
. 1 
;\ 

LBL-18576 
Preprint c:. ~ 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

Submitted for publication 

MICROCANONICAL MASTER FIELDS 

LIBRARY AND 
DOCUMENTS SECTION 

M.B. Halpern 

October 1984 
TWO-WEEK LOAN~, 

. This is -a Library Circulating 2" '"~:. 
h ' h °PY 

o w Ie may be borrowed for two . 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain COlTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any walTanty, express or implied, or 0 

assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



October 1984 

" .' 

LBL-18576 
UCB-PTH-84/30 

MICROCANONICAL MASTER FIELDS 

Martin B. Halpern 

Lawrence Berkeley Laboratory 
and 

Department of Physics 
University of California 

Berkeley, California 94720 

Abstract 

This paper introduces the concept of microcanonical master fields, 

a new variety of master field which solves the classical microcanonical 

equations of motion of very large systems. Examples of the new master 

fields are obtained explicitly in a number of simple large N systems. A 

general development of micro canonical equations on manifolds is also 

given, including a simple set of equations for lattice QCD. 
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1. INTRODUCTION 

There has been interest recently in the application of 

microcanonical methodsl,2 to various theories, including lattice gauge 

theories. In this paper, I discuss, in the microcanonical framework of 

Callaway et al., I the existence of new master fields which I call 

microcanonical. In this framework, fifth-time classical equations of 

motion (the microcanonical equations of motion) are associated to a 

given Euclidean action theory, and time-averages are measured. The 

new microcanonical master fields are solutions to these equations for 

very large systems; the solutions, although time-dependent, do not need 

to be time-averaged when computing global quantities (for example, 

the traces in large N SU(N». 

I will discuss the microcanonical method and the idea of the new 

master fields in Section 2, as well as their relation to the 

"configuration-average" master fields of Ref. (3). In Section 3 I discuss 

"master momenta". These are in fact a simple example of the 

configuration-average master fields and play an important role in 

constructing the new microcanonical master fields. In Sections 4 and 5, 

explicit microcanonical master fields are obtained in the large N limit 

of two simple classes of models, quadratic building-block models4 and 

one hermite an matrix models. Section 6 is a general development of 

microcanonical equations of motion on manifolds, including a simple 

set of equations for SU<N) lattice QCD. Section 7 is an application of 

the development of Section 6. to a third class of soluble models on a 

large N SU(N) manifold. Conclusions and directions are discussed in 

the final Section 8. 
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2. THE MICROCANONICAL METHOD AND MASTER FIELDS 

In the microcanonical method,I.5 one begins with aD-dimensional 

Euclidean quantum field theory 

N 
Z = I( 11 dx)e -~Slx) 

a=1 a 
(2.1) 

where S is the action and B is the inverse temperature. The theory is 

then augmented by the addition of new momenta Pa such that the 

partition function 

z = 1(1Idxadpa>e-~H(x.P) 
a 

(2.2) 
H(x,p) = t t P 2 + S(X) 

a a 

is interpretable as the D + 1 dimensional classical statistical 

mechanics of the classical Hamiltonian H(x, pl. Note that the 

configuration-average SF I < f(x) > c are unaffected by the addition of the 

momenta, while the momenta themselves are Gaussian 

<PaPb>c= 8- lo ab (2.3) 

and decorrelated from the x's. 

As an alternative to configuration-averaging, one is interested 

here in solving the classical (microcanonical) Hamiltonian equations of 

motion 
as 

xa = Pa' Pa = (2.4) 
aXa 

'-
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starting from some initial conditions {xa(O), Pa(O)}' waiting until 

equlibrium, and then computing the time-averages < f(x(t» > t. Here 

time is the fictitious D + 1 st dimension, often called fifth-time. 

Sufficient conditions (e.g. ergodicity) are known under which the time­

averages will equal the configuration-averages, and the two approaches 

will be equivalent. The idea is intuitive since configuration-averages 

are averages over snapshots during the time-development of a system 

that covers phase space. Remarkably, agreement between time and 

configuration-averaging has been seen in a number of physically 

interesting systems, including lattice gauge theories. I As an example, I 

mention only that the behavior 

1 1 
- < tpp > =- <tpp > =8- 1 
N aaatN aaae 

(2.5) 

is observed in systems of physical interest, and is used to measure the 

temperature. The precise implications of this phenomenon on notions 

such as ergodicity deserve further study. 

I turn now to a discussion of master fields. In the case of 

configuration-averaging over very large systems (for example, the large 

N limit of large groups), it was realized recently3 that averaging is not 

necessary for the computation of global6 quantities (for example. the 

traces in large N SU(N». Fluctuations are suppressed by the law of 

large numbers (large N factorization). so that anyone of a very large 

class of equilibrium configurations, the master fields, will give the 

correct result. A simple example of these (configuration-average) 

master fields will be discussed in the following section. In Ref. [3]. an 

explicit construction. via quenched Langevin equations, of large N 

• 



'" .. 

-5-

(configuration-average) master fields is given for general SU(N) 

symmetric theories, and this type of master field has been seen 

numerically in QeD.6 Further developments in this field are given in 

Ref. [7]. 

On similar grounds, microcanonical master fields are expected to 

exist in very large systems. These master fields are time-dependent 

solutions to the classical microcanonical equations of motion (2.4) 

which, however, do not need to be time-averaged for the computation of 

global quantities. Microcanonical master fields are easy to visualize in 

a simple example. In computing, for example, the pressure on the wall 

of your office, a certain amount of time-averaging over molecular 

collisions with the wall is necessary. However, as N, the number of 

molecules in the room, increases, the time between collisions decreases, 

fluctuations in the pressure decrease, and the required amount of time­

averaging goes down. In the large N limit, the pressure is independent 

of time (zero fluctuations is large N factorization), and can be computed 

at any instant, without time-averaging. To a high degree of accuracy 

then, the motion of all the molecules in your office forms a 

microcanonical master field, while a snapshot of a microcanonical 

master field, at some instant, is a (configuration-average) master field. 

On the basis of this picture, it is also expected, as in the case of 

(configuration-average) master fields, that microcanonical master 

fields will be far from unique, each being an appropriately thermalized 

(time-dependent> equilibrium configuration. In what follows, I will 

supplement the intuitive picture above with explicit examples of 

microcanonical master fields obtained as solutions of simple large N 

systems. 

• 
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One of the basic ingredients in my construction is that a snapshot 

of a microcanonical master field should be a (configuration-average) 

master field, so that I can require, in the large N limit, 

p (0) = p * 
a N a 

(2.6) 

where {Pa *} is a (configuration-average) master field for the momenta, 

which I call "master momenta". In the next section, I will discuss the 

construction of the master momenta. 
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3. MASTER MOMENTA 

Consider N free particles in three dimensions, for which the 

partition function is 

( 
3N p2) 

Z=/(dp)exp -st .-:.. 
1=1 2m 

(3.1) 

where S-I = kT, and T is the temperature. The average energy is a 

global quantity which may be computed as 

3N Pi2 

<E>=< t > (3.2) 
i=1 2m 

by configuration-averaging over all configurations of the momenta. 

Alternately, I may compute, in the large N limit, with a master field, 

the master momenta, Pi· 

<E>= 
N 

3N (p*)2 
t 1 

i= 1 2m 

without averaging. Because 

< p.p. > = mS- 1 o. 
1 J IJ 

(3.3) 

(3.4) 

then a correct set of master momenta are obtained as follows. From a 

table of zero-mean Gaussian random numbers with mean-square 

deviation mS -I, pick 3N numbers {pi*}, i = 1... 3N. Since each element 

Pi* is an independent Gaussian random variable with mean-square 

deviation mS -I, then, in the large N limit, I may use the central limit 

" ~ .. 
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evaluate global sums of products of the Pi*' For example, using the 

central limit theorem and the law oflarge numbers, I have 

3r 
i=1 

(Pi·)2 

2m 
= 3N[«p·)2> + o( 1 )] 
N 2m ~ 

= ~NkT + Oem) 
2 

(3.5) 

which is the correct large N result for < E >. In general, as discussed 

in Ref. 3, the products ofPi* inside large N global sums may simply be 

replaced by their large N average, e.g. 

P·p·· + < p .• p. > = mS-Io .. 
1 J N 1 J lJ 

N 

(3.6) 

so that the master momenta reproduce the large N configuration 

averages of all global sums. 

Of course, there are many such sets of master momenta, each 

being an appropriately thermalized equilibrium configuration, but each 

set will give the same result for any global quantity at large N. 

Entirely analogous properties are given in Ref. [3] for the behavior of 

Gaussian hermitean master momenta Pab· (called there master noise) 

inside large N SU(N) traces. 

In what follows, I will always pick the microcanonical momenta 

PaCt) to be equal at some reference time, say t = 0, to similarly chosen 

sets of master momenta Pa *, whose mean-square deviation is always 

chosen equal to the mean-square deviation of the configuration-average 

of the momenta. In this way, I start the microcanonical equations in a 

sufficiently thermalized manner, and will be able to obtain 
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microcanonical master fields. I should emphasize that the construction 

yields the new master fields as functions of the Pa *. Since the latter are 

Gaussian random variables, I am in fact constructing, as discussed 

above, a very large class of microcanonical master fields. I defer to 

Section 8 the important physical question whether, starting from some 

non-thermalized momenta, the microcanonical equations would 

thermalize to p' at a later time. 

'~ • 
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4. QUADRATIC BUILDlNG-BLOCK MODELS 

As a first soluble model, I consider the O(N) invariant integral 

Z = l(d<l»e-pNvIZI (4.1) 

where Nz = <I> a <1>., a is summed from 1 to N, and V(z) is an arbitrary 

action. The model is easily augmented to a classical partition function 

by adding the momenta Pa' 

z = l(d<l> dp)e-PH1<I>,p, (4.2) 

where 

H(<I>,p) = t PaPa + NV(z). (4.3) 

It follows that 

< P.Pb > = S-16.b 
(4.4) 

while the classical equations of motion are 

<1>. = Pa' P" = - 2<1>~ V'(z) (4.5) 

where prime means differentiation with respect to z. 

I wish to find large N solutions to the classical equations of motion 

such that the (equal time) invariants <1>,<1>. = <1>2, PaPa = p2, <l>aPa = <I>'P 
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are time-independent, which guarantees that no time-averaging will be 

be necessary. An adequate ansatz for the microcanonical master field is 

then, in column vector notation, 

4>(t) = eKtA, pet) = eK~' (4.6) 

where K is a time-independent antisymmetric matrix which may be 

thought of as the generator of time translations (or auxiliary 

Hamiltonian), while 

A= 18 I Ip • 
p'= 'I (4.7) 

AN I IpN' 

are the values of 4>a and Pa at t = O. I will specify the master momenta 

p' more carefully below. The task is to solve for the unknown 

quantities K and AN" 

Substituting the ansatz (4.6) into the classical equations of motion 

(4.5), I have 

K). = p' 

Kp' = - 2). V'().N 2/N) 

From (4.8a) it follows that 

" .. 

(4.8a) 

(4.8b) 

K _ Pa ' 
aN--

A~ 

p/ = 0 

-'2-

(a ~ N) (4.9a) 

(4.9b) 

so that 4>' 1T = 0 already. Equation (4.8b) can be separated into two 

statements. First(i,j = 1 ... N-l) 

KijPj· = 0 (4.10) 

to which I shall return shortly, and second 

KNiPi' = - 2AN V'(A/IN). (4.11) 

Using (4.9a) and the antisymmetry ofK, (4.11) becomes 

1 N-l 2AN2 
-N . E (p*)2 = --' V'(A .2/N) 

1=1 1 N N' 
(4.12) 

As discussed in Section 3, I now choose the master momenta Pi* to be 

Gaussian random variables satisfying 

< p.p' > = 6- 10 .. liN IJ 
(4.13) 

in the large N limit, as specified by (4.4). Then, at large N, 

:-I 
p2 = E p. *P.· = N6- 1 

~:;; 1 ,1 a :"i 
(4.14) 

which agrees with the large N configuration-average, and Eq. (4.12) 

becomes 

~. -
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1 ~ 26zo V'(zo) (4.15) 
I 

where Zo denotes the value ofz = AN2/N which solves (4.15). This is the 

correct large N saddle point (gap) equation of the model (4.2), as is 

easily seen with other methods.4 Finally, I must also solve (4.10), for 

example by choosing Kij = O. so that 

Kab = 
Pa'cS b.N - Pb"cSa•N 

JNzo 
(4.16) 

This completes the determination of the time-dependent 

microcanonical master field (4.6), which gives the correct large N 

results for the invariants of(4.2) without time-averaging. 

Solutions which are more covariant in appearance may be 

obtained without going to the special frame (4.7). A more general 

ansatzis 

lP(t) = eKtlP(O), pet) = eKtp' 

so that 

KIP(O) = p" 

Kp" = - 21P (0) V' (z)· 

First choose p' to be master momenta 

< p; Ph" > = 6- 16ab • 
~ 

(4.17) 

(4.18a) 

(4.18b) 

(4.19) 

c 
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The auxiliary Hamiltonian may be taken proportional to the O(N) 

group generators 

K _ Pa'4>,,(O) - p,,"4> (0) 
ab _ a 

4>2(0) 
(4.20) 

which solves (4.18a) ifI place the single restriction on IP(O) that 

IP(O)·p· = O. Then (4.18b) becomes a second restriction on IP(O). 

21P~0) 1 
2zo V'(zo) = --V'(1P2(0)IN) = - E (p *)2 '" 6 -l (4.21) 

N Na a N 

Any solution (4.17) with these two restrictions on IP(O) is a 

microcanonical master field for the large N system. Note finally that 

all the solutions of this section may be put in the formF2 

sin wt 
IP (t) = IP (0) cos wt + P *--a n a W 

PaCt) = Pa" cos t - lPa(O)w sin wt 

in terms of the single angular frequency 

w = (6 zo)-t 

which increases with the square root of the temperature. 

(4.22) 

(4.23) 



5. ONE HERMITEAN MATRIX MODELS 

I consider next the SU(N) symmetric models of one hermitean 

N x N matrix Mab 

z = l(dM)e-~S(M) 
(5.1) 

S(UMUt) = SCM), U E SU(N). 
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Although the method generalizes easily to arbitrary SU(N) symmetric 

actions S, I will work out the details only for the representative 

example 

SCM) = t Tr M2 + ~ Tr M4 
_ 4N 

(5.2) 

The augmentation to D 1 classical statistical mechanics employs 

hermitean momenta 1Tab' 

z = l(dMd1T)e-~HI1T.M) 
g 

H(1T, M) = tTr 1T2 + tTr M2 + -Tr M4 (5.3) 
4N 

so that 

< 1Tab 1Ted > = S-
I 

°hcO"d (5.4) 

while the microcanonical equations of motion are 

r:: ., 
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M = 1T 

n =_M_~M3. (5.5) 
N 

I wish to obtain the microcanonical master field at large N for the 

SU(N) invariants of the model (5.3), which are (equal time) traces of 

functions ofM and 1T. So that these will be time-independent, I ansatz, 

following the intuition of the previous section, 

M(t) = eiKtAe -iKt 
(5.6) 

1T(t) = eiKt1T*e-iKt 

where K is the time-independent hermitean generator of time­

evolution, while the diagonal matrix A and the hermite an master 

momentum matrix 1T* are also time-independent. With this ansatz, the 

equations of motion reduce to 

i[K, AJ = 1T* (5.7a) 

i[K, 1T*J = - (A + ~A 3) (5.7b) 

Equation (5.7a) is easily solved for the off-diagonal elements of the 

auxiliary Hamiltonian 

i 1T * uh 
Kab=--- (a~b) 

Au -Ah 

( 5.8) 

and diag 1T* = O. Substitution of(5.8) into (5. 7b) results in 

( c 
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t' 11 * 11 * ( 1 + 1 ) 
c ac cb (A -A) (A -A) 

a c b c 

-i (Kaa - K bb) 1Iab * 

= (A + ~ A 3) 6 
a N a abo 

(5.9) 

where primed summations do not include singular terms. In particular, 

the diagonal elements of(5.9) give 

t'11I *12_2_= A +£..A 3• 
ab a N a 

b Aa - Ab • 
(5.10) 

As specified by (5.4), I now choose the ofT-diagonal entries of the master 

momenta 1Iab * to satisfy 

< 11 * 11 * > = S-16 6 
ab cd ~ adbc 

(5.11) 

in the large N limit. Then (5.10) becomes 

2 E' _1_ = S[A +!.. A 3] 
b A -A ~ a '" a 

a b 

(5.12) 

which is the correct large N saddle point equation for the model.s 

Finally, the ofT-diagonal elements of(5.9), together with (5.11), require 

only that diag K = O. 

This completes the determination of the microcanonical master 

field (5.6) for the one-matrix model. As discussed in Ref. (3), the matrix 

master momenta (5.11) will correctly reproduce the configuration 

averages of large N traces of functions of 'IT, and, because 'IT* is 

decorrelated from M, the large N mixed traces will be obtained correctly 

as well. 

" " 
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6. MICROCANONICAL EQUATIONS ON MANIFOLDS 

A next level of difficulty is the class of models of one unitary 

matrix, which I will solve in Section 7. In order to obtain the 

microcanonical equations of motion for this case, I found it easiest to 

consider the problem on an arbitrary manifold, and then specialize to 

group manifolds. The approach I develop here is a generalization of the 

approach of Ref. (5) for the SU(2) x SU(2) non-linear sigma model. 

To keep the notation simple, I will work on a single connected 

manifold without boundary M, with metric tensor gl!v in a coordinate 

system xl!, but the method is easily generalized to the case of many 

disconnected manifolds, such as lattice gauge theory, to which I return 

below. The coordinate-invariant model is 

Z = J(lg 11 dxl')e- PSlX'-

Il 
(6.1) 

where Sex) is a Euclidean coordinate-invariant action and g == det gl'v' 

Following Ref. (5), I augment Z by the addition of momenta PI' 

1 Z = J(- 11 dPv)(lg 11 dxl!)e-pH'x.P' 
Ig v 1.1 

= J(dxdp)e-~H(x.P' (6.2) 

where 

H(x, p) = t Pp gl-lVp, + Sex). (6.3) 

The augmentation has not changed Z, or averages of functions of 

XII, as is easily seen on integrating out the momenta. The measure 

(dxdp) is invariant under arbitrary symplectic transformations, which 
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include coordinate transformations. under which p~ is covariant. The 

measure therefore allows interpretation of Z as the classical partition 

function of the Hamiltonian H(x. pl. 

The microcanonical equations of motion on M may be obtained 

directly from H(x.pJ via the canonical brackets 

{xll.p) = 0/ (6.4) 

or from the associated fifth-time Lagrangian 

L = tx~g XV - S llV 
(6.5) 

aL _ g ~v = p~. - - llV 
axil 

The result is 

x~ + r ~xpxv + VI'S = 0 pv (6.6) 

where r p/ is the Christoffel connection on M and v ~ is covariant 

derivative .. At S = 0, these are the geodesic equations on M. Another 

interesting form of the equations of motion is obtained in terms of the 

coordinate-invariant tangent-space momenta 

Pa == e/p~ = e,."xv (6.7) 

where e ~ is the inverse of the vielbein e a such that e a e U = g . In 
a ~l 11 v !lV 

terms of these variables, the equations of motion (6.6) become 

' .. r;: 
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Pa - e/w~abPbPc + e/V ~S = 0 (6.8) 

where 

w - ( a v + r' V 
\) ~ab - - eav Ileb fL\ eb' (6.9) 

is the spin connection on M. The Hamiltonian may be rewritten in 

termsofpa 

H = tPaPa + S (6.10) 

but it must be kept in mind that the Pa are not canonical variables. 

since. for example. 

{Pa. Pb} = (eblla ~ea v - e/ a~eb V) e/pc' (6.11) 

The tangent-space momenta are important because their 

configuration averages are Gaussian 

< Pa > = 0, < P.Pb > = 8- lo ab (6.12) 

and decorrelated from x-averages. To see this. introduce a source {J } 
.<, a 

for {Pal and integrate ov~r P", 

1 < f(xleJaPa > = exp(-J J )< [(xl >. 
28 .," 

(6.13) 

Alternately, one may change variables from P~ to Pa ' obtaining 

( 
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(6.14) 

The tangent-space momenta are therefore the analogues of the ordinary 

flat-space momenta, and can be used to measure the temperature of the 

system. By the same token, Gaussian tangent space master momenta 

Pa * are natural in seeking microcanonical master fields, as in the 

following section. 

It is now straightforward to specialize the development to group 

manifolds. With fabc the structure constants of the group, I may choose 

a basis which obeys the Cartan-Mauer equation 

a~eav - avea~ = - fabceblleCV (6.15) 

W~ab = tell/cab 

which amounts to choosing the basis vectors e/a ll to be the killing 

vectors 

e/alleb
V 

- eb~alle/ = fabeec'. (6.16) 

It follows from (6.8), (6.11), (6.15) and (6.16) that 

Pa = - e/ 'V I1S = {P.,S} 

{Pa' Pb} = - f.he P,. (6.17) 

so that the tangent space momenta are the classical analogues of the 

Kogut-Susskind electric fields. 

t Q 
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Indeed, in the case of SU(N) or U(N), I may introduce unitary 

matrices U(x) such that 

Z = J(dU)e-~S<{jl (6.18) 

where dU is Haar measure, and F3 

g~v = 2 Tr a~ utavu 

e~a = - 2i Tr(UtTaa~U). (6.19) 

Here {Ta} is the (hermitean) adjoint representation of the group, 

normalized according to 

TrTaTb = t lS ab 

(T) (T) - Jc ( IS IS N - lIS IS ) ars bpq-"2" rqsp- rspq (6.20) 

for SU(N). For U(N), drop the second term of (6.20). As a result, the 

Lagrangian (6:5) takes the familiar form 

L = Tr [(Jl]t] -S (6.21) 

while the action of the Killing vectors on U(x) is 
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e !' 3 U = iT U a 1.1 a 

e 1.13 ut = - iUtT . 
a 1.1 a (6.22) 

It follows that 

{Pa' U} = - iT.U 

{p , ut} = iUtT 
a a (6.23) 

and so the entire system is seen as a fifth-time classical Kogut­

Susskind-like system, with microcanonical equations of motion 

-iUUt = TaPa 

Pa = {P., S}. (6.24) 

As mentioned earlier, the development is easy to generalize to 

more complicated situations. In the case, for example, of Wilson lattice 

QeD, 

Z = f( TT du( R.))exp( SSw) 
2. 

(6.25) 

treat each link 2. as a disconnected unitary manifold with its own 

momenta etc. The results are 

c::.- (" 

and 

L = ~ Tr[U(R.)U+(R.)] + Sw 

H = t I p.(R.) p,,(R.) - Sw 
a,R. 

{Pa(R.),Pb(R.')} = - fabcPc(R.) ou' 

{Pa(R.), U(R.')} = - iTa U(R.)O U' 

{Pa(R.), U+(R.')} = i U+(2.)T
a
oU ' 

which give the microcanonical equations of motion 

-iU(R.)U+(R.) = TaPa(R.) 

Pa(R.) = - {Pa(2.), Sw}' 

-24-

(6.26a) 

(6.26b) 

(6.27) 

The tangent space momenta, or fifth-time electric fields Pat 2.) also 

satisfy 

< p)R.) Pb(R.') > = S-IOabOU' (6.28) 

as above, and can be used to measure the temperature. 

( <-



(- ~; 

-25-

7. ONE UNITARY MATRIX MODELS 

As a simple example of the fonnalism above, consider the one 

unitary matrix model 

Z = l(dU)e- IlTrW + Ut, = l(lgdx)e- IlTr(U(xI + UtrxIJ (7_0 

where (dU) is Haar measure on U(N). In fact there will be no difficulty 

in generalizing the method to an arbitrary U(N) invariant action which 

is a function ofU. In terms of the hermitean matrix electric field 

E = 2 TaPa' (7.2) 

I obtain the classical Hamiltonian system (6.10), 

H = tTrE2 + Tr(U + ut) 

{Eab, Ua'b'} = -i 6ba,Uab, 

{Eab,(Ut)a'b'} = i(ut)a'b 6ab' 

{Eab, Ea'b'} = if 6ab.Ea'b - 6ba .Eab.), (7.3) 

and therefore the microcanonical equations of motion (6.24), 

~ .. 

-i UU t = tE 

E = {E, S} = i (UT 
- U). 

Also needed is the Gaussian distribution of the electric field 

< EabEcd > = 2S- L 6ad 6bc 

which follows from (6.12) and (7.2). 

Following the previous strategy, I ansatz 

U(t) = eiKtei8e-iKt 

E(t) = eiKtE*e-iKt 
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(7.4) 

(7.5) 

(7.6) 

where the hermitean time-translation generator K, the diagonal 

matrix eill, and E*, the master electric field, are all time-independent, 

and so therefore are all the traces of the theory. The equations of 

motion (7.4) then reduce to 

(K, ei9)e- i9 + tE* = 0 (7.7a) 

(K, E*) T 2i sine = 0 (7.7b) 

From (7.7a) I obtain. as usual, the off-diagonal elements of the 

generator oftime translations, . 



e - i9abi2 E* 
Kab ab (a "" b) (7.8) 

.. aob 
41sm-· 

2 

where asb = a .. - .abdaa} = diag a, and the restrictiondiagE* = O. 
r r 

Using (7.8) in (7. 7b) results in 

tt'E* E* [e-i8aC/2 
c ae eb a 

sin~ 
2 

e-
i8;b/2 1 

. eb 
sm-

2 

+ 2i(Kaa - Kbb)E*.b = 4sinaa6ab 

(7.9) 
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where the prime indicates that singular terms are excluded. The 

relation (7.5) specifies the choice of the (off-diagonal) Gaussian master 

electric fields, 

< E* E* > = 28- 16 6 ab cd N ad be 

so that the diagonal elements of(7 .9) read 

aab 
t' cot-- = 28 sina , 
b 2 N a 

(7.10) 

(7.11) 

while the off-diagonal elements of (7.9) give Kaa = Kw The result 

(7.11) is the correct saddle point equation of the original model, as is 

easily checked using the invariant factor of the Haar measure.9 This 

compietesthe determination of the microcanonical master field (7.6). 

As discussed in Ref. (3), the master matrix electric field E* will 

correctly reproduce all the large N configuration averages of traces of 

functions ofE, and the mixed traces as well. 

r.,:: ..; 
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8. DIRECTIONS 

In this paper, I have argued intuitively for the existence of 

microcanonical master fields, and given several explicit examples as 

solutions of simple large N systems. Some deficiencies, and therefore 

directions, are clear. First, it would be satisfying to have a formalism to 

compute the master fields, thus avoiding much of my guess work and 

ansiitze. A possible approach along these lines might employ more or 

less standard large NHamiltonian methodslO on the Liouville operators 

6f the classical systems. This idea has been entertained independently 

by H. Neuberger. Second, such a formalism might be of utility in 

extending the idea to the large N limit of realistic quantum field 

theories. 

Other interesting questions could be studied even within these 

simple models. Are the master fields "limit cycles" of the equations of 

motion, with some basin of attraction? This question is closely related 

to the question of thermalization ( to p*) over a period of time, and to 

questions of ergodicity. The answer to these questions is not always 

yes. In the quadratic building-block example NV = t 4>.4>a' the system 

is a collection of simple harmonic oscillators, which is known not to be 

ergodic, and not to thermalize. I also note that the master fields 

themselves are not ergodic in the usual sense. In the quadratic 

building-block models, for example, the large N solution spends its time 

at the large N radius selected by the gap equation, the rest of phase 

space being irrelevant in the large N limit. 

A .. 
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FOOTNOTES 

Flo By configuration averages, I mean canonical ensemble averages, 

using (2.2). Although the assumption is not used in this paper, 

these are presumably equal to microcanonical ensemble 

averages for large systems. 

F2. In fact the forms (4.22) solve the microcanonical equations (4.5) 

and produce the correct large N results for any initial conditions 

such that 'a(O) Pa(O) = 0, pa(O)Pa(O) = NS-'. while '8(0) solves 

the gap equation (4.15). Thus, although master momenta Pa * 

may appear in a measurement of the system at large N, they are 

not strictly necessary. in this case. for the solution to give the 

correct large N results. This is an artifact of these simple O(N) 

models, in which Pa is involved in only two invariants. 

F3. These correspondences are discussed for an arbitrary group 

manifold in Ref. (11). 

c r; 
.~ .,. 
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