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RECURSION RELATIONS FOR SOLUTIONS TO TIIE SCHRODINGER EQUATION 

We will consider the general eigenfunction for a 2nd-order differential 

operator in one variable. For many well-known elementary functions. we can 

also find a three-term recursion relation in the eigenvalue parameter. For prac-

tical computation. this is a very desirable property. Examples include Legendre 

functions. Bessel functions. etc. 

In reference [2]. Bochner showed that the only polynomial solutions to this 

problem were the well-known ones. This paper will look for solutions that may 

not be polynomials. 

It will be shown that. unfortunately. for the simple recursion relation con-

sidered here. no really new examples exist. 

1. Notation 

Let L be a 2nd order differential operator in one variable x, 

(1) 

and let B be a 2nd order difference operator in k, acting on a sequence tll: ~ by 

(2) 

For later convenience, subscripts like k will range over Z + c for some fixed 

c E: C; that is, over all complex numbers differing from a given one by an integer. 

Constants will normally be complex; functions will be: C -+ C and as smooth as 

necessary. 
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2. Basic Problem 

We seek a sequence of functions ~ljOk(X)~ s.t. 

LljOk(x) = Ak IjOk (x) 

and 

(BIjO(X»k = akljOk+l(x) + bkljOk(X) + CkljOk-l(X) = 19(X)ljOk(X) (4)k 

for all k EZ+ C and some L. ~ak. bk. ckL ~AkL 19(x). Of course. we really seek the 

whole sextuple (L . B . A.19. IjO • C ). 

We can allow some (not all) of the IjOk'S to be zero. This will enable us to 

include the classical orthogonal polynomials. We will see in Chapter 5. though. 

that all IjOk'S must be nonzero. either for each k big enough. or else for each k 

small enough. 19(x) should be nonconstant in x. and Ak nonconstant in k. Note 

that L and 19 are independent of k. and that B and A are independent of x. This 

will allow us to commute them in several formulas. 

3. Symmetries 

Given a solution to our Basic Problem. many obvious changes yield new sex­

tuples which will also be solutions. Nine of these changes will be listed. to be 

used extensively later. Assume. then. that c' E C is an arbitrary constant. and 

that (L. B , A .19 • IjO • c) solves the Basic Problem. The following is a list of new 

solution sextuples: 

(a) 

(e'L.B .c'A.19.IjO. c) (Sl) 

This scales L by a constant. Since (3)k implies (C'L)ljOk = (C'Ak)ljOlco (Sl) is 



(b) 

(c) 

(d) 

(e) 

(f) 

• 
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also a solution. 

(L,B,A,1'),C'rp,C) (S2) 

rp is scaled by a constant here. (S2) clearly follows from multiplying (3)k 

and (4)k by c '. 

(L +C',B,A+C',1'),rp,c) (S3) 

(S3) transfers a constant between L and~. We see it by modifying (3)k to 

be (L +c ')rpk = (~+c ')rpk. 

(L,B,A,1'),rp,C -c') (S4) 

This new solution just has a shifted subscript. The (3)k corresponding to it 

is now Lrpk+c' = Ak+c·rpk+c· for k E:Z+c -c' and the new (4)k is similar. 

( L , c 'B , A, c '1') , rp , c ) (S5) 

(S5) scales the recursion relation by a constant. The new (4)k will be 

«c 'B)rp)k = (c '1')(x »rpk. 

(L,B+c',A,1')+C',rp,C) (S6) 

In (S6), a constant is transferred between B and 1'), so that (4)k is now 
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(g) Symmetry seven is under the change of independent variable x. say by 

x =x(x'). If L' is the new differential operator resulting from the variable 

change. we derive the new solution (S7): 

(L'. B. A.19{x{x'». ~(x{x,». c) (S7) 

(3h~ and (4)k change in the obvious ways. We will use this transformation 

most commonly for the simple shift x = x' + c '. 

(h) Let ~k (x) = f (x )1Pk (x). for some function f (x) and all k. Then 

(f -1 Lf • B . A.19 .1{I{x). c ) (S8) 

is a solution allowing us to multiply ~ by an arbitrary function of x. (4)k will 

look similar. with 1{1 in place of ~. and (3)k will be (f -1 Lf )1{Ik (x) = Ak 1{Ik (x). 

(i) Let ~k(X) = fk1{lk{X). for all k and for fk independent of x. This multiplica­

tion of ~k by an arbitrary constant depending only on k gives the new solu­

tion 

(S9) 

We will be using these to transfer to simpler-looking solutions. and eventu­

ally to reduce to a few fundamental ones. Clearly. the space of possible varia­

tions of these fundamental solutions will be extremely large. 

4. Commutation Relations 

L is 2nd order .. and we can think of the operator of multiplying by 19{x) as 

Oth order. Then 

• 
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[19-,L] = 19-L -L19-
[19-, [19-,L]] 

[19-,[19-,[ 19-,L]]] 

is 1st order, 
is Oth order, and 

= O. 

[19-,[19-,[19-,L]]]~k = o. 

A typical term of this last expression is 

-3'f}'f} L'f}~k. 

= -3'f}19-L(B~)k by (4)k , 

= -3'f}'f}(B(L ~»k as Land B commute, 

= -3'f}'f}(B(A~ »k by (3)k , 

= -3(B A'f}'f}~)k since B and 'f) also commute, 

= -3(BABB~)k once again using (4)k . 

Continuing in this way, we soon see that 

o = [19-,['f},[19-,L]]]~k = ([B,[B,[B,A]]]~)k . 

This last expression is a linear combination of seven terms, multiplying 

~k-3' ~k-2' ... , ~k+3' respectively. If we assume the ~k'S linearly independent 

for different k's (as, for example, if Ak #; A.t., for k #;k'), each of the seven terms 

must vanish. In particular, let us examine the terms containing ~k+3 and ~k-S, 

which each must be zero. 

The term with ~k+3 is 

The term with ~k-3 is 

These must be zero for all k E: Z+ c. Thus, for a given k, 

Either (akak+lak+2~k+3 = ck+1Ck+2ck+3~k = 0) 
or Ak - 3Ak+l + 3Ak+2 - Ak+3 = 0 . 

(5) 
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5. Pinning down A 

(Theorem) 

At least one of the following statements is true: 

or 

1) ck ~ 0 and rpk ~ 0 for all k sufficiently large negative 

2) ak ~ 0 and rpk ~ 0 for all k sufficiently large positive. 
(6) 

(Recall that the a's and c 's are the coefficients in (4).) 

Proof: Pick some rpt ~ O. If, for all k < l, Ck and rpk ~ 0, the theorem is pro-

ven. Otherwise, there is some largest m ~l such that 

Since this m is maximal, rpm ~ O. Then (4)m becomes 

Thus Amrpm+l ~ 0 and rpm+l = rpm' (polynomial in 'I9-(x), degree 1). Now (4)m+l 

implies 

rpm . (polynomial in 'I9-(x), degree 2) + Am +lrpm+2 = O. 

Therefore Am +lrpm+2 ~ 0 and rpm+2 = rpm' (polynomial in '19-, degree 2). We con-

tinue this way to generate the r/Jk'S for k >m. Since '19- is not constant, the nth 

degree polynomial in '19- at the nth step can't be zero. At the nth step we'll get 

Am+nrpm+n+l ~ 0, so that we've shown An ~ 0 and rpn+l ~ 0 for all n~k. II 

We will write k E: K as a synomym for "k sufficiently large negative" or "k 

sufficiently large positive", respectively. It will turn out in Chapter 7 that all 

we'll need is that the theorem be true for many contiguous k's. This explains 'f 

why we can be so ambiguous about the finite endpoint of K. 
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From this theorem and (5) we get that 

Ak "F- constant, so Tl "F- 0 or T2 "F- O. 

If Tl "F- 0, use (Sl) to scale Ak so that the leading coefficient is 1. Then {S4} 

can shift k and kill the linear term. Finally, {S3} transfers the constant term 

into L, yielding Ak = k 2. 

If Tl = 0, T2"F- 0, {Sl} can be used to scale the leading coefficient of Ak to 

be 1. (S4) will kill the constant term by shifting k. giving Ak = k. We can keep 

{S3} in reserve this time for possible need later. 

We have reduced to either of two cases 

~ = k or Ak = k 2 for k E K . (7) 

6. Some Convenient Formulas 

(Lemma) 

(L-Ak)n{19-lt'k) = [L,[L,[· .. ,[L,19-]· .. ]It'k 
<----n L's----> n~O 

(8) 

Proof: For n = 1, the proof is 

Larger n's can be shown similarly by induction. _ 

(Lemma) 
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Proof: 1Jrplc = (Brp)1c = a linear combination of rplc-l' rplc ,rplc+l . • 

Call/).Ic == ~ -Ak+l' Vic == Alc -~-l. Then from the previous lemma, 

o = (L-~+I)(L-AIc)(L-Ak-I)(1Jrpk) 
= (L-~+/).k)(L-Ak)(L-Ak+Vk)(1Jrplc) 
= «L -A.l:)S + (/).Ic +VIc )(L-AIc)2+/).1c Vk(L-~»(1Jrpk) . 

By (8), 

[L,[L, ... [Lh 1J]] ... ] 
Call An == the operator <----n L' s----> Then 

(9) 

which is often a convenient form. 

In [3], Grlinbaum and Duistermaat attack the problem. of finding a 

differential equation, (instead of a recursion relation), in the spectral parame-

ter, and arrive at a simpler but similar formula. 

7. Finding Possible Potentials 

We need not work with the general 2nd order operator for L. Using (S7) to 

set the leading coefficient to 1, and (S8) to kill the ! term, we can use 

d 2 
L == dx 2 + V(x), without loss of generality. 

Hand calculations show: [use D = ! 1 

Al = 21J'D+1J" , A2 = 41J"D2+41J"'D+1J""-21J'V', 

As = 81J'''D3 + 121J""D2 + (61J(5) -41J'V" -121J"V')D 

+ (1J(6) - 61J'" V' - 81J" V" - 21J' V''') 

Gbse J) ~ =k, k EK (from (7». Here /).k = -1, Vic = +1. Then by (9) 
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Since the finite order operator A3-Al has here infinitely many independent solu­

tions (by the Addendum to Thm (6). epic :;. 0 for all k E: K). it must be identically 

zero: 

(10) 

We will use this argument again. Since we only need an infinite number of solu-

tions. the sloppy definition of K in Chapter 5 is sufficient. Take (10). and equate 

to zero each coefficient of a power of D. 

n3 819-"'=0 => 19-=rlx2+r2x+r3 forsomeftxed rl.r2.r3 

n2 1219-"" = 0 => nothing new. 
nl 619-(5)-419-'V"-1219-"V = 219-'. Using the n l equation => 

-4(2r1X +r2)V"-24rl V = 2(2rlX +r2). 

no nothing new. 

There are now two subcases 

(a) r l == O. so -4r2 V" = 2r2 . 19-:;. constant. so r2 cannot be zero. Then 

!
V= - ~ X2+qIX+q2 

19- = r2x + r3 

Use (S7) to shift x 4 x + 2q 10 and (S3)+(S4) to move a constant into ~. giv-

. V 1 2 1 lng =--x--
4 2 

[ - ~ for later convenience]. Use (S5).(S6) giving 

19-=x. 

(b) rl:;' O. Using (S7).(S5).(S6) yields 19- = x 2 and -8rl V' -24rl V' = 4rlX for 

our two equations. The second one can be easily solved: 

2xV' + 6V' = -x • 
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1 Sl 
V' = -~ ---

8 2,x3 ' 

Here S 10 S2 are arbitrary constants. 

Thus Case I) Ak = k has two possible kinds of solution: 

( ) 
~a 2 V 1. 2 S 1 b v=,x, = - -x + -2-+S2' 

16 x 

Solutions to Case I}: If Rn (x) solves y" - 2:r:y' + 2ny = 0 (Hermite eqn), then 

Rn [ ~ ix]e ~2 is an eigenfunction for (a). 

For (b), pick an m s.t. ~ - m 2 = Sl' Using (S3) and (S4) to move a constant 

1 2 1 - 4m 2 m + 1 ( ) 
into ,,*, we can get V = - 16 x + 4x2 - -2-' Then if 4}.m (x) solves 

:r:y /I + (A + 1-x}y' + ny = 0 (11) 

[ 
x21 .62 m+.L 

(the Generalized Laguerre eqn), one can check that £Am) - 4l' e B X 2 is an 

eigenfunction for (b), eigenvalue n. 

For the sake of completeness, the recursion relations for Hermite and 

Laguerre solutions are included (see [1], p. 252, 241): If Rn is a solution to the 

Hermite equation, then 

Rn+l - 2:r:Rn + 2nRn- 1 = 0 , 

If £Am) solves the Generalized Laguerre equation, then 

These relations are well known. They don't only work for the orthogonal 
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polynomials. Instead, for any element of the solution space for a given n, one 

can find elements of the solutions spaces for n-1 and n+1 such that the recur­

sion relation will hold. 

Case II) ">vc = k 2 for k E: K (from (7». 

In this case !:lie = -2k -1, Vic = 2k -1. Then by (9) 

{As - 2A2 + {1-4k 2)A I h"le = 0 for k E: K 

Here k2rtJIe = AlefPle = LfPle, so (As -2A:!+AI {1-4L»rtJle = 0 fork E:K. Again, since 

this operator has too many solutions, 

We'll use L = D2 + V(x) again, and set coefficients to zero. Only the DS and DI 

coefficients give new data. 

DS: Bl9-'''-B~' = 0 => ~ = rle z +r2e-z ,rl' r2 constant. 

Using (S7) to shift x, and (S5), we get to 

~ = e Z or ~ = cosh x . 

From (12). we can replace ~" by~, so 

Now a little algebra: 

-12~V' -4~'V" -B~'V' = O. 

(~'V'+2~V)' = O. 

(~'V'+2~V) = SI. 

{(~')2V)' = SI~' , 

(~')2V = S I~ + s2 • 

(12) 
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We can list the possible solutions to (12) and (13): 

(a) '!9- = e Z
, V = e-2z (SI = 0, use (S7) to shift x) 

(b) '!9- = e Z
, V = e-z (S2 = 0, use (S7) to shift x) 

(p2 -a2)cosh x + -11
6
-(1-4a2 ) 

(d) '!9- = cosh x, V = -----s-in-h-2-x...::..::;----

where we've set the constants for later convenience. 

Solutions to Case II}: 

(a) For V = e-2z : If Dn(x) solves 

x 2y" + y' + (x 2 _n2)y = 0 (Bessel eqn) 

then Dn(e-Z
) is an eigenfunction for (a), eigenvalue n 2• 

(13) 

(c) V = -veve -z - ev2e-2z . If LJm)(x) is a solution of (11), the Generalized 

Laguerre eqn, for given nand m, then 

is an eigenfunction to (c) with eigenvalue n 2. 

(1-x2)(Pnali )" + [p -a - (a + p + 2)x ](P71~Ii)' + n(a + p + n + l)p.:1i = 0 

(Jacobi eqn) 

[ ~a+t-r ~1i+4-
then sinh ~ l cosh ~ P::~a+:+1 (cosh x) is an eigenfunction to (d) 

with eigenvalue n 2• (See [1], p. 214) 
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For Bessel functions Dn(x). the recursion relation is (see [1]. p. 67): 

This relation can be used to derive a recursion relation also for the Bessel func-

tions that solve (b). For the recursion relation for the Jacobi functions P. see 

[1]. p. 213. The relation for the Generalized Laguerre function in (c) is not obvi-

ous. However. the following relation 

(n+1)(n-m) L,fm) ( ) + [ 2n-m,+1 
(m+1)(m+2) -m Y (m+1)(m+3) 

+ 1 y2T (m+4) (y) = 0 
(m+2)(m+3) ~-m-2 

is sufficient. and can be derived by repeated use of .~ 

and 

found in [1]. p. 241-2. Here we use the standard normalizations for the L,fm) ·s. 

8. Conclusion 

All the possible solutions found correspond to shifts. using the symmetries 

from Section 3. of well-known functions; i.e .. solutions to the Bessel. Generalized 

Laguerre. Hermite. and Jacobi differential equations. Note again that those solu-

tions need not be the standard orthogonal polynomials. but can come from the 

full solution spaces. Since these functions are already well-known. no attempt 

was made to catalog them precisely: Some are special cases of others. 
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9. Final. Note 

Though certain steps may be harder, many of these techniques should work 

for higher-order L's or B's. 

Some examples of nontrivial recursion relations with more than three 

terms are given by Grunbaum in [4]. The examples he gives are of soliton-like 

functions. 
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