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Abstract 

We present a brief review of two integration methods - the 

inverse scattering problem methods and the Backlund transformations 
- for the U(n) principal a-models. 
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I. Introduction to Non-linear a-Models 1·7 

Generally speaking, non-linear a-models (or chiral models) are 

scalar fields, subject to a non-linear constraint causing them to take 

values within a homogeneous subspace GIH of a global symmetry group 

G. These models are well studied in the case of a Riemann symmetric 

space. Upon this space, the Lie algebra and the Maurer-Cartan form 

have the following GIH decomposition: 

~ =k+/ 
,.. 

W = w,R + W,...v (1.1) 

and the structure equations are 

,,,, , .....- 1[-"" 1 
ct w"" + "2 [WR J W,H ) = - 2: WA"',W., 

(1.2) 

./ wJ +- [w.,q I w.A'"l = 0 

where A' is the complement of '" . The form ;;; may be used to define 
."v 

coframes on GIH: 

,., 
o :: ..,. -* w 0' ., (1.3) 

for some local section a : U ~ G, where U is an open set in GIH. The 

metric may be expressed as : 

k = k (i, i) = Ie .. jiBi 
LJ 

(1.4) 

where k is the restriction to J of the Killing form on G. Similarly, 

defining locally 
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.... * 
eN = fT ""'~ 

we may pull-back the Maurer-Cartan form onto U: 

52 = dw + i [w , w] = - f [e, 5] 

T = eli + [w, §} = 0 

(1.5) 

(1.6) 

The first of these equations defines the curvature n in terms ofform e 

and the second implies that GIH has no torsion, i.e. the connection w is 

Riemannian. 

The non-linear a-models form a class which has a strong analogy 

to gauge fields: they have similar geometrical properties, similar 

lagrangian and field equations, similar topological invariants and 

instantons. Recall that the gauge fields are defined as a I-form w over a 

manifold M with values in the Lie algebra of a compact group G and are 

described by a Lagrangian with action: 

A = f K (Q A *S2 ) (1.7) 

M 

where 

52 = dw 4ifw.w] (1.8) 

is a 2-form over M with values in 1 ' K is a Killing metric, * is the 

Hodge dual with respect to some suitable metric on M. The field 

equations are derived by variation of(1.7): 
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]) ~ = d ~ + [c..J I *.52 ] = 0 (1.9) 

The Bianchi identities follow from (1.8): 

DQ.::d52 + [w,52] =0 (1.10) 

IfM is compact and dim M=4, the theory has the following topological 

invariant!: 

1 = I K(52AQ) (1.11) 

M 

which takes only integer values, the so-called "instanton numbers". 

The a-field is a smooth function a : M --> G/H on a manifold M 

with metric g. In terms of the pull-backs to M ofiii and e, we have: 

q- ,*.-
w = 0- w 

8D' = (J'!f e 
(1.12) 

The a-field is described by a Lagrangian with action: 

A = I K ( eD'A If e"- ) (1.13) 

M 

and the field equations are obtained by variation of(1.13): 

1) *0"" =: d "0'" + [GtJD'~ *'B").:: 0 (1.14) 
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We can already see the resemblance between the a-field equations and 

the above gauge field equations. The analogue of the Bianchi identity 

(1.10) is the pull-back of the second equation of(1.6): 

d &(J- + [w'. fl"'J o (1.15) 

Note that the above equations being pullbacks are gauge invariant by 

construction. Under a change of gauge 0' ~ Rhoa, the quantities wO' and 

eO' transform as 

wt?- ----;. Adla.-I&~ 

tJt?' ~ Ad I.-' WOO + 1..-' d" 
(1.16) 

Other formulations of a-models are possible. One alternative 

version follows from the action expressed in terms ofthe metric tensor k 

onG: 

A = f k (d&~*d8) (1.17) 

/VI 

where de is a differential form over M with values in the complement 

.AI" of ~ in ~ . Here, the expression of the action is explicitly G 

invariant. 
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II. Inverse Scattering Problem Method for a-Models. 

The method described here, due to Zakharov, Shabat and 

Mikhailov,8-1o gives rise to a large number of non-linear integrable 

models, including a-models. In particular, it is known9 that all 2-

dimensional a-models are solvable by this method. We shall deal with 

U(n) principal a-model g(t,x) which is an n X n complex matrix defined 

on 2-dimensional space-time t, x. 

Consider a system of differential equations 

cit + klr = 0 (2.1) 

where 

\xl = vcl~ + Vd7 (2.2) 

is a differential form over a manifold M with values in 

U(n),2r; = t - x, 2n = t + x denote the "light-cone" variables and 

ljI, U, V are n X n complex matrix functions of r; and n and a complex 

parameter).. We assume that Eq. (2.1) has a compatible fundamental 

matrix of solutions. In terms of the components U and V, Eq. (2.1) may 

be written in the equivalent form as a system of partial differential 

equations 

~'i = V t t~7 = V~ (2.3) 

The Cartan integrability condition for Eq. (2.1) is: 

LBL-18634 
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d\x/ + ..L [lxi, 'vel] = 0 
2 

or the equivalent relation 

~'l - ~~ + [V, V j :: 0 

which must hold for all values of A. 

(2.4) 

(2.5) 

Although the method is more general, we now specialize to U and 

V having respectively N I poles AI' A2, ... , AN 1 and N2 poles Ill' 112, ... , IlN2 

and we assume that all these poles are simple and with positions 

independent of 1; and n. Then, U and V may be written in the form: 

N, 
V~ L u = ({ + .",=1 ). - A_ 

~ V .... 
V = Va + ?;;, ). - r-

(2.6) 

where {Ui, Vi} depend only on (1;, n). Eq. (2.5) becomes: 

~''l ~.3' + {Vo,v;,j=o 

v_~ "I'" [V ..... R"" 1 = 0 (2.7) 

V,.", .. ~ -I- [v.... I ~] ::: 0 

where 

LBI.-18634 
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N, V-. 
(2.8) 

R - v.. + E:, ) ... -r-".. -

~ V-. T .... -::. ~..,. L 
1" .... - ;\".,., ...... =, 

Assume now that U and V have a single pole A I = -1 and III = 1 

respectively and set U I = A, V I = - B. Then, we are led to the system 

of equations: 

~~ = 
A 

1 + >- t ~ ~7= 
8 

t (2.9) 

1- '" 

with the integrability condition: 

A~ 1 - B ~ ~ + [A I 8J = 0 (2.10) 

for a U(n) valued function g such that 

A = j,s' 
-I 

.8="'lj 
-I (2.11) 

The sum gives 

(j.1'$1-' )'7 + f?,'?7-'),'s = 0 
(2.12) 

which defines the U(n) principal a-model.ll 

Consider a particular solution {Uo, Vo, "'o} is known for (2.3) and 

(2.5). The following procedure may be applied ,to construct new 

solutions with the help of the known one. Suppose a n X n matrix 

function G(A) is given which is regular on a closed contour r. The 

matrix Riemann problem is to find two matrix functions "'I(A) and 

['8l.-18634 
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lj/2(A), analytic on the closure respectively of the exterior D1 and the 

in terior D2 of r, and such that on r 

<S(A) = ~ (A)'fz{A) (2.13) 

If lj/l(A), lj/2(A) are required to be regular on D1, D2 respectively, this is 

the Regular Riemann Problem. If lj/l(A), lj/2(A) are allowed a finite 

number of isolated zeroes, this is the Riemann Problem with Zeroes. 

Consider a given function GO(A) on r. We define a new function 

G (A,~ ''7) =- ~o (A';'7) Go 0) ~-'O'~''7) 
(2.14) 

- cf, (;l'~'7) tz(A,r;'''lJ 

Differentiating this relation with respect to z; gives: 

",-I(VO'f, - 'f',~'S) = (</1,..~ + Y'~ Vo ) == V 

(2.15) 

'1',-' (\I" 'f, - t,~r;) = ('h, ~ + «f.z v.,) E V 

which, iflj/t + lj/2 are solutions to the Regular Riemann Problem, gives 

{U, V} with the same holomorphic structure as U 0, Vo. Moreover, 

setting 

'I = 'f,-' eto -1 = ~ 'fo (2.16) 

L8L·18634 
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we obtain 

~~~ =- V7 1'7 = V 1 .m. .,f).t 

(2.17) 

~,~ = Vi • l,z = Vi iN&. ..8..t 

This is the new solution for Eq. (2.1) or Eq. (2.3). Hence, U and V 

satisfy (2.4) or (2.5). 

For U and V of the form (2.6), we have the following expressions: 

v = 1- -, V,.",o 1-
'" ..... "'1 

,. 
7"" = <f, /~ = -:J,..,. 

'V O 

f,., -=- f, /). = fA'" V =- f.. - ,., f,., 
(2.18) 

.,., ..... 

'" -I () ~ = 9,,- V 0 9., - 70 ItI.) ~ .) 

~ = 7o-/~o7D - ,/<>-'90."1-
~., = <fA. -, I; = QO 

Notice that the change of normalization 1111 -+ 1111 g-l(Z;, 11), lj/2 -+ lj/2 

g-1(Z;, 11) correspond to a change of gauge. If we are in a gauge with 

U 00 = V 00 = 0, the canonical normalization leads to U 0 = V 0 = o. 
Thus, for the a-model (2.9), we have: 

L8L·[8634 



-11-

A = <:(' Ao 1 r=cf,/ 
)= -I (2.19) 

E = f-' Bot f = ~~:+I 
and hence (A, B, $) satisfy (2.9), we have 

j = ~ / = i,-'jo 
)=0 

(2.20) 

where gO = $01>'=0. 

The above procedure of generating new solutions from an old one 

is equivalent to the traditional inverse scattering problem method.8 

This method of generating new solutions by means of the Regular 

Riemann Problem does not lead to the determination of the whole set of 

solutions to the system (2.1) or (2.3). For this, it is necessary to resolve 

the Riemann Problem with Zeroes. 

Consider a particular Riemann problem with two zeroes, for 

which: 

6 (~ ) / (2.21) 

and hence 

.~ = 'f,-' (2.22) 

The functions $l(>',Z;,n), $2(>',Z;,n) are thus rational with the poles ofljl1 

(resp.ljI2) located at the zeroes ofljl2 (resp.$d. We now choose $1 to have 

a simple zero at >. = >'0 and ljI2 to have one at >. = 110. It then follows 

from (2.22) that: 
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f, = I - ~o - 1-<0 P 
). -';-0 

(2.23) 

~ - 1+ 2. -
Ao - /:::.0 
A -' Ao 

:p 

where P2 = P is a projection operator. Substituting (2.23) into (2.15), 

we have the following differential equations: 

P (cl _ Va> I ) ( / - .E' ) = 0 
~ ;\() .. 

p ( ;)1 - ~ J ) (1- P ) = 0 
~o (2.24) 

( I - P) ( d"f; - Vo / ) p = 0 
/,0 

(I - P) (;)'1. - \fo/rJ P :. () 

If the solution $o(>"Z;,n) is known, these equations may be explicitly 

solved as follows. Let P be the projection operator determined by the 

two subspaces: 

M= I..,.." P N= Ket. P (2.25) 

defined by the conditions 

(I-P)M=O, PN=O (2.26) 

Taking some arbitrary initial values Po, Mo, No, we see that (2.24) is 

solved by 

LBL·18634 
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M = to (j'<D) Mo 
(2_27) 

AI = Y;" ( AD) No 

which defines the projector operator P as 

-I 

P = y.:J!o) ~ [~to) Po + '1'0 (Ao) (1- P..) ] (2.28) 

Substituting (2.28) into (2.24), using (2.3) for {Uo, Vo, 1\Io} shows that 

(2.27) is a solution with initial values of1\lo(lJo), 1\IO(AO) chosen as 1. 

The solutions of the Riemann Problem with G = 1 with two zeroes 

of the functions 1\11 and 1\12 describe the collisions of soliton solutions, in 

particular, collisions of simple solitons as well as processes of "induced" 

decay of composite solitons in collision with simple ones.9 
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[II. Backlund Transformations 

The Backlund Transformations (henceforth BT) give a method of 

generating new hyperbolic n-submanifolds ofR2n-l from a given one,12 

Hence the BT should give rise to a method of generating a new solution 

of a-model from a given one. 

Consider the U(n) principal a-model (2.12). The BT for this 

equation are given13- 15 by the following expression 

j>~ j-I - jo,~ ~o-' = - A (77;' t> 
(3.1) 

j,1. ,_' - jO'"2 ,; I :: ~('i:')~l 

with the constraint 

A j 'D-' + A j o 7-' = ;l + ;! (3.2) 

where A is a complex parameter. 

It can be shown from Eqs. (3.1) that if gO is a solution of (2.12), so 

is g. Moreover, with given gO E U(n), the system (3.1) is solvable with 

g E U(n), and the non-linear constraint (3.2) is compatible with (3.1).15 

Hence Eqs. (3.1), (3.2) are indeed BT. 

We shall not pursue the general analysis of the BT for (2.12), but 

rather consider a particular simple case (2.23). Our purpose now is to 

show that we may derive from Eq. (2.24) an equation which directly 

relates the new solution g to Eq. (2.12) from a known particular solution 

gO. 

[,BL·18634 
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The system of four Eqs. (2.24) is equivalent to the following 

system of two equations: 

(I-P)lfoft0)p- Pv;,Oo)(I-P) = p)~ 

(1- P) v" 0,.)p - p~ (').0) (1- P):. P,'l 

For the a-model (2.9), we have: 

A 
~tto) = A C{, 0 0 ) = 

1+ AQ I + to 
8 v:; ( ~o) = 8 ~ (to) -:;.- r 

1+ )0 I + " 
where 

-I 
A = jo,l.> ~o -I 

B = jo,,? '0 
and gO is the input solution. Define 

z = 1'0 tf, 1>'0 

= f'Q -I- ( Ao - j«-o) P 

The equation (3.3) reduces to the following: 

LBL-18634 
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l. = I [-..uo A A - 2 A + 
,~ (I+;"-o)ll+;o) I· ° 

oI-(I-I-Ao+(o)Ar. _2AZ] (3.7) 

Z - I fj.( ~ B-Z8 01-
'1- (I-~) (1- AD) L! 0 0 

-I- ( I - jA-o - ~D) 8&. + r 82] 

The condition p2 = P is equivalent to 

(2 -~o) (Z - ),0) = 0 (3.8) 

Then, the new solution to the U(n) a-model equations is, according to 

(2.17), given by 

j = ~Q~-Jo (3.9) 

Substituting into Eq. (3.7) and (3.8), after rearranging terms, we get 

f-o (1-lj~l; - jo-jo~"S) = -(Jo-1j)J"S 
(3.10) 

to(i-j,~ -j,,-jo~?) -:;. (jo-j)~Z 

with the constraint 

fo do :-1 + 1).0 7}0-1 = Ift0 + )0) -II (3.11) 

We may see directly from (3.10) that if gO is a solution to (2.12), so is g 

and vice versa. Thus, the system (3.10) provides a BT generating new 

LBL-18634 
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solution from old one. The explicit solution is obtained by combining 

Eqs. (2.23), (2.28) with (3.6), which gives: 

z = [( Ao ct., -;-<0 QZ) i!o -t ~()D (a." - a,)jx 
(3.12) 

)( [(a., - a.t ) Zo -;0 a, + ~o 4.z } - , 

where 

Q, = to (1"0) , a.z = t.f:., ( ). 0 ) (3.13) 

satisfy 

a,,> = 1/ ell , ai,"!. = 8ct., 
I+~o 1 -tto 

(3.14) 

a. _ A~&. a~)~ :: 
8 aJl, 

:.z,~ - A 
1- Ao 1-1- 0 

and Zo = ~o + ( Ao -jA-o) .Po 

is some arbitrarily chosen initial value, satisfying the constraint 

(~.:> -;0) (ZD - ;'0) = 0 (3.15) 

or, equivalently P02 = Po. 
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