete sets of states

before and after the propagator in Eq.(ILI-41) gives

-iHt/h - -iHt /K
<O,njue u|0,n> = X <0|u|ns><nsn| e 'n;n><n;|u|0> .
yn”

n S
s (I1I- 42)

If the local mode mixing, i.e., the terms with ns‘*“s in Eq.(III-42), is

neglected, then the absorption spectrum associated with the O+ns

overtone of the local mode s takes the standard form

2 ® 1Awt
In ’o(w) = |<ns|u'0>l [dt e C(t) with Aw = w - W 0 ?

s’ - s
(111~ 43)

where w, o 18 the normal position of the O+n_ overtone absorption line
s’ .

W = e(ns) - €(0) (III- 44)

s’

and the correlation function C(t) is

1B ot -{He/ W

C(t) = e 5 <nsn| e 'nsn> (ILI-45a)
with
F
E = &) +H kZZ “k(?k*bk) . (1II-45b)

In the framework of semiclassical mechanics the 1initial value



representation for the propagator is given by

-iHt/ K 27 dq 27 dq a(qsz’qZ) Y
<o, “2‘ e 'ns n> = / 71 [3( )] 2
2 1 0 2r 0 (2m) qsl'q1

i
x exp{ — (¢[n,(q,,q_ ,n_ ,m,),n_ (q,,q_ ,n_ n,),n ,n_ ]
n 2 11 8’ 8, 1 s, 1 s,” 8, 1271 8,

*alp(a)ag mpang ) -l * gy [ng (apaag mpng ) - ng D

(III- 46)
By the same procedure as we used in section (IIi.b)-it can be shown that
with the SCP approximation to the propagator in Eq.(I1I-46) the
correlation function Eq.(III-45a) takes the form

2n dqs 2n  dq

c(e) = J S/ woexpl —% A6(t)] (11I-47a)
0 2r 0 (27)

with
t
Ad(L) = g de” Hl(ns,qs+w§t‘,n,q+ut‘) y @0 = {mk},k = 2,000, F ,
(I11-47b)

and w = e’(ns) swhere the prime denotes the derivative with respect

to n.. Thus once Hl(n,q,n

s ) is known, Eq.(III-43) and Eqs.(I1I-47)

s*ds
are ready to be used to calculate the overtone absorption spectra of the
local mode s. In fact, using the SCP reaction path model with the local
mode coordinate as the reaction coordinate, one has obtained very
compact, analytical expression for the line widtﬁ of local mode

overtone(l‘l).

In practice, however, for a polyatomic molecule, even
though reaction path model has reduced the computational effort

significantly, it 1{is still very time consuming to determine the

interaction H. In this practical perspective the kinetic coupling model

45
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(42-44) proposed originally by Gribov{4?) geems a more appealing

approximate dynamic model. In this model the internal displacement
coordinates, Xy, i = l,eee, F, 1ce., the changes in bond lengths and
bond angles, are used. One of the most important advantages of using
internal coordinates 1is that 1in 1low orders of approximation, the
anharmonic potential coupling terms between the local modes and the
remaining degrees of freedom of the molecule, which are extremely
difficult to determine, can be neglected. In the internal coordinate
representation the kinetic coupling terms, resulting from the coordinate
dependence of the effective mass on the internal coordinate motion,
provide the dominant coupling responsible for the overtone 1line

44’66). The kinetic energy can be written in terms of internal

(47)

widths(

coordinates in the form
1 F
T = —— 123 g;;(x) BB, (III- 48)

where Pi are the momenta conjugate to Xy and gij(x) are the Wilson G
matrix elements which, in general, depend on the displacement coordinate
x(47). The gij(x) can be expressed by a Taylor series expansion in the

displacemint coordinates x about the equilibrium geowmetry x = O,

F
o
Bgj = 81y * kzl (3g, / axk)‘=oxk+ vee | (I1I- 49)

where goij = gij(O) are determined by the atomic masses and the
equilibrium geometry of molecule. Eq.(LII-49) gives the kinetic energy

to first order as



F
(o] (o]
T=T +l §J (g . /x) xPP =T +T (111-50a)
1,5,k 1 Kgmp ® 13 1
with
°_1 E P
T =l Jg . PP and T,=Y ] (3g,, / 3x ) P.P. .
e 1 1,5, 1 X xgoxk 175

(III-50b)

Let the internal coordinate xg correspond to the local mode of interest,

which to a good approximation can be described by a Morse oscillator

with the Morse potential
V=D (l-e . (III- 51)

Then the potential energy can be expressed as

47

V(x) = Vot 1{1 ©45%1%; + jz cijkxixjxk+"' }o, (III- 52)

1% j Jk

where the potential energy at equilibrum geometry has been chosen as

zero. The classical Hamiltonian to the first order, thus, reads

Ho=Ht+H (I1I-53a)
with
H ==g  P-+V + 7} [c. . %, x +if P,Pj]l =h +h
o 2 °ij i4j#s " 137173 2 245 1 s ’

(II1I-53b)

ho=2g® PP +v,h= § [c . xx ° PP (I1I-53c)

s 2813 °s " 'g? 1j$sciji 2 815 175 ?

’

i#s i,j#s i#s
1
+5 1 (3g, ; / 3x) RILA _ (11I-53d)
irjvk x=0
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In the internal coordinates the anharmonic potential couplings (the
second term on the right side of Eq.(Il1I-53d)) usually are much smaller
than the kinetic couplingé(46) (the fourth term on the right side of
Eq.(III=-53d)). In the kinetic coupling model the anharmonic potential

couplings are totally neglected. So that the Eq.(III-53d) becomes

ax

g
Hi= Je xx +7 legg PP +3 [ (——) xPP  (II- 54)
i#s 1#g 18 1,9,k kK x=0 3

The coefficients €13 in Eq8.(ILII-53) and Eq.(I1I-54) can be determined
from the molecular force constants. Therefore, the kinetic coupling
model makes the classical Hamiltonian easy to calculate.

Now 1f we do normal mode analysis(az) for fhe Hamiltonian h and
find the normal mode coordinates Qk’ the corresponding eigenvalues wﬁ
and eigenvector l..k with the elements Lik,i=1,..., F-1, then, the
inte;nal céordinates can be expressed in terms of the normal mode
coordinates

= g Lika (III- 55)

and the momenta P1 are given by

-1t
Po= 2L ) ,Q,, (11I- 56)
4
where dot denotes the time derivative and the coefficients (L-I)Til are

related to elements Liz‘

(L—l)T = hH? d J L, (L )'l =6 (ILI- 57)
12 21 an o1k ki~ %13
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where star * denotes the complex conjugate. Substituting Eq.(III-55) and

Eq. (ILI-56) into Eqs.(ILI-53)-(1II-54) gives

H = Ho + H1 (III-58a)
with
1 2 o2 1 FIoo 2 2
Hy=58,, B, +D(l-e )" +3 zzl Q, +a Q) (I1I-58b)
and
F-1
1 o -1t
i = 1£s zzlcis{ LigQgxs * 2 Big(l )44QpFg}
F-1 g
! 1j -1t =1t .
) I ¢ y a3 @h! q.ax
2 2,m=1 1,3%s 3xs x=0 ig jm “£°m’s
agis 1.t .
+( axj )x=0 sz(L )imQIQm s}
F-l 3g ¢« o
1 1j -1t -1.t
+5 1 1 ( ). L (LTH,, L] QQQ -
2 2,m,n=1 1,§,k#s axs x=0 “kn i jm "£'m'n

(11I-58c)
The zeroth order Hamiltonian H, consistes of a Morse oscillator for the
local mode and a normal mode "bath™ for the remaining degrees of
freedom. The Hl provides the couplings between them. According to
perturbation theory it is known that the importance of the terms in H;
depends on the frequency diffrence between the local mode and the bath
normal modes. If the frequency of the 1local mode is close to the
frequenc1e§ of the bath normal modes, then the first sumation in Bl is
much more important than the last two. However, if the 1local mode
frequency 1is about twice as much as the frequencies of the bath normal
modes, then the second sumation is most important. The last sumation
provides the coupling between the normal modes.
To use the SCP formulae one carries out a canonical transformation

from the local mode and normal mode coordinates to the action-angle



variable n and n,q with

s*ds
n = {n b k=1,000, F-l ,

and

q {qk}, k = l,ooo, F-1 e

In terms of action-angle variables the normal mode coordinates Q are

given by

20+l | 1
Q= (—/—) sinq. , Q = [(2n,+1) 4] cosq ,  (ILI- 59)

“

and the local mode coordinate and momentum xg and Ps are given by(48)

- - 1
X = q 1 logi{A 2 [1r- (l—Az) /2 cosq_ ] . (I11-60a)
s s
and 1
L @ (1 - AZ) /Zsinqs
P = : 7T , (11I-60b)
8 By {1 - (1 -21%) 2cosqs ]
with
1 1 -
A=1 (ns + 2 ) a/ (2D/gss) . (111-60c¢c)
and
o = s(ng) « /2Dg _ A " h(n) = -DA2 (111-60d)
8 3ns ss ’ s s ’

where the units has been used such that K=l. If the local mode overtones
of interest are not CQo'high in energy, i.e., A~l, the Eq.(LII-60a) and

Eq.(I1I-60b) can be approximated as

L1 2, iy oY% 20y
X = S (1 A7) cosq_ and Ps "2 (1 A7) sinqs

S
SS

(III- 61)
Now 1f the kinetic coupling model, Eqs.(IIXI-58), is used in the SCP

expression for the absorption spectrum Eq.(IlI-43) and Eqs.(III-47),
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then with the help of Eqs.(III-60) and Eqs.(III-61) the local mode

overtone spectrum has the expression

o
2 iwt
I“s ol® = |<n_|u|o>| _£ dt e C(t) , (I1I-62a)
and '
2w dqs 2w dq -
c(e) = f [ —=; expl -1a0(t)] (111-62b)
0 2n 0 (2x)
with
€ de”
a¢(t) = [ == ‘H [n ,q +w t°,n,q+wt”} = I + II + III , (IIL-62c)
0 [ 1""'8’%'s s
where
t F-l 2. m+1 Yy
- (1 - A ) ] " 4
I'fdt Z X {-c, L ( ) sin(q +tw t*) cos(q +w t~°)
0 =1 i¥s is 12 a ms 2 2 s s
o -1t % 2 Y, . ‘
+ gis(L )11 5..a ((1-17) (2nz+1) mzl cos(qz+wzt ) sin(qs+wsc ) }
F-1 .
o zgl W, sin(q q,+6,) (111-63a)
with
w -w
L o
2, Y, sin(——)t c, L g
W=+vV(2n +1)w (d=-17) 2 z[_isil+ is(Llfw]
£ L L 2a w-w w g is's
s L i#s L ss
(ILII-63b)
and
W, = w,
62 i t ‘ (I1I-63c)
F-1 .
Il = | oz, sinlq - (q,+%q) + 8, ] (LLI-64a)
£2,m=1
with ' | w - (w£+ wm )
(1 - a%) 72 sin ) ¢

. - +
Z,0 /(2n£+l)(20m D) wpuw ba o, = (@, + @)
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g g ' w
i -1.t ~1.t i -1
{1 eGah athija™hise g2 Lathi =2},
1,j#s s x=0 j x=0 28ss
' (I11I-64b)
w=- (w+ w)
" 8 £ m . _
and Bzm 2 + 3 t ; (I11-64c)
F-1 ‘
IIL = Z Ylmn[Alsin(qn- q£+qm+71)+A281n(qn+q£-qm+Y2)
£,m,n=1
+ A3sin(qn—q£—qm+y3) . (I11-65a)
with wh—wz+m
sin( t) w_—w, tw
A, = 2 y=n -2 % B, (11I-65b)
1 w —-w, +w S | 2 ’
n £ m
wh+w£-w
sin(-——————JE t) w+ e, —w
A, = 2 y, =m -—S_% @ (111-65¢)
2 w tw, -w * 12 2 )
n £ m
and uh-wz-wh
sin(—-ir——- t) W "W, =W
A3= —e o s Y3 =M= —_— _ (I11-65d)
n £ m

In many cases Eqs.(III-62) can be simplifed further. For example, if the
local mode frequency is close to the frequencies of the normal modes,
the the term I in Eq.(I1I1-62¢c) provides the dominant contibution. So
that the correlation function C(t) takes the form

2n dqS 2w dq F-1

c(e) = J — I exp[-iW sin(q_—q +6,)] . (I11I- 66)
02 0 (2m)F ! g=1 . s T4 X

Introducing a new variable
= = - III- 7
Q, = a4 49, ( 67)

and using the identity

2n sz hnd eikz(Qz-qs+q£)
2n

0 =

2

1 = (I11- 68)
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one can perform the integrals in Eq.(III-66) and obtain a very simple,

analytical expression for C(t)

27 dqs 2w dq L -ikz(qs-qz+61) F-1
cey=f — [—Fg 1 e Je (W) = WJI W),

0 2 0 (2n) L 2’-“ £ =1
(I1I- 69)

where the relation
2n :
[ 44 lan, (111~ 70)
0 2w - n,0

has been used and Jkl’ J, are the regular Bessel functions. Similarly,
if the local mode frequency is about twice those of the normal modes,

then the dominant term II gives

2w dq; 2w dq F-1
c(t) = [ — — I  expl-iZ, sin(q - q,—q_ +§&, )]
0 2¢ 0 (Zu)F 1z,m=l fm s £ 'm im
F-1
= J Jo(zzm) , , (I1I- 71)
2,m=1

where the same trick as that above has been used.

III.f) Sample calculation: the CH(CD) stretch local mode overtone

spectra of benzene(perdeuterobenzene C6D6)‘

To demonstrate the use of the SCP kiﬁetic coupling model the CH(DH)
stretch local mode overtone spectra of benzene(perdeuterobenzene Cbob)
have been studied. Benzene is one of the very well studied molecules.
The normal mode fundamental frequencies and the force constants are

(47,49,50)

available in the 1literature In benzene, as 1in most of



hydrocarbons, -the hydrogen atoms vibrate along the direction of the CH
bonds fairly uncoupled to the other motions in the molecule. So to a
good approximation the hydrogen vibrational motions along the CH bonés
can be treated as local modes. Besides, since the six CH bonds do not
have common atoms, the direct kinetic couplings between the six CH
stretch local mode motions are zero and it is also conceivable that the
quadratic off-diagonal cerﬁs between the six CH stretch motions in the
‘potential energy in terms of internal coordinates are negligible. So
that to a good approximation the six CH stretch lo_cal modes can be
treated as the six uncoupled anharmonic Morse oscillators with Morse
potential V(xs) - D[l-exp(—axs)lz, where D is the CH bond dissociation
energy and a is the scaling parameter. Furthermore, the benzene molecule
hasv:he D6h symmetry and the six CH bonds are equivalent. Thus the
problem can be further simplified to considering only a single CH
oscillator interacting with the ring modes. Then, the Hamiltonian for

the problem of the CH local mode overtone reads

H=H +H (LI1-72a)
with
Haly 2240 (1 - expleax.)] +—L 125(622+2QZ)
o Z 8H ‘cH expl=aXcy Iz & e We Xg 7 0
and (LI1-72b)
1 1 1 ..
g B — B — s U - — (III"/ZC)
CH uH+uc uH mH C mc

where my and m- are the masses of atom H and atom C, respectively. Here
only the fifteen in-plane normal ring modes are included, since-there
are no coupling between the CH scrétch local mode and the out- of-plane
normal modes. Hl consists of only the second term in Eq.(ILI-62¢), i.e.,

the ‘kinetic coupling between the Cli stretch x., and the in-plane

54
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internal coordinates, due to the fact that because of the small mass of
the hydrogen atom, the CH stretch mode has the frequeney (~ 3000cm_1),
considerably higher than the other modes (600~1600cm-1).‘The in-plane
internal coordinates which are kinetically coupled with the CH stretch
xcy are: the extension of the CC stretch coordinates X]»Xg and the in
-plane CCH wag waXCHOBEXCHO(¢6-¢1)/2, where ¢, and ¢ are the CCH bond
angles and XcHo 18 the equilibrium length of the CH bond [see Fig.(IIIL-
3)]. By using the general formulae for the Wilson G matrix elements in
Table VI-1 of Ref.(47) the kinetic coupling H, reads (for the details,

see the Appendix C)

2 .
Hl- leCH Pw + B2 xcH (P6 Pl) Pw + B3xw(P6—P1) PCH (111-73a)
with
"4 e e = =
B--( + + ),B--/3 /(4X )u)B='G/(4X )]J ’
1 xCHo xCHo ZXCHo 2 CHo’"C 3 CHo’ "c
(II1I-73b)

where Pw’ P1 and P6 are the momenta conjugate to Xy X and Xgs
respectively. With the interaction Hamiltonian H; given by Eqs.(ILI-73)
the SCP correlation function Eq.(III-71) takes the form

10

C(t) = I JO(Z
2,m=1

zm) (I11-74a)

with
w v
Iz] +B3_____CH L
€cu%n

' [/l /1 i 1]
CH
2,4 sin(———"Re)

-1t -1t -1t =11 -1
2, = (B L) L)+ By (L) (L) =(L ) o

Lm

-1t _, -1t
x[(L ") =L )12]}/(2n£+l)(2nm+1)mzwm

(1-2
2a (wCH—w

Z—wm)
(I1I-74b)

W

—— V
= = |- 2 -
CH a/ZDgCH A and A= 1 (nCH + 1)a / (ZD/gCH) , (I11-74c)



where the Morse potential paremeters D=0.199(0.218)a.u. and
a=0.,9386(0.898)a.u. for benzene(perdeuterobenzene CGD6) are determined

such that the energy eigenvalues for the CH(CD) stretch Morse oscillator

) 2
hCH(nCH) = -DA” fit the experimental CH(CD) overtone spacing listed
in Table III-2, the transformation matrix elements (L_l)éz,

[(L-l)gz-L-l)Iz, and L, £,m=l,..., 10 are given in Table III-3, and
the fact that only ten modes have different frequencies (five modes are
doubly degenerated) has been used. The overtone spectrum of the CH(CD)

stretch local mode I then, can be determined by Fourier

“cu*°(w)'
transform of the correlation function C(t). .Since Zlm(t)«sin[(wca-m -
wm)t/2] is an odd funcion of time t and Jo(sz) is a even function of
sz. Consequently, the spectra given by Eq.(I1II-62a) is symmetric.

The results for the CH stretch local mode overtones, n=5-9, in
benzene CgH, are shown as the solid line curves in Figs.IIl.5-I1I.7. Fof

(33) are presented in Fig.IIL.4. In

comparison the experimental results
Fig.IIl.5 the square of absolute value of the correlation function
|C(t)|2 plotted as a function of t. The logIC(t)I2 as a function of t is
plotted in Fig.III.6. The calculated absorption spectra of benzene are
given in Fig.IIll.7. In Fig.IIl.6 it is seen that IC(t)l2 does not decay
simply exponentially and there are recurrences. However, as shown in
Fig.II1l.7, except for the n=6 CH stretch overtone the spectra are
structureless. It seems that the recurrences are not so substantial as
to effect the major feature of the spectra. In order to see to what
extent the recurrences effect the features of spectra, in Figs.IIll.5-

I1I.7 we have also plotted the curves (dashed 1line) for IC(t)lz,

1og|C(t)|2 and the corresponding spetra I(w)/T(w), where T(t) is defined

by
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¢ (t) =C(t) for 0<t<cF and C (t) = exp(-t/rF) for t>tF
with : (I111-75a)

L /log[C(tF)] . (I1I-75b)

Here the time tp indicated by the arrows in Figs.III.5-I1I1.7 is the time
at which the IC(c)l2 has decayed to about 0.0l (except for n=6, for
which tp is about the end time of the initial rapid decay). In Fig.III.7
it is seen that except for n=6,the dashed line very closely follows the
solid line. Thus, 1t seems that the initigl rapid decay of |C(t)l2
dominates the main features of the absorption spectrum as along as
|C(c)|2 is small (~0.0l) for later time. For n=6 CH stretch overtone
there are strong recurrences. As a consequence, the absorption spectrum
has some structure. The dashed line 1is different from the solid one. The
former i{s close to being Ehe enveiope of the latter.

Similarly, the results for C(D, are shown in Figs.III.8-I1II.10.
Fig.II11.8 and Fig.lIl.9 show that for CD stretch overtone n=5 of C6D6
the |C(r.)|2 hardly has any decay. Consequently, the spectra ﬁave an
extremely narrow sharp peak. The |C(t)|2 for CD stretch overtones n=6,7
and 8 initially decay approximately exponentially (but with much slower
decay rate than that for CH overtone), then strong recurrences occur.

The line widths of the CH(CD) overtones of C6H6(c606) taken from
calculated spectra are listed in Table III.4 where the experimental
results are also included;

The comparison shows that the present SCP kinetic coupling model
gives semi-quantitively good results. For Cb“b the calculated line width

of the CH stretch overtone n=5 is the largest while the line width of
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the CH overtone n=9 is the smallest. The calculation reproduced the
experimentally observed narrowing trend in the high overtone lineshapes.
The 1line width calculated by the present model are systematically
smaller than the experimental results. However, this 1s what might be
e;pecced from the fact that in this model only the linear terms of
anharmonic kinetic couplings between the local mode and the ring normal
modes are included. Taking into account the higher order terms in
kinetic couplings and the other couplings such as the potential
coupling, the couplings between the ring normal modes, and Coriolis
coupling, etc., certainly will increase the decay rate of the overtone
states, so that the lineshape will become broader.

For perdeuterobenzene C¢D¢ the results of the present work have the
general features of the line shape of the CD overtone, i.e., the line
widths are narrower than those of the CH overtones. Unfortunately, the
calculated line widths for CD overtones are too narrow. Certainly, this
is due to the lack of considering the other couplings which might be

important since the kinetic coupling is so weak for CD overtone.

I1l.g) Remarks

The SCP reaction path model and the SCP kinetic coupling model lead
to the extremely simple, explicit formulas for the dynamic quantities of
interest. They provide us with very practical, although approximate,
ways to deal with the dynamic problem for polyatomic systems. The sample
calculations show that these methods are semi-quantitative. The SCP
reaction path model seems applicable to a variety of problems in

(41)

!
polyatomc dynamics » while the SCP kinetic coupling model is useful

mainly 1in the study of the intramolecular energy transfer, which
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certainly is a very important aspect of polyatomic dynamics. From a
practical point of view the SCP kinetic coupling model seems more
attractive. In this model the only input 1imformation needed is the
harmonic force field of the molecule in the equilibrium geometry which
can be obtained either "by efficient ab initio quantum chemistry
(51)

calculation » or by fitting the experimentally measured spectroscopic

data(sz). From this 1nput it 1is a simple matter to obtain the

imformation about the energy transfer between the modes, and about the
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spectrum of the local mode, since we have a simple expression for that.

It seems very promising that the SCP kinetic coupling model will find
wide use 1in the theoretical study of the intramolecular dynamics of

polyatomic system.



IV. A new semiclassical approach to the molecular dynamics——label

variable classical mechanicse.

IV.a) Introduction

In the light of difficulty with solving Schrgﬁinger's equation and
the failure of classical mechanics to account for the quantum effects
pfevailing in molecular dynamics, a great deal of effort have been
dev;ted to developing a hybrid approach, semiclassical mechanics, by
which simple classical mechanics c¢ould be used to obtain quantum

(27) and the time-

imformation. The well known classical S-matrix theory
dependent wave-packet approach(53)'are among the successfully developed
semiclassical methods.

In a series of papers on continuous represention theory by
Klauder(sa), an interesting point of view on the correspondence between
quantum mechanics and «classical mechnics 1is presented. If one
establishes a correspondence between the unit vector |0> in Hilbert
space &, whicﬁ describes the_states of a system, and the sets of labels
2 in an abstract label variable space £ by a unitary mapping M(2): £ ¢ £

(54) that under certain

+ '¢(2)> e E then, it has been shown
restrictions the label variables formally follow the laws of classical
mechanics. So that the evolution of the state vector in Hilbert space
can be (in general, approximately) determined by calculating the time
development of the label variables classically. In this chapter, based
on this idea as an alternative semiclassical approach, the férmalism for

calculating the transition probabilities of 1inelastic scattering is

developed.
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IV.b) The classical mechanics of label variables——-the basic idea.

It 1is illustrative to consider first the case of a single,
nonrelativistic particle free moving in only one dimension. One begins
with choosihg a unit vector I@o? in the Hilbert space Z of the system as
a reference vector. Thus,

<o) 0> = 1 (1V-1)
In principle the reference vector |¢°> can be any proper vector in
Hilbert space. A pair of self-adjoint oprtators acting in the Hilbert
space are denoted by 6 and 5; for example, 6 and P might be the position

and momentum operator, respectively. These operators obey the canonical

commutation relation

(P} =1 h . (1V-2)

Using these operators one can generate a two—parameter, unitary family

of operators

in

ﬁ[p,q] o—1aP/R _1pQ/K (IV-3)

that satisfy the composition law
Ulp,q) Ulp~,q-1=eiP1 /B ((pep-,q+q-],
as well as the basic relation

0 p,q) = GT(p,q] = e 1aP/H o1PQ/K - o1PQ G —q] . (IV-5)
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Here p and q denote two arbitrary complex parameters. By acting on the
reference vector |0°> with the unitary operartor ﬁ[p,q] one defines the

unit vector

| elp,q1> = Ulp,ql|0.>, (1V-6)

(55)

which is labeled by p and q. It can be shown that the set of these

vectors I@[p,q]) for all p and q form a continuous basis G of the

Hilbert space £ in the sense that we can resolve the identity operator

as

L= f|olp,al> &9 <olp,al| 5 ‘ (1v=7)

therfore, an arbitrary vector Iw) € = can be expressed in terms of the

set of these vectors

d
| = [ |elp,al> g%;gi Wp,q) » (1v-8)
where ¥(p,q) = <¢[p,q]lw> is a representation of the vector ‘w) in this

continuous basis G. Now 1if one imposes on the reference vector |®o> the

restictions
<00y = 0 and <8,|Q|e,> = 0, (1V-9)

i.e., the mean values of P and Q in the reference atate are zero, then

it is easy to show that

<olp,q1|P|®lp,q1> = p and <elp,ql1|Q|elp,ql>= q- | (I1V-10)



This means that, for such a choice of the reference vector, the label
variables p and q acquire a physical significance, i.e., p and q now are
the mean values of the operator 5 and 6 in state lo[p,q]>, respectively.
Eqs. (IV-9) and (IV-10) 1immediately lead to the following canonical

kinematical form
1#<8[p,q1| élp,ql> = <blp,al| e *PE/¥ (dp-pQ) ein/u“o)
= <°°' lq(P+p) - pQ] |°o> = pq , (Iv—ll)

where the dot denotes the time derivative.
‘Consider now the equation of motion for evolution of the label

(56)

variables p and q. As 1s well known in quantum mechanics , the time

evolution of a state obeys the Schrgdinger's equation
iR —gl—!‘l—' =H |v , (1v-12)

where H is the Hamiltonian of the system. The solution of this equation

can be formally written as
|wer> = e 1 0y, (1V-13)

if ﬁ does not depend on time t explicitly. The schrgdinger's equation

can be deduced by extremizing of the quantum action functional

L= [ (<y|th{> - <y|H| ] dae (1V-14)
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under unrestricted variation of the vector Iw(t)>a The unrestricted
variation means that the vector |¢(t)> can be any vector in the whole
-Hilbert space =.-Among all the vectors in Hilbert space only the vector
which causes the action functional 1 to have an extreme value will
correspond to a real state of the system. Suppose now the variation of
the vector Iw) is 1limited to a fairly restricted set of unit vectors
such as the basis set vectors '0lp,q]> just defined. In other words, one
uses lO[p,q]) instead of lwb in the expression of the action functional

in Eq.(IV-14), and with the help of Eq.(IV-1l) one obtains
I' = [de{in<olp,ql|dlp,qI> - <olp,ql|H|elp,q]|>}

= [ dt (pq - H) (1V-15)
with |

H = <¢lp,ql|H|elp,q]> - (1V-16)

One immediately recognizes that formally this is a classical action
functional. The extremal variation of I' with respect to arbitrary

variation of p and q ylelds the classical Hamilton's equations of motion
q = aH/3p , p = - /3 . (IV-17)

There are two reasons why we have used the word "formally” here. First,
H(p,q) 1s not equal to the classical Hamiltonian Hcl(p,q) which has the
functional form of the quantum mechanical Hamiltonian with explicit p

and q substitution for the opefétors P and Q, respectively. There is an
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additional term 0(M,¢o,p,q)(54),

H(p,q) = <olp,ql|H|olp,q]> =<o_|H(P+p,Q+q) |0 >
=H_,(p,q) + O(H,9,,p,q) | (IV-18)

For nonpathological Hamiltonians O depends only on the positive powers

of K. Hence, in this case

lim O(M,oo,p,q) =0 .

H-0
That 1is, in the classical limit K+0, one has‘H(p,q)=Hcl(p,q) so that
Eq. (IV-17) becomes the conventional classical equation of motion. Since
classical mechanics arises only in the formal sense, one can just as
well adopt H(p,q) itself as the ;classical" Hamiltonian. Second, in
classical mechanics p and q ‘refer to the momentum and coordinate of a
particle. Here, however, p and q just represent label vériables for the
state vector %{p,ql. The physical significance of p and q depends on the
choice of the reference vector |0°> and the unitary operetor ﬁ[p,q].

This essentially finishes the general description of the approach.

The practical scheme is as follows: Suppose that the system initially is
in a state |¢(0)>=|¢[p(0),q(0)]>, i.e., the initial values p(0) and q(0)
of p and q are known. Then, integrating the equation of motion Eq.(l7)
for p and q one obtains the values of p and q at time t, i.e., p(t) and

q(t). Hence, the state of the system at time t can be determined as

[ #(t)> = |o[p(t),q(t)]> . (IV-19)
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In general if the system initially in a state which is not in the basis
set G, then we can expand it in terms of the basis set states

dpodqo
| /03> = [l olp jia,]> —m— <olpaa,1]¥(0)> (1v-20)

and at later time t we have
dp dq
| we)> =f |olp (£),q (€)]> —mp— <olp,q,][w0)> , (Iv-21)

wheré lo[po(t),qo(t)> can be evaluated by using the procedure just
described above.

The crucial thing we have done during the derivation 1is the
restricted vartiacion of the functional. That is, we limited ourselves to
coﬁsidering only the vectors within the basis set G. It implies that we
have assumed‘ that {f {nitially the system {s {in the state ]o(0)>
-|o[p(0),q(0)]> belonging to the basis set G, then later on the state
vector |o(:)> for the system would be within the basis set G all the

time and never goes beyond the basis set G. Mathematically it means if

| #(0)> = | #(p(0),q(0)]> € G for £=0

then

|°(t)> - e-th/K'

9(0)> = of[p(t),q(e)]> € ¢ (LV=22)
tor all te. In general, cthis {s not crue. The wvalidity of cthis
dppruximacfion depends on the choice of the reference vector oo> and on
the Hamiltonian operaror He For example, 1f the Hamiltonian is linear or

quadrdtic {n P and @, it would be exacc(su)-
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It is straightforward to generalize the above formalism to a system
of N degrees of freedom. All that is needed is the replace the scalar

label variables with the vector label variables
q+q » P *P, (Iv-23)
scalar operators with the vector operators
Q +Q , P+P ' (1V-24)
and consequently the scalar product with the vector inner product
qg + Q‘E s Pa * P’& . (IV-25)

Here q and p denote the sets of labels {qi} and {p;}, 1=1,2,...,N, 6 and
5 signify the sets of the operators {61} and {51}, i=1,2,...,N, which

satisfy the commutation relation

- -~ A

[Qi’P ] = 1K6 ’ [di’Q

j 1j ] = O’ [Pi:P ] =0 ’ (IV-26)

b h)

where Gij is the Kronecker delta function..
IV.c) Application to the collinear inelastic scattering of A+BC.
To illustrate the application of the general results obtained

above, 1t 1s useful to consider the simplest nontrivial example of a

collision system that ' possesses an internal degree of freedom in
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addition to translation. The Hamiltonian of the system is

H(P,R,p,r) = HO(P,R,p,r) + V(r,R) . (IV-27a)
with
HO(P,R,P,I) - E + 2o + v(r) , (1v=-27b)

-

where R and P are the cartesian coordinate and momentum for translation
of A relacive to the center of mass of BC, and ; and 5 are the cartesian
variables f;r the vibration of BC.

One must first choose the reference vector. It is obvious that onme
should take the initial state as the reference state if it is possible,
since it corresponds to the zero initial value of label variables and
there would be no ambiguity in deciding the initial condition. However,
as a reference state it must be a proper vector, and things will be much
easier if the expectation values of ﬁ and ﬁ are zero as required by
Eq.(IV-9). In the present case, the initial vibrarional state
corresponds .to a proper vector in Hilbert space and can be chosen as a
reference vector for tﬁe vibrational motione. prever, in general it does

not fulfill the conditions of Eq.(IV-9)
< lpln>=p 20, <afefn>=r20 , (1V-28)

where |"1> is the initial vibrational state of molecule BC. But if the

new pair of self-adjoint operators p'and r'

| . p - S . l"= r -r (1V—29)



are used as the generator of unitary mappong, one will have

- -

[t',p'] = ih ,<ni|p'|ni> = 0, and <ni|t'|ni> =0, (IV=-30)

In contrast, the initial momentum eigenstate for translation is not a
localized state, i.e., is not a proper vector, so it cannot be chosen as
a reference vector. Instead a Gaussian wave packet state °ot> is

chosen, which has the representation in positon representation

| . ,.
<R|® > = 1 exp( ) (Iv-31la)
ot (ng) 26

and in momentum representation

2 |
Po_> =/ E/h —r— exp(- —=— %) , | (IV-31b)
x Ok 21 -

where subscript t refers to translational motion, and £ is a paremeter
characterizing the width of the wave packet. |°ot> satisfies the
condition of Eq.(IV-9)

<o, P[0, >= 0 and <o  |R|8 > = 0 (1v-32)

The direct product of these two reference vectors constitutes the

reference vector for the complete system
|65> = |ng>] 00> (1V-33)

The unitary mapping operator is then defined by
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- -iqRP/bi =iq_p'/h ip R/W ip_r'/K
r R r
U(PR’qR’pr’qr) = e e e e . (IV=-34)

where Pr»9R Py and q, are label variables, and the unit vector is given

by

| #lpg (t),ag(e),p_(£),a (1> = Ulpg(t),ag(t),p (t),q ()]0 >

~1qg (€)B/K —q_(£)p" /K 1pp(IR/K 1p_(t)r' /i
= e e e e 'ni> ¢ >

ot

= |0, [pp(t)sap (021> o [p (£),q,(e)]>, (1V-35)

where - N
-1q, (£)P/R 1p (€)R/H
|, lpg(t),qp(t)]> = e e 80> (I1v-36a)
and - -
-1q_(e)p'/k 1p_(t)r'/H
'Qv[pr(t),qr(t)]> Ze e 'ni> . (IV-36b)
If at t=0 one has
| 0lpg (0),a,(0),p_(0),q_(0)> = @ [pr(0),q,(0)]>[n >, (1V-37)
then, from Eqs.(IV-35) and (IV-36), 1t is clear that
pr(O) = (0 and qr(O) =0 (IV-38)
or
| ¢,(p.€0),q,(0)]> = |6,10,0]> = |n> (1v-39)
and - -
-1q, (0)P/K 1pg (0IR/H
e ¢0t (1v-40)

|e [p,(0),q,(0)]> = e



According to Eq.(IV-18), with help of Eq.(IV-35), it follows that

H(p_,P_qp,q.) = <°[pR,pr.qR.qr]IH(P.R.p.q )| olpg,p sag,a 1>

A A A

= <°[PR’p ’qR’q ]'H (P,R,p~ ,I‘ )|¢[PRtP ’qR’q >

= <O_|H (P+pp,RHqp,p +p_, T +q )]0 >

2 -2
Pe (p,*P) - - - -
= 2n + 2o + Y(qr:r) + V(qR'qr’r) + OP

where

Y

(29?2 P2
Op = <"1|—Rﬁ'lni> M <°oc|—2_u_| ®oe”

- -
-

= <n In > - 2—— IO const. ,
2m

iI 2m oc'

and‘
;(qr,;) = <nilv(r+qr)|ni> ,
Similarly one has

A A A A

<olppsP »ag»a 1[H (B,R,p,T)|0[pp,p sap,a 1>

HO(PR,Pqu,qr)

2 -.2
PR (pr+p) = -
= 2u + 2m * v(qr,r) M OP ‘

From the scattering theory (57) it is well known that

(IV-41)

(Iv-42)

(1Iv-43a)

(IV-43Db)

(IV=-44)
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X . 1H t./R -iHt. /K 1Ht. /K -1i8 c. /K
|out>=S|in>=11m e ° 2 e 2 e ! e ° 1 ‘in) ,

t, o, t,+®
! 2 - (1V=45)

where 'out) and |in> are out—asymptote and in-asymptote, respectively,
and S is the scattering operator. Mathematically, as expressed in
Eq.(IV-45), t) should tend to -« and tz tend to +w. But in practice it

is sufficient that Itll = |t1f| and t; =t,¢ be large enough so that one

has
-1Ht /% -1H t/H .
e '0) = e 'in) for t < t1= - Itlfl s (IV-46a)
and - -
-iHt /¥ -ﬂiot/ﬁ ,
e [e> =e [out> for £ > t, = ¢, . (1V-46b)
With this understanding one can rewrite the Eq.(IV-45) as
out> = §[in> = Q2,2 [in> , (1V-47)
T e e petle i
- iR _|c |/ . -iH(t, +{t [)/h . id ¢t /W
Ql e ol "1£h . QZE e 2f 1 R 935 e o-2f . (IvV-48)

This form suggests that the out—asymptote Ibut) is obtained from the in-
asymptote by following its evolution during 3 separate time periods: in
period 1 from t=0 to t=t,¢ the evolution of state is generated by the
Hamiltonian ﬁo’ or, equivalently, (-ﬁo) generates the evolution from t=0
to t=|c1f|; in period 2 the state is evolved from tig to toe according
to Hamiltonian ﬁ; and, finally, in period 3 the state 1is evolved from
t=t,¢ back to t=0 by ﬁo'

If one now identifies |in> = |n1> |¢ot[pR(0),qR(0)]>, then by

virtue of our approximation Eq.(IV-22) one has
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lout) = l0[pR(tf),Pr(tf),qR(tf),qr(tf)]>

= | o, lp (tp)ha (e )I>[0 lpplt ) q (£ )I>
~1qg (e )P/K  =1q_(t)p /K 1py(t IR/K 1p_(c )r*/h
= e e e e In >|¢ >
i ot
(Iv-49)
where pR(tf),qR(tf),pr(tf) and qr(tf) are correspondingly determined by
classical trajectory calculation as follows. One first integrates the

classical equations of motion Eqs.(IV-50) corresponding to

Ho(pR!PraqR'qr) from t=0 to C‘“tlf

dq(t) pR(t) dq_(t) Pt P
dpg(t) dp (t) 83(qr.?)

r
with initial conditions

9= qR(O) » Pg= pR(O) > 9. 0, and P, = 0, at t=0 . (1Iv-51)
then continuously integrates Eqs.(IV-52) corresponding to H(pR’pr’qR’qr)

from t’tlf to t=t2f

dqR(t) ) pR(C) dqr(t) ) Pt P (1V-52a)
dt u » Tdt o ’ a
dpR(t) . 3V(qr,r.qR) : dpr(t) . EV(qr,r) ) 3V(qr,r,qR)
» ]
dt e dt 3q 3q _
" (IV=52b)

and finally integrates Eq.(IV-50) from t=t, back to t=0.
The projection of Iout) on the final state ntPf> then can be

readily calculated
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<n P out> = <n |0 [p_(t.),q (£ )1><PF [0, [p (t,)ap(e)]>
(Iv=53)

where
-iq, (t_)P/H 1ip_(t_)R/K
<Pf|0t[pR(tf),qR(tf)]> -offe RE e R o,

2 2
=/E/R 1 L f__& (pf_ -
E/W —(—"-)r/A— exp { m qp(te)P 2“2 (P PR(C)] ) (Iv=54)
and - N
iq_(t )p°/h —ip_(t )r~ /W
<nf|0v[pr(tf).qr(tf)]>- (nfl e T £ e T £ Ini>

1q_(t )p/h =ip (t )r/h = ip_(t ) {r-q_(t )]/H
e ° F e T f / dr<nf|r> e T f £t <r—qr(tf)|ni>

(IV=-55)
Here nf> and Pf> are final vibrarional state and translational

momentum eigenstate, respectively.

On the other hand, one has

<n P’ |ou>=<a Pf|S|1n> = <a,Pf[S|n >[0 (p,(0),qp(0) 1>

= dP f 3 = u -
J <n P"|S|n P><P| @ [p,(0),qp(0)]> Sﬂf*ﬂi(g) | FogpdE8(EE )

2
L £l
274, £, 2 pr.’2 4
x SPPY) <Pl¢t[pR(0),qR(0)]> = (—;;) <P |ot[pR(O),qR(O)]>Snf*n§E) ,
or £
pl Y2 <P |oue>
S. g B) = D —3 , (1V-56)
£ 04 PY <P| @, [ppp(0),4,(0)]>

with

pl = JTu(E = e ), pf= /ouE = én y - (1V=57)

1 £ '

and
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2
—_ 1 2
<P*| & pg (0),q5 (0) 1>=/E o el ﬁ-qR(o>911—rf;5 (Pl-pe (071} .

(Iv-58)

Here €, is the vibrarional energy of molecule BC in the state n and Eg

is the total energy of the whole system. Eq.(IV-56) is exact. Now if an

approximation Eq.(IV-53) 1is used, then by virtue of Eq.(IV-54) and

Eq.(IV-55) it is obtained that

1 f
P f <P" | 8 [pp(€),qp () 1>
n_+n f

£ PY <ee, 1pg(0),q, (01>

(nflov[pr(tf),qr(tf)]>

2 |
2 B(te) o 1p_(e,)[rma_(£,)1/H
-£?r<nf|r>e <r-qt(tf)]ni> ,

24

e

I

1 -1x(e)/H
e

N
(o))

(1V-59)
- where

Y(tf) ='qR(Cf)Pf- qR(O)P1+pr(tf); - grﬂcf)g , (IV-60a)

Be,) = [PF- poe)1? - 12t - p (@)

(IV-60b)
Thus, the transition probability can be calculated
1 - &% By
2 P [ f
P e, ™ [Sq e BT =5 e
£ 1 £ P
® ip (e ) r=q _(t )]}/%
r f r f 2
x Li dr <nf|r> e <r-qr(tf)lni>|
, (IV-61)

where pR(tf),qR(tf),pr(tf) and qr(tf) are determined by calculating one

classical trajectory.

IV.d) Example: The vibrationally inelastic scattering of collinear



He+H 2°

To test the potential usefulness of this new approach a calculation
for the Secrest-=Johnson model(32) of collinear He+H, vibrationally
inelastic scattering has been‘carried out. In the usual dimensionless
coordinate system the Hamiltonian reads

5 2 ~ 2 ; 2 “ -
H(P,R,p,r) = 50— + 5=+ 5= +expl - a(x-R)] (IV-62)
with

= —%- and a = 0.3 . (IvV-63)

In this case the vibration states ln) are the eilgenstates of harmonic

oscillator, so that

<« P [0a>=5=0 , <arfn>=0 . (1v-64)

Also, the “"classical” hamiltonian has the form

p 2 p 2 q 2
R r r
Ho = Zp + > + 2 + OP+ 0v , (1IV-65)
with
é? 52 ; 2
0P=<nil 5 |ni>+<¢0tr7—|00t> = const. and 0v=<ni'—f_ In1> = const. ,
(1v-66)
and
H=H_ +aA exp[a(qr - qR)] , (1v=-67)
with
A = <n | e ™ |n > <¢ I e_aR|¢ > = const. . (IV-68)
i i ot ot
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It immediately follows that the equations of wmotion for the 1label

variables are:

for H,
Mg _Pr Yy o deg 9B
dt u® dt - Prr T4 » and 3¢
and for H
i S S
dt u ' de r ’
dp dp

R r
I A a exp az(qr qR) s “Ic q,~ A aexp a(qr-qR) .

(Iv-70)

In this example the matrix element Eq.(IV-55) has a simple analytic

expression. In order to see this let us first make the following

transformation:

az(c+1ip)/VZ , al =(r -ip)/VZ ,

and
-1 P ()
Z(t)IE[qr(t) + ip(t)]//2 , and 6(t) = tan 1 (O

r

It then follows that (for the details, see the appendix D)

- N 1 2 1 (2
-1qr(tf)p iprr -171Z(tf)| sin29(tf)e—7|2(tf)|

<nf| e e nf>-e

AT A*
a Z(tf) -aZ (tf)

x <nf|e e I“1>
2
Z(t,.)
~13]2(c,)| Pstn2e(e ) | ;'
= e e e
n_-n, +2k
i Atz f Y
x (-1) ’

1 ) ! 1
k=0 k.(ni k).(nf-n1+k).

(Iv-71)

(Iv-72)

i(nf-ni)e(tf)

(1Iv-73)
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where Z*(tf) = [qr(tf)-ipr(tf)]//z and IZI = (zz*fQ « By virture of

Eq.(IV-73), the transition probability Eq.(IV-6l1) becomes

i 2
P £ 2 . ) ,
Pnf.ﬂi' -P—f exp {- '§"[(P “PRte))” = (B-pp(0)) ]}exp-IZ(cf)I
U gk Pttt . ngmn 42k 2
) Ik-z=0 b k1(n ~k)!(n =, +k)! |2¢e )| B R (1V-74)

If this theory gave lout) = §|ni>|00t[pR(0),qR(0)]> exactly, the
transition amplitude S“f*“i(g) obtained by using Eq.(IV-56) would be
independent of the choice of -pR(O) and qg(0). sSince it 1is an
approximation, though, the results of a calculation do depend on the
choice of pp(0). Since pR(O) is the average value of the momentum 5 in
the initial wave packet state 'Of[pR(O).qR(O)]> with initial and final
vibrational states lni> and |nf> and total energy E, specified, physical
intuition suggests that the usual semiclassical choice of pR(O) should

be reasonable
pR(0) = [2u(E - —5—)] : (1v-75)

The choice of qk(O) is more and less arbitrary. It only affects the
determination of t;; and tyc. So long as the conditions Eq. (IV-46) are
satisfied, qg(0) can be any value. Furthermore, from Eq.(IV-70) and
Eq(IV-71) one can see that the parameter £ which characterizes the
reference vector |0°t> do not have any dynamic effect on the classical
motion of label variables. That is, the initial conditions and the final

values of pR(t) and lZ(t)l are 1ndependent of £. Therefore, one can
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freely choose &. However, £ appears in expression Eq.(IV-74) for the

probability P « In order to eliminate this & dependence we use the

nf 4111

microreversibility condition
P = P , (IV-76)

and notice that for the semiclassical choice of pR(O)[see Eq.(1V-75)],

one has

i 2
I _ & /of 2_ oi_ 2
Pagen, ™ oF SXPL 21(P PR(£0))"=(F= pg(0)) JF,  (J2(e )|}

f

= L exp (- &5 (@l (e =T p o, (J2e Dy =2 L (1v-1D)
P if

where

S0y fatat |z¢e )| 2
- _ 2 sk 1 °f f I
Feu (|2 )= expl-|z(e)]| llkzo( D k1(n ) (a0 +K)! l

and 2 n

-|Z(tf)| -nf+2k

2

/o In_t |2(e ) |™1
i £ f | . (1v-78)

£
k
‘kzo(-l) KT(n k)1 (a -0 +k)!

Fy o (|2(e0)|)me

It is easy to show that

5

Ff«-i B 1'1<-f
Thus, Eq.(IV-77) becomes

i 2
E exp = S -p (e 0 -1 p 0021
P

il
Pi

2
expf"f—[(Pi-pR(tf))2-(Pf—pR(0))2]} . (1V-79)
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rearranging Eq.(IV-79) gives

! P (0)-po(t.) of
E—f exp {- -§Z-I(P1-'pr(o 1) 2= p () Jmexp Rpf - :1 £ 1,,&;_1.} ,

(Iv-80)

then, one obtains

l |2 ‘ ni k /nf!ni! | ln. n, +2k 2
P = B exp[-|z(t)|"]| § (-1) ' [2C¢e )| £
ng+n, £ o kI(n =) T(n n H)TI“ "¢
"'
with A (Iv-8la)
p,(0) = p (t.) . £
B = exp{ R R ? £ lnEI } . ’ (1v-81b)
P* - P P :

It is very interesting to notice that Eq.(IV-8la) 1s identical to
the semiclassical probability expression obtained from the forced

quantum oscillator method (78-61)

except for the extra factor B which is
close to one. We can see this, if one makes a substitution k*(ni-k) and
realizes that 'Z(tf)lz is jgst the classical energy transfer associated
with the one trajectory being integrated.

The results from Eqs.(IV-8l) are given in table 1IV.l where for
comparison the exact quantum mechamical results of Ref.(32) are also
included. In Fig.IV.l we pictorially present the résults for total
energy, E_=4,6. and 10 in units of Kw. For a given total energy E, and
an initial vibrational state ny only one classical trajectory needs to
be calculated to determine the transition probability to a final
vibrational state ng.

The comparision in Table IV.l and Fig.IV.l shows that the present

approach describes the 1nelastic scattering process encouragingly well.
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One obtains reasonably good results over a wide range of energies for a

great variety of An transitions.

IV.e) T-V and V-V energy transfer in collinear collision of two diatomic

molecules——an application of label variable classical mechanics.

The above example shows the validity of this approach for the
calculgtion of the absolute value of the S-matrix elements since the
phase of the S—matrix elements 1s irrelevant in this example. For more
complex collision processes a coherent sum of S-matrix elements is often
involved, so the phase of the S-matrix elements, then, plays an
important role. Therefore, any useful approximate method must be able to
give the correct relative phase factors as well as the absolute value of
the transition amplitude.

In order to test how well the label variable classical mechanics
method handles the phase problém, we consider the T-V and V-V energy
transfer in collinear collisions of two identical harmonic oscillators,
where quantum resonance phenomina are pronounced. A certain amount of
work on this subject has been done using different approaches(63—7l) It
is a 1little surprising that only a few full quantum mechanical
calculations(®3703) have been done.

The Hamiitonian for the collinear collision of two diatomic

molecules AB + BC, after separaring out the motion of the center of

mass, has the form

~ 2 ~ 2
~ P2 P Py ~ ~ ~ o~ o~ _
H = -i_l.—l + Z—IIT + _Z—m—z. + vl(xl) + vz(xz) + V(XI,XZ,X) (1IV-82)



m,= Eéfﬁ__ m, = mCmD u = (mA+mB)(mC+mD) and M = m,+m_+m_ .+
’ ’ = 9
1 mA+mB 2 mC+mD M AT Bp TR,

(Iv-83)
where m,,mg,m;, and mp are the masses of the atoms A,B,C, and D,
respectively, & and P are the Cartesian coordinate and momentum for the
relative translational motion between the centers of mass of two
molecules, and il,ﬁl and §é,ﬁé are the Cartesian coordinates and momenta
for vibrational motion of two diatomic molecules, respectively. If one
describes the molecules as two identical harmonic oscillators and uses
the nearest atom approximation(72’73)for the iateraction potential,
i.e., one assumes that the interaction potential V(X;,X,,X) varies only
with the distance between the two rearest atoms of the molecules; then

the Hamiltonién, in dimensionless units, can be written as

“ ~2 ~2 ~2 ~2
~ p% P| T Py T A A A
H = T ottt + V[R—(r1+ rz)] » (IV-84)
with L )
> mw /2 i) 5 1 72 ™D s
R ( ) » P = ( ) P,
K/ my muwh m+my)
i o w0y
hw ’ H mc(mA+mB+mC+mD)
and
l l Iz Iy

=3 - = (B - = (e =(—
rl—(n ) (xl xO) ’ rz (“ ) (xz xO) 1 Pl (nm) Pl ’ and pz (“m) pz »
(Iv-85)
where ;o» m and @ are respectively the equilibrium position, mass and
the frequency of the harmonic osillators, and mg=m; has been assumed.

One now introduces the following variable transformations

- -~ -

1 - 1 ~ 1 1.~
p,=—p,*+p,) ,p= —(p,-p,) , r,=—(r+r)), and r_= —(r,-r,) .
+ 7 1 2 /2 1 2 + /2 1 2 /3 1 "2

- - -

(1v~-86)
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It is easy to show that 5+, r, and 6_, ;_ satisfy the canonical

- (IV-87)

commutation relation, i.e.,
r,op,] =1 , I[r_,p_ )l =1 s
so that the Hamiltonian can be rewritten as
~ 52 ;2 ;2 ;2
N 4 + + - - - ~
H=got ot ot + + V(R=/2 r )
22 . . _
-'i;— +h +h +V(R-/vV2r,)=H, +h , (1v-88)
with 9 ~ 9 g X
- P, r, - P_ r_ p2 A . A
hyr T R m Tt B R VR - (1V89)

One immediately notices that the system now consists of the pseudo

oscillators (+) and (-); and that the oscillator (~) couples neither

with oscilator (+) nor with relative translation. In other words, the

operator ﬁ_ commutes with the total Hamiltonian H, and consequently
commutes with transition operator S. Therefore, the S matrix is diagonal

-~

in the representation of the eigenstates of h_, i.e., if

h Jo> = en> , and h_[n> = ¢ [ , (1V-90)
then ni
£_0 £ £ f 014 o _ cpf O -
S(ET-ET) S . ., = <En |S|Eqtat > = sET-£°) s £ 1 Se 1
n n_<n n_ n ,n n en
or
1
- 1
St 14 Eg)=6, , S ‘. (B e, (1v-91)
J_wmn_ n_+n_  n_+n_

where E° and Ef are the initial and final total energy of the systenm,
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n
and S
n

is the transition matrix for the pseudo atom—oscillator(+)

+ )

i
-,

collision system described by the Hmiltonian ﬁ+, which can be calculated

by using Eqs(IV-58),(IV-54) and (IV-73),

S £ 1 (Ee) = Y B e exp( -|Z+(tf)l /2]
n,n, L
n W ' ofn 1
+ K n ! ! n - +2k _
xJ (-1) n I |z+| . (IV-92) -
k=0 k!(n -k) (n -0, +k)!

The real problem, however, is to calculate the transition

amplitudes S ¢ ¢ 1 i(E)’ S0 one must establish the relation between
nzn + nzn

S ¢ ¢ 1(E) and S f f 1 1(E). In order to do this, the following
nzn * nznl + - ¢ n+n

creation and annihilation operators are introduced:
a =(r.+ip )/ V2 , al=(r,~1p.)/VZ , a,=(r.+ip.)/VZ , ar=(r.~ip.)/7V2
1771 1 A S | 1 * 272 2 Y T2t 2 2 ’

and (1v-93)

a,5(r,+1p,)/v2 , al=(r,-1p,)/V2 , a_=(r_+1p_)/V2 , a =(r_-ip_)/V2 .

(IV-94)
These operators satisfy the canonical commutation relations
[a,,a.] =0 , [a,,al] =6 1,j = 1,2 (1V-95)
1’ j b4 i) j ij b4 ’ ? ’
and
- -~ - aT
[al,am] =0 . [az,am] = Glm , 2,m =+, - . (Iv-96)

From their definition it is straightforward to show that



a~(a,+a)/VZ , ay~(a,-a)/VT , al=(ai+al)/VT , al=al-aD) VT

and (IV-97a)
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,01-0,02=0> - ln+=0,n_=0> , (IV-97b)

where 'n1n2> and ln+n_> are the direct product states of the eigenstates

of h h

~ -~ -~ A2 A2 -~ AZ 42
1202 and h+,h_ respectively, with h1=(pl+r1)/2 and h2=(p2+r2)/2

Therefore one has

nl nz .
AT “T AT Af 1 .T AT 2
al a2 (a + +a_ ) (a
|n2n1> B ——— — Inzao,nl=0> = TR™N) |n+=0’n_=0>
/o, tn,! =172 /o tn 1
- k., +k -~ (n +n )"(k +k )
ATt "1 "2 k&, (e D Aah PP ‘
(-1) S ' 0.=0,n =05
n, 'n, ! n, n 0. —k T
o - — ' > 1v-98
/-(“ 120 k=0 k =o( k1!k2!(n1-k1)!(n2-k2)zl“+’“_ » ( a)
2 ky 2
with
n+ = k1+ kz » n_= n1+ nz- ﬂ+ . (IV-98b)
Consequently, it follows that
£ f £
<E'n s|n £ = sef-E%) s g o1s
RV R R LS
1 f i 1
mEmfinlnly 0 0 8 1 f1f
S St B A Pog ; ; La,n_n_
; 170 g ihag lag itk kbt t(al kD) 1(aT kD)
K1=0 k=0 ky=0 ky=0 1M1t Kgtiegttny e 2 tim T
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atanflaf
(-1) 2 %222 £ o 0
x 6(E-E) S (E) . (IV-994A)
(ni— ki)!( f-kf)! nfn +nini '
2 2 2 72 + - T+ -
With
. ! £ i f )
G = (nl + n; + n, + n, )/2 . (1Vv-99b)

Hence, after the quantities qR(tf). pR(tf), p+(tf), and q+(tf) are
determined by .a classical trajectory calculation according to the
procedure described in Sections IV.c¢ and 1IV.d, the transition
probability P = IS £ £ 1 1|2 can be easlly evaluated in accordance with

nanj¢njny
Eqs.(IV=99), (IV-91) and (IV-92).

IV.f) Example: the collinear collision of Hy + H,e.

To 1illustrate the methodology described in the last section the
collinear collision of Hz +H, with a -exponential repulsive interaction
has been considered. The Hamiltonian for the system, in dimensionless

units, reads

PZ 2 2 2 2

fe R e T L2 LT el e )
I R ..
sttt Tt exp{ —alR-v2 r 1} . (IV-100)
with
p=0.5 , a= 0.2973 . (1V-101)

The "classical” Hamiltonian is

2 2 2 2 2
Pe Py 9y 5 P_ a_
H = 70 + ot t A expl -a(qR- 2 q+)] 5t 0P + 0V ,

(Iv-102)
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where

- -

-aR i ar; 1
A =CeD with C = <¢°tle |00t>= const. , D = <n+|e |n+>= coPst. ,

(1Iv-103a)
and ~2 52 52
R 1,7+ 1 117=-1 1
OP'= <¢°tL§;!¢°t> + <“+L_EI“+> + <n_l—51n_> const. , (IV-103b)
~2 ~2
15+ 1 18- 1
0v= <n+'—i1n+> + <n_|—§-|n_> = conste. | . (IV-103¢c)

The constants Op and 0v have no dynamic effect since they do not enter
the equations of motion fqr the label variables, so they neéd not be
calculated. The constant A, or more precisely, the constant D plays a
crucial role in determining the transition probability, since it , as we

will see later, determines the relative phase between the terms in the
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coherent sum for the transition S matrix elements. It is a simple

exercise to show that the constant D has the following analytic

expression
Zar a(;T+; )
< i' +' 1> = < i' + °+ ' i>
n |e n, n |e n}
L, 2 - , 2 ol 1
/2 « 4 B, @ /2 @ ook n, !
=e <njle Te T|n>=e I o ———7— . (1V-104)
k=0 (k!)"(n ~k)!

Acoording to Eq.(IV-99) the transition probabilities for the T-V
and V-V energy fransfer are given by the following expressions:

i) l-quantum T-V energy fransfer
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,  (IV-105)

S = § -1 S
n1=0»1, n2=0+0 nl=0+0, n2=0+1 77 n+=0+1, n_=0+0
= S - L S (Iv=106.)
nI-O*I, n2=1+1 n1-1¢1, nZ-O»l 2 n+=0»2, n_=0+0 ’ '
s =S : = L +/28 )
n1=0*0,n2=1*2 nl-l*Z,nZ-O*O 2/3 n+=1¢2,n_=0*0 n+=0+1,n_=1+1 ’
and ) (IV-107)
1
s =S = = -/2s ;
n;=02,n,=140 “n,=1s0,n,=0+2 2)%‘ n,=1+2,n0_=0+0 n, =0+1, n_=1+1)’
(IV-108)
ii) 2—quanta T-V energy transfer
S = L S (1v-109)
nl=0*1, n2=0¢1 /7 n+=0*2, n_=0+0 ’ _
s =5 =L 5 ; (IV-110)
= =| =| — = = ) ’
n, 0+2, “2A0’0 n1=0*0, n, 0+2 73 n, 0+2, n_=0+0
iii1) l-quantum V-V energy transfer
S = l-(S - S ) (Iv-111)
n,=1+0, n,=0+l 2 “"n =1+1, n =040 n,=0+0, n =1+] ’
1 2 + - + -
S =1 (s -s ) 3(IV-112)
n1=0+1, n2=2+l 23 n+=2*2, n_=0+0 n+=0*0, n_=2+2" "
iv) 2-quanta V-V energy transfer
S -5 + L -1
n1=0*2,n2=2*0 4 n, =2+2,n_=0+0 4 “n =0+0,n_=2»2 2 "n_ =l+l,n_=1+1 )

(Iv-113)
From the above expressions, one sees that the evaluation of a given
transition probability consists of the calculation of a number of

transition amplitudes for a pseudo system. The corresponding initial
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values of the label variables are the same for all the calculations.
However, the corresponding “classical™ potential terms are different. It
is the difference in the constant D that gives rise to the differen;
phases of the terms in the coherent sum for a transition probability.
TAe results obtained by using the Eqs.(IV-105)-(IV-113) are presented in
Tables IV.2-IV-6 along with the results of quantum mechanical

(64) and some other approximate calculations(70).

calculations

From the comparisons 1in Tables IV.2-IV.6 it is seen that the
results of present work are in good agreeﬁent with the quantum
mechanical calculation except for the tramsitions O0l+1l1, 01+20, and
01+02 in l-quantum T-V energy transfer (shown in Table IV.3) and 2-
quanta T-V energy transfer (shown in Table IV.4). But as the earlier
work of Clarkr and Thiele(70) has pointed out, the quantum

calculations(64)

are in error at least for 2-quanta T-V energy transfer.
Since Equations (IV-105) and (IV-110) show that the exact transition

probabilities Pn1=0#0,n2=0*2 and P =0»] Must be in the ratio 1

n;=0+l,n,
to 2, the quantum results, however, are not in this expected ratio (see
Table IV.4). Besides, as noted by Clarke and Thiele(70), the quantum
calculation(64) included only states 'ij) for which { and j were no
larggr than 2. Therefore, their results for O0l+11, 01+20 and 01+20
transitions are questionable. Clarke and Thiele(70) have empirically
corrected their numerical results, but unfortunately they have no way to
correct the phase, which 1is very important in the present case;
Therefore their results for transitions 0l=+ll, 01+20 and 01+20 are also
unlikely to be reliable.

In contrast, the present calculation has neither the empirical

correction nor the 1naccuracy due to the choice of the basis set of
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states. Since our results agree with the reliable parts of the quantum
mechanical calculation(ba) very well (shown in Table 1IV.2 IV.5 and
IV.0), it might be not incongruous to expect that the present method has
yielded reasonably reliable results as a whole. It would be interesting
if a more complete full quantum calculation could be done to provide a

more reliable result for futthef comparison.

IV.g) Discussion.

The principle idea of the present semiclassical approach has been
to use classical mechanics in a formal sense to determine the time
evolution of the state vector. In the above applications one may
recognize some similarities to time—dependent wave packet methods(53),
but in fact there are significant differences. The wave packet methods
are és;entially ; combination of time-dependent Hartree—-Fock theory and
Ehrenfest's theorem; and an important aspect of them are the classical
parameters, i.e., the coordinates and momenta of the particles. The
actual equations of motion that cﬁaracterize the wave packet, however,
are nonclassical. In contrast, the present approach stems from the
restricted variation of the action functional. This leads to a set of
classical Hamilton's equation of moéion for the label variables, which
may or may not have a direct physical interpretation. The "classical”
Hamiltonian, which is the expectation value of quantum Hamiltonian in
the reference state, 1is, in general, not identical to the classical
Hamiltonian, while the wave—-packet methods use the classical Hamiltonian

with the potential energy approximated by the quadratic expansion at the

average position of the wave-packete.
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Also, as seen in the example treated above, the present approach
deals equally well with translational wave functions (as a Gaussian wave
packet) and with stationary states. Thus one can easily use 1nitially
excited vibrational states, whereas the usual wave packet methods must
represent excited states as linear combinations of Gaussians. It is also
clear ‘that the present approach can deal equally well with quantum
systems that have no classical analog, e.g., spin systens(sa).

Finally, an important and practical feature of the present approach
is its simplicity since for a given transition only one (in the example
1) or a few (in the example 2) classical trajectories need to be
calculated

However, the present approach 1s an approximate method. The -
accuracy will depend on the nature of the system investigated and the
choice of the reference vector. It is sufficiently promising, though, .

that {its generalization to three-dimensional systems and also to

polyatomic dynamics seems worthwhile.




V.Concluding remarks

In this thesis we explored several new quantum and semiclassical
approaches in the attempt to improve the efficiency of dynamic
calculations for molecular, especially polyatomic, systems. This
certainly contributes in the effort to reach the goal of doing
quantitatively meaningful, really ab initio calculations in practice for
polyatomic systems. However, it is our feeling that if one could not
make any revolutionary break through, it would seem unlikely to reach
this goal even by resorting to the supercomputer.

In Chapter IV of this work,’with the motivation of getting rid of
the traditional semiclassical idea, 1i.e., wusing simple classical
ﬁechanics to describe the motion of the particle itself, we have tried
to develop a new semiclassical idea based on wunitary mapping. The
approach , certainly, 1is still in a primitive stage and should be

pursued further at least in the spirit of doing something new.
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Appendex A: Green's function matrix G(R,R”)

The Green”’s function matrix G (R,R” ) considered here is defined to

be the solution of the following matrix equation

(- (h2/2u) T (42 /dr?%) - (E -V(R))] G(R,R”) = § (R,R") I ,
(A--1)

with the boundary couditions

G (0,R") =0, 6° (=,R") 6 !(=,R") =[ 6~ (=,R") 6™ (=r )] ,
| (a=-2)
where dagger (!) denotes the complex conjugate transpose, the prime
denotes the derivative with respect to R, I is the unit matrix , E is a
diagonal matrix, and V(R) is a Hermitian matrix. We demand G (R,R“) be a

continuous function. One labels
G (R,R?) = GI(R) for O < R < R~ . (A—=3)
and

G (R,R”) = Gy(R)  for RS R < = . (A==4)

Then, we have

[
o

(- (#%/2u) T (d? /dR®) - (B -V(R))] G|(R) = 0 for O <R <R

(A-5a)

[]
(@]

(- (#%/2w) 1 (% /dR?) - (B -V(R))] G,(R) for R* <R < =,
(A-5b)

with the boundary conditions
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G(0) = 0 , G2” (=) G (=) = [62” (=) 6,7 (=) (A-6a)
and

6;(R") = G,(R") . (A-6c)

Integrating both sides of Eq.(A-1) from R“-€ to R“+e¢ and taking the

limit € - 0 , one obtains
(- K272 W 6 (R,R)|goyg = € (RRD|gog= T, (A-6c)

or

C{(R") - 65(R") = (2u M2) T . - (a-6d)
Now let f(R) be a regular solution of the equation

[ - (2/2u) T (a2 /daR?) - (B -W(R))] £(R) = O , (a--7)
which satisfies the boundary condition

f(R) -0, (A--8)
and g(R) be a irregular solution of the same equation

[- (K2/21) 1 (a? /d&?) - (B -¥(R))] g(R) = O ,  (a-9)

Which satisfies the boundary condition

g (=) g (=)= g7(=) g l(=1" , (A-10)

94



and is linearlly indepedent of f(R), then the solutions £(R) and g(R)
have following properties:
(1)
v, =g'(R) £°(R) - g°T(R) £(R) = const. matrix |, (A-11)
(11)
Y(®)= g g R=lg @I g7 @) = (g7 gt = vl
(111) | (A-12)
L= ®REFIR) ~ (£ @) w1t = frw) L)t = v,

(A-13)

where w_ 1s the Wronskian matrix of two solution £(R) and g(R), and Y,

r

Yg are the log-derivative matrices for the regular solution £(R) and the

irregular solution g(R), respectively. Now first 1let us prove the

property (i). Taking the complex conjugate transpose of Eq.(A-9) gives

( -#%/2u) g""(R) - g'(R) (B-V) =0 (A-14) .

where the Hermitian property of matrix V has been used, and the double
prime denotes the second derivative with respect to R. Multiplying
Eq.(A-14) from right by £(R), Eq.(A-7) from left by g (R) and

subtracting term by term, one obtains

g -(R)ER) - g'(R) £°°(R) =0
or

d t , ',

Fle® £®R) - g “®) £R)] =0 .
Thus

w.oE gT(R) f°(R) - gf‘(R) f(R) = const. . (A-15)
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Similarly it can be shown that
£ ®) £7(R) - £7°(R) £(R) = const. , (A-16a)
and

gT(R) g (R) - gt‘(R) g(R) = conste. . (A-16Db)

To prove properties (ii) and (iii) using boundary condition Eq. (A-8)
glives
t . t. t - t.
f (R) £°(R) - £ “(R) £(R) = £ (0) £°(0) - £ “(0) £(0) = O .

or

1

Y = £°QR) £IQR) = [ £°(R) f-l(R)]T =Y .

£ (A-17)

By virture of boundary condition Eq.(A-10), Eq.(A-16b) leads to

g (R) g°(R) - g' “(R) g(R) = g'(=) g*(=) - g (=) g(=) =0
or

T sE®) gl®) = [ g® gltw) 1= z; .. (a-18)

From comparing Eq.(A-5) and Eq.(A-6) with Eq.(A-7)-Eq.(A-10) it 1is
obvious that one may take
GI(R) = f(R) A 0O KR <CR™ ,
G(R,R*) = (A-19)
G,(R) = g(R) B R“ <R< >

The continuity at R = R* (Eq.(A-6-c) requires

£(R*) A = g(R°) B . (4-20)

The discontinuity in the first derivative (Eq.(A-6-d) becomes
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2u
f°(R°) A-g'(R”) B = - 1 . (A-21)
1

Solving the Eqs.(A-20) and (A-21) for A and B we have

2u -1 -1
A=-——m[g?(R°) g (R?) £(R") - £°(R") ]
2
#
2u _ -
vl AR | (h-22)

and
: 2u -1 -1
B=-—— (g (R) - £R) £ (RY) gR*) ]

2u _
3 ( wrt) 1 ft(R') . (A-23)

i

where the Eqs.(A-11)-(A-13) have been used. Eq.(A-22) and Eq.(A-23)
shows that if the determinant of the Wronskian matrix v, is not equal to
zero, then one has

2y
2
]

f(R) vt—l gT(R’) for 0 <R CR™,

G (R) =
G (R,R”) =

2y

¢ = 7 E® w7t

£'R*) for R“ <R < w.

(A-24)
It is well known that the nonvanishing of the determinant of the
Wronskian matrix w_ is a necessary condition for linear independence of

T

f(R) and g(R). From Eq.(A-24) it is obvious that
¢ (R,k") = G¢'(R,R") . (A-25)

Appendix B: Numerical calculation of Gfeen's function matrix G (R,R”)



At first glance it seems easy to calculate the Green”s function
matrix G(R,R“), since according to Eq.(A-24) what one needs to do is
solve homogeneous equations Eq.(A-7) and Eq.(A-9) for the regular
solution f(R) and the irregular one g(R). In practice, however, it is
extremely difficult to obtain f(R) and g(R) with enough accuracy for

calculating accurate G(R,R”), because f(R) and g(R) both involve

exponential functions. In order to avoid the difficulty with directlyv

calculating the regular solution f(R) and irregular solution g(R) one

rewrite the Green's function matrix 6 (R,R” ) in the following form

QwKd) £®R) £1R) [ Y ®RY) - 1,®D]7TD for 0 <R < &7,
G (R,R” ) =

2u/K?) g®) gT'R?) [ Y (R?) - Y,(RI)]7T'  for R” <R < =,

| (B -1)
where Eq.(A-19), Eq.(A-20), Eq.(A-22) and Eq.(23) has been used. In this
form the G(R,R”“) can be accurately and efficiently calculated by using
renormalized Numerov method. The matrix renormalized Numerov
algorichm(7) is an efficient method that can be used to obtain the
numerical solution u(R) of Eq.(A=7) or Eq.(A-9). The basic formula is

the three term recurrence relation

) u + F u =0, (B -2)

Fn Y T (121 - 10 Fn— n—-1 n~-2 n-2

1
where
Fn =1 -T , v (B -3)

and
2u

K

T = (4/12 ) ( ) ( B - VR )] . (B —=4)
n n
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Here I is a unit matrix and A 1is the spacing between the N equally
spaced grid points Ro’ Rl’ R2,..., RN, with point N being in the

asymptotic region. Now we introduce the ratio matrix

a , 0 =12 000, N, (B -5)
: U81ng Eq.(B-2) and Eq.(B-5) one obtains

Fn Rn =12 1I-10 Fn_ - F R .. (B -6)

1 n-2 n-l

Then for regular solution we have

£ £ -1
R =(121-10F_ -F B _ ) F, (B-7a)
or
£.-1 _ -1 £
(R5) F (121-10F_ -F ,B_ ), (B=7b)

and the initial value of R{ is
R =0, (B-8a)
since we have

= f (Rl) ¥0 . (B-8b)

fo = f(Ro) = 0 and fl

Starting from R{ and propagating the solution of Eq.(B-7) outwards one

obtains
f f f

ag b Byyeee, Rouee, R

For the irregular solution one has

g -1 _ - _ g -1.-1 _
(®°_) [121-10F _ -F (R ) 1 F 5 (B-9a)
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or

- -1 _ _ g\-1 -1 _
RS =(F _,) (121-10F _-F (&) ) . (B-9b)

Beginning with the asymptotic boundary condition (Rﬁ)-1 = gN/gN_1 one

can solve Eq.(B-9) iterativly to obtain

(RN_%)-I: (RN-g)-lo eeey (gg)"'l’ seey (R%)-1 hd

To calculate the log—-derivetive matrix Yn we use the matrix version

of Blatts(74) formula, i.e.,

. -1
u’ A [(0.51 Tn+1) U (0.5 1 ‘l.‘n_1 ) u_ ) (B-10)
Thus, ) .
Y =uwul=atosr-T HdrY-@s1-1 )R],
n n n n+l n+l n-1 n
(B-11)
It is straightforward to show that
xh+lnh+2...‘ Rn’ for n <n
u u-£ ={ I for n = n”°
n n
-1 -1 -1 .
Rh -1 seee Rn‘+l for n > n , (B-12)
since according to Eq.(B-5) one has
un = Rh+l Rh=2 ceee RN fN . (B-13)

Now we are ready to express the numerical solution of G(R,R” ) 1in terms

of R 's
n 2u _f f f f -
“2 Rn+1 Rn‘ ( Yn’ Yn,) for n < n”,
G(n,n" )= '2—; ( Yf, - Y8, )-l for n = n”,
K n n
2u o8l e 8yl of _ 48 .
“2 (Rn) (Rn‘+? (Yn, Yn‘) for n > n~,

(B-14)



where Eqs.(B-1) and (B-12) have been used, and

-1 £ -1 £
Y-t -, ) &) (0.5L-T . )E.],
(B-15a)

g . 1 - g -l _ - g
Y= A4 [(0.51-T . ) (R.) (0.5 T-T . ) R, ]e

-1

(B-15b)
There are couple advantages of using formula Eq.(B-l4) to calculate
Green”“s function matrix G (R,R“). First, by using Eq.(B-5) one can
efficiently generate the all matrices Rn, n=l,2,..., No Secondly, since
matrices R, n=l,2,..., N, are the ratio matrices there is no difficulty

with the exponentially growing or decaying wavefunctions for closed

channels.
Appendix C: The first derivatives of Wilson G matrix elements.

For the internal coordinates of benzene defined in Fig.III.l the
relevant Wilson G matrix elements can be determined from Table VI-1 of

Ref.(45):

2 2 o1, L, 3

8.~ 8gg¥cho = % +

cio 5 ¥ Gt sx rax) vl o (¢ -b
S o (o]

X u X
CHo C'CHo /3 3/4
g, = (g - g ) = ( + 1, (C -2)
we o 2 ¢1t6 %66 2 s X,
X.... u X —
CHo C CHo 3 3/4
= (g - g s - ——— [ =+ 1], (C -3)
gwtl 2 ¢1t1 A 2 s Xo
Mo
gt6s =uCcos(¢6-B), gtls-ucc03(¢l+8), gsa=——§of3 [c08(¢1+8)+cos(¢6-8)] R

with (C -4)
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LT A T T [ SN

1 1
u, =, =—, 8 =X + x ’ (C -5)
(o mC uH mH CHo CH

where me and my are the masses of atom C and atom H. Then the relevant

derivatives are

g ‘ My u u
C C
CH! x=0 CHo CHo o
agwt f?u agwc = u
? b4
axcH Ix-O ZXCHO axCH |x-0 2 xCHo
g g g
% _ A % Gt Ak sa -0
9 » = .
axw |x=0 2 XCHO ax x=0 2 XCHO 9x x=0
(C -8)

Appendix D:

Let P and 6 be a pair of self-adjoint operators which satisfy the

canonical commutation relation
(Q,P] = 14 . (D-1)

Introduce a unitary operator
Ulp,q] = exp (-1qP/W) exp(ipQ/W) (D -1)

where p and q are the parameters. Now 1let us do the 1lollowing

tranformations:
as(Q+iP)/ VIR , a =(Q-1P)/V7R , 2=(q+ip)//7h , and 8= tan—l—'s- (D -2)

Here a and aT are well known annihilation and creation operators. Then
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it follows that

R At kA ~ ot
1(’qP + PQ)/M = g Z -z a ’ [a)a ] =1 ’ (D _3)
* n! 1/1 (ah)"
a’|o> = [l Jek> , fo> - — o> (D —4)
and
-pq = 2 2ez*y(z2") = TM2?2*?) = —|z|%s1n2e (D -5)

where |n> is the eigenstate of harmonic oscillator. Using Eq.(D-3) and

Eq.(D-5) gives

< |exp(-1aP/K)exp(1pQ/K)|n,> = exp(-1pa/2K)<n;|exp(~1aP/K+1pQ/K]|n >

2 2
-il%l—sinZG ~1 *= -rL—L sin29 —L—L ~t
=e

al-z a az (-Z )
ngle |n1 I Z |n1> .
(D -6)
With help of Eqs.(D-4) one has
2%k ot "y /o, !
<nf'exp(al) Z-——————a ln > = <nf| z Z (-l)k(Z*)k————i——————Ini—k> ,
k=0 k!/(ni-k)!
n - 1 “ n —
t a,! /2 t(n,-k) i v/n!
- | <ng|e? Zu—*T),l ot = o [ D@ T
k= /k'(ni—k) k=0 R 1 )
~t ni-k ;TZ oy K%k /ni!nf! exp(IZIZ/Z)
xn[(a) " e o> = ] (-1)(2) n - +k|2>
k=0

k!(ni-k)! /(nf-ni+k)!
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n o w—

1 -
- Zi(—l)k(z*)k /ni!nf. znf i+k
k=0 k!(ni-k)!(nf-ni+k)!

n ——
i Yn,!n_ ! n_ -n,+2k
k £ i | f 1
=7 (-1 = |Z exp[i(n_-n,) 6]
k=0 k!(ni k)!(nf—n1+k)! £f 1

where |Z> = exp(QtZ) |O>exp(-|Z|2/2) is the well known
(62)

state which 13 an eigenstate of the operator a such that

- 2 20
alZ) - ZlZ) and <n|Z> = exp(-'ZI /2)

n!

Substituting Eq.(D-7) into Eq.(D-6) yields

- - 2
(nfIexp(-iqP/K)exp(in/M)'ni> = exp(-il%l-sinZG)

v/n, !n_!

2 ny n_-n,+2k
x exp[-1(n_-n )Glexp(-'léL—) ) (-2t |z| £ 1
£ 2 ) b

Z
1 — [ I
k.(ni k)!(nf—ni+k).
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Table 11.1 . DWBA reaction probabilities for collinear H+H2

on the Porter-Karplus potential surface

Total? No. of channels Exact?
energy(ev) 1 3 4 6 8 14 QM
0.3028 2.92-10% 7.61-10 7.74-10 7.75-10 7.75-10 7.76-
10
0.3128 4.07-9 1.08-8 1.10-8 1.10-8 1.10-8 1.07-8
0.3228 3.43-8 9.28-8 9.44-8  9.45-8  9.45-8 9.33-8
0.3428 1.03-6 2.89-6 2.994—6 2.95-6 2.95-6 2.88-6
0.3628 1.43-5  4,24-5 4.32-5 4.33-5 4.33-5 4.37-5
0.3828 1.19-4 3.78-4 3.87-4 3.90-4 3.90-4 3.89~4
0.4028 6.90-4 2.39-3 2.47-3 2,50-3 2.51-3 2.46-3

0.4276 4.20-3 1.64-2 1.73=-2 1.77-2 1.77=2 1.74=2 1.74-2
0.4334  6.00-3 2.46-2 2.61-2 2.68-2 2.68-2 2.66-2 2.65-2
0.4428 1.06-2 4.57-2  4.90-2 5.07-2  4.97-2 4,90-2
0.4465 1.31-2 5.77-2 6.21-2 6.45-2 6.42-2 6.45-2 6.17-2
0.4546 2.01-2 9.34-2 1.02-1 1.06-1 9.32-2 1.06-1 1.00-1
0.4628 3.04-2 1.48~1 1.63-1 1.71-1 8.94-2 1.56-1
0.4768 5.79-2 3.06-1 3.41-1 3.43-1 3.76-1 4.09-2 2.97-1
0.4826 7.40-2 3.99-1 4.49-1 4,28-1 5.40 1.12+1 3.70-1
0.4898 9.44-2 5.45-1 6.15-1 5.07-1 1.20-1 8.90-1 4.65-1
0.50 1.43-1 B.1l4-1 9.08-1 4,09-1 1.31-1 6.01-1

0.60 l.46+1 9.95-1 8.41-1 8.74=2 2.87-1 1.00

a.The zero of energy is the bottom of the reactant diatom potential.
b.Reference(18).

ce 2.92-10 = 2.92x1071Y,



Table Il.2. Exact quantum reaction for collinear H+H2

on the Porter-Karplus potential surface
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Total? No. of channels Otherb
energy(ev) 1 2 3 4 5 6 QM
0.3128  4.10-9% 8.30-9  9.65-9  9.84-9 1.32-8 1.45-8 1.07-8
0.3628  1.46=5 3.31=5  3.86-5 4.01-5 4.87-5  4.67-5  4.37-5
0.4028  7.23-4  1.91-3  2.26=3  2.36-3  2.63-3  2.61-3  2.46-3
0.4334  6.55-3  2.02-2  2.43-2  2.52-2  2.73-2  2.69-2  2.65-2
0.4546  2.26-2 7.73-2  9.28-2  9.00-2 1.02-1 1.0l1-1  1.00-1
0.4826 8.56-2 3.02-1 3.50-1 3.68-1 3.70-1 3.70-1 3.70-I
0.5000 l.64-1 5.22-1 5.78-1 5.97-1 6.0l1-1  6.01-1 6.01-1
0.6000 8.34-1  9.97-1 9.97-1  1.00 1.00 1.00 1.00
0.7000  9.91-1 9.93-1 9.92-1 9.91-1 9.91-1  9.90 9.91-1
0.8000° 9.96-1 9.68-1 9.47-1 9.5-1  9.51-1  9.49-1  9.95-1
0.8706  9.78-1 8.56-1  2.72-1 1.78-1 1.88-1 1.66-1 1.83-1
0.8976  9.72-1  4.95-1  6.28-1 6.78-1  6.59-1 6.70-1 6.62-1
1.2026  8.27-1 3.52-1 2.08-1 2.33-1 2.13-1 2.28-1 2.29-1
1.39669  7.07-1  1.73-1  1.42-1  1.36-1 1.32-1  1.31-1
1.6466  5.44-1 3.37-2 8.08-2 7.86-2 7.39-2  8.00-2

a.The zero of energy is the bottom of the reactant diatom potential

well.

b.Reference 18

c.Two channels are opened.

d.Three channels are opened.

e.See ¢ of Table Il.1l.
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Table IlI.l. Vibrational transition probabilities

E,(Hw) 10 8 6 4 3
n,+n, Q4 scP® qu  scp QM  SCP QM  Sscp QM  ScP
0 0 0.060 0.025 0.204 0.225 0.538 0.573 0.892 0.882 0.978 0.964
1  0.218 0.181 0.434 0.334 0.394 0.254 0.108 0.064 0.022 0.014
2 0.366 0.237 0.291 0.148 0.064 0.029 1.2-3 7.1-4
3 0.267 0.120 0.071 0.025
4  0.089 0.028
1 0 0.218 0.181 0.434 0.334 0.394 0.254 0.108 0.064 0.022 0.014
1 0.286 0.081 0.034 0.020 0.244 0.422 0.850 0.905 0.977 0.987
2 9.0-3 0.064 0.220 0.314 0.345 0.237 0.042 0.025 9.0~4 1.5-3
3 0.170 0.232 0.261 0.139 0.037 0.0139
4 0.240 0.114 0.051 0.0l4
5 0.071 0.018
2 0 0.366 0.237 0.291 0.148 0.068 0.029 1.2-3 7.0-4
1 0.009 0.064 0.220 0.314 0.345 0.237 0.042 0.025
2 0.207 0.109 0.039 0.025 0.347 0.579 0.955 0.982
3 0.018 0.075 0.250 0.336 0.233 0.141 1.3-3 2.0-3
4 0.169 0.236 0.189 0.086 6.0-3 2.7-3
S 0.194 0.077 0.016 0.004
6 0.034 6.9-3

a.The exact quantum results of Ref.(32).

b.The results of the SCP reaction path model.
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Table I1I.2 Energy spacings between successive

CH and CD overtones in CcH, and C6Db respectively.

AVpl,n (en™})

n cH® cp®

1 3043 2294
2 2929 2209
3 2814 2153
4 ' 2700 2097
5 2586 2040
6 2472 1984
7 2358 1928
8 ' 2245 1871
9 2129 | 1815

a. Calculated by using the formula for the observed spacing in the CH
3).

stretch overtone spectrum(3
V(™) = 31570 (a4 3) =570 (n k)

b. Calculated by using the formula for the observed spacing in the CD

(33),

stretch overtone spectrum

v (en ly = 2322.3 (n + %.) - 28.2 (n +‘% 2o



Table III.3. The ring normal modes of C¢Hy and C6D6

and the coefficients in Eqs(I11I-74)3
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symmetry Vem b (L-l)li(b) (L-l)gi-(L-l)Ii(b) Lwi(C)
C6H6 C6D6 CH CD CH CD CH CD
Alg 993 945 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AZg 1350 1059 0.3644 0.4685 0.0000 0.0000 0.4574 0.35?7
EZg 606 579 0.0874 0.2314 1.7068 1.4389 0.0784 0.1041
Eng. 1599 1557 -. 1828 0.1157 -1.609 1.8256 -.3894 0.2687
Eng 1178 869 -.5430 0.7773 -1.621 -1.825 -.4699 0.3565
Blu 1010 970 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BZu 1309 1282 0.1656 0.0637 1.2968 !.549 0.2738 0.1488
BZu 1146 824 0.3740 -.5759 - -1.100 0.8446 0.3229 -.2730
Elub 1037 814 -.4140 -,.7258 0.8338 0.8023 -.2533 -0.289
Elub 1482 1333 0.3892 0.3098 0.3588 0.5746 0.5865 0.3949

a.Results taken from Ref.(44).

b.In square root of atomic weight mass unit.

c.In (l/square root of atomic weight mass) unit.
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Table III.4. Line width of CH(CD) stretch overtone

of benzene(perdeuterobenzene C¢D¢).

FWHM(cm—l)

- cH cD

Exp. (2) scekc(P) Exp(?) scpkc(b)
5 111 82 5o
6 95 23-60 37 >7
7 90 60 ~35 > >8
8 100 56 65 >6
9 56 32

a.Reference (33).

b.Present work--SCP kinetic coupling model.



Table IV.l The transition probabilities for collinear He+H,

vibrationally inelastic scattering.
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Eo(ﬁw) 10 8 6 4 3
n;*n, QM2 LveMP QM LveM QM  LVCM QM LVCM QM  LVCM
0O O 0.060 0.099 0.204 0.253 0.538 0.531 0.892 0.851 0.978 0.955
1 0.218 0.279 0.434 0.393 0.394 0.333 0.108 0.102 0.022 0.023
2  0.366 0.306 0.291 0.212 0.064 0,057 1.2-3 1.6-3 |
3 0.267 0.168 0.071 0.050
4 0.089 0.050
1 0 0.218 0.279 0.434 0.393 0.394 0.333 0.108 0.102 0.022 0.023
1 0.286 0.144 0.034 0.001 0.2446 0.248 0.850 0.847 0.977 0.983
2  9.0-3 0.015 0.220 0.251 0.345 0.327 0.042 0.045
3 0.170 0.214 0.261 0.229 0.037 0.040
4 0.240 0.195 0.051 0.049
5 0.071 0.062
2 0] 0.366 0.306 0.291 0.212 0,068 0.057 1.2-3 1.6-3
1 0.009 0.015 0.220 0.251 0.345 0.327 0.042 0.045
2 0.207 0.188 0.039 0.012 0.347 0.349 0.955 0.971
3 0.018 1.7-5 0.250 0.257 0.233 0.243 1.3-3 2.0-3
4  0.169 0.191 0.189 0.190 6.0-3 8.9-3
5 0.194 0.181 0.016 0.022
6 0.034 0.043
a.The exact quantum results of Ref. (32).

b.The results of the lable variable classical mechanicse.



Table IV.2. Transition probabilities for l-quantum T-V energy transfer

117

Transition Adiabatic®
ntndsnind E/fw QM2 LvemP (corrected) ppkd
00 + 01 2.05 1.69-6¢ 1.61-6 1.69-6 3.13-6
2.25 7.84-5 7.64-5 7.84-5 1.49-4
2.50 6.50-4 6.29-4 6.50-4 1.23-3
2.75 2.31-3 2.24-3 2.31-3 4.39-3
3.05 6.41-3 6.27-3 : 6.41-3 1.24-2
3.50 1.74-2 1.75-2 1.74-2 3.47-2
3.95 3.26-2 3.49-2 3.26-2 6.83-2

a. The quantum mechanical results of Reference (64).

b. The results of the label variable classical mechanics;

ce The results of the first order adiabatic approximation corrected
against QM? results in Reference (70).

d. The results of the first order distorted wave T-matrix method
(partially decoupled T matrix) of Reference (70).

e. See ¢ of table II.l.



Table IV.3. Transition probabilities for l-quantum T-V energy transfer?
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Transition Adiabatic®

a b d

n}n%*n{n% E/hw QM LVCM (corrected) PDK
Ol+11 3.05 1.95-6b 1.60-6 1.54-6 2.98-6
- 3.50 2.86-4 6.28-4 5.68=4 1.15-3
01+02 3.05 l.11-6 3.22-6 3.12-6 5.93-6
3.50 1.52-4 1.24-3 1.12-3 2.21-3
3.95 4.44-4 8.80-3 7.74-3 1.54-2
01+20 3.05 5.60-8 8.21-9 1.13-7 1.89-7
3.50 4.,55~5 2.04-5 9.93-5 l1.71-4
3.95 4.13-4 4.28-4 1.22-3 1.85-3

a. See Table IV.l for an axplanation of the different results.

b.See ¢ of Table II.l.



Table IV.4. Transition probabilities for 2—quanta T~V energy transfer?
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Poo+11/Po0s02 3-93

Transition Adiabatic®

. a b d
n}n%*ﬂ{ng E/hw QM LVCM (corrected) PDK
00+11 3.05 1.50-8b 1.05-8 9.98-9 3.74-8

3.50 2.24=~5 1.15-5 9.89-6 4.14-5
00402 3.05 3.50-9 5.28~9 4.94-9 1.87-8
Ratio of
transition 3.05 4.3 2 2 2
probabilities 3.50 11.85 2 2 2

21.9 2 2 2

a. See Table IV.l for an explanation of the different results.

b. See ¢ of Table II.1
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Table IV.5. Transition probabilities for l—quantum V-V energy transfer?

Transition AdiabaticC

nindsnfn E/hw Qu? LveuP (corrected) ppkd

01+10 2.05 4.1-3P 4.49-3 4.10-3 4.00-3
2.25 2.11-2 2.02-2 2.09-2 2.02-2
2.50 4.38-2 4.00-2 4.29-2 4.00-2
2.75 6.81-2 5.96-2 6.55-2 5.94-2
3.05 9.89-2 8. 23-2 9.32-2 8. 18-2
3.50 0. 146 0.113 0.137 0.113
3.95 0.188 0.139 0.178 0.137

Table IV.6. Transition probabilities for 2—quantum V-V energy'transfera

Transition Adiabatic®

nindsmfnf  E/Wu Q«? Lvei® (corrected)  PDKY

02+11 3.05 7.82-3 7.76-3 7.84-3 7.76=3
3.50 7.61-2 7.40-2 7.88=2 7.39-2
3.95 0.132 0.134 0.148 0.132

02+20 3.05 1.70-5 1.67-5 1.71-5 1.67-5
3.50 1.57-3 1.50-3 1.71-3 l.49-3
3.95 5.17-3 5.23-3 6.51-3 5.15-3

a.See Table IV.l for an explanation of the different results.

b. See ¢ of Table II.l.
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Figure Captions

Figure II.l Relative coordinates pertaining to the A+BC + AB+C (AC+B)

reaction.

Figure IIL.l1 A countour plot of the potential surface [Eq.(III-34)] in
mass—weighted coordinates [Eq.(III-35)]. Also shown are the reaction
path, and the gradient paths starting from different initial points high

up on the potential wall.

Figure IIIfZ Vibrational tfansition probabilities P“z'“l(E) as a
function of final vibrational quantum number n,, for n1=0,1,2,... and
three different values of the total energy E..

Figure IIl.3. Numbering of in-plane internal coordinates which ;re
kinetically coupled with CH stretch xoy ¢ s=xCH+XCHO is CH bond length;
t;=x;+X, and t =x +X, are CC bond lengths; B=(¢6-¢1)/2, where ¢, and ¢

are CCH bond angles; a is CCC bond angles; X, and Xy, are equilibrium

bond lengths of CC bond and CH bond, respectively.

Figure I1l.4. The experemental absorption spectra of C6H6(C606) of
Ref.(33) .Each panel contains: spectral assignments where n indicates
the number of quanta of CH(CD) stretch exitation, positions of band
maxima or band centers(V,in cm—l), and FWHM band widths in cm ! (less
certain bandwidths are given in parentheses). Ordinates are absorption
o=¢7 2

cross sections (o values, in millibarms (mb=l cm“) and abscissa are

'spectral shifts relative to the band maxima.
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Figure I11.5. The square of absolute value of the correlation function
lc(t)I2 for CH stretch local mode overtones nu=5-9 in CegHg as a function

of time. The dashed line corresponds to c(t) defined by Eqs.(IlII.75).

Figure IIL1.6. The logarithm of 'c(t)l2 as a function of time for CH
stretch local mode overtones n=5-9 in C¢H¢. The dashed line corresponds

to c¢(t) defined by Eqs.(III-75).

Figure III.7. The absorption spectra 1(av)/I(v,) for CH stretch local
mode overtones n=5-9 in CgHc. The dashed line corresponds to c(t)

defined by Eqs.(IIL-75).

Figure 11L.8. The square of absolute value of the correlation function
Ic(t)l2 for CD stretch local mode overtones n=5-8 in cbDG as a function

of time.

Figure IILl.9. The logarithm of Ic(t)|2 as a function of time for CD

stretch local mode overtones n=5-8 in C606‘

Figure I1II.10. The absorption spectra I(Av)/I(vo) for CD stretch 1local

mode overtones n=5-8 in C¢Dg.

Figure Iv. 1 Transition  probabilities for the collinear HetH,

vibrationally inelastic scattering.
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